JP5019781B2 - MIG arc welding method using gas shielded arc welding flux cored wire - Google Patents

MIG arc welding method using gas shielded arc welding flux cored wire Download PDF

Info

Publication number
JP5019781B2
JP5019781B2 JP2006124463A JP2006124463A JP5019781B2 JP 5019781 B2 JP5019781 B2 JP 5019781B2 JP 2006124463 A JP2006124463 A JP 2006124463A JP 2006124463 A JP2006124463 A JP 2006124463A JP 5019781 B2 JP5019781 B2 JP 5019781B2
Authority
JP
Japan
Prior art keywords
mass
less
welding
wire
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006124463A
Other languages
Japanese (ja)
Other versions
JP2007296535A (en
Inventor
励一 鈴木
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006124463A priority Critical patent/JP5019781B2/en
Publication of JP2007296535A publication Critical patent/JP2007296535A/en
Application granted granted Critical
Publication of JP5019781B2 publication Critical patent/JP5019781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は自動車等の炭素鋼薄板のすみ肉溶接等に際して、高い継手疲労強度を確実に得ることができ、高能率で、優れた溶接作業性を得ることができるガスシールドアーク溶接フラックス入りワイヤを使用するMIGアーク溶接方法に関する。 The present invention provides a gas shielded arc-welded flux-cored wire that can reliably obtain high joint fatigue strength when performing fillet welding of a carbon steel sheet such as an automobile, and can obtain excellent welding workability with high efficiency. The present invention relates to a MIG arc welding method to be used .

近時、燃費向上を目的とした自動車の車重軽減のために、高張力鋼板を使用する動きが活発化している。高張力鋼板も軟鋼と同様にアーク溶接がなされるが、溶接継手では疲労強度が軟鋼と同程度にしか確保できず、高張力鋼板本来の性能を発揮できないという問題点がある。   Recently, movements to use high-strength steel sheets have become active in order to reduce vehicle weight for the purpose of improving fuel efficiency. High-strength steel sheets are arc-welded in the same way as mild steel, but weld joints have a problem that fatigue strength can only be secured to the same level as mild steel, and the original performance of high-tensile steel sheets cannot be exhibited.

溶接部の疲労強度が母材より低下する原因としては、溶接止端部の応力集中と、溶接熱による膨張及び収縮によって生じる引張残留応力が主因と考えられ、これまで数々の手段によって改善が試みられてきた。   It is thought that the fatigue strength of the welded part is lower than that of the base metal, mainly due to the stress concentration at the weld toe and the tensile residual stress caused by expansion and contraction due to welding heat. Has been.

先ず、溶接止端部の応力集中を緩和するためには、接触角の減少、止端半径の増大といったビード形状を滑らかにする手段が考案されている。特許文献1、特許文献2、特許文献3、及び特許文献4では、鋼板の成分組成の限定、表面張力を下げる特殊成分添加、溶接電圧等の溶接条件の限定等によって達成することが示されているが、止端形状は、鋼板及びワイヤの成分組成と、鋼板の表面性状と、溶接電圧、溶接姿勢及び溶接速度の溶接条件といった種々の要因によって影響を受けることから、適用に際しては制限が多く汎用性に乏しかった。また、上述の従来技術では、止端形状の劇的改善は困難で、大幅な疲労強度向上が達成できていない。 First, in order to alleviate the stress concentration at the weld toe, means for smoothing the bead shape such as a decrease in contact angle and an increase in toe radius have been devised. Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4, only the composition of the steel plate, special component added to lower the surface tension, be achieved by limiting such welding conditions such as welding voltage shown However, the toe shape is affected by various factors such as the composition of the steel plate and wire, the surface properties of the steel plate, and welding conditions such as the welding voltage, welding position, and welding speed. Many were not very versatile. Further, in the above-described conventional technology, it is difficult to dramatically improve the shape of the toe, and a significant increase in fatigue strength cannot be achieved.

また、引張残留応力低下、溶接金属の降伏応力低下及び延性の向上が図られている。特許文献5及び特許文献6では残留応力を低下させるために、溶接金属を塑性変形させやすくする思想が提示されている。しかし、特許文献5には具体的な溶接手段が提示されていない。また、特許文献6においては、溶接ワイヤに対して過剰に脱酸成分を減らして強度を低下させることから、脱酸不足で気孔欠陥が生じやすかったり、高強度鋼板に適用すると静的継手引張強度が不足してしまう等の問題点があった。   Further, a reduction in tensile residual stress, a reduction in yield stress of weld metal, and an improvement in ductility are achieved. Patent Document 5 and Patent Document 6 propose the idea of easily deforming the weld metal plastically in order to reduce the residual stress. However, Patent Document 5 does not provide specific welding means. Moreover, in patent document 6, since a deoxidation component is reduced excessively with respect to a welding wire and a strength is reduced, pore defects are likely to occur due to insufficient deoxidation, or static joint tensile strength when applied to a high-strength steel plate. There was a problem such as shortage.

更に、引張残留応力低下のために、応力除去焼鈍が行われている。従来から最もよく知られている残留応力の消滅方法として、焼鈍炉で高温保持する応力除去焼鈍(PWHT)がある。しかし、自動車等の薄板用としては、PWHT設備を有しているメーカーはほとんどなく、設備導入しても生産効率が著しく低下し、高コスト化を招くことになる。   Furthermore, stress relief annealing is performed to reduce the tensile residual stress. Conventionally, the most well-known method for extinguishing residual stress is stress removal annealing (PWHT) which is held at a high temperature in an annealing furnace. However, there are few manufacturers that have PWHT equipment for thin plates such as automobiles, and even if the equipment is introduced, the production efficiency is remarkably lowered and the cost is increased.

更に、引張残留応力低下のために、ピーニング加工が行われている。ショットピーニング又はハンマーピーニング、及び超音波ピーニングといわれる手段で、溶接後に圧縮応力
を印加する手段があり、特許文献7にも提示されている。しかし、この技術も、設備の導入が必要で、かつ生産効率が著しく低下し、高コスト化を招くことになる。
Furthermore, peening is performed to reduce the tensile residual stress. There is a means for applying a compressive stress after welding by means of shot peening or hammer peening and ultrasonic peening, which is also disclosed in Patent Document 7. However, this technique also requires the introduction of equipment, and the production efficiency is remarkably lowered, resulting in an increase in cost.

更に、引張残留応力を低下させるために、低温変態溶接材料を使用する技術が提案されている。最近注目されている手段として、溶接金属のマルテンサイト変態温度(Ms点)を低下させて、室温時に膨張変態の圧縮残留応力を付与するか、又は引張残留応力を低減させる方法が注目されている。特許文献8には既に高Cr+高Ni系の溶接金属によってMs点を低下させる手法が提案されている。その後、数々の同手法による提案が出されている。特許文献9、特許文献10、特許文献11、特許文献12、特許文献13、特許文献14、特許文献15、特許文献16では、高Cr、高Ni、若しくは高Mn系の溶接金属又は溶接ワイヤが提案されている。この技術は、一般の溶接材料では、図1のラインSで示すように高い温度M で膨張変態が生じ、その後収縮に転じる。室温に戻ったときには、ΔLの引張残留応力が残る。しかし、低変態温度溶接材料の場合(ラインA)はM点が低い(M )ため室温時には収縮変形が生じず、ΔLの圧縮残留応力となるというのが理想的である。ところが、Ms点を下げることだけでは、残留応力を必ずしも安定的に改善できないという問題点があった。Ms点が低くても、その後の冷却過程で生じる膨張が直ちに終了してしまう(ラインB)場合も多く、極めて小さいΔLしか圧縮残留応力が生じない。一方、M点が多少高くても(M )、その後の膨張変形が極めて大きい場合(ラインC)は収縮変形に移っても室温時には十分高い圧縮変形ΔLが確保できる。つまり、上述の従来技術においては、Ms点の低下だけでなく、マルテンサイトの膨張変態を効率的に生じさせる方法が確立できていないという問題点があった。
Furthermore, in order to reduce the tensile residual stress, a technique using a low temperature transformation welding material has been proposed. Recently, attention has been focused on a method of reducing the martensitic transformation temperature (Ms point) of the weld metal to give the compressive residual stress of the expansion transformation at room temperature or reducing the tensile residual stress. . Patent Document 8 has already proposed a method of reducing the Ms point with a high Cr + high Ni-based weld metal. Since then, numerous proposals have been made using this method. In Patent Literature 9, Patent Literature 10, Patent Literature 11, Patent Literature 12, Patent Literature 13, Patent Literature 14, Patent Literature 15, and Patent Literature 16, a high Cr, high Ni, or high Mn based weld metal or welding wire is used. Proposed. In this technique, in a general welding material, an expansion transformation occurs at a high temperature M S S as shown by a line S in FIG. When returning to room temperature, tensile [Delta] L S residual stress remains. However, in the case of low transformation temperature welding material (line A) has a low M S point (M S A) for not occur shrinkage deformation at the time of room temperature, it is ideal is that the compressive residual stress of the [Delta] L A. However, there is a problem that the residual stress cannot always be stably improved only by lowering the Ms point. Even Ms point is low, many subsequent termination expanded immediately to become (line B) field if generated in the cooling process, the compressive residual stress does not occur only a very small [Delta] L B. On the other hand, even if M S point is somewhat higher (M S C), then if the expansion deformation is very large (line C) is sufficiently high compressive deformation [Delta] L C can be secured even when the room temperature moves to shrinkage deformation. That is, in the above-described conventional technology, there is a problem that not only a decrease in Ms point but also a method for efficiently causing martensite expansion transformation has not been established.

その他、上述の溶接材料は焼入れ性が極めて高いため、ソリッドワイヤの場合、伸線性が悪く、高コストな溶接材料となる。また、溶接金属の粘性が高いため、薄板溶接で必要とされる高速性と、溶滴移行しにくいことによるスパッタ発生量増大といった実際の溶接ラインでの適用性を考慮しておらず、問題があった。溶接継手(金属)のみの規定で具体的な溶接ワイヤ又は溶接方法が提示されないものもあり、この場合は実現方法が不明である。一般的には、所定の溶接金属を実現する最も簡便な手段は、溶け込みが極めて浅くて母材希釈を考慮する必要がなく、かつ酸化消耗が生じないTIG溶接法を使うのが実用的である。このため、実施工で所望される高能率なMAG又はMIGといった消耗電極式のガスシールドアーク溶接方法が提案されているとはいえない。   In addition, since the above-mentioned welding material has extremely high hardenability, in the case of a solid wire, the wire drawing property is poor and the welding material becomes a high cost. In addition, due to the high viscosity of the weld metal, the high speed required for thin plate welding and the applicability in actual welding lines such as increased spatter generation due to the difficulty of droplet transfer are not considered. there were. In some cases, a specific welding wire or a welding method is not presented by the definition of only a welded joint (metal), and in this case, the realization method is unknown. In general, the simplest means for realizing a predetermined weld metal is practically using the TIG welding method in which the penetration is extremely shallow, it is not necessary to consider dilution of the base material, and oxidation consumption does not occur. . For this reason, it cannot be said that a consumable electrode type gas shielded arc welding method such as high-efficiency MAG or MIG desired in an implementation is proposed.

溶接材料の提案例の一つとして、フラックス入りワイヤを用いる手段が特許文献17に提案されている。しかし、上述のとおり効率的な膨張変態を導く手段は提示されておらず、疲労強度の改善は不安定で、かつスラグを多量に発生させる厚板向きタイプで薄板向きではないため、薄板用としては電着塗装性の劣化、高速性の不足といった問題がある。   As one example of the proposed welding material, Patent Document 17 proposes a means using a flux-cored wire. However, as described above, no means for guiding efficient expansion transformation has been presented, and the improvement of fatigue strength is unstable, and it is a thick plate type that generates a large amount of slag and is not suitable for thin plates. Have problems such as poor electrodeposition and poor high speed.

ソリッドワイヤとしてコストを下げる手段として、伸線性を向上すべく単体では伸線性が良好な異なる成分の2重構造にしたソリッドワイヤが非特許文献1に提案されている。しかし、やはり効率的な膨張変態を導く手段は提示されておらず、ワイヤ製造方法が特殊なため依然極めて高コストである。また、当ワイヤはMIG溶接でのアーク安定性を向上させ、溶接性を向上することを提案しているものの、MIG溶接では陰極点・陽極点を安定させるためには、酸素量の向上及び電子放出を容易にするための特殊元素の添加等の手段が必要とされ、当ソリッドワイヤではこれらの考慮がなされていないため、未だ不足であった。   As a means for reducing the cost as a solid wire, Non-Patent Document 1 proposes a solid wire having a double structure of different components with good drawability as a single unit in order to improve the drawability. However, no means for inducing efficient expansion transformation is presented, and the cost of the wire manufacturing method is still very high because of its special method. Although this wire has been proposed to improve arc stability in MIG welding and improve weldability, in MIG welding, in order to stabilize the cathode and anode points, the oxygen content and the electron are improved. Since a means such as addition of a special element for facilitating the release is required and these considerations are not made in this solid wire, it is still insufficient.

特開平6−340947JP-A-6-340947 特開平8−25080JP-A-8-25080 特開2002−361480JP 2002-361480 A 特開2002−361481JP-A-2002-361481 特開平7−171679JP-A-7-171679 特開平9−227987JP-A-9-227987 特開2004−136312JP20041363631A 特開昭54−130451JP 54-130451 A 特開2000−288728JP 2000-288728 A 特開2001−246495JP2001-246495 特開2002−273599JP 2002-273599 A 特開2004−98108JP 2004-98108 A 特開2004−98109JP 2004-98109 A 特開2004−98113JP 2004-98113 A 特開2004−98114JP 2004-98114 A 特開2005−238305JP-A-2005-238305 特開2002−307189JP 2002-307189 A 超鉄鋼ワークショップ Vol.9th 58-59P,2005/7/20]Super Steel Workshop Vol.9th 58-59P, 2005/7/20]

本発明はかかる問題点に鑑みてなされたものであって、Ms点を十分低下させるだけでなく、Ms点以下の冷却過程で生じる膨張変態を効率的に導くと共に、伸線性が優れていて、高酸素及び高窒素であり、低スラグ性が優れたフラックス入りワイヤを採用することにより、低コストで疲労強度を向上させることができ、高速溶接性、低スパッタ性、低スラグ性、及びアーク安定性を実現することができ、使い勝手の良好なガスシールドアーク溶接フラックス入りワイヤを使用するMIGアーク溶接方法を提供することを目的とする。 The present invention has been made in view of such problems, and not only sufficiently lowers the Ms point, but also efficiently leads to the expansion transformation that occurs in the cooling process below the Ms point, and has excellent wire drawability, By adopting high-oxygen and high-nitrogen flux-cored wires with excellent low slag properties, fatigue strength can be improved at low cost. High-speed weldability, low spatter properties, low slag properties, and arc stability It is an object of the present invention to provide a MIG arc welding method using a gas-shielded arc welding flux-cored wire that can realize the performance and is easy to use .

本発明に係るMIGアーク溶接方法は、鋼製外皮にフラックスを充填してなるアーク溶接用フラックス入りワイヤにおいて、ワイヤ全体の成分組成が、ワイヤ全質量に対して、C:0.02乃至0.70質量%、Si:0.30乃至1.50質量%、Mn:0.50乃至5.00質量%、Ni:2.0乃至9.5質量%、Cr:Niとの合計量で4.0乃至18.0質量%(但し、Crを含まない場合も含む)、O:0.020質量%以上及びN:0.0020乃至0.0400質量%を含有し、P:0.030質量%以下、S:0.030質量%以下、Ti:0.15質量%以下、Al:0.20質量%以下、Nb,V,Mo及びCuからなる群から選択された少なくとも1種:各元素あたり2.00質量%未満、B:0.0100質量%以下、REM(希土類元素):0.50質量%以下、Mg:1.00質量%以下、F及びCaからなる群から選択された少なくとも1種:各元素あたり0.100質量%以下、K、Na及びLiからなる群から選択された少なくとも1種:総量で0.200質量%以下に規制し、残部はFe及び不可避不純物からなり、かつフラックス率が7乃至30質量%であるガスシールドアーク溶接フラックス入りワイヤを使用し、Arが96質量%以上、残部がCO 又はO の混合ガスをシールドガスとしてMIG溶接することを特徴とする。 In the MIG arc welding method according to the present invention, in a flux-cored wire for arc welding formed by filling a steel outer shell with a flux, the component composition of the entire wire is C: 0.02 to 0.00. 70% by mass, Si: 0.30 to 1.50% by mass, Mn: 0.50 to 5.00% by mass, Ni: 2.0 to 9.5% by mass, Cr: Ni in a total amount of 4. 0 to 18.0% by mass (including the case where Cr is not included), O: 0.020% by mass or more and N: 0.0020 to 0.0400% by mass, P: 0.030% by mass Hereinafter, S: 0.030% by mass or less, Ti: 0.15% by mass or less, Al: 0.20% by mass or less, at least one selected from the group consisting of Nb, V, Mo and Cu: per element Less than 2.00% by mass, B: 0.0100% by mass REM (rare earth element): 0.50 mass% or less, Mg: 1.00 mass% or less, at least one selected from the group consisting of F and Ca: 0.100 mass% or less for each element, K, at least one selected from the group consisting of Na and Li: regulated to 0.200 wt% or less in total, the balance being Fe and consists unavoidable impurities, and the gas shielded arc flux rate Ru 7 to 30% by mass A wire with welding flux is used, and MIG welding is performed using a mixed gas of 96 mass% or more of Ar and the balance of CO 2 or O 2 as a shielding gas .

なお、本発明においては、Crは、Niとの合計量で4.0乃至18.0質量%であるが、Ni単独でこの量が含まれていれば、Crは含まなくてもよい。   In the present invention, Cr is 4.0 to 18.0% by mass in total with Ni, but Cr may not be included if Ni alone contains this amount.

このMIGアーク溶接方法において、ワイヤ全体の成分組成は、更に、ワイヤ全質量に対して、Nb,V,Mo及びCuからなる群から選択された少なくとも1種:各元素あたり0.05質量%以上2.00質量%未満、B:0.0010乃至0.0100質量%、REM(希土類元素):0.01乃至0.50質量%、Mg:0.05乃至1.00質量%、F及びCaからなる群から選択された少なくとも1種:各元素あたり0.005乃至0.100質量%、又は、K、Na及びLiからなる群から選択された少なくとも1種:総量で0.001乃至0.200質量%を含有することができる。 In this MIG arc welding method , the component composition of the entire wire is further at least one selected from the group consisting of Nb, V, Mo and Cu with respect to the total mass of the wire: 0.05% by mass or more for each element Less than 2.00% by mass, B: 0.0010 to 0.0100% by mass, REM (rare earth element): 0.01 to 0.50% by mass, Mg: 0.05 to 1.00% by mass, F and Ca At least one selected from the group consisting of: 0.005 to 0.100% by mass for each element, or at least one selected from the group consisting of K, Na and Li: 0.001 to 0.00 in total. It can contain 200 mass%.

本発明に係る他のMIGアーク溶接方法は、鋼製外皮にフラックスを充填してなるアーク溶接用フラックス入りワイヤにおいて、ワイヤ全体の成分組成が、ワイヤ全質量に対して、C:0.02乃至0.70質量%、Si:0.30乃至1.50質量%、Mn:0.50乃至5.00質量%、Ni:2.0乃至9.5質量%、Cr:Niとの合計量で4.0乃至18.0質量%(但し、Crを含まない場合も含む)、O:0.020質量%以上及びN:0.0020乃至0.0400質量%を含有し、P:0.030質量%以下、S:0.030質量%以下、Ti:0.15質量%以下、Al:0.20質量%以下、Nb,V,Mo及びCuからなる群から選択された少なくとも1種:各元素あたり2.00質量%未満、B:0.0100質量%以下、REM(希土類元素):0.50質量%以下、Mg:1.00質量%以下、F及びCaからなる群から選択された少なくとも1種:各元素あたり0.100質量%以下、K、Na及びLiからなる群から選択された少なくとも1種:総量で0.200質量%以下に規制し、残部はFe及び不可避不純物からなり、かつフラックス率が7乃至30質量%であるガスシールドアーク溶接フラックス入りワイヤを使用し、実質的に純Arガスをシールドガスとして使用してMIG溶接することを特徴とする。In another MIG arc welding method according to the present invention, in a flux-cored wire for arc welding in which a steel outer shell is filled with a flux, the composition of the entire wire is C: 0.02 to the total mass of the wire. 0.70% by mass, Si: 0.30 to 1.50% by mass, Mn: 0.50 to 5.00% by mass, Ni: 2.0 to 9.5% by mass, and Cr: Ni 4.0 to 18.0% by mass (provided that Cr is not included), O: 0.020% by mass or more and N: 0.0020 to 0.0400% by mass, P: 0.030 % By mass or less, S: 0.030% by mass or less, Ti: 0.15% by mass or less, Al: 0.20% by mass or less, at least one selected from the group consisting of Nb, V, Mo and Cu: each Less than 2.00% by mass per element, B: 0.0100 quality % Or less, REM (rare earth element): 0.50 mass% or less, Mg: 1.00 mass% or less, at least one selected from the group consisting of F and Ca: 0.100 mass% or less for each element, K At least one selected from the group consisting of Na and Li: a gas shielded arc whose total amount is regulated to 0.200% by mass or less, the balance being Fe and inevitable impurities, and a flux rate of 7 to 30% by mass MIG welding is performed using a wire with welding flux and substantially using pure Ar gas as a shielding gas.

このMIGアーク溶接方法において、ワイヤ全体の成分組成は、更に、ワイヤ全質量に対して、Nb,V,Mo及びCuからなる群から選択された少なくとも1種:各元素あたり0.05質量%以上2.00質量%未満、B:0.0010乃至0.0100質量%、REM(希土類元素):0.01乃至0.50質量%、Mg:0.05乃至1.00質量%、F及びCaからなる群から選択された少なくとも1種:各元素あたり0.005乃至0.100質量%、又は、K、Na及びLiからなる群から選択された少なくとも1種:総量で0.001乃至0.200質量%を含有することができる。In this MIG arc welding method, the component composition of the entire wire is further at least one selected from the group consisting of Nb, V, Mo and Cu with respect to the total mass of the wire: 0.05% by mass or more for each element Less than 2.00% by mass, B: 0.0010 to 0.0100% by mass, REM (rare earth element): 0.01 to 0.50% by mass, Mg: 0.05 to 1.00% by mass, F and Ca At least one selected from the group consisting of: 0.005 to 0.100% by mass for each element, or at least one selected from the group consisting of K, Na and Li: 0.001 to 0.00 in total. It can contain 200 mass%.

これらのMIGアーク溶接方法において、パルスアーク溶接機を使用してMIG溶接することが好ましい。また、板厚1乃至5mmで母材強度が490MPa以上の鋼板に適用することが好ましい。   In these MIG arc welding methods, it is preferable to perform MIG welding using a pulse arc welder. Moreover, it is preferable to apply to a steel plate having a plate thickness of 1 to 5 mm and a base material strength of 490 MPa or more.

本発明によれば、溶接部の冷却過程で大きな膨張変態を生じることにより、薄板の高速溶接における継手疲労強度の向上と、良好なビード形状、スパッタ及びヒューム量の抑制、耐電着塗装性の向上という効果を大きな設備投資を必要とせず、低いランニングコストで確実に実現することができる。このため、本発明のワイヤは、自動車産業等の鋼板軽量化を図るために極めて有効であり、環境の改善等につながる社会的意義が大きいものである。   According to the present invention, a large expansion transformation occurs in the cooling process of the welded portion, thereby improving the joint fatigue strength in high-speed welding of thin plates, improving the bead shape, the amount of spatter and fume, and improving the resistance to electrodeposition coating. This effect can be reliably realized at a low running cost without requiring a large capital investment. For this reason, the wire of the present invention is extremely effective for reducing the weight of the steel sheet in the automobile industry and the like, and has great social significance that leads to environmental improvement and the like.

以下、本発明の実施形態について添付の図面を参照して具体的に説明する。本願発明者等は、室温冷却時に圧縮残留応力を極力大きくするためには、Ms点を下げることはそれほど重要ではなく、Ms点後の膨張変態を高効率に生じさせることの方がより重要であることに着目した。そこで、本発明は、(1)Ms点以後の冷却過程における確実かつ高効率の膨張変態、(2)低コスト、(3)薄板溶接に要求される溶接作業性を全て満足することを目的として、研究を重ねた結果、以下の結論を得た。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. In order to increase the compressive residual stress as much as possible when cooling at room temperature, the inventors of the present application do not need to lower the Ms point so much, and it is more important to generate the expansion transformation after the Ms point with high efficiency. I focused on that. Therefore, the present invention aims to satisfy all of (1) reliable and highly efficient expansion transformation in the cooling process after the Ms point, (2) low cost, and (3) welding workability required for thin plate welding. As a result of repeated research, the following conclusions were obtained.

(1)高効率の膨張変態を得るための技術は次のとおりである。
Ms点の低下にはこれまでに開発された技術のとおり、NiとCrの多量添加が有効であるが、これだけではMs点以下においてオーステナイトからマルテンサイトへの変態率が大きくなく、直ちに膨張が終了して、残留オーステナイトとして室温時に残ってしまう。本発明者等は、残留オーステナイトにさせないためには、溶接金属の酸素量の低下と窒素の積極添加の両立が必要であることを見いだした。更には、炭素を高含有量で添加することが好ましいこともわかった。これを実現するために、1)フラックスからのN、Cの積極添加、2)シールドガスの酸素量を極力減らした低酸素MAG又はMIG溶接法の採用による溶接金属の酸素量低減によって高効率な膨張変態を可能にすることができた。更に、パルス溶接法を使用すると、入熱が減少するので、冷却速度が大きくなり、Ms点の低下及び高効率な膨張変態を起こすことに優位となる。
(1) The technique for obtaining a highly efficient expansion transformation is as follows.
As in the technology developed so far, a large amount of Ni and Cr is effective for lowering the Ms point, but with this alone, the transformation rate from austenite to martensite is not large below the Ms point, and the expansion ends immediately. As a retained austenite, it remains at room temperature. The present inventors have found that it is necessary to satisfy both the reduction of the oxygen content of the weld metal and the positive addition of nitrogen in order to prevent residual austenite. Furthermore, it has been found that it is preferable to add carbon at a high content. To achieve this, 1) positive addition of N and C from the flux, 2) high efficiency by reducing the amount of oxygen in the weld metal by adopting the low oxygen MAG or MIG welding method that reduces the amount of oxygen in the shield gas as much as possible. An expansion transformation could be made possible. Further, when the pulse welding method is used, the heat input is reduced, so that the cooling rate is increased, and this is advantageous in that the Ms point is lowered and a highly efficient expansion transformation is caused.

(2)低コスト化についての技術は次のとおりである。
ワイヤ形態として、ソリッドワイヤではワイヤ自体が硬化しやすく、伸線時に何度も焼鈍が必要となるのに対し、本発明のフラックス入りワイヤとすることで、良好な伸線性を有し、かつワイヤへの酸素の積極添加により、MIG溶接時の陽極点・陰極点を安定化させ、安定なアーク安定性と低スパッタ量を実現した。なお、ワイヤで高酸素系であっても溶融池では強力な脱酸機能をもつ炭素等と結合し、離脱することから溶接金属の酸素量は極めて低く抑制できることも確認した。
(2) The technology for cost reduction is as follows.
As a wire form, the solid wire is easy to harden and needs to be annealed many times at the time of wire drawing. By positively adding oxygen to the anode, the anode and cathode spots during MIG welding were stabilized, realizing stable arc stability and low spatter. It was also confirmed that the oxygen content of the weld metal can be suppressed to a very low level because even when the wire is a high oxygen type, the weld pool is bonded with carbon having a strong deoxidizing function and separated.

また、MIG溶接ではフラックス入りワイヤの欠点であるヒュームの多量発生を確実に抑制することが可能である。   Further, in MIG welding, it is possible to reliably suppress the generation of a large amount of fumes, which is a drawback of flux-cored wires.

Cr及びNiといった高価な元素を多量に含有しなくても、本願発明ではMs点以後の高効率膨張変態が可能になるので、Ms点を下げるための元素であるCr及びNiを多量に添加する必要が無いことも材料費としての低コスト化の要因である。Cについても、フラックス入りワイヤでは安価なグラファイトをフラックス成分の一部として利用でき、簡単に高炭素化が可能である。   Even if it does not contain a large amount of expensive elements such as Cr and Ni, the present invention enables highly efficient expansion transformation after the Ms point, so a large amount of Cr and Ni, which are elements for lowering the Ms point, are added. The lack of necessity is also a factor in reducing the cost of material. Also for C, inexpensive graphite can be used as a part of the flux component in the flux-cored wire, and the carbon can be easily increased.

(3)薄板の高速溶接を考慮した良好な作業性を得るための手段は次のとおりである。
Cr及びNiといった元素を多量に含有させると溶融池の粘性が高くなり高速溶接が困難になるが、本ワイヤではこれらの元素を低く抑えられるため、溶融池の粘性は低く薄板の高速溶接が可能である。更に、一般のフラックス入りワイヤではCO又はAr80+20質量%CO(MAG)程度までのシールドガスを対象として設計されているため、殆どの従来技術においては、アーク安定材のTi、Al及びZrをTiO、Al、ZrOといった形で積極的に添加している。しかし、Ti,Al及びZrはスラグを生成させるため、自動車部品のような電着塗装するものの場合には、スラグ剥離で塗装がはげるという問題点がある。本発明のワイヤは、自動車用の薄板用途を重視して、Ti、Al及びZrを積極的に添加せず、作業性を向上させている。
(3) Means for obtaining good workability in consideration of high-speed welding of thin plates are as follows.
When a large amount of elements such as Cr and Ni is contained, the viscosity of the molten pool becomes high and high-speed welding becomes difficult, but with this wire, these elements can be kept low, so the viscosity of the molten pool is low and high-speed welding of thin plates is possible. It is. Furthermore, since general flux-cored wires are designed for shielding gas up to about CO 2 or Ar 80 + 20 mass% CO 2 (MAG), in most conventional technologies, the arc stabilizer Ti, Al, and Zr are used. It is positively added in the form of TiO 2 , Al 2 O 3 , ZrO 2 . However, since Ti, Al, and Zr generate slag, in the case of electrodeposition coating such as automobile parts, there is a problem that the coating is peeled off by slag peeling. The wire of the present invention emphasizes the use of a thin plate for automobiles, and does not positively add Ti, Al and Zr, and improves workability.

上述の(2)で述べたとおり、フラックス入りワイヤの高酸素化により、MIG溶接時のアーク安定性、低スパッタ化及び低ヒューム化も達成させている。更に、本発明のワイヤにパルス溶接を組み合わせることにより、更に一層、アーク安定化、スパッタ量減少及びヒューム量減少を達成できる。   As described in (2) above, by increasing the oxygen content of the flux-cored wire, arc stability during MIG welding, low spatter, and low fume are also achieved. Further, by combining pulse welding with the wire of the present invention, it is possible to further achieve arc stabilization, reduction in spatter amount, and reduction in fume amount.

以下に各成分の成分添加理由及び組成限定理由について説明する。この組成は、外皮のフープとフラックスとを合わせたワイヤ全体の成分の組成である。   The reasons for adding the components and limiting the composition of each component will be described below. This composition is a composition of the components of the entire wire including the hoop and the flux of the outer skin.

「C:0.02乃至0.70質量%」
Cは溶接金属の強度を確保するだけでなく、冷却過程におけるMs点通過以後の膨張変態を高効率に生じさせるために必要な成分である。Cが0.02質量%未満では膨張変態の効率が低い。この膨張変態の効率を高めるためには、Cは0.02質量%以上が必要で、望ましくは0.08質量%以上、更に望ましくは0.20質量%以上である。一方、Cを過剰に添加すると、炭化物が析出して疲労破壊の起点になり、逆に疲労強度が低下すると共に、ヒューム発生量も多くなる。Cを0.70質量%を超えて添加すると、更に高温割れ及び低温割れが発生しやすくなる。従って、Cの上限は0.70質量%である。但し、ヒューム量低減の観点から、Cは0.50質量%以下が望ましい。
“C: 0.02 to 0.70 mass%”
C is a component necessary not only to ensure the strength of the weld metal, but also to cause an expansion transformation after passing through the Ms point in the cooling process with high efficiency. If C is less than 0.02% by mass, the efficiency of expansion transformation is low. In order to increase the efficiency of the expansion transformation, C is required to be 0.02% by mass or more, desirably 0.08% by mass or more, and more desirably 0.20% by mass or more. On the other hand, when C is added excessively, carbide precipitates and becomes a starting point of fatigue fracture, conversely, fatigue strength decreases and fume generation increases. When C is added in excess of 0.70% by mass, hot cracks and cold cracks are more likely to occur. Therefore, the upper limit of C is 0.70% by mass. However, from the viewpoint of reducing the amount of fume, C is desirably 0.50% by mass or less.

「Ni:2.0乃至9.5質量%」
Niは代表的なオーステナイト安定化元素であり、Ms点を下げるために有効な元素である。Ms点を適度な範囲で下げるためには、Niは2.0質量%以上の添加が必要である。一方、Niは高価な元素であるため、その添加はコスト増となるばかりでなく、かつ過剰な添加では溶融池の粘性が上昇して高速溶接時にハンピングする、また、Niが多いと、スパッタ発生量が増加するといった短所が生じる。これらの問題は、Niが9.5質量%以下であれば許容されるが、本発明においては、Ms点が高くとも、以降の冷却過程で膨張変態が極めて大きいので、Ms点を過剰に下げる必要は無く、その意味で、Niは9.5質量%以下で十分であり、上記問題点をより少なくするためには、Niは5.9質量%以下がより好ましい。
“Ni: 2.0 to 9.5 mass%”
Ni is a typical austenite stabilizing element and is an effective element for lowering the Ms point. In order to lower the Ms point within an appropriate range, Ni needs to be added in an amount of 2.0% by mass or more. On the other hand, since Ni is an expensive element, its addition not only increases the cost, but excessive addition increases the viscosity of the molten pool and causes humping during high-speed welding. The disadvantage is that the amount increases. These problems are permissible if Ni is 9.5% by mass or less, but in the present invention, even if the Ms point is high, the expansion transformation is extremely large in the subsequent cooling process, so the Ms point is excessively lowered. There is no need, and in that sense, 9.5% by mass or less of Ni is sufficient, and in order to reduce the above problems, Ni is more preferably 5.9% by mass or less.

「Cr:Niとの合計量で4.0乃至18.0質量%(但し、Crを含まない場合も含む)」
CrはNiと共に添加することでMs点を低下させる。Crの単独添加では効果が無い。NiとCrを合わせて4.0質量%未満では、Ms点を有効な範囲で下げることはできい。従って、Ni及びCrの合計量は、4.0質量%以上が必要である。一方、Ni及びCrの合計量が18.0質量%を超えると、コスト増となるばかりでなく、溶融池の粘性が上昇して高速溶接時にハンピングし、また、スパッタ発生量が増加するといった問題が生じる。従って、NiとCrとの合計量の上限は18.0質量%である。なお、CrはNiと共添することにより、その効果を発揮するものであるから、Crの単独添加(Niを添加しない場合)は本発明の範囲に含まれない。逆に、Niが4,0質量%以上含有されていれば、Crは無添加とすることができる。
“Total amount of Cr: Ni is 4.0 to 18.0% by mass (including the case where Cr is not included)”
Cr is added together with Ni to lower the Ms point. The addition of Cr alone has no effect. If the combined amount of Ni and Cr is less than 4.0% by mass, the Ms point cannot be lowered within an effective range. Therefore, the total amount of Ni and Cr needs to be 4.0% by mass or more. On the other hand, when the total amount of Ni and Cr exceeds 18.0% by mass, not only the cost is increased, but also the viscosity of the molten pool is increased and humping is performed during high-speed welding, and the amount of spatter is increased. Occurs. Therefore, the upper limit of the total amount of Ni and Cr is 18.0% by mass. Since Cr exhibits its effect when co-added with Ni, the addition of Cr alone (when Ni is not added) is not included in the scope of the present invention. Conversely, if Ni is contained in an amount of not less than 4,0% by mass, Cr can be added.

「Si:0.30乃至1.50質量%」
Siはビード形状を改善する効果がある。Siが0.30質量%未満では、この機能が不足し、ビード形状のなじみ性が悪くなって、止端形状が劣化し、溶接部に応力集中しやすくなる。その結果、継手の疲労強度が低下する。望ましくは、Siは0.60質量%以上である。一方、Siが1.50質量%を超えると、溶融池の粘性が過剰となり、高速溶接時にハンピングしやすくなる。また、スラグを多量に発生させるので電着塗装性も劣化する。従って、Siは1.50質量%以下とする。
“Si: 0.30 to 1.50 mass%”
Si has an effect of improving the bead shape. If Si is less than 0.30 mass%, this function is insufficient, the conformability of the bead shape is deteriorated, the toe shape is deteriorated, and stress is easily concentrated on the welded portion. As a result, the fatigue strength of the joint is reduced. Desirably, Si is 0.60 mass% or more. On the other hand, when Si exceeds 1.50 mass%, the viscosity of the molten pool becomes excessive, and it becomes easy to hum during high-speed welding. Further, since a large amount of slag is generated, the electrodeposition paintability is also deteriorated. Therefore, Si is 1.50 mass% or less.

「Mn:0.50乃至5.00質量%」
Mnはビード形状を改善したり、多量添加で焼入れ性を高めて、Ms点を下げる効果がある。Mnが0.50質量%未満では、ビード形状のなじみ性が悪くなって、止端形状が劣化し、溶接部に応力集中しやすくなる。その結果、継手の疲労強度が低下する。望ましくは、Mnは1.00質量%以上である。一方、Mnが5.00質量%を超えると、溶融池の粘性が過剰となり、高速溶接時にハンピングしやすくなると共に、ヒューム発生量が過剰となる。また、Mnを5.00質量%を超えて添加すると、スラグを多量に発生させるので、電着塗装性も劣化する。従って、Mnは5.00質量%以下、望ましくは、3.00質量%以下である。
“Mn: 0.50 to 5.00% by mass”
Mn has the effect of improving the bead shape, increasing the hardenability by adding a large amount, and lowering the Ms point. When Mn is less than 0.50% by mass, the conformability of the bead shape is deteriorated, the toe shape is deteriorated, and stress is easily concentrated on the welded portion. As a result, the fatigue strength of the joint is reduced. Desirably, Mn is 1.00 mass% or more. On the other hand, if Mn exceeds 5.00% by mass, the viscosity of the molten pool becomes excessive, and it becomes easy to hum during high-speed welding, and the amount of generated fume becomes excessive. Moreover, when Mn is added exceeding 5.00 mass%, since a large amount of slag is generated, the electrodeposition coating property is also deteriorated. Therefore, Mn is 5.00 mass% or less, desirably 3.00 mass% or less.

「O:0.020質量%以上」
酸素はMIG溶接時に陰極点、陽極点を安定させ、良好なアーク安定性を得るために必須である。また、酸素の添加は、溶滴の酸素量を上昇させて表面張力を低下させ、溶滴の離脱性を改善して低スパッタ化を可能とする。特に、パルス溶接時にはその効果は大きい。ソリッドワイヤでは、Oを0.020質量%以上安定して添加することは難しいが、フラックス入りワイヤにすることで、例えば鉄粉を用いることにより、単位体積あたりの表面酸素が増加するので、容易に酸素の多量添加が可能である。なお、望ましくは、酸素は0.040質量%以上である。また、酸素を多量に添加することについては、弊害がなく、フラックス率との兼ね合いで、酸素の上限は実質上決まるので、酸素量としての上限値は設けない。
“O: 0.020 mass% or more”
Oxygen is essential to stabilize the cathode spot and anode spot during MIG welding and to obtain good arc stability. Further, the addition of oxygen increases the amount of oxygen in the droplets to lower the surface tension, improves the detachability of the droplets, and enables low spattering. The effect is particularly great during pulse welding. With solid wire, it is difficult to stably add O in an amount of 0.020% by mass or more, but by using a flux-cored wire, for example, by using iron powder, surface oxygen per unit volume increases, so it is easy. In addition, a large amount of oxygen can be added. Desirably, oxygen is 0.040 mass% or more. Moreover, there is no harmful effect on adding a large amount of oxygen, and since the upper limit of oxygen is substantially determined in consideration of the flux rate, no upper limit is set as the amount of oxygen.

「N:0.0020乃至0.0400質量%」
一般的に、炭素鋼の溶接において、窒素は靭性を低下させたり、ブローホールを発生させるだけで、特段の利点はないので、極力低減されている。しかし、本発明では、Nは積極的に添加する。窒素は適正量の添加で溶接金属のMs点以後の冷却過程におけるマルテンサイト変態を効率的に生じさせ、膨張を大きくさせる。逆に、N無添加では、図1のBラインのように、Ms点が低くても、変態が直ちに終了し、圧縮応力増大とそれに伴う疲労強度改善効果は極めて限定的なレベルに留まる。
“N: 0.0020 to 0.0400 mass%”
In general, in the welding of carbon steel, nitrogen is reduced as much as possible because it only reduces the toughness or generates blowholes and has no particular advantage. However, in the present invention, N is positively added. Nitrogen, when added in an appropriate amount, efficiently causes martensitic transformation in the cooling process after the Ms point of the weld metal and increases the expansion. On the other hand, when N is not added, even if the Ms point is low as shown in the B line of FIG. 1, the transformation is immediately terminated, and the increase in compressive stress and the accompanying fatigue strength improvement effect remain at a very limited level.

膨張を最大限に引き出すNの効果はワイヤで0.0020質量%以上の添加で有効となる。望ましくは、Nは0.0035質量%以上である。一方、窒素量が多くなると、アークの安定性が悪くなり、0.0400質量%を超えるNの添加は、ブローホールを発生させることになる。望ましくは、Nは0.0200質量%以下である。低合金系のソリッドワイヤで、Nを添加すると、溶製時に気孔欠陥が発生しやすいため、溶製が困難であるが、フラックス入りワイヤとすることで、フラックスからNを積極的に添加させることができる。これもフラックス入りワイヤを選択する理由の一つである。   The effect of N that maximizes the expansion becomes effective when the wire is added in an amount of 0.0020% by mass or more. Desirably, N is 0.0035 mass% or more. On the other hand, when the amount of nitrogen increases, the stability of the arc deteriorates, and the addition of N exceeding 0.0400% by mass generates blow holes. Desirably, N is 0.0200 mass% or less. When N is added to a low-alloy solid wire, pore defects are likely to occur during melting, so melting is difficult, but by using a flux-cored wire, N should be actively added from the flux. Can do. This is one of the reasons for selecting a flux-cored wire.

「P、S:夫々0.030質量%以下」
P及びSは耐高温割れ性を低下させる元素であり、本発明の目的達成のためには、特段の積極添加の意味はない。従って、従来のワイヤと同等に工業的生産性とコストを考慮し0.030質量%以下に抑制する。
“P and S: 0.030% by mass or less, respectively”
P and S are elements that lower the hot cracking resistance, and there is no particular meaning of positive addition in order to achieve the object of the present invention. Therefore, it is suppressed to 0.030% by mass or less in consideration of industrial productivity and cost as with the conventional wire.

「Ti:0.15質量%以下、Al:0.20質量%以下」
Ti及びAlはアーク安定剤及び脱酸元素として多くのフラックス入りワイヤに添加されている。しかし、本発明は薄板用の溶接ワイヤであり、使用環境として、スラグ剥離工程が予定されていない。そして、本発明のワイヤは、電着塗装された薄板の溶接に適用される場合が極めて多い。そのため、スラグを生成するTi及びAlの添加は、塗装性を阻害するので望ましくない。また、Ti及びAlが多いと、薄板で用いられる低電流溶接時のアーク安定性が劣化し、大粒のスパッタを発生させる。従って、工業的生産性とコストを考慮して、Ti:0.15質量%以下、Al:0.20質量%以下に抑制する。さらに望ましくは、Ti,Al共に0.10質量%以下である。
“Ti: 0.15 mass% or less, Al: 0.20 mass% or less”
Ti and Al are added to many flux cored wires as arc stabilizers and deoxidizing elements. However, the present invention is a welding wire for a thin plate, and a slag peeling process is not planned as a use environment. The wire of the present invention is very often applied to the welding of an electrodeposited thin plate. Therefore, the addition of Ti and Al that generate slag is undesirable because it impairs the paintability. Moreover, when there are many Ti and Al, the arc stability at the time of the low current welding used with a thin plate will deteriorate, and a big spatter will be generated. Therefore, in consideration of industrial productivity and cost, Ti is suppressed to 0.15% by mass or less, and Al: 0.20% by mass or less. More preferably, both Ti and Al are 0.10% by mass or less.

「フラックス率:7乃至30質量%」
フラックス率(充填率)が7質量%未満では、所定量の窒素及び酸素量を含ませることができず、かつフラックス成分の偏析が生じると共に外皮が肉厚となって溶滴が大きくなり、スパッタが増加する。一方、フラックス率が30質量%を超えると、外皮が薄くなり、伸線加工中に断線が発生しやすくなり、製造が困難となる。
“Flux rate: 7 to 30% by mass”
When the flux rate (filling rate) is less than 7% by mass, it is impossible to include a predetermined amount of nitrogen and oxygen, segregation of the flux components occurs, the outer skin becomes thick, and the droplets increase, resulting in spattering. Will increase. On the other hand, when the flux rate exceeds 30% by mass, the outer skin becomes thin, breakage is likely to occur during wire drawing, and manufacturing becomes difficult.

「Nb,V,Mo及びCu:各元素あたり0.05質量%以上2.00質量%未満」
Nb,V,Mo及びCuは添加しなくても、本発明の目的は達成されるが、Nb,V,Mo及びCuは、夫々適当な量を添加することで、Ms点を低下させたり、適度な強度を確保する効果が得られる。これらの効果を得るためには、これらの元素は、夫々0.05質量%以上添加することが必要である。一方、これらの元素が夫々2.00質量%以上になると、ワイヤの製造コストが高くなりすぎる。また、これらの元素が2.00質量%を超えると、溶融池の粘性が上昇して高速溶接時にハンピングしたり、スパッタ発生量が増加する。特に、Cuは高温割れが発生するなどの欠点が顕著になる。このため、これらの元素は添加する場合は、2.00質量%未満にする。なお、構成外皮の表面にCuメッキした場合は、Cu量はこのメッキ層のCuも含んで2.00質量%未満に規制する。
“Nb, V, Mo and Cu: 0.05% by mass or more and less than 2.00% by mass for each element”
Even if Nb, V, Mo, and Cu are not added, the object of the present invention can be achieved. However, Nb, V, Mo, and Cu can reduce the Ms point by adding appropriate amounts, respectively. The effect of securing an appropriate strength can be obtained. In order to obtain these effects, it is necessary to add 0.05% by mass or more of these elements. On the other hand, if each of these elements is 2.00% by mass or more, the production cost of the wire becomes too high. Moreover, when these elements exceed 2.00 mass%, the viscosity of a molten pool will rise and it will hump at the time of high-speed welding, or a sputter | spatter generation amount will increase. In particular, defects such as hot cracking are noticeable in Cu. For this reason, when adding these elements, it is made less than 2.00 mass%. In addition, when Cu is plated on the surface of the constituent skin, the amount of Cu is restricted to less than 2.00% by mass including Cu of the plating layer.

「B:0.0100質量%以下、又は0.0010乃至0.0100質量%」
Bは添加しなくても本発明の目的は達成できるが、Bを少量添加しただけで、Ms点を低下させ、かつ溶接金属の靭性を向上できる。この効果は、Bを0.0010質量%以上添加することが必要である。一方、Bが0.0100質量%を超えて添加されると、継手に高温割れを発生させる。このため、B添加する場合は、0.0100質量%以下にする。
“B: 0.0100 mass% or less, or 0.0010 to 0.0100 mass%”
Although the object of the present invention can be achieved without adding B, the addition of a small amount of B can lower the Ms point and improve the toughness of the weld metal. For this effect, it is necessary to add B in an amount of 0.0010% by mass or more. On the other hand, if B is added in an amount exceeding 0.0100% by mass, a hot crack is generated in the joint. For this reason, when adding B , it is made into 0.0100 mass% or less.

「REM(希土類元素):0.50質量%以下、又は0.01乃至0.50質量%」
REMは希土類元素であり、例えば、La,Ce等がある。REMは添加しなくても本発明の目的を達成できるが、REMを0.01質量%以上添加すると、MIG溶接時にアーク安定性が向上し、かつ溶接金属の酸素量がより低くてもMs点を低下させることができる。一方、REMが0.50質量%を超えて添加されると、アーク安定化効果が飽和し、逆に溶滴が大粒化してスパッタが増加する。また、コストも高価となる。このため、REM添加する場合は、0.01乃至0.50質量%とする。
“REM (rare earth element): 0.50 mass% or less, or 0.01 to 0.50 mass%”
REM is a rare earth element such as La or Ce. The object of the present invention can be achieved without adding REM. However, when 0.01% by mass or more of REM is added, the arc stability is improved during MIG welding, and the Ms point is obtained even if the oxygen content of the weld metal is lower. Can be reduced. On the other hand, when REM is added in an amount exceeding 0.50% by mass, the arc stabilizing effect is saturated, and conversely, the droplets become large and spatter increases. Also, the cost is expensive. For this reason, when adding REM , it is 0.01 to 0.50 mass%.

「Mg:1.00質量%以下、又は0.05乃至1.00質量%」
Mgは添加しなくても本発明の目的は達成されるが、Mg強力な脱酸成分であり、溶接金属の焼入れ性を高め、Ms点を低下させる。その効果は、Mgを0.05質量%以上添加することが必要である。一方、Mgが1.00質量%を超えると、溶融池の粘性が上昇して、高速溶接時にハンピングし、またスパッタ発生量とヒューム量が増加するため、Mgは1.00質量%以下にする。
“Mg: 1.00 mass% or less, or 0.05 to 1.00 mass%”
Although the object of the present invention can be achieved without adding Mg, Mg is a strong deoxidizing component, which enhances the hardenability of the weld metal and lowers the Ms point. For that effect, it is necessary to add 0.05% by mass or more of Mg. On the other hand, if Mg exceeds 1.00% by mass, the viscosity of the molten pool increases, and humping occurs during high-speed welding, and the amount of spatter generated and the amount of fume increases, so Mg is made 1.00% by mass or less. .

「F,Ca:夫々0.100質量%以下、又は0.005乃至0.100質量%」
F及びCaは添加しなくても本発明の目的は達成されるが、F及びCaもまた強力な脱酸作用を有し、溶接金属の焼入れ性を高め、Ms点を低下させる。その効果は、F及びCaを夫々0.005質量%以上添加することが必要である。一方、F及びCaが夫々0.100質量%を超えると、溶融池の粘性が上昇して高速溶接時にハンピングし、またスパッタ発生量とヒューム量が増加する。このため、F及びCaは、添加する場合は、夫々0.100質量%以下にする。
“F and Ca: 0.100% by mass or less, or 0.005 to 0.100% by mass, respectively”
Even if F and Ca are not added, the object of the present invention can be achieved, but F and Ca also have a strong deoxidizing action, increase the hardenability of the weld metal, and lower the Ms point. For that effect, it is necessary to add 0.005% by mass or more of F and Ca, respectively. On the other hand, when F and Ca each exceed 0.100% by mass, the viscosity of the molten pool is increased and humping is performed during high-speed welding, and the amount of spatter generated and the amount of fume increase. For this reason, when adding F and Ca, respectively, it shall be 0.100 mass% or less.

「K、Na及びLiからなる群から選択された少なくとも1種:総量で0.200質量%以下、又は0.001乃至0.200質量%」
K,Na及びLiは添加しなくても本発明の目的は達成されるが、K,Na及びLiは電子放出を容易にし、アーク安定化と溶滴移行を円滑にしてスパッタ発生量を低下させる作用を有する。特に、MIG溶接ではその効果が大きい。K,Na及びLiの効果は、総量で0.001質量%以上の添加で発揮される。一方、K,Na及びLiは総量で0.200質量%を超えて添加しても、その添加効果が飽和してしまうと共に、アーク力が弱まって溶込み深さが浅くなり、溶融池が不安定となってハンピングするなどの問題が生じる。従って、K,Na及びLiの総量の上限値は0.200質量%である。なお、K,Na及びLiはKO,NaO,LiOを主成分とする長石、ソーダガラス、カリガラス等を原料として、フラックス添加されるのが一般的である。
“At least one selected from the group consisting of K, Na and Li: a total amount of 0.200 mass% or less, or 0.001 to 0.200 mass%”
Although the object of the present invention can be achieved without adding K, Na and Li, K, Na and Li facilitate electron emission, smooth arc stabilization and droplet transfer, and reduce spatter generation. Has an effect. In particular, the effect is great in MIG welding. The effect of K, Na, and Li is exhibited by addition of 0.001% by mass or more in total. On the other hand, even if K, Na, and Li are added in a total amount exceeding 0.200% by mass, the effect of the addition is saturated, the arc force is weakened, the penetration depth becomes shallow, and the molten pool becomes inefficient. Problems such as stable hunting occur. Therefore, the upper limit of the total amount of K, Na and Li is 0.200% by mass. In general, K, Na, and Li are added with flux using feldspar, soda glass, potash glass, or the like mainly composed of K 2 O, Na 2 O, Li 2 O.

「Ar:96質量%以上、残部:CO若しくはOの混合ガス、望ましくは純Arガスをシールドガスとして使用したMIG溶接」
シールドガスは溶接金属の酸素量を低下させて適度にMs点を下げ、かつMs点以下に冷却されたときの膨張変態を高効率に発生させるため、さらにヒューム発生量を抑制するために、できるだけ非酸化性が望ましい。少なくとも、Arガスの割合が80質量%以上のAr比でなければ、残留応力低減とヒューム量抑制が困難であるが、Ar96質量%以上のAr比が推奨される。更には、実質的に不純物しか含まない純Arガスをシールドガスとして使用すると、劇的にこれらの特性を高めることが可能である。一般のワイヤでは、純Arでのアーク安定性確保は不可能であるが、本発明のワイヤは、純Arガスでも安定なアーク安定性を維持できる。なお、ここでいう純Arは、Arに不可避的不純物を含有することは許容される。
“Ar: 96% by mass or more, balance: CO 2 or O 2 mixed gas, preferably pure Ar gas used as shielding gas for MIG welding”
The shield gas lowers the oxygen content of the weld metal, lowers the Ms point appropriately, and generates an expansion transformation when cooled to below the Ms point with high efficiency. Non-oxidizing is desirable. At least, if the Ar gas ratio is not 80% by mass or more, it is difficult to reduce the residual stress and suppress the amount of fume, but an Ar ratio of 96% by mass or more is recommended. Furthermore, when pure Ar gas containing substantially only impurities is used as a shielding gas, these characteristics can be dramatically improved. Although it is impossible to ensure arc stability with pure Ar with a general wire, the wire of the present invention can maintain stable arc stability with pure Ar gas. In addition, pure Ar here is allowed to contain inevitable impurities in Ar.

「パルス溶接機」
使用する溶接機は一般的な消耗電極式アーク溶接用として用いられる定電圧特性電源でも残留応力低減には特に問題ない。しかし、薄板溶接における高速溶接性、アーク安定性及び低ヒューム化を図るために、パルス溶接機との組合せが推奨される。特にシールドガスとして純Arを用いる場合は、アーク安定性確保のためには、パルス溶接機が有効である。パルスの設定については特に限定しないが、ピーク電流350〜600A、ベース電流30〜100A、1ピーク(立上り開始〜ピーク定常期〜立下り終了)の期間で0.8〜5.0m秒が一般に使用される。
"Pulse welding machine"
Even if the welding machine to be used is a constant voltage characteristic power source used for general consumable electrode arc welding, there is no particular problem in reducing residual stress. However, in order to achieve high-speed weldability, arc stability, and low fume in thin plate welding, a combination with a pulse welder is recommended. In particular, when pure Ar is used as the shielding gas, a pulse welder is effective for ensuring arc stability. Although there is no particular limitation on the pulse setting, a peak current of 350 to 600 A, a base current of 30 to 100 A, and a peak of 0.8 to 5.0 msec are generally used in a period of one peak (starting start to peak steady period to falling end). Is done.

また、パルス溶接では、定電圧特性波形の溶接に比べて、同一溶着量の場合、電流値が1〜2割ほど低下し、入熱も減少することから、溶接部の冷却速度が増大する。その結果、焼入れ性が高まり、Ms点の低下に繋がって残留応力の低減に対しても好ましい。本発明は以下の強度の鋼板と板厚に適用することがより効果的である。   In pulse welding, compared to welding with a constant voltage characteristic waveform, the current value is reduced by about 10 to 20% and the heat input is reduced in the case of the same welding amount, so that the cooling rate of the welded portion is increased. As a result, hardenability is enhanced, which leads to a decrease in the Ms point, which is also preferable for reducing residual stress. It is more effective to apply the present invention to the following steel plates and plate thicknesses.

「母材強度:490MPa以上の鋼板」
溶接金属の変態膨張で鋼材熱影響部に発生する残留応力を低減できる理由は、溶接金属が膨張するときに鋼材側に発生する応力も、溶接金属への反力により圧縮応力になることによる。このため、より高い反力が期待できる高強度鋼板ほど疲労特性の改善も大きいと期待できる。鋼材強度が低い場合は、反力も低くならざるをえず、変態終了後の熱収縮で再び引張応力状態に戻ってしまう危険があるためである。引張応力が残留してしまえば、疲労強度の改善は望めない。そのため、本発明では、特に疲労強度向上が期待できる下限値として、適用母材の強度は490MPa以上となる。なお、母材強度の上限については特に限定する必要はない。現在一般に実用化されている薄鋼板の強度は1500MPa程度が最大であり、この程度までの鋼板であれば、本発明のワイヤで疲労強度の改善を図ることができ、かつ継手引張強度の面でも溶接金属のオーバーマッチングを達成できる。
“Base material strength: Steel plate of 490 MPa or more”
The reason why the residual stress generated in the steel heat-affected zone due to the transformation expansion of the weld metal can be reduced is that the stress generated on the steel material side when the weld metal expands also becomes a compressive stress due to the reaction force to the weld metal. For this reason, it can be expected that a higher strength steel sheet that can be expected to have a higher reaction force has a greater improvement in fatigue properties. This is because when the steel material strength is low, the reaction force also has to be low, and there is a risk of returning to the tensile stress state again due to thermal contraction after the end of transformation. If tensile stress remains, improvement in fatigue strength cannot be expected. Therefore, in the present invention, the strength of the applied base material is 490 MPa or more as a lower limit value that can be expected to improve the fatigue strength. The upper limit of the base material strength is not particularly limited. The strength of a thin steel plate that is currently in practical use is about 1500 MPa, and if it is a steel plate up to this level, the wire of the present invention can improve the fatigue strength, and also in terms of joint tensile strength. Overmatching of weld metal can be achieved.

「板厚:1乃至5mm」
板厚が過度に薄いと、溶接時の入熱によって、鋼板の表面及び裏面がほぼ均一に熱せられ、更には溶融金属が裏側に達して、裏波と呼ばれる状態になる。このような状態になると、溶接金属がマルテンサイト変態時にほとんど自由に熱膨張してしまう。そのため、鋼材熱影響部側に反力が発生せず、疲労強度の改善効果は限定的になってしまう。この疲労強度が効果的に向上する下限板厚が1mmである。
“Thickness: 1 to 5 mm”
If the plate thickness is excessively thin, the front and back surfaces of the steel plate are heated almost uniformly due to heat input during welding, and the molten metal reaches the back side, resulting in a state called back wave. In such a state, the weld metal expands almost freely during martensitic transformation. Therefore, no reaction force is generated on the steel material heat-affected zone side, and the effect of improving fatigue strength is limited. The lower limit plate thickness for effectively improving the fatigue strength is 1 mm.

逆に、板厚が5mmを超えると、拘束力が過剰になりすぎ、高強度な溶接金属となる性質をもつ本発明のワイヤでは、低温割れが発生する可能性がある。また、すみ肉脚長が大きくなることによって必然的にのど厚も大きくなり、高温割れも発生しやすくなる。このような問題点が生じない板厚の上限値が5mmである。   On the other hand, if the plate thickness exceeds 5 mm, the binding force becomes excessive and cold cracking may occur in the wire of the present invention having the property of becoming a high-strength weld metal. In addition, as the fillet leg length increases, the throat thickness inevitably increases, and hot cracking tends to occur. The upper limit of the plate thickness at which such a problem does not occur is 5 mm.

次に、本発明の効果を実証する実施例について、本発明の範囲から外れる比較例と比較して説明する。下記表1に示す2種類の高張力鋼板を用いて、図2に示す溶接要領にて重ねすみ肉溶接を行った。鋼板1を重ね肉溶接した。ワイヤ2の突き出し長は15mm、重ね部の幅は7mm、ルートギャップは0〜0.5mmであって。また、溶接速度は1.2m/分、ワイヤ径は1.2mm、シールドガス流量は15リットル/分、トーチ前進角はなし(溶接線方向に直角)、溶接電流は板厚が3.2mmの場合は300A、2.3mmの場合は230Aであった。   Next, examples demonstrating the effects of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention. Using two types of high-tensile steel plates shown in Table 1 below, overlapped fillet welding was performed according to the welding procedure shown in FIG. The steel plate 1 was stacked and welded. The protruding length of the wire 2 is 15 mm, the width of the overlapping portion is 7 mm, and the root gap is 0 to 0.5 mm. Also, welding speed is 1.2m / min, wire diameter is 1.2mm, shield gas flow rate is 15l / min, no torch advance angle (perpendicular to welding line direction), welding current is plate thickness is 3.2mm Was 300 A and 230 A in the case of 2.3 mm.

Figure 0005019781
Figure 0005019781

試験項目と判定方法は次のとおりである。
(1)疲労試験
溶接ワークから図3に示す疲労試験片を採取し、両振平面曲げ疲労試験を行った。幅の最大値は30mm、最小値は20mm、長さは90mm、最小幅部分の湾曲は、曲率半径が40mmである。符号3が溶接部である。疲労試験は、周波数:25Hzの正弦波応力を200万回印加し、その時間強度を疲労強度として測定した。780MPa級鋼板のSP1の場合、200MPa以上を◎、170MPa以上200MPa未満を○、170MPa未満を×、490MPa級鋼板のSP2の場合、170MPa以上を◎、140MPa以上170MPa未満を○、140MPa未満を×とし、夫々×の場合を疲労改善効果無しとして不合格とした。なお、ハンピングビードを発生した場合も、試験片は安定個所を探し、その場所から試験片を採取した。
(2)アークの安定性
溶接時のアーク安定性を○△×の3段階で官能評価した。良好な場合を○、多少スパッタが発生する場合を△、アークがふらついたり、大粒のスパッタが発生した場合を×とした。○、△を合格とし、×を実用に耐えないとして不合格とした。
(3)ヒューム発生量
ヒューム発生量をJIS Z3930に基づき同じ溶接条件にて実測した値を◎○△×の4段階評価した。発生量300mg/分以下を◎、300超え500mg/分以下を○、500超え700mg/分以下を△、700mg/分超えを×とした。◎○△を合格、×を実用に耐えないとして不合格とした。
(4)ビード形状
すみ肉ビード形状を官能にて○△×の3段階で官能評価した。良好を○、若干なじみ性が劣る場合を△、オーバーラップ状の止端形状になったり、溶接線方向のビード幅が不均一な場合を×とした。○、△を合格とし、×を実用に耐えないとして不合格とした。
(5)塗装性
溶接後の電着塗装工程でスラグの剥離によって塗装も剥離してしまう危険性を評価するために、ビード上に生じたスラグの面積を○△×の3段階で官能評価した。ビード表面積に対しスラグ面積が10質量%未満を○、10質量%以上20質量%未満を△、20質量%以上を×とし、×を実用に耐えないとして不合格とした。
(6)欠陥の有無
溶接部に割れの発生、ブローホール及びピット等の気孔欠陥、又はビードが切れてしまうハンピング現象が発生した場合は全て不合格とした。
(7)価格
材料費及び製造コストを織り込んだワイヤの価格として、最も一般的に薄板用に適用されている汎用ワイヤJIS Z3312 YGW12に対するコスト比較で3倍以下を○、3倍超え4倍未満を△、4倍超えを×とし、×を実用に耐えないとして不合格とした。
(8)他
工業製品としてワイヤの安定製造が困難な場合を記し、不合格とした。
The test items and judgment methods are as follows.
(1) Fatigue test A fatigue test piece shown in Fig. 3 was taken from the welded workpiece and subjected to a double vibration plane bending fatigue test. The maximum value of the width is 30 mm, the minimum value is 20 mm, the length is 90 mm, and the curvature of the minimum width portion has a curvature radius of 40 mm. Reference numeral 3 denotes a welded portion. In the fatigue test, a sine wave stress having a frequency of 25 Hz was applied 2 million times, and the time strength was measured as the fatigue strength. In the case of SP1 of a 780 MPa grade steel plate, 200 MPa or more is ◎, 170 MPa or more and less than 200 MPa is ◯, less than 170 MPa is x, in the case of 490 MPa grade steel plate SP2, 170 MPa or more is ◎, 140 MPa or more and less than 170 MPa is ○, and less than 140 MPa is x In each case, the case of x was rejected as no fatigue improvement effect. Even when a humping bead was generated, the test piece was searched for a stable part, and the test piece was collected from that place.
(2) Stability of arc The sensory evaluation of arc stability during welding was performed in three stages of △△ ×. The case where it was good was evaluated as ◯, the case where some spatter was generated was evaluated as Δ, and the case where the arc was staggered or large spatter was generated was evaluated as x. ○ and △ were accepted, and × was rejected as unusable for practical use.
(3) Fume generation amount The value of fume generation amount measured under the same welding conditions based on JIS Z3930 was evaluated in four stages, ◎ ○ Δ ×. The generated amount is 300 mg / min or less, ◎, 300 to 500 mg / min or less is ◯, 500 to 700 mg / min or less is Δ, and 700 mg / min or more is ×. ◎ ○ △ was accepted, and × was rejected because it could not withstand practical use.
(4) Bead shape The fillet bead shape was subjected to sensory evaluation in three stages of ○ Δ × with a sensory sense. “Good” indicates that the conformability is slightly inferior, and “△” indicates that the shape is an overlapped toe shape or the bead width in the weld line direction is not uniform. ○ and △ were accepted, and × was rejected as unusable for practical use.
(5) Paintability In order to evaluate the risk of the paint being peeled off due to the slag peeling in the electrodeposition coating process after welding, the area of the slag generated on the bead was sensory-evaluated in three stages: . When the slag area was less than 10% by mass with respect to the bead surface area, ◯, 10% by mass or more but less than 20% by mass were evaluated as Δ, and 20% by mass or more were evaluated as x.
(6) Presence / absence of defects All occurrences of cracks in the welded portion, pore defects such as blowholes and pits, or humping phenomenon that the bead breaks occurred were all rejected.
(7) Price The price of the wire incorporating the material cost and the manufacturing cost is 3 times or less in comparison with the cost of the general-purpose wire JIS Z3312 YGW12 that is most commonly applied for thin plates. Δ: A value exceeding 4 times was marked as x, and x was rejected as impractical.
(8) Others A case where it was difficult to stably manufacture a wire as an industrial product was marked as rejected.

下記表2乃至5は、フラックス溶接ワイヤの成分(一部ソリッドワイヤ有)、フラックス率、シールドガス組成、溶接電源の種類、適用鋼板を示す。この条件での各試験の評価結果を下記表6及び7に示す。   Tables 2 to 5 below show the components of the flux welding wire (some solid wires are included), the flux rate, the shielding gas composition, the type of welding power source, and the applicable steel plate. The evaluation results of each test under these conditions are shown in Tables 6 and 7 below.

Figure 0005019781
Figure 0005019781

Figure 0005019781
Figure 0005019781

Figure 0005019781
Figure 0005019781

Figure 0005019781
Figure 0005019781

Figure 0005019781
Figure 0005019781

Figure 0005019781
Figure 0005019781

上記試験の結果、実施例No.1〜25は、本発明の特許請求の範囲を満たす発明例であり、良好な継手疲労強度を示すと共に、高速溶接での安定性、スパッタ及びヒューム発生量、スラグの発生量といった溶接作業性面と、コスト面も十分実用的となっている。   As a result of the above test, Example No. 1 to 25 are invention examples satisfying the claims of the present invention, exhibiting good joint fatigue strength, and welding workability such as high-speed welding stability, spatter and fume generation, and slag generation And the cost is also practical enough.

一方、比較例No.26〜60は本発明の範囲から外れるものである。比較例No.26,27はCが少ないため、Ms点が下がらず、疲労強度が低かった。比較例No.28はCが過剰なため、ヒューム発生量が過剰となり、更に割れが発生して、それが起点となって疲労強度も低かった。比較例No.29はSiが少ないため、ビード形状が悪化し、応力集中により疲労強度が低下した。比較例No.30はSiが過剰のため、溶融池の粘性が過剰となり、高速に耐えられず、ハンピングが発生した。また、スラグが多く発生し、電着塗装性が劣化した。比較例No.31はMnが少ないため、ビード形状が悪化し、応力集中により疲労強度が悪かった。   On the other hand, Comparative Example No. 26 to 60 are outside the scope of the present invention. Comparative Example No. Since 26 and 27 had little C, Ms point did not fall and fatigue strength was low. Comparative Example No. In No. 28, since C was excessive, the amount of generated fumes was excessive, and further cracks were generated. Comparative Example No. Since 29 had less Si, the bead shape deteriorated, and the fatigue strength decreased due to stress concentration. Comparative Example No. In No. 30, since Si was excessive, the viscosity of the molten pool became excessive, it could not withstand high speed, and humping occurred. Also, a lot of slag was generated, and the electrodeposition paintability deteriorated. Comparative Example No. Since 31 had less Mn, the bead shape deteriorated and the fatigue strength was poor due to stress concentration.

比較例No.32はMnが過剰のため溶融池の粘性が過剰となり、高速に耐えられず、ハンピングが発生した。また、スラグが多く発生し、電着塗装性が劣化した。ヒューム量も過剰となった。比較例No.33,34は夫々P,Sが過剰のため、高温割れが発生し、割れが起点となって疲労強度も低かった。比較例No.35は酸素が低いため、陽極点、陰極点が不安定でアークがふらついた。ビード形状も溶接線方向に蛇行した。比較例No.36,37は窒素が低いため、Ms点が下がらず、疲労強度が悪かった。比較例No.38は窒素が過剰であり、ブローホールが発生し、それが起点となって疲労強度も低かった。   Comparative Example No. In No. 32, since Mn was excessive, the viscosity of the molten pool became excessive, and it was not able to withstand high speed, and humping occurred. Also, a lot of slag was generated, and the electrodeposition paintability deteriorated. The amount of fume was also excessive. Comparative Example No. Since P and S were excessive in Nos. 33 and 34, high-temperature cracking occurred, and the fatigue strength was low due to cracking as a starting point. Comparative Example No. No. 35 was low in oxygen, so the anode spot and cathode spot were unstable and the arc fluctuated. The bead shape also meandered in the direction of the weld line. Comparative Example No. Since 36 and 37 were low in nitrogen, the Ms point was not lowered and the fatigue strength was poor. Comparative Example No. In No. 38, nitrogen was excessive, blowholes were generated, and the fatigue strength was low starting from that.

比較例No.39,40は夫々Ti、Alが過剰であり、溶滴が大きくなってアーク安定性が劣化し、更にスラグ量も多く、電着塗装性も悪かった。比較例No.41は低Ms点を実現する手段として従来多く提案されている高Cr−高Ni−低C−低N系で、Ni及びNi+Crが過剰なため、極めて高コストであると共に、高速溶接ではハンピングが発生した。溶滴が大きくなり、スパッタも多く発生した。薄板の高母材希釈率の溶接に対してはMs点低下も不足し、かつN量が低いのでMs点後の膨張も不足し、引張残留応力が発生した。その結果、疲労強度も悪かった。比較例No.42はNiが過剰であり、コストが過剰であり、高速溶接ではハンピングが発生した。溶滴が大きくなり、スパッタも多く発生した。比較例No.43はNi単体は問題ないが、Ni+Crが過剰で、コストが過剰であり、高速溶接ではハンピングが発生した。溶滴が大きくなりスパッタも多く発生した。   Comparative Example No. In Nos. 39 and 40, Ti and Al were excessive, so that the droplets became large and the arc stability was deteriorated. Furthermore, the amount of slag was large and the electrodeposition coating property was also poor. Comparative Example No. No. 41 is a high Cr-high Ni-low C-low N system that has been conventionally proposed as a means for realizing a low Ms point. Since Ni and Ni + Cr are excessive, the cost is extremely high and humping is not possible in high-speed welding. Occurred. The droplets increased and spatter was generated. For the welding of a thin plate with a high base metal dilution rate, the decrease in the Ms point was insufficient, and since the N amount was low, the expansion after the Ms point was insufficient, and tensile residual stress was generated. As a result, fatigue strength was also poor. Comparative Example No. No. 42 has excessive Ni and excessive cost, and humping occurred in high-speed welding. The droplets increased and spatter was generated. Comparative Example No. For Ni 43, there is no problem with Ni alone, but Ni + Cr is excessive, the cost is excessive, and humping occurred during high-speed welding. The droplets became larger and more spatter was generated.

比較例No.44,45,46は夫々Nb,V,Moが過剰であり、やはり極めて高コストであると共に、高速溶接ではハンピングが発生した。溶滴が大きくなりスパッタも多く発生した。比較例No.47はCuが過剰であり、高温割れが発生し、それが起点となって疲労強度が悪かった。溶滴が大きくなりスパッタも多く発生した。比較例No.48はBが過剰であり、高温割れが発生し、それが起点となって疲労強度が悪かった。比較例No.49はREMが過剰であり、非常に高コストであると共に、大粒のスパッタも多く発生した。比較例No.50はフラックス率が低すぎて、O又はNを必要量入れることができなかったため、Ms点が下がらず、疲労強度が悪かった。更に、ワイヤとしてもフラックス成分が安定して入らなかったためアーク安定性も悪かった。   Comparative Example No. 44, 45, and 46 are excessive in Nb, V, and Mo, respectively, and are also extremely expensive, and humping occurred in high-speed welding. The droplets became larger and more spatter was generated. Comparative Example No. In No. 47, Cu was excessive, and hot cracking occurred, which was the starting point and the fatigue strength was poor. The droplets became larger and more spatter was generated. Comparative Example No. In 48, B was excessive, and hot cracking occurred, which was the starting point, and the fatigue strength was poor. Comparative Example No. No. 49 has excessive REM, is very expensive, and many large spatters are generated. Comparative Example No. No. 50 had a low flux rate and could not contain the necessary amount of O or N, so the Ms point was not lowered and the fatigue strength was poor. Furthermore, since the flux component did not enter stably as a wire, the arc stability was also poor.

比較例No.51はフラックス率が高すぎて伸線工程中に断線やフラックスのこぼれが多発し、ワイヤとして製造困難であった。比較例No.52はJIS Z3313 YFW−C50DMに適合する極めて一般的なフラックス入りワイヤである。Ms点を下げるための手法が施されておらず、かつ薄板の高速溶接を対象に設計されていないので、疲労強度が悪く、スラグ量が多く、電着塗装性が悪く、MIG溶接でのアーク安定性が悪く、高速溶接でハンピングするといった数々の短所が露呈した。比較例No.53は本発明の規定成分をソリッドワイヤで実現したものである。しかしソリッドワイヤでは、O及びNを高めることが困難であり、アーク安定性が悪く、Ms点も下がらず疲労強度も悪かった。ビード形状もフラックス入りワイヤに比べてアークが広がらないので止端形状のなじみ性がやや劣った。これも疲労強度が上がらないのを助長していると考えられる。更に、ソリッドワイヤで低Ms点を実現する焼入れ性の高い成分系を製造すると、伸線性を確保するために、幾度も伸線途中で焼鈍を施しワイヤ強度を下げる必要がある。このため、極めて生産性が悪く、コストが非常に高くなった。   Comparative Example No. No. 51 had a high flux rate, and breakage and flux spillage occurred frequently during the wire drawing process, making it difficult to manufacture as a wire. Comparative Example No. 52 is a very general flux-cored wire conforming to JIS Z3313 YFW-C50DM. Since there is no method for lowering the Ms point and it is not designed for high-speed welding of thin plates, the fatigue strength is poor, the amount of slag is large, the electrodeposition paintability is poor, and the arc in MIG welding There were a number of disadvantages, such as poor stability and humping with high speed welding. Comparative Example No. Reference numeral 53 denotes a real component of the specified component of the present invention. However, with a solid wire, it was difficult to increase O and N, the arc stability was poor, the Ms point was not lowered, and the fatigue strength was also poor. The bead shape was also slightly inferior to the toe shape because the arc did not spread compared to the flux-cored wire. This is also considered to help the fatigue strength not increase. Furthermore, when a component system with high hardenability that realizes a low Ms point with a solid wire is manufactured, it is necessary to reduce the wire strength by annealing several times during the wire drawing in order to ensure the wire drawing property. For this reason, productivity was very bad and the cost became very high.

比較例No.54はNi+Crが不足しており、Ms点低下とその後の膨張変態が不足し、疲労強度が低かった。比較例No.55はNi+Crとしては規定内であるが、Ni無添加のため、Ms点低下とその後の膨張変態が不足し、疲労強度が低かった。比較例No.56も同様にNi+Crとしては規定内であるが、Niが添加はされているものの不足しているため、Ms点低下とその後の膨張変態が不足し、疲労強度が低かった。比較例No.57,58は夫々Mg,Fが過剰であり、アーク安定性が悪く、スパッタとヒュームの発生量が多かった。また、溶融池の粘性も過剰でハンピングを生じた。比較例No.59はK+Na+Liが過剰であり、アーク力が小さくなりすぎて溶融池が不安定となってハンピングが発生した。比較例No.60はCaが過剰であり、アーク安定性が悪く、スパッタとヒュームの発生量が多かった。溶融池の粘性も過剰でハンピングを生じた。   Comparative Example No. No. 54 was insufficient in Ni + Cr, the Ms point was lowered and the subsequent expansion transformation was insufficient, and the fatigue strength was low. Comparative Example No. 55 is within the range as Ni + Cr, but since Ni was not added, the Ms point was lowered and the subsequent expansion transformation was insufficient, and the fatigue strength was low. Comparative Example No. Similarly, Ni + Cr 56 was within the specified range, but Ni was added, but it was insufficient. Therefore, the Ms point was lowered and the subsequent expansion transformation was insufficient, and the fatigue strength was low. Comparative Example No. Nos. 57 and 58 had excessive amounts of Mg and F, respectively, had poor arc stability, and generated a large amount of spatter and fumes. Moreover, the viscosity of the molten pool was excessive and humping occurred. Comparative Example No. In 59, K + Na + Li was excessive, the arc force became too small, the molten pool became unstable, and humping occurred. Comparative Example No. No. 60 had excessive Ca, poor arc stability, and a large amount of spatter and fumes. The viscosity of the molten pool was excessive and humping occurred.

溶接金属の温度と伸びの関係である。It is the relationship between the temperature and elongation of the weld metal. 溶接試験の開先条件である。This is the groove condition of the welding test. 疲労試験片の形状である。The shape of the fatigue test piece.

符号の説明Explanation of symbols

1:鋼板
2:ワイヤ
3:溶接部
1: Steel plate 2: Wire 3: Welded part

Claims (5)

鋼製外皮にフラックスを充填してなるアーク溶接用フラックス入りワイヤにおいて、ワイヤ全体の成分組成が、ワイヤ全質量に対して、C:0.02乃至0.70質量%、Si:0.30乃至1.50質量%、Mn:0.50乃至5.00質量%、Ni:2.0乃至9.5質量%、Cr:Niとの合計量で4.0乃至18.0質量%(但し、Crを含まない場合も含む)、O:0.020質量%以上及びN:0.0020乃至0.0400質量%を含有し、P:0.030質量%以下、S:0.030質量%以下、Ti:0.15質量%以下、Al:0.20質量%以下、Nb,V,Mo及びCuからなる群から選択された少なくとも1種:各元素あたり2.00質量%未満、B:0.0100質量%以下、REM(希土類元素):0.50質量%以下、Mg:1.00質量%以下、F及びCaからなる群から選択された少なくとも1種:各元素あたり0.100質量%以下、K、Na及びLiからなる群から選択された少なくとも1種:総量で0.200質量%以下に規制し、残部はFe及び不可避不純物からなり、かつフラックス率が7乃至30質量%であるガスシールドアーク溶接フラックス入りワイヤを使用し、Arが96質量%以上、残部がCO 又はO の混合ガスをシールドガスとしてMIG溶接することを特徴とするMIGアーク溶接方法In a flux-cored wire for arc welding formed by filling a steel outer shell with a flux, the composition of the entire wire is C: 0.02 to 0.70 mass%, Si: 0.30 to 1.50% by mass, Mn: 0.50 to 5.00% by mass, Ni: 2.0 to 9.5% by mass, and Cr: Ni in a total amount of 4.0 to 18.0% by mass (however, (Including the case of not containing Cr), O: 0.020% by mass or more and N: 0.0020 to 0.0400% by mass, P: 0.030% by mass or less, S: 0.030% by mass or less Ti: 0.15 mass% or less, Al: 0.20 mass% or less, at least one selected from the group consisting of Nb, V, Mo and Cu: less than 2.00 mass% for each element, B: 0 0.0100% by mass or less, REM (rare earth element): 0.50 % At most, Mg: 1.00% by mass or less, at least one selected from the group consisting of F and Ca: at least 0.100% by mass for each element, at least selected from the group consisting of K, Na and Li one: regulated to 0.200 wt% or less in total, the balance being Fe and unavoidable impurities, and the flux rate using a gas shielded arc welding flux cored wire Ru 7 to 30% by mass, Ar 96 A MIG arc welding method comprising performing MIG welding using a mixed gas of at least mass% and the balance of CO 2 or O 2 as a shielding gas . ワイヤ全体の成分組成は、更に、ワイヤ全質量に対して、Nb,V,Mo及びCuからなる群から選択された少なくとも1種:各元素あたり0.05質量%以上2.00質量%未満、B:0.0010乃至0.0100質量%、REM(希土類元素):0.01乃至0.50質量%、Mg:0.05乃至1.00質量%、F及びCaからなる群から選択された少なくとも1種:各元素あたり0.005乃至0.100質量%、又は、K、Na及びLiからなる群から選択された少なくとも1種:総量で0.001乃至0.200質量%を含有することを特徴とする請求項1に記載のMIGアーク溶接方法The component composition of the entire wire is at least one selected from the group consisting of Nb, V, Mo and Cu with respect to the total mass of the wire: 0.05% by mass or more and less than 2.00% by mass for each element, B: 0.0010 to 0.0100 mass%, REM (rare earth element): 0.01 to 0.50 mass%, Mg: 0.05 to 1.00 mass%, selected from the group consisting of F and Ca At least one type: 0.005 to 0.100% by mass for each element, or at least one type selected from the group consisting of K, Na and Li: 0.001 to 0.200% by mass in total The MIG arc welding method according to claim 1. 鋼製外皮にフラックスを充填してなるアーク溶接用フラックス入りワイヤにおいて、ワイヤ全体の成分組成が、ワイヤ全質量に対して、C:0.02乃至0.70質量%、Si:0.30乃至1.50質量%、Mn:0.50乃至5.00質量%、Ni:2.0乃至9.5質量%、Cr:Niとの合計量で4.0乃至18.0質量%(但し、Crを含まない場合も含む)、O:0.020質量%以上及びN:0.0020乃至0.0400質量%を含有し、P:0.030質量%以下、S:0.030質量%以下、Ti:0.15質量%以下、Al:0.20質量%以下、Nb,V,Mo及びCuからなる群から選択された少なくとも1種:各元素あたり2.00質量%未満、B:0.0100質量%以下、REM(希土類元素):0.50質量%以下、Mg:1.00質量%以下、F及びCaからなる群から選択された少なくとも1種:各元素あたり0.100質量%以下、K、Na及びLiからなる群から選択された少なくとも1種:総量で0.200質量%以下に規制し、残部はFe及び不可避不純物からなり、かつフラックス率が7乃至30質量%であるガスシールドアーク溶接フラックス入りワイヤを使用し、実質的に純Arガスをシールドガスとして使用してMIG溶接することを特徴とするMIGアーク溶接方法。 In a flux-cored wire for arc welding formed by filling a steel outer shell with a flux, the composition of the entire wire is C: 0.02 to 0.70 mass%, Si: 0.30 to 1.50% by mass, Mn: 0.50 to 5.00% by mass, Ni: 2.0 to 9.5% by mass, and Cr: Ni in a total amount of 4.0 to 18.0% by mass (however, (Including the case of not containing Cr), O: 0.020% by mass or more and N: 0.0020 to 0.0400% by mass, P: 0.030% by mass or less, S: 0.030% by mass or less Ti: 0.15 mass% or less, Al: 0.20 mass% or less, at least one selected from the group consisting of Nb, V, Mo and Cu: less than 2.00 mass% for each element, B: 0 0.0100% by mass or less, REM (rare earth element): 0.50 % At most, Mg: 1.00% by mass or less, at least one selected from the group consisting of F and Ca: at least 0.100% by mass for each element, at least selected from the group consisting of K, Na and Li Type 1: The total amount is regulated to 0.200% by mass or less, the balance is made of Fe and inevitable impurities, and the flux-cored wire with a flux rate of 7 to 30% by mass is used. A MIG arc welding method, comprising performing MIG welding using Ar gas as a shielding gas . ワイヤ全体の成分組成は、更に、ワイヤ全質量に対して、Nb,V,Mo及びCuからなる群から選択された少なくとも1種:各元素あたり0.05質量%以上2.00質量%未満、B:0.0010乃至0.0100質量%、REM(希土類元素):0.01乃至0.50質量%、Mg:0.05乃至1.00質量%、F及びCaからなる群から選択された少なくとも1種:各元素あたり0.005乃至0.100質量%、又は、K、Na及びLiからなる群から選択された少なくとも1種:総量で0.001乃至0.200質量%を含有することを特徴とする請求項3に記載のMIGアーク溶接方法 The component composition of the entire wire is at least one selected from the group consisting of Nb, V, Mo and Cu with respect to the total mass of the wire: 0.05% by mass or more and less than 2.00% by mass for each element, B: 0.0010 to 0.0100 mass%, REM (rare earth element): 0.01 to 0.50 mass%, Mg: 0.05 to 1.00 mass%, selected from the group consisting of F and Ca At least one type: 0.005 to 0.100% by mass for each element, or at least one type selected from the group consisting of K, Na and Li: 0.001 to 0.200% by mass in total The MIG arc welding method according to claim 3 . パルスアーク溶接機を使用してMIG溶接することを特徴とする請求項1乃至4に記載のMIGアーク溶接方法。 MIG arc welding method according to claim 1 to 4, characterized in that the MIG welding using a pulsed arc welder.
JP2006124463A 2006-04-27 2006-04-27 MIG arc welding method using gas shielded arc welding flux cored wire Active JP5019781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124463A JP5019781B2 (en) 2006-04-27 2006-04-27 MIG arc welding method using gas shielded arc welding flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124463A JP5019781B2 (en) 2006-04-27 2006-04-27 MIG arc welding method using gas shielded arc welding flux cored wire

Publications (2)

Publication Number Publication Date
JP2007296535A JP2007296535A (en) 2007-11-15
JP5019781B2 true JP5019781B2 (en) 2012-09-05

Family

ID=38766464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124463A Active JP5019781B2 (en) 2006-04-27 2006-04-27 MIG arc welding method using gas shielded arc welding flux cored wire

Country Status (1)

Country Link
JP (1) JP5019781B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528334A (en) * 2010-12-17 2012-07-04 江苏耐尔冶电集团有限公司 Novel processing method for flux-cored wire for austenite submerged arc resurfacing welding

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205115B2 (en) * 2008-04-16 2013-06-05 株式会社神戸製鋼所 MIG flux-cored wire for pure Ar shield gas welding and MIG arc welding method
JP2009285722A (en) * 2008-05-30 2009-12-10 Nippon Steel Corp Lap fillet welding method
JP5361516B2 (en) * 2009-04-27 2013-12-04 日鐵住金溶接工業株式会社 Flux-cored wire for metal-based gas shielded arc welding for hardfacing
JP5450221B2 (en) 2010-04-14 2014-03-26 株式会社神戸製鋼所 High current density gas shielded arc welding method
CN101920413B (en) * 2010-05-16 2013-07-17 十堰金科化工有限公司 Surfacing and repairing flux-cored wire of hot forging die
JP6373549B2 (en) * 2011-03-31 2018-08-15 Jfeスチール株式会社 Gas shield arc welding method
JP5524945B2 (en) * 2011-12-27 2014-06-18 株式会社神戸製鋼所 Flux-cored welding wire for carbon steel and arc welding method
JP5764083B2 (en) 2012-03-13 2015-08-12 株式会社神戸製鋼所 Flux-cored wire and gas shielded arc welding method using the same
JP5825210B2 (en) * 2012-07-09 2015-12-02 新日鐵住金株式会社 Pulse gas shielded arc welding method
JP6255284B2 (en) * 2014-03-10 2017-12-27 株式会社神戸製鋼所 Solid wire for gas metal arc welding
US10052707B2 (en) * 2014-04-04 2018-08-21 Lincoln Global, Inc. Method and system to use AC welding waveform and enhanced consumable to improve welding of galvanized workpiece
JP6594266B2 (en) 2016-06-20 2019-10-23 株式会社神戸製鋼所 Gas shield arc welding method and manufacturing method of welded structure
CN106041357B (en) * 2016-07-28 2018-04-06 江苏科技大学 A kind of nickel toughening high-chromium cast iron-type self protection pile-up welding flux core welding wire and preparation method thereof
CN112512742B (en) * 2019-04-10 2022-03-29 日本制铁株式会社 Solid welding wire and method for manufacturing welded joint
KR102195473B1 (en) * 2019-11-27 2020-12-29 고려용접봉 주식회사 WELDING WIRE FOR MODIFIED 9Cr-1Mo STEEL
WO2021125280A1 (en) * 2019-12-20 2021-06-24 Jfeスチール株式会社 Steel wire for gas-shielded arc welding, gas-shielded arc welding method, and method for manufacturing gas-shielded arc welded joint
JP7428601B2 (en) 2020-06-29 2024-02-06 株式会社神戸製鋼所 Gas shielded arc welding method, structure manufacturing method and shielding gas
CN112122824B (en) * 2020-09-30 2022-05-06 郑州凯博焊割设备有限公司 Gas shield welding stainless steel welding wire with high hardness and strong acid corrosion resistance as well as preparation method and application thereof
CN113458646A (en) * 2021-07-09 2021-10-01 昆山京群焊材科技有限公司 Chromium-free boron carbide type self-protection flux-cored wire
CN113547255B (en) * 2021-07-20 2022-09-06 武汉铁锚焊接材料股份有限公司 Flux-cored wire for ultralow-temperature high manganese steel suitable for all-position welding and application thereof
CN115351396A (en) * 2022-08-23 2022-11-18 武汉钢铁有限公司 Welding method for improving plane bending fatigue performance of lap joint

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07276086A (en) * 1993-09-07 1995-10-24 Nippon Steel Corp Flux cored wire for mag welding small in welding deformation
JP2002096192A (en) * 2000-09-21 2002-04-02 Nippon Steel Corp High fatigue strength welding joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528334A (en) * 2010-12-17 2012-07-04 江苏耐尔冶电集团有限公司 Novel processing method for flux-cored wire for austenite submerged arc resurfacing welding

Also Published As

Publication number Publication date
JP2007296535A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP5019781B2 (en) MIG arc welding method using gas shielded arc welding flux cored wire
JP4857015B2 (en) Gas shielded arc welding flux cored wire and welding method
JP5450293B2 (en) Fillet welded joint and gas shielded arc welding method
JP5205115B2 (en) MIG flux-cored wire for pure Ar shield gas welding and MIG arc welding method
JP6000947B2 (en) Hybrid arc / laser welding process for aluminized steel parts using gammagenic elements and a gas containing less than 10% nitrogen or oxygen
JP6594266B2 (en) Gas shield arc welding method and manufacturing method of welded structure
JP5842734B2 (en) Arc spot welded joint with excellent joint strength and manufacturing method thereof
JP2018187640A (en) Arc welding method and welding wire
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
JP2012081514A (en) Fillet arc welding method of galvanized steel sheet
JP2017047475A (en) Spot welding method
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP5080748B2 (en) Tandem arc welding method
JP2006159273A (en) High-speed gas-shielded arc welding method of zinc-based metal-plated steel plate
JP5515796B2 (en) Welding method of high strength thin steel sheet
JP6782580B2 (en) Arc spot welding method
KR101091469B1 (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
CA3163982A1 (en) Pre-coated steel sheet comprising an additional coating for increasing the mechanical strength of the weld metal zone of a welded steel part prepared from said pre-coated sheet
JP5280060B2 (en) Gas shield arc welding method
JP4806300B2 (en) Solid wire
JP7432723B2 (en) Welded parts with excellent fatigue strength of welded parts and manufacturing method thereof
JP2024068661A (en) Solid wire for gas shielded arc welding, method for manufacturing gas shielded arc welding joint, and automobile suspension part
JP5078264B2 (en) Arc welding method of steel sheet
JP5515629B2 (en) Welding method of high strength thin steel sheet
Patel et al. Experimental Study of the Effect of Heat Input on Mechanical Properties of TIG Welded Joints of SA516 Grade 70 Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5019781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3