JPH0729206B2 - High-speed submerged arc welding method using multiple electrodes - Google Patents

High-speed submerged arc welding method using multiple electrodes

Info

Publication number
JPH0729206B2
JPH0729206B2 JP2271386A JP27138690A JPH0729206B2 JP H0729206 B2 JPH0729206 B2 JP H0729206B2 JP 2271386 A JP2271386 A JP 2271386A JP 27138690 A JP27138690 A JP 27138690A JP H0729206 B2 JPH0729206 B2 JP H0729206B2
Authority
JP
Japan
Prior art keywords
welding
pole
electrodes
electrode
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2271386A
Other languages
Japanese (ja)
Other versions
JPH04147770A (en
Inventor
善雄 加藤
康人 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2271386A priority Critical patent/JPH0729206B2/en
Publication of JPH04147770A publication Critical patent/JPH04147770A/en
Publication of JPH0729206B2 publication Critical patent/JPH0729206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、ラインパイプや構造用パイプ等の如き大径
溶接鋼管を製造する際の溶接法として好適な、高速サブ
マージアーク溶接方法に関するものである。
TECHNICAL FIELD The present invention relates to a high-speed submerged arc welding method suitable as a welding method for producing large-diameter welded steel pipes such as line pipes and structural pipes. is there.

〈従来技術とその課題〉 大径溶接鋼管の製造に用いられるUOミルラインでは、UO
プレスに続く仮付溶接の後に実施される鋼管内外面の本
溶接には一般にサブマージアーク溶接が適用されてお
り、現状は内外面溶接とも3〜4極の電極を組み合わせ
た(外面溶接には5極を使用する例もある)多電極での
溶接が実施されている。なぜなら、溶接速度は溶着金属
の供給量,溶融プールのコントロール,母材金属のガウ
ジング力によって決定され、これらの能力は電極の数に
比例して増加することが知られていたからである。
<Conventional technology and its problems> In the UO mill line used for manufacturing large diameter welded steel pipe, UO
Submerged arc welding is generally applied to the main welding of the inner and outer surfaces of the steel pipe, which is carried out after the tack welding following the press, and at present, both inner and outer surface welding are combined with electrodes of 3 to 4 poles (5 for outer surface welding). Welding with multiple electrodes has been carried out. This is because the welding speed is determined by the amount of deposited metal supplied, the control of the molten pool, and the gouging force of the base metal, and these capabilities have been known to increase in proportion to the number of electrodes.

具体的には、内面溶接では第1極に直流(DC)或いは交
流(AC)電源を、第2極目以降にはAC電源を接続し、各
極の電流値を1500A以下に設定して4〜5ライン操業で
実施されており、この際の結線方式は、例えば“DC-AC-
AC"なる組み合わせの場合では例えば第3極が第2極に
対して60°遅れのV結線が採用される。また、外面溶接
でも内面溶接の場合と同様の電極配置が適用されている
が、この場合の結線方式は、例えば“DC-AC-AC-AC"なる
組み合わせの場合では第3極が第2,4極に比べ120°遅れ
となる逆V結線が採用され、操業は4ラインにて実施さ
れるのが普通である。
Specifically, for inner surface welding, connect a direct current (DC) or alternating current (AC) power source to the first pole, connect an AC power source to the second pole and thereafter, set the current value of each pole to 1500 A or less, and It is implemented in 5 lines, and the connection method at this time is, for example, "DC-AC-
In the case of the combination of "AC", for example, a V connection in which the third pole is delayed by 60 ° with respect to the second pole is adopted. In addition, the same electrode arrangement as in the case of the inner surface welding is applied to the outer surface welding. The connection method in this case is, for example, in the case of the combination of "DC-AC-AC-AC", the reverse V connection in which the 3rd pole is 120 ° behind the 2nd and 4th poles is adopted, and the operation is 4 lines. It is usually carried out by

しかしながら、上述のように3〜5電極を適用した高速
化サブマージアーク溶接であっても、多電極にすると溶
着量,ガウジング力,溶融プール等のコントロールが難
しくなることから、内面溶接,外面溶接を問わず確保で
きる最高溶接速度は3.6m/minが限度となっていた。つま
り、それ以上に溶接速度を上げようとすると、良好なビ
ード形成が困難になって溶接欠陥であるアンダーカット
やネッキングを発生し、著しくビード外観を損なうなど
溶接品質上好ましくない事態が生じるのを避け得なかっ
たのである。
However, even in high-speed submerged arc welding in which 3 to 5 electrodes are applied as described above, it is difficult to control the welding amount, gouging force, molten pool, etc. when multiple electrodes are used. Regardless, the maximum welding speed that can be secured was 3.6 m / min. In other words, if the welding speed is further increased, it is difficult to form a good bead, and undercut or necking which is a welding defect occurs, and a bad situation in welding quality such as significantly impairing the bead appearance occurs. It was inevitable.

ところで、大径溶接鋼管ミルの生産能率は主として溶接
ラインの能力で規定され、この溶接ラインの能力は溶接
速度,アイドルタイム,ライン数により決定されてしま
う。従って、生産能率向上と生産コスト低減を図るに
は、溶接速度を大幅に上げると共にライン数を削減する
ことが最も実際的な方策であると考えられる。ところ
が、溶接速度の改善を極く単純に思いつく“電極数の増
加”と言う手段により達成しようとして5極にまで電極
数を増やしたとしても、上述した如く現状技術では改善
される溶接速度に限界があり、大径溶接鋼管ミルの生産
能率を飛躍的に改善することが叶わないばかりか、ライ
ン数の削減にまで結び付けるような成果を期待すること
は無理であった。
By the way, the production efficiency of a large diameter welded steel pipe mill is mainly defined by the capacity of the welding line, and the capacity of this welding line is determined by the welding speed, idle time, and the number of lines. Therefore, in order to improve the production efficiency and reduce the production cost, it is considered that the most practical measure is to significantly increase the welding speed and reduce the number of lines. However, even if the number of electrodes is increased to 5 in order to achieve the improvement of the welding speed by means of "increasing the number of electrodes", which is very simple, the current technology limits the improved welding speed as described above. Therefore, it is not possible to dramatically improve the production efficiency of large-diameter welded steel pipe mills, and it is impossible to expect results that will lead to a reduction in the number of lines.

このように、電極数が多くなるほど溶接アークの安定性
やビード形状のコントロールが困難となることから、精
々5極までが実用の限度とされていた電極数を6極以上
に増やして溶接速度の大幅な向上を達成すことは、現状
の技術レベルからして未だ未だ遠い先のことであるとさ
れていた。
In this way, as the number of electrodes increases, it becomes more difficult to control the stability of the welding arc and the bead shape. Therefore, increasing the number of electrodes from the maximum practical limit of 5 poles to 6 poles or more Achieving significant improvements was said to be a long way off from the current level of technology.

しかし、大径溶接鋼管のコスト低減,生産能率改善に対
する要求が日々厳しさを増してきている状況を受けて、
本発明が目的としたのは、製品品質を落とすことなくサ
ブマージアーク溶接の溶接速度を大幅に向上させ得る方
法を見出し、大径溶接鋼管ミルにおける必要ライン数を
削減してもなお十分な生産能率の改善が達成できる手段
を確立することであった。
However, in response to the ever-increasing demands for cost reduction and production efficiency improvement of large diameter welded steel pipe,
The object of the present invention is to find a method that can significantly improve the welding speed of submerged arc welding without degrading the product quality, and even if the number of required lines in a large diameter welded steel pipe mill is reduced, sufficient production efficiency is achieved. It was to establish the means by which the improvement of can be achieved.

〈課題を解決するための手段〉 本発明者等は、上記目的を達成すべく鋭意検討を重ねる
過程で「サブマージアーク溶接時の溶接速度向上にはや
はり使用電極数を増やすのが最も現実的であり、現状を
超える溶接速度を達成した上で満足できる品質の製品を
得るためには、6極以上の多電極を使用する安定した溶
接法の開発が欠かせない」との結論に達し、様々な条件
の組み合わせパターンからシミュレーション計算により
最適なものを算出しつつ、その妥当性を1つ1つ実験に
て立証する研究を続けた結果、「サブマージアーク溶接
において6極以上の多電極を使用する場合でも、 イ)電極の結線方法, ロ)電極角度,電極間隔,チップ高さのセッティング, ハ)使用フラックス, に工夫を凝らすことにより、溶接アークを十分に安定化
することができてビード形状の安定したコントロールが
可能となる上、良好なスラグ剥離性も確保されて、十分
な溶込みの下で良好な内部品質と外観の良好なビード形
成のなされる高速溶接(最高溶接速度4.5m/min以上)が
実現される」との知見が得られたのである。
<Means for Solving the Problems> The inventors of the present invention, in the process of earnestly studying to achieve the above-mentioned object, “in order to improve the welding speed at the time of submerged arc welding, it is most realistic to increase the number of electrodes used. Therefore, in order to achieve a welding speed that exceeds the current level and obtain a product of satisfactory quality, it is essential to develop a stable welding method using multiple electrodes with 6 or more electrodes. " As a result of continuing the research to prove the validity of each one by experiment while calculating the optimum one by the simulation calculation from the combination pattern of various conditions, "Using multiple electrodes of 6 poles or more in submerged arc welding" Even in this case, the welding arc can be sufficiently stabilized by devising a) electrode connection method, b) electrode angle, electrode spacing, tip height setting, c) flux used. And stable control of the bead shape is possible, good slag releasability is also secured, and high-speed welding with good internal quality and bead formation with good appearance under sufficient penetration. (The maximum welding speed of 4.5 m / min or more is achieved) ”was obtained.

本発明は、上記知見事項等に基づいてなされたもので、 「サブマージアーク溶接を実施する際、6本以上の電極
を使用すると共に、 a)少なくとも先行極には直流電流を適用する、 b)上記以外の電極への交流電源の位相差を、最終極の
アークに作用する力が平均的に溶接進行方向へ向くよう
に設定する、 c)先行極には後退角を、他の電極には前進角をそれぞ
れ持たせると共に、各電極間距離を25mm以内に設定す
る、 d)n本の電極の溶接電流バランスを 第 1 極:1, 第2極〜第(n−2)極:各0.7〜1.10, 第(n−1)極:0.6〜0.80, 第 n 極:0.5〜0.75 の範囲に設定する、 e)SiO2:5〜25%(以降、成分割合を表わす% は重量%とする), Al2O3:2〜20%, MnO:0.5〜15%, TiO2:2〜10%, CaO:5〜25%, BaO:1〜5%, MgO:3〜15%, CaF2:25〜60%,B2O3:2%以下 を含むと共に残部が不可避的不純物から成り、かつ (CaO+MgO)/SiO2=1.5〜3.0 を満足する化学組成で、しかも60%以上がJIS Z 8801で
規定される呼び寸法300〜100μm(48〜145メッシュ)
の領域に入る粒度を有した溶融型フラックスを用いる、 なる各条件を満足させて溶接を行うことにより、高品質
製品の高速溶接を可能とし、製品生産能率の大幅な向
上,溶接ラインの削減を実施し得るようにした点」 に特徴を有している。
The present invention has been made on the basis of the above-mentioned findings and the like. “When performing submerged arc welding, six or more electrodes are used, and a) a direct current is applied to at least the leading electrode, b) The phase difference of the AC power supply to the electrodes other than the above is set so that the force acting on the arc of the final pole is oriented in the welding advancing direction on average. Set the advancing angle respectively and set the distance between each electrode within 25mm. D) Welding current balance of n electrodes is 1st pole: 1, 2nd pole to (n-2) th pole: 0.7 each 1.10, (n-1) th poles: 0.6 to 0.80, the n poles set to 0.5 to 0.75 range, e) SiO 2: 5~25% ( hereinafter,% represents the component ratio is the weight% ), Al 2 O 3 : 2 to 20%, MnO: 0.5 to 15%, TiO 2 : 2 to 10%, CaO: 5 to 25%, BaO: 1 to 5%, MgO: 3 to 15%, CaF 2 : 25-60%, B 2 O 3 : 2% or less, the balance consisting of unavoidable impurities, and (CaO + MgO) / SiO 2 = 1.5-3.0, with a chemical composition of 60% or more. 100 μm (48 to 145 mesh)
By using a molten flux with a particle size that falls within the range of 1), it is possible to perform high-speed welding of high-quality products by satisfying each of the following conditions, greatly improving product production efficiency, and reducing welding lines. It has the feature that it can be implemented ”.

即ち、本発明は、 (a)電極数の6電極以上への多極化, (b)最適結線方法の確立, (c)電極角度,電極間隔,チップ高さの最適セッティ
ング, (d)高速性フラックスの開発, の4点の技術課題を解決することにより、最高溶接速度
4.5m/min以上(現状の1.5倍以上)の高速サブマージア
ーク多電極溶接を可能とし、能率の向上,ライン数の削
減を実施可能としたもので、複雑な6電極技術或いはそ
れ以上の多電極技術のキーポイントとなり、また同時
に、良好なビード外観,溶込み,スラグ剥離性,内部品
質を得るための電極設定方法,高速性確保のためのフラ
ックス物性のコントロール技術を提供するものでもある
が、以下、図面を参照しつつ本発明をその作用及び効果
と共により詳細に説明する。
That is, the present invention is: (a) increase the number of electrodes to more than 6 electrodes, (b) establish an optimal connection method, (c) optimal setting of electrode angle, electrode interval, and chip height, (d) high-speed flux By solving the four technical problems of
It enables high-speed submerged arc multi-electrode welding of 4.5 m / min or more (more than 1.5 times the current level), improves efficiency and reduces the number of lines, and has a complicated 6-electrode technology or more multi-electrodes. It is not only the key point of the technology, but at the same time, it also provides the technology of controlling the flux physical properties to ensure good bead appearance, penetration, slag peeling property, internal quality, and high speed. Hereinafter, the present invention will be described in more detail along with its operation and effects with reference to the drawings.

〈作用及び効果〉 第1図は、6本の電極を使用した本発明に係るサブマー
ジアーク多電極溶接法の1例を示す概念図である。
<Operation and Effect> FIG. 1 is a conceptual diagram showing an example of the submerged arc multi-electrode welding method according to the present invention using six electrodes.

第1図で示されるように、本発明法では6本或いはそれ
以上の電極を配すると共に、適正で安定したガウジング
を図るため少なくとも先行極にDC(直流)電源が適用さ
れ、その他の極(第1図の例では第2極以降)には工業
的優位性を確保すべくAC(交流)電源が適用される。た
だ、特に6電極又はそれ以上の多電極サブマージアーク
溶接においては、結線方式は各極に働く磁力,アークの
方向をコントロールし、溶接アークの安定性,ビード形
状,高速性を支配する重要な因子となる。そこで、結線
方法については、下記前提の下でのシュミレーション計
算と、実ラインでの結線方式の決定・検証を行って確定
された。
As shown in FIG. 1, in the method of the present invention, six or more electrodes are arranged, and a DC (direct current) power source is applied to at least the leading electrode to achieve proper and stable gouging, and other electrodes ( An AC (alternating current) power supply is applied to the second pole and later in the example of FIG. 1) in order to ensure industrial superiority. However, especially in multi-electrode submerged arc welding with 6 or more electrodes, the connection method controls the magnetic force acting on each pole and the direction of the arc, and is an important factor that controls the stability, bead shape and high speed of the welding arc. Becomes Therefore, the connection method was confirmed by performing simulation calculation under the following assumptions and determining and verifying the connection method on the actual line.

即ち、シュミレーション計算を 1)一般に、多電極溶接では最終極がビード形状に大き
く影響するため、最終極に作用する力のみを検討する, 2)最終極に作用する力は、各極の溶接電流,位相差,
電極間の距離,チップ高さ(extention),透磁率
(μ)によって決定されるものとする, 3)最終極のアークに作用する力の平均値は、smoothin
g action及び形成されるビード外観の検討結果から望ま
しいとされた約0.1×20N/mにする, 4)最終極のアークに作用する力が溶接進行方向に向い
ている時間は、上記smoothing action及び形成されるビ
ード外観の検討結果から、望ましいことが明らかとなっ
た“できるだけ長い時間”となるように位相差を決定す
る, 5)最終第n極に作用する力〔Fn〕は、式 Fn=Fn1+Fn2+…+Fni+…+Fnn-1+Fnn+Fn0 で示される, との前提条件を指標としてなされた結果と、実機テスト
の結果とからも、少なくとも先行極にDC電源を用いる上
で他極にAC電源を適用することは可能であるとの結論に
達した。そして、特に第1図で示される6電極サブマー
ジアーク溶接では、下記のような極性と位相差の結線方
法が各極間に働く磁力を好適にコントロールし、溶接ア
ークの安定性,ビード形状に最適であることも確認し
た。
That is, simulation calculation 1) Generally, in multi-electrode welding, the final pole has a large effect on the bead shape, so only the force that acts on the final pole is considered. 2) The force that acts on the final pole is the welding current of each pole. , Phase difference,
It shall be determined by the distance between the electrodes, the tip height (extention), and the magnetic permeability (μ). 3) The average value of the force acting on the arc of the final pole is smoothin
It is set to about 0.1 × 20 N / m, which is considered desirable from the results of examination of g action and the appearance of the formed bead. 4) The time during which the force acting on the arc of the final pole is directed in the welding progress direction is the smoothing action and From the examination result of the appearance of the formed bead, it was clarified that it is desirable to determine the phase difference so that the time is as long as possible. 5) The force [Fn] acting on the final n-th pole is calculated by the formula Fn = Fn 1 + Fn 2 + ... + Fni + ... + Fnn -1 + Fnn + Fn 0 Based on the results of the preconditions of, and the results of the actual test, it is concluded that it is possible to apply the AC power supply to the other pole at least when using the DC power supply for the leading pole. Reached Especially, in the 6-electrode submerged arc welding shown in Fig. 1, the following magnetic pole and phase difference connection method suitably controls the magnetic force acting between the electrodes to optimize the welding arc stability and bead shape. I also confirmed that.

DC-AC-AC-AC-AC-AC 0°+60°+120°−90°+120° (ここで、+は位相差の進みを、−は遅れを示してお
り、第2極を基準とした場合の位相差を示す)。
DC-AC-AC-AC-AC-AC 0 ° + 60 ° + 120 ° −90 ° + 120 ° (Here, + indicates the advance of phase difference, − indicates the delay, and when the second pole is used as the reference Shows the phase difference).

なお、第1表に、上記結論が得られた“6電極サブマー
ジアーク溶接におけるAC極位相差の組み合わせと溶接状
況の検討結果”の一部を示したが、この時の溶接条件は 試験材:肉厚1.00インチのビードオンプレート、 溶接電流及び電圧: 第1極……1200A,30V、 第2極……1000A,33V、 第3極……900A,36V、 第4極……850A,40V、 第5極……700A,42V、 第6極……600A,44V、 溶接速度:4.0m/min、 であった。
In addition, Table 1 shows a part of the “combination of AC pole phase difference in 6-electrode submerged arc welding and the examination result of the welding situation” from which the above conclusion was obtained. The welding conditions at this time are as follows: 1.00 inch thick bead-on-plate, welding current and voltage: 1st pole …… 1200A, 30V, 2nd pole …… 1000A, 33V, 3rd pole …… 900A, 36V, 4th pole …… 850A, 40V, 5th pole: 700A, 42V, 6th pole: 600A, 44V, welding speed: 4.0m / min.

更に、この結線方法を適用し実ラインの6電極サブマー
ジ溶接機にて溶接テストした結果からは、肉厚:0.25〜
2.00インチの大径鋼管の溶接において、従来の4電極サ
ブマージアーク溶接を適用した場合には溶接速度が1.0
〜2.8m/minであったのに対し、本発明に係る6電極サブ
マージアーク溶接では総電流:5000A以上,溶接速度:3.0
〜5.0m/minの範囲で安定したアークと美麗なビード外観
が得られていることが確認され、その優位性と計算結果
の正当性が立証されている。
Furthermore, from the result of welding test using this connection method with a 6-electrode submerged welding machine of a real line, the wall thickness: 0.25 ~
When welding conventional 2.00 electrode submerged arc welding for welding 2.00 inch large diameter steel pipe, welding speed is 1.0
While it was ~ 2.8 m / min, in the 6-electrode submerged arc welding according to the present invention, total current: 5000 A or more, welding speed: 3.0
It was confirmed that a stable arc and a beautiful bead appearance were obtained in the range of ~ 5.0 m / min, and its superiority and the validity of the calculation results were verified.

ところで、本発明法においては、先行DC極には後退角
を、他の電極には前進角を持たせているが、先行極には
後退角を持たせる理由は先行極によるガウジング力の拡
大を図るためである。そして、この先行DC極の後退角は
−20°までとし、電極容量は最高2000Aまでとするのが
良い。先行DC極に0°以上の前進角を持たせた場合に
は、smoothing actionによりビード幅方向の湯流れは助
長され外観向上に有効であるが、digging actionが著し
く減少し、溶け込み深さの不足により十分な溶接速度を
達成し得ない。これに対し、先行DC極に−20°を超える
後退角を持たせると、必要以上に溶融プールが撹拌さ
れ、溶接欠陥のアンダカットやスラグ巻き込みを多発す
る傾向が懸念される。一方、後行AC極の前進角は溶融プ
ール内での溶湯の後方への流れを塞ぎ止め、美麗はビー
ド外観を形成するために付与されるものであり、この前
進角は0〜+45°の範囲とするのが良い。
By the way, in the method of the present invention, the leading DC pole is provided with a receding angle and the other electrodes are provided with an advancing angle. The reason for giving the leading electrode a receding angle is that the gouging force is expanded by the leading electrode. This is because it is intended. The receding angle of the preceding DC pole should be -20 °, and the electrode capacity should be 2000A at maximum. When the leading DC pole has an advancing angle of 0 ° or more, the smoothing action promotes the flow of molten metal in the bead width direction and is effective for improving the appearance, but the digging action is significantly reduced and the penetration depth is insufficient. Therefore, a sufficient welding speed cannot be achieved. On the other hand, if the leading DC electrode has a receding angle of more than −20 °, the molten pool is agitated more than necessary, and there is a concern that welding defects may undercut or slag inclusion may occur frequently. On the other hand, the advancing angle of the trailing AC pole blocks the backward flow of the molten metal in the molten pool, and beauty is given to form a bead appearance. This advancing angle is 0 to + 45 °. The range is good.

なお、第2表は板厚1.00インチのビードオンプレートに
よる溶接試験結果を示しているが、この第2表からも、
先行DC極に後退角を、そして後行AC極に前進角を持たせ
ると良好な溶接結果を得られることが確認できる。
In addition, Table 2 shows the welding test results using the bead-on-plate having a plate thickness of 1.00 inch.
It can be confirmed that good welding results can be obtained by providing the lead DC pole with a receding angle and the trailing AC pole with an advancing angle.

ここで、溶接速度:4.5m/minにて十分な溶着量,ビード
外観,アーク安定性を確保するためには、溶接ワイヤと
して4.0〜6.4mmφの太径ソリッドワイヤを適用するのが
好ましい。
Here, in order to secure a sufficient deposition amount, bead appearance, and arc stability at a welding speed of 4.5 m / min, it is preferable to apply a large diameter solid wire of 4.0 to 6.4 mmφ as a welding wire.

また、各電極先端部の間隔は、溶融型フラックス(fuse
d flux)を用いる本発明法では何れも25mm以内に設定す
る必要があり、これによってアーク安定,溶接欠陥防止
に効果を上げることができる。電極間距離が25mmを上回
ると、ビード外観が悪化する上に、半凝固状態になって
浮上したスラグが電極により干渉を受けてスラグひっか
けの原因となるなど、製品品質及び作業性の点で不利を
招く。
In addition, the space between the tip of each electrode is
In the method of the present invention using d flux), it is necessary to set the distance to within 25 mm in each case, which can improve the arc stability and the prevention of welding defects. If the distance between the electrodes exceeds 25 mm, the bead appearance will deteriorate, and the slag that floats in a semi-solidified state will be interfered by the electrodes and cause slag catching, which is disadvantageous in terms of product quality and workability. Invite.

第3表には、板厚1.00インチのビードオンプレートを使
用し、電極間距離を変えて溶接試験を行った結果の一部
が示されているが、この第3表からも、電極間距離は25
mm以内に設定した場合に良好な結果が得られることを確
認できる。
Table 3 shows a part of the results of the welding test using a bead-on-plate with a plate thickness of 1.00 inch and varying the distance between the electrodes. Is 25
It can be confirmed that good results are obtained when set within mm.

電流バランスについては、先行極から後行へ移るに従っ
て、通常0.1〜0.05程度ずつ配分を減少することによ
り、後行極アークの硬直性を和らげ、高速溶接(υ>3m
/min)においても広幅で滑らかなビード外観が得られ
る。しかし、特に薄肉時、溶込み深さをそれほど必要と
しない溶接で、第1極に対し第2極の電流を高くするこ
とによってより良好なビード外観が得られることを見出
した。そして、電流バランスを特に 第 1 極……1, 第 2 極……0.7〜1.10, ・ ……同上, ・ ……同上, 第n−1極……0.6〜0.80, 第 n 極……0.5〜0.75 の配分で設定した場合には、良好なビード外観のより安
定した確保が可能となる。
Regarding the current balance, the rigidity of the trailing electrode arc is moderated by decreasing the distribution by 0.1 to 0.05 normally as the electrode moves from the leading electrode to the trailing electrode, and high-speed welding (υ> 3m
(/ min), a wide and smooth bead appearance can be obtained. However, it has been found that, particularly when the wall thickness is thin, a better bead appearance can be obtained by increasing the current of the second pole with respect to the first pole in welding that does not require a deep penetration. And the current balance is especially 1st pole …… 1, 2nd pole …… 0.7 ~ 1.10, ・ ・ ・ ・ Same as above, ・ ・ ・ ・ Same as above, n-1 pole ・ ・ ・ 0.6〜0.80, nth pole ・ ・ ・ 0.5〜 If the distribution is set to 0.75, a good bead appearance can be secured more stably.

さて、以上に示したような条件で高速サブマージアーク
溶接を実施した場合でも、高速溶接化に伴いやはり溶接
ビード形状と溶接金属の性能劣化と言う問題を十分に拭
えなくなる。そこで、本発明者等は、上記問題点を解消
すべく研究を行い、まず、 (A)フラックス成分としてAl2O3,SiO2の適量を添加す
ると、CaF2との共存下で適正な融点・粘性のスラグを生
成するようになる, (B)フラックス粒度のJISで規定される呼び寸法300〜
100μmの領域を常時60%以上に維持するとアンダーカ
ットやスラグ巻き込みが極力減少する,ことを見出し
て、このような方策を講じることにより溶接速度:5.0m/
minの大電流(大入熱)溶接においても良好なビード外
観,スラグ剥離性が得られ、溶接作業性と溶接欠陥防止
効果の向上が図れることを確認した。そして、更に検討
を重ね、前記Al2O3-SiO2-CaF2成分系のフラックスにお
いてSiO2,MnO,CaO,CaF2,Al2O3,MgO,TiO2,BaO並びにB2O3
の成分バランスを SiO2:5〜25%,Al2O3:2〜20%, MnO:0.5〜15%,TiO2:2〜10%, CaO:5〜25%, BaO:1〜5%, MgO:3〜15%, CaF2:25〜60%, B2O3 :2%以下 で、かつ (CaO+MgO)/SiO2=1.5〜3.0 を満足するようにコントロールすることで、塩基度が常
時高い値に保たれ、電極数を増加した溶接においても酸
素量の低減効果が効果的に発揮されて、形成される溶接
金属中の酸素量を350ppm以下に抑制することも十分に可
能となり、一般に大径ラインパイプに要求される低硬度
・高靱性スペックをも十分クリアーできる高速溶接用溶
融型フラックスを実現した訳である。
Even when high-speed submerged arc welding is performed under the conditions as described above, the problems of weld bead shape and weld metal performance deterioration cannot be sufficiently wiped out with high-speed welding. Therefore, the present inventors have conducted research to solve the above-mentioned problems. First, (A) by adding an appropriate amount of Al 2 O 3 or SiO 2 as a flux component, an appropriate melting point in the coexistence with CaF 2 is obtained.・ A viscous slag is generated. (B) Flux particle size Nominal dimension specified by JIS 300-
We have found that undercut and slag entrapment are reduced as much as possible when the 100 μm area is constantly maintained at 60% or more, and by taking such measures, welding speed: 5.0 m /
It was confirmed that good bead appearance and slag releasability were obtained even in min high current (high heat input) welding, and welding workability and welding defect prevention effect could be improved. Then, after further study, SiO 2 , MnO, CaO, CaF 2 , Al 2 O 3 , MgO, TiO 2 , BaO and B 2 O 3 in the Al 2 O 3 -SiO 2 -CaF 2 component system flux.
The balance of components SiO 2: 5~25%, Al 2 O 3: 2~20%, MnO: 0.5~15%, TiO 2: 2~10%, CaO: 5~25%, BaO: 1~5% , MgO: 3~15%, CaF 2 : 25~60%, B 2 O 3: 2% or less, and (CaO + MgO) / SiO 2 = 1.5~3.0 by controlling so as to satisfy the basicity Always kept at a high value, the effect of reducing the amount of oxygen is effectively exhibited even in welding with an increased number of electrodes, and it becomes possible to sufficiently suppress the amount of oxygen in the weld metal formed to 350 ppm or less, This is the reason why we have realized a fusion type flux for high-speed welding that can fully meet the specifications of low hardness and high toughness generally required for large diameter line pipes.

勿論、このフラックスにおいてSiO2,MnO,CaO,CaF2,Al2O
3,MgO,TiO2,BaO並びにB2O3の成分バランスが前記範囲を
外れると上述した効果を安定して確保することができな
くなる。
Of course, in this flux, SiO 2 , MnO, CaO, CaF 2 , Al 2 O
If the component balance of 3 , MgO, TiO 2 , BaO and B 2 O 3 is out of the above range, the above effect cannot be stably ensured.

また、上記フラックスのJISで規定される呼び寸法300〜
100μmの領域が60%未満であった場合には、多電極高
速溶接において溶接欠陥が目立つようになり、粗粒域が
増加したときはアンダーカットが、そして細粒域が増加
したときはスラグ巻き込みが多発することとなる。
In addition, the nominal size of the above flux specified by JIS 300-
When the area of 100 μm is less than 60%, welding defects become noticeable in multi-electrode high speed welding, undercut occurs when the coarse grain area increases, and slag inclusion occurs when the fine grain area increases. Will occur frequently.

上述のように、本発明は、更なる高速化を図ろうとした
場合に数々の未解決の難問が続出したサブマージアーク
溶接に関し、「電極数の更なる多極化」,「最適結線方
法の確率」,「電極角度,電極間隔,チップ高さの最適
セッティング」及び「高速性フラックスの開発」と言う
困難な技術課題を総合的見地から解決することによって
上記障害を乗り越え、安定した高速サブマージアーク溶
接法を確立したが、以下、実施例によってその効果をよ
り具体的に説明する。
As described above, the present invention relates to submerged arc welding in which a number of unsolved problems continue when trying to further increase the speed, and "further increase in number of electrodes", "probability of optimal connection method", By solving the difficult technical problems of "optimal setting of electrode angle, electrode interval, tip height" and "development of high-speed flux" from a comprehensive point of view, the above obstacles were overcome and a stable high-speed submerged arc welding method was achieved. Although established, the effect will be described more specifically below with reference to the examples.

〈実施例〉 6本の電極を第2図に示すようにセットすると共に、そ
の第2極以降のAC極の位相差を0°,+60°,+120
°,−90°,+120°に設定し、その他は第4表に示す
如き条件で鋼板のサブマージアーク溶接試験を実施し
た。
<Example> Six electrodes were set as shown in FIG. 2, and the phase difference of the AC poles after the second pole was 0 °, + 60 °, +120.
Submerged arc welding tests were conducted on steel plates under the conditions shown in Table 4 for the other conditions, such as °, -90 °, and +120 °.

なお、このとき使用されたフラックスは、実質的にCaO:
18.0%,MgO:6.0%,SiO2:14.0%,CaF2:37%,Al2O3:15%,
MnO:3%,TiO2:3%,BaO:3%及びB2O3:1%から成り、かつ
〔(CaO+MgO)/SiO2=1.7〕なる成分バランスで、その
粒度はJISで規定される呼び寸法300〜100μmの領域を6
5%含むものであった。また、使用ワイヤは4.0mmφのソ
リッドワイヤで、その成分組成は第5表の通りであっ
た。
The flux used at this time was substantially CaO:
18.0%, MgO: 6.0%, SiO 2 : 14.0%, CaF 2 : 37%, Al 2 O 3 : 15%,
MnO: 3%, TiO 2: 3%, BaO: 3% and B 2 O 3: made of 1%, and [(CaO + MgO) / SiO 2 = 1.7 ] a constituent balance, the particle size is defined by JIS 6 areas with nominal dimensions of 300 to 100 μm
It included 5%. The wire used was a solid wire of 4.0 mmφ, and its composition was as shown in Table 5.

そして、試験後に溶接ビードの外観評価を実施したとこ
ろ、何れも良好な外観を呈していることが確認された。
When the appearance of the weld beads was evaluated after the test, it was confirmed that all of them had a good appearance.

〈効果の総括〉 以上に説明した如く、本発明によれば、最高溶接速度:
4.5m/min以上の高速サブマージアーク溶接法が確立さ
れ、ラインパイプや構造用パイプと言った大径溶接鋼管
等の製造能率を大幅に向上できるほか、溶接ライン数の
削減を実施したとしても増産に対応することが可能とな
るなど、産業上極めて有用な効果がもたらされる。
<Summary of Effects> As described above, according to the present invention, the maximum welding speed:
A high-speed submerged arc welding method of 4.5 m / min or more has been established, which can significantly improve the production efficiency of large-diameter welded steel pipes such as line pipes and structural pipes, and increase production even if the number of welding lines is reduced. It will be possible to achieve the extremely useful effects in the industry, such as being able to deal with.

【図面の簡単な説明】 第1図は、6本の電極を使用した本発明に係るサブマー
ジアーク多電極溶接法の1例を示す概念図である。 第2図は、本発明の実施例における電極セット条件の概
略説明図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing an example of a submerged arc multi-electrode welding method according to the present invention using six electrodes. FIG. 2 is a schematic explanatory view of electrode setting conditions in the example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】6本以上の電極を使用し、かつ下記a)〜
e)の条件を満足させて溶接を行うことを特徴とする、
高速サブマージアーク溶接方法。 a)少なくとも先行極には直流電流を適用する、 b)上記以外の電極への交流電源の位相差を、最終極の
アークに作用する力が平均的に溶接進行方向へ向くよう
に設定する、 c)先行極には後退角を、他の電極には前進角をそれぞ
れ持たせると共に、各電極間距離を25mm以内に設定す
る、 d)n本の電極の溶接電流バランスを 第 1 極:1, 第2極〜第(n−2)極:各0.7〜1.10, 第(n−1)極:0.6〜0.80, 第 n 極:0.5〜0.75 の範囲に設定する、 e)重量割合にて SiO2:5〜25%, Al2O3:2〜20%, MnO:0.5〜15%, TiO2:2〜10%, CaO:5〜25%, BaO:1〜5%, MgO:3〜15%, CaF2:25〜60%, B2O3:2%以下 を含むと共に残部が不可避的不純物から成り、かつ (CaO+MgO)/SiO2=1.5〜3.0 を満足する化学組成で、しかも60%以上がJISで規定さ
れる呼び寸法300〜100μmの領域に入る粒度を有した溶
融型フラックスを用いる。
1. Use of 6 or more electrodes, and a) to
characterized in that welding is performed while satisfying the condition of e),
High-speed submerged arc welding method. a) applying a direct current to at least the leading electrode, b) setting the phase difference of the AC power supply to the electrodes other than the above so that the force acting on the arc of the final pole is oriented in the welding advancing direction on average. c) The leading electrode has a receding angle and the other electrodes have an advancing angle, and the distance between each electrode is set within 25 mm. d) The welding current balance of n electrodes is 1st pole: 1 , 2nd pole to (n-2) th pole: 0.7 to 1.10 each, (n-1) th pole: 0.6 to 0.80, nth pole: 0.5 to 0.75, e) SiO weight ratio 2: 5~25%, Al 2 O 3: 2~20%, MnO: 0.5~15%, TiO 2: 2~10%, CaO: 5~25%, BaO: 1~5%, MgO: 3~ 15%, CaF 2 : 25-60%, B 2 O 3 : 2% or less, the balance consisting of unavoidable impurities, and a chemical composition satisfying (CaO + MgO) / SiO 2 = 1.5-3.0. % Or more is specified by JIS Nominal size 300 to 100 μm Using melt flux having a particle size entering the area.
JP2271386A 1990-10-09 1990-10-09 High-speed submerged arc welding method using multiple electrodes Expired - Lifetime JPH0729206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2271386A JPH0729206B2 (en) 1990-10-09 1990-10-09 High-speed submerged arc welding method using multiple electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2271386A JPH0729206B2 (en) 1990-10-09 1990-10-09 High-speed submerged arc welding method using multiple electrodes

Publications (2)

Publication Number Publication Date
JPH04147770A JPH04147770A (en) 1992-05-21
JPH0729206B2 true JPH0729206B2 (en) 1995-04-05

Family

ID=17499352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271386A Expired - Lifetime JPH0729206B2 (en) 1990-10-09 1990-10-09 High-speed submerged arc welding method using multiple electrodes

Country Status (1)

Country Link
JP (1) JPH0729206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126519A1 (en) * 2005-05-26 2006-11-30 Sumitomo Metal Industries, Ltd. Fused flux for submerged arc welding

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692542B2 (en) * 1993-09-03 1997-12-17 住友金属工業株式会社 Pipe welding method
JP5200624B2 (en) * 2008-03-31 2013-06-05 Jfeスチール株式会社 Multi-electrode submerged arc welding machine
JP5402824B2 (en) * 2010-05-13 2014-01-29 新日鐵住金株式会社 Multi-electrode submerged arc welding method with excellent weldability
JP6094352B2 (en) * 2012-04-17 2017-03-15 Jfeスチール株式会社 Multi-electrode submerged arc welding method for steel sheet
JP6318704B2 (en) * 2014-03-03 2018-05-09 新日鐵住金株式会社 Fused flux for submerged arc welding
WO2017141760A1 (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Multi-electrode submerged arc welding method
JP7323781B2 (en) * 2019-07-04 2023-08-09 日本製鉄株式会社 Multi-electrode submerged arc welding method
CN112846447B (en) * 2021-02-07 2022-08-12 哈尔滨焊接研究院有限公司 Arc stabilizing method suitable for thick plate multi-arc common molten pool welding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855197A (en) * 1981-09-28 1983-04-01 Sumitomo Metal Ind Ltd Fused flux for submerged arc welding
JPS5945098A (en) * 1982-09-08 1984-03-13 Sumitomo Metal Ind Ltd Multielectrode submerged arc welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855197A (en) * 1981-09-28 1983-04-01 Sumitomo Metal Ind Ltd Fused flux for submerged arc welding
JPS5945098A (en) * 1982-09-08 1984-03-13 Sumitomo Metal Ind Ltd Multielectrode submerged arc welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126519A1 (en) * 2005-05-26 2006-11-30 Sumitomo Metal Industries, Ltd. Fused flux for submerged arc welding
JP2006326642A (en) * 2005-05-26 2006-12-07 Sumitomo Metal Ind Ltd Fused flux for submerged arc welding
JP4581842B2 (en) * 2005-05-26 2010-11-17 住友金属工業株式会社 Fused flux for submerged arc welding

Also Published As

Publication number Publication date
JPH04147770A (en) 1992-05-21

Similar Documents

Publication Publication Date Title
JP5652574B1 (en) Solid wire for gas shielded arc welding, gas shielded arc welding metal, welded joint, welded member, welding method, and method of manufacturing welded joint
JPH0729206B2 (en) High-speed submerged arc welding method using multiple electrodes
JP2002239725A (en) Gas-shielded arc welding for steel sheet
JP2672243B2 (en) Flux for single-sided submerged arc welding and welding method using the same
JP2860060B2 (en) Single-sided submerged arc welding method
JPH0673757B2 (en) Large heat input latent arc welding method for thick steel plate
JP2002144081A (en) Steel wire for mag welding and mag welding method using the same
KR102051960B1 (en) Tandem gas shielded arc welding wire
JP3367566B2 (en) Large heat input single-sided submerged arc welding method
JP3124439B2 (en) High speed horizontal fillet gas shielded arc welding method
JP3889897B2 (en) Two-electrode vertical electrogas arc welding method with excellent welding workability and back bead appearance
JP2011240370A (en) Flux cored wire for horizontal fillet gas shield arc welding
JP4707949B2 (en) Multi-electrode single-sided submerged arc welding method
JP3986357B2 (en) One-side welding method by carbon dioxide arc welding
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JP2005319507A (en) Multiple electrodes one side submerged arc welding method
JPH08257752A (en) Three electrode two layer submerged arc welding of thick plate
JP3836071B2 (en) Single electrode single-sided submerged arc welding method
JP3808213B2 (en) Submerged arc welding method for thick steel plate
JP5669684B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JP3120907B2 (en) Single-sided submerged arc welding method
JP3186885B2 (en) Single-sided submerged arc welding method
JPH0532155B2 (en)
JPH079150A (en) Gas shielded arc welding method for galvanized steel sheet and galvanized steel sheet product welded by the welding method