JP6094352B2 - Multi-electrode submerged arc welding method for steel sheet - Google Patents

Multi-electrode submerged arc welding method for steel sheet Download PDF

Info

Publication number
JP6094352B2
JP6094352B2 JP2013086189A JP2013086189A JP6094352B2 JP 6094352 B2 JP6094352 B2 JP 6094352B2 JP 2013086189 A JP2013086189 A JP 2013086189A JP 2013086189 A JP2013086189 A JP 2013086189A JP 6094352 B2 JP6094352 B2 JP 6094352B2
Authority
JP
Japan
Prior art keywords
electrode
welding
submerged arc
wire
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013086189A
Other languages
Japanese (ja)
Other versions
JP2013237103A (en
Inventor
篤史 石神
篤史 石神
早川 直哉
直哉 早川
矢埜 浩史
浩史 矢埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013086189A priority Critical patent/JP6094352B2/en
Publication of JP2013237103A publication Critical patent/JP2013237103A/en
Application granted granted Critical
Publication of JP6094352B2 publication Critical patent/JP6094352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼板の多電極サブマージアーク溶接に関し、UOE鋼管やスパイラル鋼管等の大径鋼管のシーム溶接に好適な多電極サブマージアーク溶接に関するものである。   The present invention relates to multi-electrode submerged arc welding of steel plates, and relates to multi-electrode submerged arc welding suitable for seam welding of large-diameter steel pipes such as UOE steel pipes and spiral steel pipes.

UOE鋼管やスパイラル鋼管等の大径鋼管のシーム溶接には、2電極以上を用いるサブマージアーク溶接(たとえば特許文献1、2参照)が普及しており、大径鋼管の生産性向上の観点から、内面側を1パス、外面側を1パスで溶接する高能率な両面一層盛り溶接が広く採用されている。
両面一層盛り溶接では、内面側の溶接金属と外面側の溶接金属とが十分に重なり、未溶融部が生じないように、溶込み深さを確保する必要があるので、1000A以上の大電流を供給して溶接を行なうのが一般的である。
For seam welding of large-diameter steel pipes such as UOE steel pipes and spiral steel pipes, submerged arc welding using two or more electrodes (see, for example, Patent Documents 1 and 2) is widespread. From the viewpoint of improving the productivity of large-diameter steel pipes, High-efficiency double-sided single-layer welding, in which the inner surface side is welded in one pass and the outer surface side is welded in one pass, is widely adopted.
In double-sided single-layer welding, it is necessary to secure a depth of penetration so that the weld metal on the inner surface side and the weld metal on the outer surface side are sufficiently overlapped, and unmelted parts do not occur. It is common to supply and perform welding.

一方で、大径鋼管のシーム溶接では、溶接部とりわけ熱影響部の靭性が劣化するという問題があり、溶接部の靭性向上のためには可能な限り溶接入熱を低減する必要がある。しかし、溶接入熱を低減すれば、溶込み不足を生じる危険性が高まり、未溶融部が生じ易くなり、アンダーカット等の表面欠陥が発生し易くなるという問題がある。
アンダーカット等の表面欠陥を抑制するためには、広いビード幅を得ることが必要であり、そのための溶接条件が検討されている。たとえば特許文献3には、1本のトーチに2本のワイヤを溶接線方向に直角に配置されるように供給して溶接を行なうことによって、ビード幅を広げる技術が開示されている。しかしこの技術では、大幅なビード幅の拡大は難しく、板厚が20mmを超えるような厚肉材の溶接においてはビード幅を十分に拡大することが困難である。
On the other hand, seam welding of large-diameter steel pipes has a problem that the toughness of the welded part, particularly the heat-affected zone, is deteriorated, and it is necessary to reduce the welding heat input as much as possible in order to improve the toughness of the welded part. However, if the welding heat input is reduced, there is a problem that the risk of inadequate penetration increases, an unmelted portion is likely to occur, and surface defects such as undercuts are likely to occur.
In order to suppress surface defects such as undercut, it is necessary to obtain a wide bead width, and welding conditions for that purpose are being studied. For example, Patent Document 3 discloses a technique for expanding the bead width by supplying two wires to one torch so as to be arranged at right angles to the welding line direction and performing welding. However, with this technique, it is difficult to greatly increase the bead width, and it is difficult to sufficiently increase the bead width in the welding of thick materials having a plate thickness exceeding 20 mm.

特許文献4には、溶接施工中に未凝固の溶接金属に磁場を印加してビード形状を調整する技術が開示されている。しかしこの技術では、溶接装置に加えて、磁場を印加する装置を併用しなければならないので、構成が複雑になり、装置のメンテナンス負荷が増大する。
特許文献5、6には、複数の電極を溶接線から間隔を設けて配置して溶接を行なうことによって、ビード幅を広げる技術が開示されている。しかし特許文献5、6に開示された技術では、溶接全長で溶接線の両側に均等にビード幅を拡大することが困難であった。特に大入熱溶接においては溶接熱影響部の靭性が課題となるにも関らず、片側に偏ったビードが形成されることにより、溶接熱影響部の靭性評価試験であるシャルピー衝撃試験の試験片をビード左右のいずれから採取するかによって吸収エネルギーが大きくばらつき、安定した機械的性能が得られないという問題があった。
Patent Document 4 discloses a technique for adjusting a bead shape by applying a magnetic field to an unsolidified weld metal during welding. However, in this technique, in addition to the welding device, a device for applying a magnetic field must be used together, so that the configuration becomes complicated and the maintenance load of the device increases.
Patent Documents 5 and 6 disclose a technique for expanding a bead width by arranging a plurality of electrodes at intervals from a welding line and performing welding. However, with the techniques disclosed in Patent Documents 5 and 6, it has been difficult to increase the bead width evenly on both sides of the weld line over the entire length of the weld. In particular, in high heat input welding, although the toughness of the weld heat affected zone becomes an issue, the formation of a bead that is biased to one side results in the Charpy impact test being a toughness evaluation test for the weld heat affected zone. The absorbed energy varies greatly depending on whether the piece is taken from the left or right side of the bead, and there is a problem that stable mechanical performance cannot be obtained.

特開平11-138266号公報Japanese Patent Laid-Open No. 11-138266 特開平10-109171号公報Japanese Patent Laid-Open No. 10-109171 特開平7-266047号公報JP 7-266047 A 特開2002-120068号公報Japanese Patent Laid-Open No. 2002-120068 特公昭63-39350号公報Japanese Patent Publication No. 63-39350 特開平8-257752号公報JP-A-8-257752

本発明は、溶接条件や電極配置の大幅な変更を行なうことなくビード幅をコントロールし、またビード幅を拡大してアンダーカット等の表面欠陥を防止するとともに、良好な形状のビードを溶接線の両側に均等に形成することができる多電極サブマージアーク溶接方法を提供することを目的とする。   The present invention controls the bead width without significantly changing the welding conditions and electrode arrangement, and also enlarges the bead width to prevent surface defects such as undercuts, An object of the present invention is to provide a multi-electrode submerged arc welding method that can be uniformly formed on both sides.

発明者は、3本以上の電極を用いてサブマージアーク溶接を行ない、種々の溶接条件で鋼板の溶接継手を作製した。そして、得られたビードの形状と溶接条件との関係を調査した結果、
(a)溶接進行方向の先頭に配置される第1電極が通過する軌跡(以下、溶接線という)の両側に、最後尾の第N電極とその直前の第N−1電極とを配置することによって、ビード幅を拡大できる、
(b)第N電極,第N−1電極およびその第N−1電極の直前に配置される第N−2電極に交流電流を供給し、その位相差を調整することによって、良好な形状のビードを溶接線の両側に均等に形成できる
という知見を得た。本発明は、これらの知見に基づいてなされたものである。ここで、Nは3以上の整数であり、電極の本数を示す。
The inventor performed submerged arc welding using three or more electrodes and produced welded joints of steel plates under various welding conditions. And as a result of investigating the relationship between the obtained bead shape and welding conditions,
(a) The rearmost Nth electrode and the immediately preceding N-1 electrode are disposed on both sides of a trajectory (hereinafter referred to as a welding line) through which the first electrode disposed at the head in the welding progress direction passes. The bead width can be expanded by
(b) By supplying an alternating current to the Nth electrode, the N-1 electrode, and the N-2 electrode arranged immediately before the N-1 electrode, and adjusting the phase difference thereof, a good shape It was found that the bead can be formed evenly on both sides of the weld line. The present invention has been made based on these findings. Here, N is an integer of 3 or more and indicates the number of electrodes.

すなわち本発明は、3電極以上のサブマージアーク溶接で鋼板を溶接する多電極サブマージアーク溶接方法において、溶接進行方向の最後尾に配置される第N電極とその第N電極の直前に配置される第N−1電極とを溶接線の左右両側に配置し、第N電極の鋼板表面におけるワイヤ先端位置と溶接線との距離、および第N−1電極の鋼板表面におけるワイヤ先端位置と溶接線との距離をいずれも5〜15mmの範囲内とし、かつ第N電極と第N−1電極の溶接進行方向の電極間距離を0〜20mmの範囲内とするとともに、第N−1電極の直前に配置される第N−2電極と第N−1電極との位相差θ1、第N−1電極と第N電極との位相差θ2、第N−2電極と第N電極との位相差θ3をいずれも60〜300°の範囲内とし、3電極以上の溶接入熱を合計7.0〜10.0kJ/mmとする多電極サブマージアーク溶接方法である。 That is, according to the present invention, in a multi-electrode submerged arc welding method for welding steel plates by submerged arc welding of three or more electrodes, the Nth electrode disposed at the end of the welding progress direction and the first electrode disposed immediately before the Nth electrode. N-1 electrodes are arranged on both the left and right sides of the weld line, and the distance between the wire tip position on the steel plate surface of the Nth electrode and the weld line, and the wire tip position on the steel plate surface of the N-1 electrode and the weld line. All the distances are within the range of 5 to 15 mm, and the distance between the electrodes in the welding progress direction of the Nth electrode and the (N-1) th electrode is within the range of 0 to 20 mm, and is disposed immediately before the (N-1) th electrode. phase difference theta 1 between the N-2 electrode and the N-1 electrodes, the phase difference theta 2 between the first N-1 electrode and the N electrodes, the phase difference between the first N-2 electrode and the N electrode theta 3 is in the range of 60 to 300 °, and the total heat input of 3 or more electrodes is 7.0 to 10.0k. This is a multi-electrode submerged arc welding method of J / mm .

発明の多電極サブマージアーク溶接方法においては、溶接進行方向の先頭に配置される第1電極のワイヤ径を2.4〜3.2mmとすることが好ましい。 In multi-electrode submerged arc welding method of the invention, it is preferable that the wire diameter of the first electrode, which is placed at the beginning of welding advancing direction and 2.4~3.2Mm.

本発明によれば、溶接条件や電極配置の大幅な変更を行なうことなく、ビード幅をコントロールすることができ、その結果として、多電極サブマージアーク溶接にて、ビード幅を拡大してアンダーカット等の表面欠陥を防止でき、しかも良好な形状のビードを溶接線の両側に均等に形成することで、ビード左右のいずれの溶接熱影響部においても高い靭性が得られるので、産業上格段の効果を奏する。   According to the present invention, it is possible to control the bead width without significantly changing the welding conditions and electrode arrangement. As a result, in multi-electrode submerged arc welding, the bead width is increased to undercut or the like. By forming evenly shaped beads on both sides of the weld line, high toughness can be obtained in both the heat affected zone on the left and right sides of the bead. Play.

本発明の多電極サブマージアーク溶接方法の例を模式的に示す斜視図である。It is a perspective view which shows typically the example of the multi-electrode submerged arc welding method of this invention. 図1中の電極と鋼板の側面図である。It is a side view of the electrode and steel plate in FIG. 図1中のワイヤの鋼板表面における先端位置を示す平面図である。It is a top view which shows the front-end | tip position in the steel plate surface of the wire in FIG. 開先形状の例を示す断面図である。It is sectional drawing which shows the example of groove shape. 溶接継手の例を示す断面図である。It is sectional drawing which shows the example of a welded joint. シャルピー衝撃試験片の採取位置を示す断面図である。It is sectional drawing which shows the collection position of a Charpy impact test piece.

図1は、本発明の多電極サブマージアーク溶接方法を適用して鋼板の溶接を行なう例を模式的に示す斜視図であり、図2はその側面図である。図3は、図1中の各ワイヤの鋼板表面における先端位置を示す平面図である。以下に、図1〜3を参照して、本発明の多電極サブマージアーク溶接方法について説明する。なお、図1〜3には4本の電極を用いる例を示すが、本発明は、3本以上の電極を用いる多電極サブマージアーク溶接方法であり、電極を4本に限定するものではない。   FIG. 1 is a perspective view schematically showing an example in which steel plates are welded by applying the multi-electrode submerged arc welding method of the present invention, and FIG. 2 is a side view thereof. FIG. 3 is a plan view showing the tip position of each wire in FIG. 1 on the steel plate surface. Below, with reference to FIGS. 1-3, the multi-electrode submerged arc welding method of this invention is demonstrated. In addition, although the example using four electrodes is shown in FIGS. 1-3, this invention is a multi-electrode submerged arc welding method using three or more electrodes, and does not limit an electrode to four.

図1に示すように、4本の電極を用いる場合(N=4)は、矢印Aで示す溶接進行方向の先頭の電極を第1電極1とし、その第1電極1のワイヤ12の先端位置が通過する鋼板5表面上の軌跡を溶接線6とする。溶接進行方向Aの2番目の電極を第2電極2として、第1電極1の後方に配置する。溶接進行方向Aの3番目の第3電極(第N−1電極)3の先端位置と4番目の第4電極(第N電極)4の先端位置とを溶接線の左右両側にそれぞれ配置する。なお、各電極のトーチ11、21、31、41には、それぞれワイヤ12、22、32、42を1本ずつ供給する。   As shown in FIG. 1, when four electrodes are used (N = 4), the first electrode 1 in the welding progress direction indicated by the arrow A is the first electrode 1 and the tip position of the wire 12 of the first electrode 1 Let the trajectory on the surface of the steel plate 5 through which welding passes be the weld line 6. The second electrode in the welding progress direction A is used as the second electrode 2 and is arranged behind the first electrode 1. The tip position of the third third electrode (N-1 electrode) 3 and the tip position of the fourth fourth electrode (Nth electrode) 4 in the welding progress direction A are respectively arranged on the left and right sides of the weld line. One wire 12, 22, 32, and 42 is supplied to each of the torches 11, 21, 31, 41 of each electrode.

まず、第1電極について説明する。
第1電極1のワイヤ12に供給する電流は、溶込み深さを確保するために、直流電流を供給することができる。ただし、3本の電極を用いて本発明を適用する場合(N=3)には、この第1電極1に交流電流を供給する。
さらに、第1電極1は、図2に示すように、ワイヤ12の先端がトーチ11よりも溶接進行方向Aの後方(すなわち最後尾の電極側)に位置するように、ワイヤ12を傾斜させて設定することが好ましい。そのワイヤ12と鉛直線とのなす角α(以下、後退角という)を5〜10°とすれば、溶込み深さを増加する効果が顕著に現われるので好ましい。
First, the first electrode will be described.
The current supplied to the wire 12 of the first electrode 1 can supply a direct current in order to ensure the penetration depth. However, when the present invention is applied using three electrodes (N = 3), an alternating current is supplied to the first electrode 1.
Further, as shown in FIG. 2, the first electrode 1 is formed by inclining the wire 12 so that the tip of the wire 12 is positioned behind the torch 11 in the welding progress direction A (that is, the last electrode side). It is preferable to set. If the angle α (hereinafter referred to as the receding angle) formed by the wire 12 and the vertical line is set to 5 to 10 °, the effect of increasing the penetration depth appears significantly, which is preferable.

加えて、第1電極のワイヤ径を2.4〜3.2mmとすることにより、電流密度が増加するので、アーク圧力が増加して、深い溶込みが得られるようになり好ましい。
次に、第2電極について説明する。
第2電極2は、図3に示すように、ワイヤ22の鋼板表面における先端位置23が溶接線6上に配置されるように設定する。第2電極2のワイヤ22に供給する電流は、他の電極との間でアークの干渉が生じるのを防止するために、交流電流を供給する。
In addition, since the current density is increased by setting the wire diameter of the first electrode to 2.4 to 3.2 mm, the arc pressure is increased and a deep penetration can be obtained.
Next, the second electrode will be described.
As shown in FIG. 3, the second electrode 2 is set so that the tip position 23 of the wire 22 on the steel plate surface is disposed on the weld line 6. The current supplied to the wire 22 of the second electrode 2 supplies an alternating current in order to prevent arc interference with other electrodes.

3本の電極を用いて本発明を適用する場合には、この第2電極2のワイヤ22の先端位置23を溶接線6上に配置せず、第2電極2と最後尾の第3電極とを溶接線6の左右両側にそれぞれ配置する。
また、5本以上の電極を用いて本発明を適用する場合は、第2電極2の後方に第3電極〜第N−2電極を溶接線6上に配置し、第N−1電極2と最後尾の第N電極とを溶接線6の左右両側にそれぞれ配置する。ここで、Nは電極の本数を示す。
When the present invention is applied using three electrodes, the tip position 23 of the wire 22 of the second electrode 2 is not arranged on the welding line 6, and the second electrode 2 and the last third electrode Are arranged on the left and right sides of the weld line 6 respectively.
When the present invention is applied using five or more electrodes, the third to N-2 electrodes are arranged on the weld line 6 behind the second electrode 2, and the N-1 electrode 2 The rearmost Nth electrode is arranged on each of the left and right sides of the welding line 6. Here, N indicates the number of electrodes.

次に、最後尾の第4電極およびその直前の第3電極について説明する。
第3電極と第4電極は、図3に示すように、ワイヤ32、42の鋼板表面における先端位置33、43が溶接線6の左右両側にそれぞれ配置されるように設定する。
第3電極3のワイヤ32の先端位置33と溶接線6との距離WR、および第4電極4のワイヤ42の先端位置43と溶接線6との距離WLが5mm未満では、ビードの幅を広げる効果が得られない。距離WRと距離WLが15mmを超えると、第3電極3と第4電極4の溶接金属が、第1電極1と第2電極2による溶接金属と分離するので、ビードが分離して形成され、ビードの外観が損なわれる。したがって、距離WRと距離WLは、いずれも5〜15mmとする。距離WRと距離WLは必ずしも同一とする必要はないが、良好な形状のビードを形成して、アンダーカットを防止するために、WR=WLとすることが好ましい。
Next, the last fourth electrode and the third electrode immediately before will be described.
As shown in FIG. 3, the third electrode and the fourth electrode are set so that the tip positions 33 and 43 of the wires 32 and 42 on the steel plate surface are arranged on the left and right sides of the welding line 6, respectively.
If the distance W R between the tip position 33 of the wire 32 of the third electrode 3 and the weld line 6 and the distance W L between the tip position 43 of the wire 42 of the fourth electrode 4 and the weld line 6 are less than 5 mm, the width of the bead The effect of spreading is not obtained. When the distance W R and distance W L exceeds 15 mm, the weld metal of the third electrode 3 and the fourth electrode 4, so it separated from the weld metal first electrode 1 and the according to the second electrode 2, a bead is formed separately And the appearance of the bead is impaired. Therefore, the distance W R and the distance W L are both 5 to 15 mm. The distance W R and the distance W L are not necessarily the same, but it is preferable to set W R = W L in order to form a bead having a good shape and prevent undercut.

第3電極3と第4電極4との電極間距離Gが20mmを超えると、ビード幅のバラツキが大きくなる。したがって、第3電極3と第4電極4との電極間距離Gは20mm以下とする。ここで、電極間距離は、ワイヤの先端位置の溶接進行方向の間隔である。
また、ワイヤ32、42に供給する電流は、電極間でアークの干渉が生じるのを防止するために、交流電流を供給する。第2電極(第N−2電極)と第3電極(第N−1電極)との位相差θ1、第3電極(第N−1電極)と第4電極(第N電極)との位相差θ2、第2電極(第N−2電極)と第4電極(第N電極)との位相差θ3が60°未満では、溶接線6の片側に偏ったビードが形成される。位相差θ1、θ2、θ3が300°を超えても、溶接線6の片側に偏ったビードが形成される。したがって位相差θ1、θ2、θ3は、いずれも60〜300°とする。
When the interelectrode distance G between the third electrode 3 and the fourth electrode 4 exceeds 20 mm, the variation in the bead width increases. Therefore, the inter-electrode distance G between the third electrode 3 and the fourth electrode 4 is set to 20 mm or less. Here, the inter-electrode distance is an interval in the welding progress direction at the tip position of the wire.
The current supplied to the wires 32 and 42 supplies an alternating current to prevent arc interference between the electrodes. Phase difference θ 1 between the second electrode (N-2 electrode) and the third electrode (N-1 electrode), the position of the third electrode (N-1 electrode) and the fourth electrode (Nth electrode) When the phase difference θ 2 and the phase difference θ 3 between the second electrode (N-2 electrode) and the fourth electrode (N electrode) are less than 60 °, a bead that is biased to one side of the weld line 6 is formed. Even if the phase differences θ 1 , θ 2 , and θ 3 exceed 300 °, a bead that is biased to one side of the weld line 6 is formed. Accordingly, the phase differences θ 1 , θ 2 , and θ 3 are all set to 60 to 300 °.

さらに、第3電極3と第4電極4は、図2に示すように、ワイヤ32、42の先端がトーチ31、41よりも溶接進行方向Aの前方(すなわち第1電極側)に位置するように、ワイヤ32、42を傾斜させて設定することが好ましい。そのワイヤ32、42と鉛直線とのなす角β(以下、前進角という)を10〜50°とすれば、ビードの幅を広げる効果が顕著に現われるので好ましい。   Further, as shown in FIG. 2, the third electrode 3 and the fourth electrode 4 are such that the tips of the wires 32 and 42 are positioned in front of the torch 31 and 41 in the welding progress direction A (that is, the first electrode side). Further, it is preferable to set the wires 32 and 42 to be inclined. If the angle β (hereinafter referred to as the advance angle) formed by the wires 32 and 42 and the vertical line is set to 10 to 50 °, the effect of widening the width of the bead appears remarkably, which is preferable.

以上に、4本の電極を用いる例について説明したが、本発明は電極数を4本に限定するものではなく、3本以上の電極を用いる多電極サブマージアーク溶接に適用でき、とりわけ3〜5本の電極を用いる場合に顕著な効果が得られる。それら各電極の溶接入熱の総和が合計7.0kJ/mm以上10.0kJ/mm以下の大入熱溶接に本発明を適用すると、溶接熱影響部の靭性が低下するという従来の大入熱溶接の問題を解消して、溶接熱影響部の靭性を改善できる。
The example using four electrodes has been described above. However, the present invention is not limited to four electrodes, and can be applied to multi-electrode submerged arc welding using three or more electrodes, particularly 3-5. A remarkable effect is obtained when the book electrode is used. When the present invention is applied to high heat input welding where the sum of welding heat input of each electrode is 7.0 kJ / mm or more and 10.0 kJ / mm or less , the toughness of the weld heat affected zone is reduced. to eliminate the problem, Ru can improve toughness of the heat affected zone.

また、本発明は、種々の板厚や開先形状に適用でき、片面溶接にも両面溶接にも適用できる。
さらに、サブマージアーク溶接ではソリッドワイヤを用いるのが一般的であるが、本発明は、ソリッドワイヤのみならず、金属粉等を充填材として内包するメタルコアードワイヤにも適用できる。
The present invention can be applied to various plate thicknesses and groove shapes, and can be applied to single-sided welding and double-sided welding.
Furthermore, in general, a solid wire is used in submerged arc welding, but the present invention can be applied not only to a solid wire but also to a metal cored wire including metal powder or the like as a filler.

図4に示すように、板厚Tが31.8mmの鋼板5に開先角度γを70°、開先深さDを13.5mmとして開先加工を施した後、3〜5本の電極を用いて多電極サブマージアーク溶接を行なって、1パスで図5に示すような溶接継手を作製した。表1に鋼板の成分、表2に開先形状、表3に溶接条件、表4に電極の配置、表5に溶接電流の設定を示す。   As shown in FIG. 4, after the groove processing is performed on a steel plate 5 having a thickness T of 31.8 mm and a groove angle γ of 70 ° and a groove depth D of 13.5 mm, 3 to 5 electrodes are used. Then, multi-electrode submerged arc welding was performed to produce a welded joint as shown in FIG. Table 1 shows the components of the steel sheet, Table 2 shows the groove shape, Table 3 shows the welding conditions, Table 4 shows the electrode arrangement, and Table 5 shows the setting of the welding current.

Figure 0006094352
Figure 0006094352

Figure 0006094352
Figure 0006094352

Figure 0006094352
Figure 0006094352

Figure 0006094352
Figure 0006094352

Figure 0006094352
Figure 0006094352

得られた溶接継手のビード外観を目視で観察し、さらにビード定常部の幅B(mm)、およびビードの幅方向中央と開先の中央との間隔Q(mm)、溶込み深さ(mm)を測定した。さらに、定常部からシャルピー衝撃試験片(JIS規格Z3111に規定する4号試験片)を採取し、JIS規格Z2242の金属材料衝撃試験方法に準拠してシャルピー衝撃試験を行ない、吸収エネルギー(J)を求めた。シャルピー衝撃試験は、各溶接継手について試験温度−30℃で20本ずつ行ない、吸収エネルギーの最低値を評価した。   The bead appearance of the obtained welded joint was visually observed, and the width B (mm) of the bead steady portion, the interval Q (mm) between the width direction center of the bead and the groove center, and the penetration depth (mm) ) Was measured. In addition, a Charpy impact test piece (No. 4 test piece specified in JIS standard Z3111) is taken from the stationary part, and a Charpy impact test is performed in accordance with the metal material impact test method of JIS standard Z2242, and the absorbed energy (J) is measured. Asked. The Charpy impact test was performed for each welded joint at a test temperature of −30 ° C., 20 pieces each, and the minimum value of absorbed energy was evaluated.

シャルピー衝撃試験片の採取位置は、図6に示す通りである。つまり、鋼板表層から7mmの位置がシャルピー衝撃試験片7の板厚方向中央位置となるように採取し、試験片の2mmVノッチが板厚方向と平行で、かつノッチ底における溶接金属と母材(溶接熱影響部)の比率が50%ずつとなる位置とした。
また、各溶接継手から採取した20本のシャルピー衝撃試験片のうち、10本はビードの溶接進行方向左側から採取し、10本は右側から採取した。表6に、ビード幅、ビードの幅中央と開先の中央との間隔、溶込み深さ、シャルピー衝撃試験によって測定した吸収エネルギーの最低値、ビード外観の評価を示す。
The sampling position of the Charpy impact test piece is as shown in FIG. In other words, the sample is taken so that the position of 7 mm from the steel sheet surface layer is the center position in the thickness direction of the Charpy impact test piece 7, the 2 mm V notch of the test piece is parallel to the thickness direction, and the weld metal and the base metal ( The welding heat-affected zone was set at a position where the ratio was 50%.
Of the 20 Charpy impact test specimens collected from each welded joint, 10 were collected from the left side in the welding progress direction of the beads, and 10 were collected from the right side. Table 6 shows the bead width, the distance between the center of the bead width and the center of the groove, the penetration depth, the minimum value of absorbed energy measured by the Charpy impact test, and the evaluation of the bead appearance.

Figure 0006094352
Figure 0006094352

表6に示す通り、発明例の溶接記号1〜12(N=3〜5)は、広いビード幅が得られ、かつビードの偏りが抑制された。特に、溶接記号〔1、2〕〔3、4〕〔5、6〕〔7、8〕〔9、10〕〔11、12〕のそれぞれは、位相差制御のみでビード幅を変えることができた例を示すものであり、上記6組ともビード幅を2mm以上変化させることができた。
また、溶接記号3、4、5、6、9、10、11、12は、第1電極にワイヤ径2.4mmまたは3.2mmのワイヤを用いたので、特に深い溶込みが得られた。
As shown in Table 6, the weld symbols 1 to 12 (N = 3 to 5) of the inventive examples were able to obtain a wide bead width and to suppress the bead unevenness. In particular, each of the welding symbols [1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12] can change the bead width only by phase difference control. In the above six sets, the bead width could be changed by 2 mm or more.
In addition, welding symbols 3, 4, 5, 6, 9, 10, 11, and 12 used a wire having a wire diameter of 2.4 mm or 3.2 mm for the first electrode, and thus a particularly deep penetration was obtained.

比較例の溶接記号13(N=5)は、電極を全て溶接線上に配置した例であり、ビード幅が最も狭くなった。
溶接記号14(N=5)は、最後尾から2番目の第N−1電極(すなわち第4電極)の鋼板表面におけるワイヤ先端位置が5mm未満であるから、広いビード幅が得られなかった。
溶接記号15(N=5)は、最後尾の第N電極(すなわち第5電極)と最後尾から2番目の第N−1電極(すなわち第4電極)の鋼板表面におけるワイヤ先端位置が、いずれも15mmを超えるので、ビードが分離して形成された。
The weld symbol 13 (N = 5) of the comparative example is an example in which all the electrodes are arranged on the weld line, and the bead width is the narrowest.
In welding symbol 14 (N = 5), since the position of the wire tip on the steel plate surface of the second N-1 electrode (that is, the fourth electrode) from the tail was less than 5 mm, a wide bead width was not obtained.
The welding symbol 15 (N = 5) indicates that the wire tip position on the steel plate surface of the Nth electrode at the end (namely, the fifth electrode) and the second N-1 electrode (namely, the fourth electrode) from the tail is Also, since it exceeded 15 mm, the beads were formed separately.

また、上記の溶接記号16、17、18、19は、溶接熱影響部において高い吸収エネルギーが得られなかった。
溶接記号16(N=5)は、最後尾から3番目の第N−2電極(すなわち第3電極)と最後尾から2番目の第N−1電極(すなわち第4電極)との位相差θ1が60°未満であるから、ビードの偏りが大きくなった。溶接記号17(N=5)は、位相差θ1が300°を超えるので、ビードの偏りが大きくなった。
Further, the above welding symbols 16, 17, 18, and 19 could not obtain high absorbed energy in the welding heat affected zone.
The welding symbol 16 (N = 5) is a phase difference θ between the third N-2 electrode (ie, the third electrode) from the tail and the second N-1 electrode (ie, the fourth electrode) from the tail. Since 1 was less than 60 °, the bead bias increased. Since the weld symbol 17 (N = 5) has a phase difference θ 1 exceeding 300 °, the bead deviation is large.

溶接記号18(N=5)は、最後尾から3番目の第N−2電極(すなわち第3電極)と最後尾の第N電極(すなわち第5電極)との位相差θ3が60°未満であるから、ビードの偏りが大きくなった。溶接記号19(N=5)は、位相差θ3が300°を超えるので、ビードの偏りが大きくなった。
溶接記号20、21(N=5)は、最後尾から2番目の第N−1電極(すなわち第4電極)と最後尾の第N電極(すなわち第5電極)との位相差θ2が60°未満であるから、2mm以上ビード幅を変えることができなかった。溶接記号22、23(N=5)は、位相差θ2が300°を超えるので、同じく、2mm以上ビード幅を変えることができなかった。
The welding symbol 18 (N = 5) indicates that the phase difference θ 3 between the third N-2 electrode (that is, the third electrode) from the tail and the last N electrode (that is, the fifth electrode) is less than 60 °. As a result, the bead bias became larger. Since the weld symbol 19 (N = 5) has a phase difference θ 3 exceeding 300 °, the deviation of the bead is large.
The welding symbols 20 and 21 (N = 5) have a phase difference θ 2 of 60 between the second N−1 electrode (ie, the fourth electrode) from the tail and the Nth electrode (ie, the fifth electrode) at the tail. Since the angle was less than 0 °, the bead width could not be changed by 2 mm or more. For the welding symbols 22 and 23 (N = 5), the phase difference θ 2 exceeded 300 °, so that the bead width could not be changed by 2 mm or more.

溶接記号24(N=5)は、最後尾から2番目の第N−1電極(すなわち第4電極)と最後尾の第N電極(すなわち第5電極)の電極間距離Gが20mmを超えるので、ビード幅が不均一となり、溶接熱影響部において高い吸収エネルギーが得られず、また美麗なビード外観が得られなかった。   The welding symbol 24 (N = 5) is because the inter-electrode distance G between the second N-1 electrode (that is, the fourth electrode) and the last Nth electrode (that is, the fifth electrode) from the tail exceeds 20 mm. The bead width became non-uniform, high absorbed energy could not be obtained in the weld heat affected zone, and a beautiful bead appearance could not be obtained.

1 第1電極
11 第1電極のトーチ
12 第1電極のワイヤ
13 第1電極のワイヤの先端位置
2 第2電極
21 第2電極のトーチ
22 第2電極のワイヤ
23 第2電極のワイヤの先端位置
3 第3電極
31 第3電極のトーチ
32 第3電極のワイヤ
33 第3電極のワイヤの先端位置
4 第4電極
41 第4電極のトーチ
42 第4電極のワイヤ
43 第4電極のワイヤの先端位置
5 鋼板
6 溶接線
7 2mmVノッチシャルピー衝撃試験片
1 First electrode
11 First electrode torch
12 First electrode wire
13 Tip position of the wire of the first electrode 2 Second electrode
21 Second electrode torch
22 Second electrode wire
23 End position of wire of second electrode 3 Third electrode
31 Third electrode torch
32 Third electrode wire
33 Tip position of third electrode wire 4 Fourth electrode
41 4th electrode torch
42 Fourth electrode wire
43 Tip position of wire of 4th electrode 5 Steel plate 6 Weld line 7 2mm V notch Charpy impact test piece

Claims (2)

3電極以上のサブマージアーク溶接で鋼板を溶接する多電極サブマージアーク溶接方法において、溶接進行方向の最後尾に配置される第N電極と該第N電極の直前に配置される第N−1電極とを溶接線の左右両側に配置し、前記第N電極の鋼板表面におけるワイヤ先端位置と前記溶接線との距離、および前記第N−1電極の鋼板表面におけるワイヤ先端位置と前記溶接線との距離をいずれも5〜15mmの範囲内とし、かつ前記第N電極と前記第N−1電極の溶接進行方向の電極間距離を0〜20mmの範囲内とするとともに、前記第N−1電極の直前に配置される第N−2電極と前記第N−1電極との位相差、前記第N−1電極と前記第N電極との位相差、前記第N−2電極と前記第N電極との位相差をいずれも60〜300°の範囲内とし、前記3電極以上の溶接入熱を合計7.0〜10.0kJ/mmとすることを特徴とする多電極サブマージアーク溶接方法。 In a multi-electrode submerged arc welding method for welding steel plates by submerged arc welding of three or more electrodes, an Nth electrode disposed at the end of the welding progress direction and an N-1 electrode disposed immediately before the Nth electrode Are arranged on the left and right sides of the weld line, the distance between the wire tip position on the steel sheet surface of the Nth electrode and the weld line, and the distance between the wire tip position on the steel sheet surface of the N-1 electrode and the weld line. Are within the range of 5 to 15 mm, and the distance between the N-th electrode and the N-1 electrode in the welding direction is within the range of 0 to 20 mm, and immediately before the N-1 electrode. The phase difference between the N-2 electrode and the N-1 electrode, the phase difference between the N-1 electrode and the Nth electrode, and the N-2 electrode and the Nth electrode. both the phase difference is within a range of 60 to 300 °, the three electrodes or more Multielectrode submerged arc welding method, characterized in that the welding heat input to the total 7.0~10.0kJ / mm. 前記溶接進行方向の先頭に配置される第1電極のワイヤ径を2.4〜3.2mmとすることを特徴とする請求項1に記載の多電極サブマージアーク溶接方法。 The multi-electrode submerged arc welding method according to claim 1, wherein a wire diameter of the first electrode disposed at a head in the welding progress direction is set to 2.4 to 3.2 mm.
JP2013086189A 2012-04-17 2013-04-17 Multi-electrode submerged arc welding method for steel sheet Active JP6094352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013086189A JP6094352B2 (en) 2012-04-17 2013-04-17 Multi-electrode submerged arc welding method for steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012093559 2012-04-17
JP2012093559 2012-04-17
JP2013086189A JP6094352B2 (en) 2012-04-17 2013-04-17 Multi-electrode submerged arc welding method for steel sheet

Publications (2)

Publication Number Publication Date
JP2013237103A JP2013237103A (en) 2013-11-28
JP6094352B2 true JP6094352B2 (en) 2017-03-15

Family

ID=49762617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086189A Active JP6094352B2 (en) 2012-04-17 2013-04-17 Multi-electrode submerged arc welding method for steel sheet

Country Status (1)

Country Link
JP (1) JP6094352B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015150572A (en) * 2014-02-12 2015-08-24 株式会社神戸製鋼所 Method of welding multi-electrode single-sided submerged arc, method of manufacturing weldment
JP6211431B2 (en) * 2014-02-12 2017-10-11 株式会社神戸製鋼所 Multi-electrode single-sided submerged arc welding method, welded product manufacturing method
JP6383319B2 (en) * 2015-03-31 2018-08-29 株式会社神戸製鋼所 Multi-electrode single-sided single layer submerged arc welding method
WO2017141760A1 (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Multi-electrode submerged arc welding method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB815607A (en) * 1955-03-18 1959-07-01 Unionmelt Sa Francaise Improvements in or relating to automatic multiple arc welding methods
US3624345A (en) * 1968-10-31 1971-11-30 Babcock & Wilcox Co Arc welding electrode arrangements
JPS5966978A (en) * 1982-10-12 1984-04-16 Nippon Steel Corp Multielectrode submerged arc welding method
JPH0729206B2 (en) * 1990-10-09 1995-04-05 住友金属工業株式会社 High-speed submerged arc welding method using multiple electrodes
JPH08257752A (en) * 1995-03-20 1996-10-08 Kawasaki Steel Corp Three electrode two layer submerged arc welding of thick plate
JP4998353B2 (en) * 2008-03-31 2012-08-15 Jfeスチール株式会社 Manufacturing method of welded steel pipe

Also Published As

Publication number Publication date
JP2013237103A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP6094352B2 (en) Multi-electrode submerged arc welding method for steel sheet
WO2013080523A1 (en) Submerged arc welding method for steel sheets
WO2013179614A1 (en) Laser-arc hybrid welding method
JP5354236B1 (en) Submerged arc welding method for steel sheet
JP4998353B2 (en) Manufacturing method of welded steel pipe
JP5239900B2 (en) Multi-electrode submerged arc welding method for steel
JPWO2014024365A1 (en) Submerged arc welding method, welded joint and steel pipe manufacturing method
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
JP2015186823A (en) Multi-electrode single-sided submerged arc welding method
JP6383319B2 (en) Multi-electrode single-sided single layer submerged arc welding method
JP5895423B2 (en) Multi-electrode submerged arc welding method for steel sheet
RU2706993C1 (en) Multielectrode submerged arc welding
RU2011124618A (en) METHOD OF MULTI-ARC WELDING OF SHEET WELDED Billets
JP2013081985A (en) Submerged arc welding method for steel material
JP5742090B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP2013111622A (en) Multi-electrode submerged arc welding method
JPH08281429A (en) Method for fillet-welding stainless steel and manufacture of stainless steel shapes
JP6607677B2 (en) Four-electrode single-sided single-layer submerged arc welding method
JP5954272B2 (en) Submerged arc welding method and welded joint manufacturing method
JP6119949B1 (en) Vertical narrow groove gas shielded arc welding method
KR101359234B1 (en) Multiple electrode submerged arc welding apparatus
WO2015159545A1 (en) Tack welding method in large-diameter welded steel pipe production process
JP6715682B2 (en) Submerged arc welding method
JP2013111611A (en) Multi-electrode submerged arc welding method for steel sheet
CN105710544A (en) Welding technique for manufacturing and assembling of iron tower

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6094352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250