JPH04147770A - Submerged arc welding method at high speed by using multiple electrodes - Google Patents

Submerged arc welding method at high speed by using multiple electrodes

Info

Publication number
JPH04147770A
JPH04147770A JP27138690A JP27138690A JPH04147770A JP H04147770 A JPH04147770 A JP H04147770A JP 27138690 A JP27138690 A JP 27138690A JP 27138690 A JP27138690 A JP 27138690A JP H04147770 A JPH04147770 A JP H04147770A
Authority
JP
Japan
Prior art keywords
welding
electrode
electrodes
pole
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27138690A
Other languages
Japanese (ja)
Other versions
JPH0729206B2 (en
Inventor
Yoshio Kato
善雄 加藤
Yasuto Fukada
康人 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2271386A priority Critical patent/JPH0729206B2/en
Publication of JPH04147770A publication Critical patent/JPH04147770A/en
Publication of JPH0729206B2 publication Critical patent/JPH0729206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To perform multiple electrode submerged arc welding at high speed and to improve efficiency by multiplying the number of electrodes, regulating the welding current balance in the specified range and specifying flux composi tion. CONSTITUTION:Six or more pieces of electrodes are used and a sweepback angle and a sweepfoward angle are provided to preceding electrodes and other electrodes, respectively and the distance between each electrode is set within 25mm. The welding current balance of n pieces of electrodes, is set in the range of 1, 0.7-1.10 each, 0.6-0.80, 0.5-0.75 for a first electrode, a second electrode-a (n-2)th electrode, a (n-1)th electrode and a nth electrode, respectively. The chemical composition of flux consists of, by weight, 5-25% SiO2, 2-20% Al2O3, 0.5-15% MnO, 2-10% TiO2, 5-25% CaO, 1-5% BaO, 3-15% MgO, 25-60% CaF2, <=2%B2O3 and the balance with inevitable impurities. The chemical composition satisfies (CaO+MgO)/SiO2=1.5-3.0 and welding type flux having the grain size in the ATSM 48/145 mesh area is used for more than 60% thereof.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、ラインパイプや構造用パイプ等の如き大径
溶接鋼管を製造する際の溶接法として好適な、高速サブ
マージアーク溶接方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high-speed submerged arc welding method that is suitable as a welding method for manufacturing large diameter welded steel pipes such as line pipes and structural pipes. be.

〈従来技術とその課題〉 大径溶接鋼管の製造に用いられるUOミルラインでは、
UOプレスに続く仮付溶接の後に実施される鋼管内外面
の本溶接には一般にサブマージアク溶接が適用されてお
り、現状は内外面溶接とも3〜4極の電極を組み合わせ
た(外面溶接には5極を使用する例もある)多電極での
溶接が実施されている。なぜなら、溶接速度は溶着金属
の供給量、溶融プールのコントロール、母材金属のガウ
ジング力によって決定され、これらの能力は電極の数に
比例して増加することが知られていたからである。
<Conventional technology and its issues> The UO mill line used for manufacturing large diameter welded steel pipes
Submerged ac welding is generally applied to the main welding of the inner and outer surfaces of steel pipes, which is carried out after tack welding following UO press, and currently a combination of 3 to 4 electrodes is used for both inner and outer surface welding (for outer surface welding, Welding with multiple electrodes is being carried out (some examples use five electrodes). This is because it was known that the welding speed was determined by the amount of deposited metal supplied, the control of the molten pool, and the gouging force of the base metal, and that these capabilities increased in proportion to the number of electrodes.

具体的には、内面溶接では第1極に直流(D C)或い
は交流(AC)を源を、第2極目以降にはAC電源を接
続し、各種の電流値を1500A以下に設定して4〜5
ライン操業で実施されており、この際の結線方式は、例
えば“DC−AC−AC”なる組み合わせの場合では例
えば第3極が第2極に対して60″遅れの■結線が採用
される。また、外面溶接でも内面溶接の場合と同様の電
極配置が通用されているが、この場合の結線方式は、例
えば“DC−AC−AC−AC″なる組み合わせの場合
では第3極が第2.4極に比べ120°遅れとなる逆V
結線が採用され、操業は4ラインにて実施されるのが普
通である。
Specifically, for internal welding, connect a direct current (DC) or alternating current (AC) source to the first pole, connect an AC power source to the second pole and beyond, and set various current values to 1500 A or less. ~5
This is carried out in a line operation, and the connection method at this time is, for example, in the case of a "DC-AC-AC" combination, the third pole is delayed by 60'' with respect to the second pole. Also, the same electrode arrangement as for internal welding is used for external welding, but in this case, for example, in the case of a "DC-AC-AC-AC" combination, the third pole is the second pole. Inverted V with 120° delay compared to 4-pole
A wire connection is adopted and the operation is normally carried out on four lines.

しかしながら、上述のように3〜5電極を適用した高速
化サブマージアーク溶接であっても、多電極にすると溶
着量、ガウジングカ、溶融プール等のコントロールが難
しくなることから、内面溶接、外面溶接を問わず確保で
きる最高溶接速度は3.6m/l1linが限度となっ
ていた。つまり、それ以上に溶接速度を上げようとする
と、良好なビード形成が困難になって溶接欠陥であるア
ンダーカットやネッキングを発生し、著しくビード外観
を損なうなど溶接品質上好ましくない事態が生じるのを
避は得なかったのである。
However, even with high-speed submerged arc welding that uses 3 to 5 electrodes as described above, it becomes difficult to control the amount of welding, gouging, molten pool, etc. when using multiple electrodes, so it is difficult to control the amount of welding, gouging, molten pool, etc. The maximum welding speed that can be secured is limited to 3.6 m/l lin. In other words, if you try to increase the welding speed beyond that, it will become difficult to form a good bead, resulting in welding defects such as undercuts and necking, which will significantly impair the appearance of the bead and cause unfavorable welding quality. It was unavoidable.

ところで、大径溶接鋼管ミルの生産能率は主として溶接
ラインの能力で規定され、この溶接ラインの能力は溶接
速度、アイドルタイム、ライン数により決定されてしま
う。従って、生産能率向上と生産コスト低減を図るには
、溶接速度を大幅に上げると共にライン数を削減するこ
とが最も実際的な方策であると考えられる。ところが、
溶接速度の改善を極く単純に思いつく “電極数の増加
”と言う手段により達成しようとして5極にまで電極数
を増やしたとしても、上述した如く現状技術では改善さ
れる溶接速度に限界があり、大径溶接鋼管ミルの生産能
率を飛躍的に改善することが叶わないばかりか、ライン
数の削減にまで結び付けるような成果を期待することは
無理であった。
By the way, the production efficiency of a large-diameter welded steel pipe mill is mainly defined by the capacity of the welding line, and the capacity of the welding line is determined by the welding speed, idle time, and number of lines. Therefore, in order to improve production efficiency and reduce production costs, it is considered that the most practical measure is to significantly increase the welding speed and reduce the number of lines. However,
Even if we try to improve welding speed by a very simple method called "increasing the number of electrodes" and increase the number of electrodes to 5, as mentioned above, there is a limit to the welding speed that can be improved with the current technology. Not only was it not possible to dramatically improve the production efficiency of large-diameter welded steel pipe mills, it was also impossible to expect results that would lead to a reduction in the number of lines.

このように、電極数が多くなるほど溶接アークの安定性
やビード形状のコントロールが困難となることから、精
々5極までが実用の限度とされていた電極数を6極以上
に増やして溶接速度の大幅な向上を達成すことは、現状
の技術レベルからして未だ未だ遠い先のことであるとさ
れていた。
In this way, as the number of electrodes increases, it becomes more difficult to control the stability of the welding arc and the bead shape. Therefore, the number of electrodes, which was considered to be the practical limit of 5 at most, has been increased to 6 or more to improve the welding speed. Achieving significant improvements was still considered to be a long way off, given the current level of technology.

しかし、大径溶接鋼管のコスト低減、生産能率改善に対
する要求が日々厳しさを増してきている状況を受けて、
本発明が目的としたのは、製品品質を落とすことなくサ
ブマージアーク溶接の溶接速度を大幅に向上させ得る方
法を見出し、大径溶接鋼管ミルにおける必要ライン数を
削減してもなお十分な生産能率の改善が達成できる手段
を確立することであった。
However, in response to the growing demand for cost reduction and production efficiency improvement for large diameter welded steel pipes,
The purpose of the present invention is to find a method that can significantly improve the welding speed of submerged arc welding without reducing product quality, and to achieve sufficient production efficiency even when the number of lines required in a large-diameter welded steel pipe mill is reduced. The objective was to establish a means by which improvements could be achieved.

く課題を解決するための手段〉 本発明者等は、上記目的を達成すべく鋭意検討を重ねる
過程で「サブマージアーク溶接時の溶接速度向上にはや
はり使用電極数を増やすのが最も現実的であり1.現状
を超える溶接速度を達成した上で満足できる品質の製品
を得るためには、6極以上の多電極を使用する安定した
溶−接法の開発が欠かせない」との結論に達し、様々な
条件の組み合わせパターンからシミュレーション計算に
より最適なものを算出しつつ、その妥当性を1つ1つ実
験にて立証する研究を続けた結果、「サブマージアーク
溶接において6極以上の多電極を使用する場合でも、 イ)電極の結線方法。
Means for Solving the Problem> In the course of intensive study to achieve the above objective, the present inventors discovered that ``increasing the number of electrodes used is the most realistic way to increase the welding speed during submerged arc welding.'' 1. In order to achieve a welding speed that exceeds the current level and obtain a product of satisfactory quality, it is essential to develop a stable welding method that uses multiple electrodes of six or more. As a result of continuing research to calculate the optimal combination pattern of various conditions through simulation calculations and verifying its validity one by one through experiments, we found that ``Multi-electrode of 6 or more electrodes in submerged arc welding'' a) How to connect the electrodes.

口)電極角度、電極間隔、チップ高さのセッティング。Mouth) Setting of electrode angle, electrode spacing, and tip height.

ハ)使用フラックス。c) Flux used.

に工夫を凝らすことにより、溶接アークを十分に安定化
することができてビード形状の安定したコントロールが
可能となる上、良好なスラグ剥離性も確保されて、十分
な溶込みの下で良好な内部品質と外観の良好なビード形
成のなされる高速溶接(最高溶接速度4.5m/min
以上)が実現される」 との知見が得られたのである。
By devising this method, the welding arc can be sufficiently stabilized, making it possible to stably control the bead shape, as well as ensuring good slag removability, resulting in good welding under sufficient penetration. High-speed welding with bead formation with good internal quality and appearance (maximum welding speed 4.5 m/min)
The knowledge that the above) can be realized is obtained.

本発明は、上記知見事項等に基づいてなされたもので、 「サブマージアーク溶接を実施する際、6本以上の電極
を使用すると共に、 a)少なくとも先行極には直流電流を適用する、b)上
記以外の電極への交流電源の位相差を、最終極のアーク
に作用する力が平均的に溶接進行方向へ向くように設定
する、 C)先行極には後退角を、他の電極には前進角をそれぞ
れ持たせると共に、各電極間距離を25顛以内に設定す
る、 d)  n本の電極の溶接電流バランスを第1極:1゜ 第2極〜第(n−2)極 : 各0.7〜1.10゜第
(n−1)極:0.6〜0.80゜ 第n極:0.5〜0.75 の範囲に設定する、 e) Sing : 5〜25%(以降、成分割合を表
わす%は重量%とする)。
The present invention has been made based on the above-mentioned findings, etc., and includes the following: ``When performing submerged arc welding, six or more electrodes are used, and a) direct current is applied to at least the leading electrode, b) Set the phase difference of the AC power supply to the electrodes other than the above so that the force acting on the arc of the final pole is directed in the direction of welding progress on average. Each electrode has its own advancing angle, and the distance between each electrode is set within 25 degrees. d) The welding current balance of the n electrodes is set to 1° for the 1st pole and 1° for the 2nd to (n-2)th poles: each Set in the range of 0.7-1.10° (n-1) pole: 0.6-0.80° n-th pole: 0.5-0.75, e) Sing: 5-25% ( (Hereinafter, percentages representing component proportions are expressed as weight percentages.)

AlzCh : 2〜20%、  MnO: 0.5〜
15%。
AlzCh: 2~20%, MnO: 0.5~
15%.

Ti Ot : 2〜10%、   CaO: 5〜2
5%。
TiOt: 2-10%, CaO: 5-2
5%.

BaO:1〜5%、    MgO: 3〜15%。BaO: 1-5%, MgO: 3-15%.

Ca F t : 25〜60%、   BzO3:2
%以下を含むと共に残部が不可避的不純物から成り、つ か (CaO十Mg0)/5iOz=1.5〜3.0を満足
する化学組成で、しかも60%以上がAS T M4B
/145メツシュ域に入る粒度を有した溶融型フラック
スを用いる、 なる各条件を満足させて溶接を行うことにより、高品質
製品の高速溶接を可能とし、製品生産能率の大幅な向上
、溶接ラインの削減を実施し得るようにした点」 に特徴を有している。
CaFt: 25-60%, BzO3:2
% or less, the remainder consists of unavoidable impurities, the chemical composition satisfies Tsuka (CaO + Mg0) / 5iOz = 1.5 to 3.0, and moreover, 60% or more is AS T M4B.
By using a molten flux with a grain size in the /145 mesh range and performing welding while satisfying the following conditions, high-speed welding of high-quality products is possible, greatly improving product production efficiency, and improving welding line efficiency. It is characterized by the fact that it has made it possible to carry out reductions.

即ち、本発明は、 (a)  電極数の6電極以上への多極化。That is, the present invention (a) Multipolarization of the number of electrodes to 6 or more.

(bl  最適結線方法の確立。(bl Establishment of optimal wiring method.

(C1電極角度、電極間隔、チップ高さの最適セツティ
ング。
(Optimal setting of C1 electrode angle, electrode spacing, and chip height.

(d)  高速性フラックスの開発。(d) Development of high-speed flux.

の4点の技術課題を解決することにより、最高溶接速度
4.5m/win以上(現状の1.5倍以上)の高速サ
ブマージアーク多電極溶接を可能とし、能率の向上、ラ
イン数の削減を実施可能としたもので、複雑な6電極技
術或いはそれ以上の多電極技術のキーポイントとなり、
また同時に、良好なと一ド外観、溶込み、スラグ剥離性
、内部品質を得るための電極設定方法、高速性確保のた
めのフラックス物性のコントロール技術を提供するもの
でもあるが、以下、図面を参照しつつ本発明をその作用
及び効果と共により詳細に説明する。
By solving the following four technical issues, we have enabled high-speed submerged arc multi-electrode welding with a maximum welding speed of 4.5 m/win or more (1.5 times the current speed), improving efficiency and reducing the number of lines. It is a key point for complex 6-electrode technology or more multi-electrode technology.
At the same time, it also provides an electrode setting method to obtain good single-domain appearance, penetration, slag removability, and internal quality, and a control technology for flux physical properties to ensure high speed. The present invention will be explained in more detail along with its functions and effects with reference to the following.

く作用及び効果〉 第1図は、6本の電極を使用した本発明に係るサブマー
ジアーク多電極溶接法の1例を示す概念図である。
Functions and Effects> FIG. 1 is a conceptual diagram showing an example of the submerged arc multi-electrode welding method according to the present invention using six electrodes.

第1図で示されるように、本発明法では6本或いはそれ
以上の電極を配すると共に、適正で安定したガウジング
を図るため少なくとも先行極にDC(直流)電源が適用
され、その他の極(第1図の例では第2極以降)には工
業的優位性を確保すべくAC(交流)電源が適用される
。ただ、特に6電極又はそれ以上の多電極サブマージア
ーク溶接においては、結線方式は各種に働く磁力、アー
クの方向をコントロールし、溶接アークの安定性、ビー
ド形状、高速性を支配する重要な因子となる。
As shown in FIG. 1, in the method of the present invention, six or more electrodes are arranged, and in order to achieve proper and stable gouging, a DC (direct current) power source is applied to at least the leading electrode, and the other electrodes ( In the example shown in FIG. 1, an AC (alternating current) power source is applied to the second and subsequent poles in order to ensure industrial superiority. However, especially in multi-electrode submerged arc welding with 6 or more electrodes, the connection method controls the various magnetic forces and arc direction, and is an important factor governing the stability, bead shape, and high speed of the welding arc. Become.

そこで、結線方法については、下記前提の下でのシュミ
レーション計算と、実ラインでの結線方式の決定・検証
を行って確定された。
Therefore, the wiring method was determined through simulation calculations based on the following assumptions and determination and verification of the wiring method on the actual line.

即ち、シュミレーション計算を 1)一般に、多電極溶接では最終極がビード形状に大き
く影響するため、最終極に作用するヵのみを検討する。
That is, the simulation calculations are as follows: 1) In general, in multi-electrode welding, the final electrode greatly affects the bead shape, so only the forces acting on the final electrode are considered.

2)最終極に作用する力は、各種の溶接電流。2) The forces acting on the final pole are various welding currents.

位相差、電極間の距離、チップ高さ(extentio
n) 。
phase difference, distance between electrodes, chip height (extentio
n).

透磁率(μ)によって決定されるものとする。It shall be determined by magnetic permeability (μ).

3)最終極のアークに作用する力の平均値は、ss+o
othing action及び形成されるビード外観
の検討結果から望ましいとされた約0.lX2ON/m
にする。
3) The average value of the force acting on the arc at the final pole is ss+o
Approximately 0.0. lX2ON/m
Make it.

4)最終極のア〜りに作用する力が溶接進行方向に向い
ている時間は、上記smoothing action
及び形成されるビード外観の検討結果から、望ましいこ
とが明らかとなった“できるだけ長い時間”となるよう
に位相差を決定する。
4) The time during which the force acting on the final pole is directed in the welding direction is the smoothing action described above.
The phase difference is determined so as to be ``as long as possible,'' which has become clear from the results of examination of the appearance of the formed bead.

5)最終第n極に作用する力(Fn)は、式%式% との前提条件を指標としてなされた結果と、実機テスト
の結果とからも、少なくとも先行極にDC電源を用いる
上で他極にAC電源を適用することは可能であるとの結
論に達した。そして、特に第1図で示される6電極サブ
マージアーク溶接では、下記のような極性と位相差の結
線方法が各極間に働く磁力を好適にコントロールし、溶
接アークの安定性、ビード形状に最適であることも確認
した。
5) The force (Fn) acting on the final n-th pole is calculated using the prerequisites of the formula % as an indicator, as well as the results of actual machine tests. It was concluded that it is possible to apply AC power to the poles. In particular, in the 6-electrode submerged arc welding shown in Figure 1, the following polarity and phase difference connection method optimally controls the magnetic force acting between each pole and is optimal for welding arc stability and bead shape. It was also confirmed that

DC−AC−AC−AC−AC−AC O@ +60° +120° −90”  +120″
(ここで、+は位相差の進みを、−は遅れを示しており
、第2極を基準とした場合の位相差を示す)。
DC-AC-AC-AC-AC-AC O@ +60° +120° -90"+120"
(Here, + indicates an advance in the phase difference, and - indicates a delay, indicating the phase difference when the second pole is used as a reference).

なお、第1表に、上記結論が得られた“6電極サブマー
ジアーク溶接におけるACC極相相差組み合わせと溶接
状況の検討結果”の一部を示したが、この時の溶接条件
は 試験材:肉厚1.00インチのビードオンプレート、溶
接電流及び電圧: 第1極・1200A、30V、 第2極・・・100OA、33V、 第3極−900A、36V、 第4極・850A、40V、 第5極・700A、 42V、 第6極・600A、 44V、 溶接速度: 4.Om/+in、 であった。
Table 1 shows a part of the "results of examination of ACC polar phase difference combinations and welding conditions in 6-electrode submerged arc welding" that led to the above conclusion.The welding conditions at this time were for the test material: 1.00 inch thick bead-on plate, welding current and voltage: 1st pole: 1200A, 30V, 2nd pole: 100OA, 33V, 3rd pole: 900A, 36V, 4th pole: 850A, 40V, 5 poles, 700A, 42V, 6th pole, 600A, 44V, welding speed: 4. Om/+in.

更に、この結線方法を適用し実ラインの6電極サブマ一
ジ溶接機にて溶接テストした結果からは、肉厚:0.2
5〜2.00インチの大径鋼管の溶接において、従来の
4電極サブマージアーク溶接を適用した場合には溶接速
度が61.0〜2.8m/sinであったのに対し、杢
発明に係る6、雇−極サブマージアーク溶接では総電流
:5000A以上、溶接速度:3.0〜5.0m/si
nの範囲で安定したアークと美麗なビード外観が得られ
ていることが確認され、その優位性と計算結果の正当性
が立証されている。
Furthermore, from the results of a welding test using an actual 6-electrode submerge welding machine using this connection method, the wall thickness: 0.2
When welding large diameter steel pipes of 5 to 2.00 inches, when conventional four-electrode submerged arc welding was applied, the welding speed was 61.0 to 2.8 m/sin, whereas the heather invention 6. For submerged arc welding, total current: 5000 A or more, welding speed: 3.0 to 5.0 m/si
It was confirmed that a stable arc and beautiful bead appearance were obtained within the n range, proving its superiority and the validity of the calculation results.

ところで、本発明法においては、先行DC極には後退角
を、他の電極には前進角を持たせているが、先行極には
後退角を持たせる理由は先行極によるガウジング力の拡
大を図るためである。そして、この先行DC極の後退角
は一20°までとし、電極容量は最高2000Aまでと
するのが良い。
By the way, in the method of the present invention, the leading DC pole has a receding angle and the other electrodes have advancing angles. This is for the purpose of achieving this goal. It is preferable that the receding angle of this leading DC pole be up to 120 degrees, and that the electrode capacity be up to 2000 A at maximum.

先行DC極に0″以上の前進角を持たせた場合には、s
moothing actionによりビード幅方向の
渦流れは助長され外観向上に有効であるが、diggi
ngactionが著しく減少し、溶は込み深さの不足
により十分な溶接速度を達成し得ない。これに対し、先
行DC極に一20@を超える後退角を持たせると、必要
以上に溶融プールが攪拌され、溶接欠陥のアンダカット
やスラグ巻き込みを多発する傾向が懸念される。一方、
後行AC極の前進角は溶融プール内での溶湯の後方への
流れを塞ぎ止め、美麗なビード外観を形成するために付
与されるものであり、この前進角は0〜+456の範囲
とするのが良い。
If the leading DC pole has an advancing angle of 0'' or more, s
Moothing action promotes vortex flow in the bead width direction and is effective in improving appearance, but diggi
ngaction is significantly reduced and sufficient welding speed cannot be achieved due to insufficient penetration depth. On the other hand, if the leading DC pole has a receding angle exceeding -20@, there is a concern that the molten pool will be stirred more than necessary, and there will be a tendency for undercutting of welding defects and slag entrainment to occur frequently. on the other hand,
The advancing angle of the trailing AC pole is given to block the backward flow of molten metal in the molten pool and form a beautiful bead appearance, and this advancing angle is in the range of 0 to +456. It's good.

なお、第2表は板厚1.00イシチのビードオンプレー
トによる溶接試験結果を示しているが、この第2表から
も、先行DC極に後退角を、そして後行AC極に前進角
を持たせると良好な溶接結果を得られることが確認でき
る。
Note that Table 2 shows the welding test results using a bead-on plate with a plate thickness of 1.00 mm, and from this Table 2, it is also possible to determine the receding angle for the leading DC pole and the advancing angle for the trailing AC pole. It can be confirmed that good welding results can be obtained by holding it.

ここで、溶接速度:4゜5m/ll1inにて十分な溶
着量。
Here, a sufficient amount of welding was achieved at a welding speed of 4°5m/11in.

ビード外観、アーク安定性を確保するためには、溶接ワ
イヤとして4.0〜6.4mφの大径ソリッドワイヤを
通用するのが好ましい。
In order to ensure bead appearance and arc stability, it is preferable to use a large diameter solid wire of 4.0 to 6.4 mφ as the welding wire.

また、各電極先端部の間隔は、溶融型フラックス(fu
sed flux)を用いる本発明法では何れも25■
以内に設定する必要があり、これによってアーク安定、
溶接欠陥防止に効果を上げることができる。電極間距離
が25■を上回ると、ビード外観が悪化する上に、半凝
固状態になって浮上したスラグが電極により干渉を受け
てスラグひっかけの原因となるなど、製品品質及び作業
性の点で不利を招く。
In addition, the distance between the tips of each electrode is determined by the molten flux (fu).
In the present invention method using sed flux), 25
Must be set within, this will make the arc stable,
It can be effective in preventing welding defects. If the distance between the electrodes exceeds 25cm, the appearance of the bead will deteriorate, and the slag that has floated up in a semi-solidified state will interfere with the electrodes, causing slag to get caught, resulting in poor product quality and workability. cause disadvantage.

第3表には、板厚1.0’04ンチのビードオンプレー
トを使用し、電極間距離を変えて溶接試験を行った結果
の一部が示されているが、この第3表からも、電極間距
離は25m以内に設定した場合に良好な結果が得られる
ことを6!認できる。
Table 3 shows some of the results of welding tests using bead-on plates with a thickness of 1.0'04 inches and varying the distance between the electrodes. 6! Good results can be obtained when the distance between the electrodes is set within 25 m! I can recognize it.

電流バランスについては、先行極から後行へ移るに従っ
て、通常0.1〜0.05程度ずつ配分を減少すること
により、後行極アークの硬直性を和らげ、高速溶接(v
 > 3 m/l1lin)においても広幅で滑らかな
ビード外観が得られる。しかし、特に薄肉時、溶込み深
さをそれほど必要としない溶接で、第1極に対し第2極
の電流を高くすることによってより良好なビード外観が
得られることを見出した。
Regarding current balance, by decreasing the distribution by approximately 0.1 to 0.05 as you move from the leading electrode to the trailing electrode, the rigidity of the trailing electrode arc is alleviated and high-speed welding (v
> 3 m/l lin), a wide and smooth bead appearance can be obtained. However, it has been found that a better bead appearance can be obtained by increasing the current in the second electrode relative to the first electrode, particularly when welding with a thin wall and not requiring a large penetration depth.

そして、電流バランスを特に 第1極・・・1゜ 第2極・・・0.7〜1.10゜ ・・・同 上。And especially the current balance 1st pole...1° 2nd pole...0.7~1.10° ...Same as above.

・・・同 上。...Same as above.

第n−1極−0,6〜0.80゜ 第n極・・・0.5〜0゜75 の配分で設定した場合には、良好なビード外観のより安
定した確保が可能となる。
If the distribution is set as follows: n-1st pole - 0.6 to 0.80°, nth pole...0.5 to 0.75°, it is possible to more stably ensure a good bead appearance.

さて、以上に示したような条件で高速サブマジアーク溶
接を実施した場合でも、高速溶接化に伴いやはり溶接ビ
ード形状と溶接金属の性能劣化と言う問題を十分に拭え
なくなる。そこで、本発明者等は、上記問題点を解消す
べく研究を行い、まず、 (A)フラックス成分としてAlz Off+ Si 
O□の適量を添加すると、CaFzとの共存下で適正な
融点・粘性のスラグを生成するようになる。
Now, even when high-speed submajor arc welding is carried out under the conditions shown above, the problem of deterioration of the weld bead shape and the performance of the weld metal cannot be sufficiently eliminated as the welding speed increases. Therefore, the present inventors conducted research to solve the above problems, and first, (A) Alz Off + Si as a flux component.
When an appropriate amount of O□ is added, slag with an appropriate melting point and viscosity is produced in coexistence with CaFz.

(B)フラックス粒度のA S T M48/145メ
ソシュ域を常時60%以上に維持するとアンダーカット
やスラグ巻き込みが極力減少する。
(B) If the A S T M48/145 mesh region of flux particle size is always maintained at 60% or more, undercutting and slag entrainment are minimized.

ことを見出して、このような方策を講じることにより溶
接速度:5.Om/minの大電流(大入熱)溶接にお
いても良好なビード外観、スラグ剥離性が得られ、溶接
作業性と溶接欠陥防止効果の向上が図れることを確認し
た。そして、更に検討を重ね、前記A1zCh−Sin
g  CaFz成分系のフラックスにおいて5i02.
MnO,Cab、CaF2.Af203.MgO。
By discovering this and taking such measures, welding speed: 5. It was confirmed that good bead appearance and slag removability were obtained even in large current (high heat input) welding at Om/min, and that welding workability and welding defect prevention effect could be improved. After further investigation, the A1zCh-Sin
g 5i02. in CaFz component flux.
MnO, Cab, CaF2. Af203. MgO.

TiO□、BaO並びにB2O3の成分バランスを5i
Oz : 5〜25%、kilz Oz : 2〜20
%。
5i composition balance of TiO□, BaO and B2O3
Oz: 5-25%, kilz Oz: 2-20
%.

MnO: 0.5〜15%、  Ti0z : 2〜1
0%。
MnO: 0.5-15%, Ti0z: 2-1
0%.

CaO:5〜25%、   BaO:1〜5%。CaO: 5-25%, BaO: 1-5%.

Mg0=3〜15%、   Ca F z : 25〜
60%。
Mg0=3~15%, CaFz: 25~
60%.

BzOz:2%以下 で、かつ (CaO+Mg0)/5iOz=1.5〜3.0を満足
するようにコントロールすることで、塩基度が常時高い
値に保たれ、電極数を増加した溶接においても酸素量の
低減効果が効果的に発揮されて、形成される溶接金属中
の酸素量を 350ppm以下に抑制することも十分に
可能となり、一般に大径ラインパイプに要求される低硬
度・高靭性スペックをも十分クリアーできる高速溶接用
溶融型フラックスを実現した訳である。
By controlling BzOz: 2% or less and satisfying (CaO+Mg0)/5iOz=1.5 to 3.0, the basicity is always kept at a high value, and even in welding with an increased number of electrodes, oxygen The effect of reducing the amount of oxygen is effectively demonstrated, making it possible to suppress the amount of oxygen in the weld metal to 350 ppm or less, meeting the low hardness and high toughness specifications generally required for large diameter line pipes. This means that we have realized a melting type flux for high-speed welding that can sufficiently clear the conditions.

勿論、このフラックスにおいてSiO2,MnO。Of course, in this flux, SiO2, MnO.

Cab、CaFx+ uzos+ MgO,TiCh、
BaO並びにB、0.の成分バランスが前記範囲を外れ
ると上述した効果を安定して確保することができなくな
る。
Cab, CaFx+ uzos+ MgO, TiCh,
BaO and B,0. If the component balance of is outside the above range, the above-mentioned effects cannot be stably ensured.

また、上記フラックスのA S T M48/145メ
ソシュ域が60%未満であった場合には、多電極高速溶
接において溶接欠陥が目立つようになり、粗粒域が増加
したときはアンダーカットが、そして細粒域が増加した
ときはスラグ巻き込みが多発することとなる。
In addition, if the A S T M48/145 mesosch region of the above flux is less than 60%, welding defects become noticeable in multi-electrode high speed welding, and when the coarse grain region increases, undercuts and When the fine grain area increases, slag entrainment occurs frequently.

上述のように、本発明は、更なる高速化を図ろうとした
場合に数々の未解決の難問が続出したサブマージアーク
溶接に関し、[電極数の更なる多極化]、[最適結線方
法の確立J、[電極角度、電極間隔、チップ高さの最適
セツティング」及び[高速性フラックスの開発」 と言
う困難な技術課題を総合的見地から解決することによっ
て上記障害を乗り越え、安定した高速サブマージアーク
溶接法を確立したが、以下、実施例によってその効果を
より具体的に説明する。
As mentioned above, the present invention relates to submerged arc welding, where many unresolved problems have arisen when attempting to further increase the speed. By solving the difficult technical issues of ``optimal setting of electrode angle, electrode spacing, and tip height'' and ``development of high-speed flux'' from a comprehensive perspective, we have overcome the above obstacles and developed a stable high-speed submerged arc welding method. has been established, and its effects will be explained in more detail below using examples.

〈実施例〉 6本の電極を第2図に示すようにセットすると共に、そ
の第2極以降のAC極の位相差をθ″+60°、  +
120°、−90°、  +120°に設定し、その他
は第4表に示す如き条件で鋼板のサブマーアーク溶接試
験を実施した。
<Example> Six electrodes were set as shown in Fig. 2, and the phase difference of the AC poles after the second pole was θ''+60°, +
A submer arc welding test was conducted on steel plates with the angles set at 120°, -90°, and +120°, and other conditions as shown in Table 4.

なお、このとき使用されたフラックスは、実質的にCa
O:18.0%、 MgO: 6.0%、 Si Oz
 : 14.0%。
Note that the flux used at this time was substantially Ca
O: 18.0%, MgO: 6.0%, SiOz
: 14.0%.

CaFz:37%、u!03:Is%、 MnO: 3
%、TiOz:3%、 BaO: 3%及びBoo、:
 1%から成り、かツ((CaO+Mg0)/5iOz
=1.7)なる成分バランスで、その粒度はA S T
 M48/145メフシュ域を65%含むものであった
。また、使用ワイヤは4.0鶴φのソリッドワイヤで、
その成分組成は第5表の通りであった。
CaFz: 37%, u! 03: Is%, MnO: 3
%, TiOz: 3%, BaO: 3% and Boo:
It consists of 1%, ((CaO+Mg0)/5iOz
= 1.7), and the particle size is A S T
It contained 65% of the M48/145 mesh area. In addition, the wire used is a 4.0 Tsuru φ solid wire,
Its component composition was as shown in Table 5.

第   5   表 そして、試験後に溶接ビードの外観評価を実施したとこ
ろ、何れも良好な外観を呈していることが確認された。
Table 5 When the appearance of the weld beads was evaluated after the test, it was confirmed that all the weld beads had a good appearance.

く効果の総括〉 以上に説明した如く、本発明によれば、最高溶接速度:
4.5m/min以上の高速サブマージアーク溶接法が
確立され、ラインパイプや構造用パイプと言った大径溶
接鋼管等の製造能率を大幅に向上できるほか、溶接ライ
ン数の削減を実施したとしても増産に対応することが可
能となるなど、産業上極めて有用な効果がもたらされる
Summary of effects> As explained above, according to the present invention, the maximum welding speed:
A high-speed submerged arc welding method of 4.5 m/min or more has been established, which can greatly improve the manufacturing efficiency of large-diameter welded steel pipes such as line pipes and structural pipes, and even if the number of welding lines is reduced. This brings about extremely useful effects industrially, such as making it possible to respond to increased production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、6本の電極を使用した本発明に係るサブマー
ジアーク多電極溶接法の1例を示す概念図である。 第2図は、本発明の実施例における電極セフ)条件の概
略説明図である。
FIG. 1 is a conceptual diagram showing an example of the submerged arc multi-electrode welding method according to the present invention using six electrodes. FIG. 2 is a schematic explanatory diagram of electrode safety conditions in an example of the present invention.

Claims (1)

【特許請求の範囲】 6本以上の電極を使用し、かつ下記a)〜e)の条件を
満足させて溶接を行うことを特徴とする、高速サブマー
ジアーク溶接方法。 a)少なくとも先行極には直流電流を適用する、 b)上記以外の電極への交流電源の位相差を、最終極の
アークに作用する力が平均的に溶接進行方向へ向くよう
に設定する、 c)先行極には後退角を、他の電極には前進角をそれぞ
れ持たせると共に、各電極間距離を25mm以内に設定
する、 d)n本の電極の溶接電流バランスを 第1極:1、 第2極〜第(n−2)極:各0.7〜1.10、第(n
−1)極:0.6〜0.80、 第n極:0.5〜0.75 の範囲に設定する、 e)重量割合にて SiO_2:5〜25%、Al_2O_3:2〜20%
、MnO:0.5〜15%、TiO_2:2〜10%、
CaO:5〜25%、BaO:1〜5%、 MgO:3〜15%、CaF_2:25〜60%、B_
2O_3:2%以下 を含むと共に残部が不可避的不純物から成り、かつ (CaO+MgO)/SiO_2=1.5〜3.0を満
足する化学組成で、しかも60%以上がASTM48/
145メッシュ域に入る粒度を有した溶融型フラックス
を用いる。
[Scope of Claims] A high-speed submerged arc welding method, characterized in that welding is performed using six or more electrodes and satisfying the following conditions a) to e). a) Apply a DC current to at least the leading electrode; b) Set the phase difference of the AC power supply to the electrodes other than the above so that the force acting on the arc of the final electrode is directed in the direction of welding progress on average; c) The leading electrode has a receding angle and the other electrodes have an advancing angle, and the distance between each electrode is set within 25 mm. d) The welding current balance of n electrodes is set to 1st pole: 1 , 2nd pole to (n-2)th pole: 0.7 to 1.10 each, (nth
-1) Pole: set in the range of 0.6 to 0.80, nth pole: set in the range of 0.5 to 0.75, e) SiO_2: 5 to 25%, Al_2O_3: 2 to 20% by weight
, MnO: 0.5-15%, TiO_2: 2-10%,
CaO: 5-25%, BaO: 1-5%, MgO: 3-15%, CaF_2: 25-60%, B_
2O_3: Contains 2% or less, the remainder consists of unavoidable impurities, and has a chemical composition that satisfies (CaO + MgO)/SiO_2 = 1.5 to 3.0, and more than 60% meets ASTM48/
A molten type flux having a particle size in the 145 mesh range is used.
JP2271386A 1990-10-09 1990-10-09 High-speed submerged arc welding method using multiple electrodes Expired - Lifetime JPH0729206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2271386A JPH0729206B2 (en) 1990-10-09 1990-10-09 High-speed submerged arc welding method using multiple electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2271386A JPH0729206B2 (en) 1990-10-09 1990-10-09 High-speed submerged arc welding method using multiple electrodes

Publications (2)

Publication Number Publication Date
JPH04147770A true JPH04147770A (en) 1992-05-21
JPH0729206B2 JPH0729206B2 (en) 1995-04-05

Family

ID=17499352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271386A Expired - Lifetime JPH0729206B2 (en) 1990-10-09 1990-10-09 High-speed submerged arc welding method using multiple electrodes

Country Status (1)

Country Link
JP (1) JPH0729206B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775876A (en) * 1993-09-03 1995-03-20 Sumitomo Metal Ind Ltd Tube manufacturing welding method
JP2009241092A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Submerged arc welding machine
JP2011235350A (en) * 2010-05-13 2011-11-24 Nippon Steel Corp Multi-electrode submerged arc welding method excellent in weldability
JP2013237103A (en) * 2012-04-17 2013-11-28 Jfe Steel Corp Multi-electrode submerged arc welding method of steel sheet
JP2015166100A (en) * 2014-03-03 2015-09-24 新日鐵住金株式会社 Melting type flux for submerged arc welding
WO2017141760A1 (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Multi-electrode submerged arc welding method
JP2021010915A (en) * 2019-07-04 2021-02-04 日本製鉄株式会社 Multi-electrode submerge arc welding method
JP2022121338A (en) * 2021-02-07 2022-08-19 哈尓濱▲旱▼接研究院有限公司 Arc stabilization method applied to welding to thick plate based on melting pool by cooperation of plural arc

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581842B2 (en) * 2005-05-26 2010-11-17 住友金属工業株式会社 Fused flux for submerged arc welding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855197A (en) * 1981-09-28 1983-04-01 Sumitomo Metal Ind Ltd Fused flux for submerged arc welding
JPS5945098A (en) * 1982-09-08 1984-03-13 Sumitomo Metal Ind Ltd Multielectrode submerged arc welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855197A (en) * 1981-09-28 1983-04-01 Sumitomo Metal Ind Ltd Fused flux for submerged arc welding
JPS5945098A (en) * 1982-09-08 1984-03-13 Sumitomo Metal Ind Ltd Multielectrode submerged arc welding method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775876A (en) * 1993-09-03 1995-03-20 Sumitomo Metal Ind Ltd Tube manufacturing welding method
JP2009241092A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Submerged arc welding machine
JP2011235350A (en) * 2010-05-13 2011-11-24 Nippon Steel Corp Multi-electrode submerged arc welding method excellent in weldability
JP2013237103A (en) * 2012-04-17 2013-11-28 Jfe Steel Corp Multi-electrode submerged arc welding method of steel sheet
JP2015166100A (en) * 2014-03-03 2015-09-24 新日鐵住金株式会社 Melting type flux for submerged arc welding
JPWO2017141760A1 (en) * 2016-02-19 2018-02-22 Jfeスチール株式会社 Multi-electrode submerged arc welding method
WO2017141760A1 (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Multi-electrode submerged arc welding method
CN108698154A (en) * 2016-02-19 2018-10-23 杰富意钢铁株式会社 Multiple-electrode submerged arc weld method
EP3417979A4 (en) * 2016-02-19 2019-03-13 JFE Steel Corporation Multi-electrode submerged arc welding method
US20190105726A1 (en) * 2016-02-19 2019-04-11 Jfe Steel Corporation Multi-electrode submerged arc welding method
RU2706993C1 (en) * 2016-02-19 2019-11-21 ДжФЕ СТИЛ КОРПОРЕЙШН Multielectrode submerged arc welding
US11453079B2 (en) 2016-02-19 2022-09-27 Jfe Steel Corporation Multi-electrode submerged arc welding method
JP2021010915A (en) * 2019-07-04 2021-02-04 日本製鉄株式会社 Multi-electrode submerge arc welding method
JP2022121338A (en) * 2021-02-07 2022-08-19 哈尓濱▲旱▼接研究院有限公司 Arc stabilization method applied to welding to thick plate based on melting pool by cooperation of plural arc

Also Published As

Publication number Publication date
JPH0729206B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
JPS62173096A (en) Welding bead and electrode for manufacture thereof
JPH04147770A (en) Submerged arc welding method at high speed by using multiple electrodes
JP4531586B2 (en) Flux-cored wire for gas shielded arc fillet welding
JP2672243B2 (en) Flux for single-sided submerged arc welding and welding method using the same
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JPH0557448A (en) Fillet welding method with high efficiency for thick steel plates
JP5824403B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2014024098A (en) Melting type flux used for submerged arc welding and welding method using the same
US2164775A (en) Welding flux
JPH0768380A (en) High efficiency fillet welding method for thick steel plates
KR960002111B1 (en) High-efficiency fillet welding method for steel plate
US2983632A (en) Electric arc welding electrode
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JP2011240370A (en) Flux cored wire for horizontal fillet gas shield arc welding
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JPH0521677B2 (en)
JP2015033700A (en) Flux for one-side submerged arc welding
JP3836071B2 (en) Single electrode single-sided submerged arc welding method
JPS5927276B2 (en) Melting type flux for submerged arc welding
JP2014176878A (en) Horizontal fillet gas shield arc welding method
JP5669684B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JPH11197884A (en) Dual electrode electrogas arc welding method
JPH05337651A (en) Multiple electrode one-side submerged arc welding method
RU2364483C2 (en) Electrode for underwater welding
USRE24418E (en) Electric welding medium containing