JPS5946716B2 - Narrow gap submerged arc welding method - Google Patents

Narrow gap submerged arc welding method

Info

Publication number
JPS5946716B2
JPS5946716B2 JP54026655A JP2665579A JPS5946716B2 JP S5946716 B2 JPS5946716 B2 JP S5946716B2 JP 54026655 A JP54026655 A JP 54026655A JP 2665579 A JP2665579 A JP 2665579A JP S5946716 B2 JPS5946716 B2 JP S5946716B2
Authority
JP
Japan
Prior art keywords
welding
groove
slag
total
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54026655A
Other languages
Japanese (ja)
Other versions
JPS55120488A (en
Inventor
勲 杉岡
実治 西村
元 本杉
勝 溝上
敏彦 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP54026655A priority Critical patent/JPS5946716B2/en
Publication of JPS55120488A publication Critical patent/JPS55120488A/en
Publication of JPS5946716B2 publication Critical patent/JPS5946716B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 本発明は厚板の狭開先潜孤溶接法に関するもので、厚板
の高能率で高性能な溶接を目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a narrow-gap latent arc welding method for thick plates, and is aimed at highly efficient and high-performance welding of thick plates.

従来、厚板の溶接には溶着速度が大きく、欠陥の発生が
少ないことなどから潜孤溶接法が多く使用されているが
、最近構造物の大型化にともないその板厚が厚くなると
ともに、厚板の使用量が多くなり溶接能率の向上が強く
要望されている。
Hitherto, the latent arc welding method has been widely used for welding thick plates because it has a high welding speed and fewer defects, but recently as structures have become larger, the plate thickness has become thicker. As the amount of plates used increases, there is a strong demand for improved welding efficiency.

すなわち、現在一般に使用されている潜孤溶接法の溶着
速度は比較的大きい。しかしながら、開先形状について
は第1図の模式図においてΛBB’ A’で示したよう
に150程度の開先角度を持たせる必要があり、板厚の
増加に対してその2乗に比例して開先断面積が増加する
That is, the deposition rate of the currently commonly used submerged arc welding method is relatively high. However, regarding the groove shape, it is necessary to have a groove angle of about 150 as shown by ΛBB'A' in the schematic diagram of Figure 1, and the groove angle increases in proportion to the square of the increase in plate thickness. Groove cross-sectional area increases.

したがつて単位板厚当りの開先断面積が板厚の増大に伴
ない急激に増加し、多大の溶材および溶接時間を要する
ことになり、労力の増大も免れない。そのため、極厚板
の溶接の能率向上を計る方法として、溶接電流の増大あ
るいは電極数の増加が行なわれている。しかし開先内の
溶接という制約から、アンダーカットの発生やスラグが
両開先壁にまたがることによるスラグ剥離住の劣化をき
たす。また、溶接熱影響部の靭性の劣化も免れない。し
たがつて溶接電流は800A程度まで、また、電極数は
2電極程度までであり、これよりも増加させることは実
際上困難である。したがつてあまり大巾な能率向上は期
待できない。また、これらの極厚鋼の溶接には一般に中
性ないし塩基性の溶融型の細粒フラックスが用いられる
ことが多く、したがつて、かさ密度が比較的大きいため
フラツタス散布高さの影響を受けやすい。
Therefore, the groove cross-sectional area per unit plate thickness increases rapidly as the plate thickness increases, requiring a large amount of welding material and welding time, and inevitably increasing labor. Therefore, as a method to improve the efficiency of welding extremely thick plates, increasing the welding current or increasing the number of electrodes has been carried out. However, due to the constraints of welding within the groove, undercuts occur and slag spreads across both groove walls, resulting in deterioration of slag separation. Furthermore, deterioration of the toughness of the weld heat affected zone is inevitable. Therefore, the welding current is limited to about 800 A, and the number of electrodes is limited to about two, and it is practically difficult to increase the welding current beyond this. Therefore, we cannot expect much efficiency improvement. In addition, neutral or basic molten fine-grained flux is generally used for welding these extra-thick steels, and as a result, the bulk density is relatively large, so it is not affected by the flatus scattering height. Cheap.

特に狭開先になるとその影響が顕著になる。ところで、
開先間隔を18m71L程度にしたI型開先の潜孤溶接
法がAUSTRALIANWELDINGJOURNA
LMAY/JUNEl978に記載されているが本発明
者らが実験したところでは、各層2パスにふり分けし溶
接する方法であるため、僅かなワイヤねらい位置の狂い
により溶込み不足やスラグ巻込みなどの欠陥が発生し易
く、さらlこスラグの剥離件が劣化したりするので実際
問題として、許容溶接条件範囲が非常に狭い。それに加
え14KJ/Cm程度の小入熱溶接を行なう必要がある
ため溶着速度が小さく能率が上らず実用性が乏しいこと
が判つた。このように単に開先角度を小さくしただけで
は溶接条件範囲が大巾に限定される。一方、極厚鋼を潜
孤溶接した場合、その溶接部、特にその熱影響部の靭性
が低くこの改善が強く望まれている。ところが、従来の
潜孤溶接法ではかかる改善は困難と考えられており、こ
のような問題を解決するために、むしろMIG溶接など
を採用することが検討されている。そこで本発明者らは
潜孤溶接法の狭開先化について研究した結果、従来のよ
うなふり分け溶接では欠陥が発生し易いがむしろ反対に
1層1パス溶接することによつて欠陥が発生し難くなり
、溶接がかえつて容易になることを見い出した。
This effect is particularly noticeable when the gap is narrow. by the way,
AUSTRALIAN WELDING JOURNA is a submerged arc welding method for I-shaped grooves with groove spacing of approximately 18m71L.
Although it is described in LMAY/JUNEL978, the present inventors have conducted experiments and found that since each layer is welded in two passes, slight deviations in the wire aiming position may cause problems such as insufficient penetration or slag entrainment. As a practical matter, the range of allowable welding conditions is very narrow because defects are likely to occur and the peeling properties of the slag deteriorate. In addition, it has been found that because it is necessary to perform welding with a small heat input of about 14 KJ/Cm, the welding speed is low, efficiency is low, and practicality is poor. In this way, simply reducing the groove angle greatly limits the range of welding conditions. On the other hand, when ultra-thick steel is subjected to latent arc welding, the welded part, especially the heat-affected zone, has low toughness, and there is a strong desire to improve this. However, it is considered difficult to make such an improvement using the conventional submerged arc welding method, and in order to solve this problem, it is being considered to employ MIG welding or the like. As a result of our research into narrowing the gap in latent arc welding, the present inventors found that defects are more likely to occur with conventional split welding, but on the contrary, defects occur when welding each layer in one pass. It has been found that welding becomes easier.

さらにこのような手段を用いると得られた熱影響部の靭
性が非常に良好であることを見い出した。しかしながら
、従来のフラツクスを用いてこのような溶接を行なうと
スラグが開先内の両壁にまたがつて焼付くため、その剥
離性が悪くスラグ剥離作業が非常(こ困難1こなる。
Furthermore, it has been found that the toughness of the heat-affected zone obtained by using such a method is very good. However, when such welding is performed using conventional flux, the slag seizes astride both walls within the groove, making it difficult to remove the slag.

ところが、これまでは開先内の溶接あるいは小電流の溶
接には適さないと考えられていた焼成型フラツクスの中
(こ前記のような狭開先潜孤溶接において、良好なビー
ド形状とスラグ剥離性を有するものがあることを見い出
した。すなわち酸性成分(もしくは活性成分)としてA
!,203とSlO2,TiO2,ZrO2,MnOの
いずれか1種以上を合計15〜80%で、かつAt2O
35〜38%SlO2≦23%、TiO2≦25%、Z
「02≦25%、MnO<−15%、塩基性成分として
CaO,MgO,BaOのいずれか1種以上を合計10
〜50%で、かつCaO≦25%、MgO≦35%、B
aO≦30%、また金属弗化物を弗素に換算して合計2
,5〜15%、アルカリ金属化合物を酸化物lこ換算し
て合計2〜5%、金属粉0.2〜3%を必須成分(重量
%)として自有する焼成型または焼結型フラツクスを用
いると、アークが安定で平滑な凹ビードが得られ、スラ
グは比較的薄く均一で溶接部に焼付くことなく容易に剥
離できることが判つた。
However, in the sintered flux, which was previously thought to be unsuitable for welding within a groove or for welding with small currents (in narrow gap latent arc welding as described above), it was difficult to achieve a good bead shape and slag separation. We have discovered that there are some substances that have properties such as A as an acidic component (or active component).
! , 203 and one or more of SlO2, TiO2, ZrO2, MnO in a total of 15 to 80%, and At2O
35-38% SlO2≦23%, TiO2≦25%, Z
"02≦25%, MnO<-15%, a total of 10 or more of CaO, MgO, BaO as a basic component
~50%, and CaO≦25%, MgO≦35%, B
aO≦30%, and the total amount of metal fluoride converted to fluorine is 2
, 5 to 15%, alkali metal compound as oxide, 2 to 5% in total, and metal powder 0.2 to 3% as essential components (weight %). When used, it was found that the arc was stable and a smooth concave bead was obtained, and the slag was relatively thin and uniform and could be easily peeled off without burning into the weld.

本発明はこれらの新しい知見に基いて完成されたもので
あり、狭開先溶接の問題を解決し、極厚鋼の高能搾で高
性能な潜孤溶接を可能にする方法を提供するものである
The present invention has been completed based on these new findings, and provides a method that solves the problem of narrow gap welding and enables high-efficiency and high-performance latent arc welding of extra-thick steel. be.

すなわち本発明はスラグ形成剤を構成する酸性成分(も
しくは活件成分)としてAt2O3とSiO2,TlO
2,ZrO2,MnOのいずれか1種以上を合計15〜
80%で、かつAt2O35〜38%、SlO2≦23
%、TlO2≦25%、ZrO2≦25?、MnOく1
5%、塩基件成分としてCaO,MgO,BaOのいず
れか1種以上を合計10〜50?で、かつCaO〈25
%、MgO≦35%、BaOく30%、また金属弗化物
を弗素に換算して2,5〜15%、アルカリ金属化合物
を酸化物に換算して合計2〜5%、金属粉0.2〜3%
を必須成分(重量%)として含有する焼成型または焼結
型フラツクスを用いて、開先形状をほぼI型、開先深さ
をHとし、その開先底部間隔WBを6〜14mm、開先
表面の間隔WFを12mu以上で、かつWBくHWF≦
2(−+7)とし、少なくとも開先間隔が− 25
18mm以下のところまでは1層1パスで、その溶着厚
さ一溶着断面積/開先巾が3〜6mmで、溶接速度を単
電極の場合15〜400f!l/Milt、2電極の場
合20〜70?/mかで溶接することを特徴とする狭開
先潜孤溶接法である。
That is, the present invention uses At2O3, SiO2, and TlO as acidic components (or active components) constituting the slag forming agent.
2. A total of 15 or more of one or more of ZrO2 and MnO
80%, and At2O35-38%, SlO2≦23
%, TlO2≦25%, ZrO2≦25? , MnOku1
5%, one or more of CaO, MgO, and BaO as basic components, totaling 10 to 50? And CaO〈25
%, MgO≦35%, BaO≦30%, metal fluoride converted to fluorine 2.5-15%, alkali metal compound converted to oxide total 2-5%, metal powder 0.2 ~3%
Using a fired or sintered flux containing as an essential component (wt%), the groove shape is approximately I-shaped, the groove depth is H, the groove bottom interval WB is 6 to 14 mm, and the groove is The surface spacing WF is 12 mu or more, and WB is less than HWF≦
2 (-+7), and the groove spacing is at least -25
One pass per layer up to 18 mm or less, the weld thickness - weld cross-sectional area/groove width is 3 to 6 mm, and the welding speed is 15 to 400 f with a single electrode! l/Milt, 20 to 70 for 2 electrodes? This is a narrow-gap latent arc welding method that is characterized by welding at a depth of /m.

以下に本発明を詳細に説明する。The present invention will be explained in detail below.

最初に本発明に使用するフラツクスにおける限定理由を
述べる。
First, the reason for the limitations on the flux used in the present invention will be described.

先ず、使用するフラツクスのタイブを焼成型および焼結
型に限定したのは次の理由による。すなわち本発明の狭
開先溶接では安定な溶接が従来以上に要求される。そこ
で、この場合もし溶融型フラツクスを採用するとアーク
安定剤であるアルカリ金属化合物の添加により、ビード
中央部が凸な中高で波形の荒いビードになり、スラグ剥
離性が劣化する。一方焼成型あるいは焼結型フラツクス
では固着剤として水ガラスを使用しており数?のアルカ
リ金属酸化物をやはり自有しているが、スラグ形成剤の
耐火度が高いためか上記のような現象は起らず、平滑で
凹なビードが得られる。また、溶接中のガス抜けを良く
することおよびフラツクス散布高さの影響を小さくする
ためCこ、フラツクスのかさ密度が小さいことあるいは
フラツクス粒度が比較的粗いことが必要であるが、中件
ないし塩基性の溶融型フラツクスをかさ密度の小さい軽
石状にしたものは、拡散性水素が多く極厚鋼の溶接には
適さない。
First, the type of flux used was limited to the firing type and the sintering type for the following reason. That is, in the narrow gap welding of the present invention, stable welding is required more than ever. Therefore, if a molten type flux is used in this case, the addition of an alkali metal compound as an arc stabilizer will result in a bead with a rough waveform and a convex central portion, resulting in poor slag removability. On the other hand, fired or sintered fluxes use water glass as a fixing agent. However, the above-mentioned phenomenon does not occur, probably because the slag forming agent has high refractory properties, and smooth, concave beads are obtained. In addition, in order to improve gas release during welding and to reduce the influence of the flux scattering height, it is necessary that the bulk density of the flux be small or that the flux particle size be relatively coarse. Pumice-like molten flux with low bulk density contains a lot of diffusible hydrogen and is not suitable for welding extremely thick steel.

また溶融型フラツクスにおいてフラツクス粒度を粗くす
ると、中高で波形の荒いビードになりスラグ剥離件が劣
化する。これに対して焼成型または焼結型フラツクスで
は比較的粗粒でかさ密度が小さく、拡散性水素量の少な
いフラツクスが容易に製造できる。さらに焼成型または
焼結型フラツクスを用いることにより溶込み深さが浅く
なり、次のビードの再熱作用が有効に生かされ組織が微
細化される。次にフラツクス組成は以下の理由により限
定される。
Furthermore, if the flux particle size is made coarser in the molten type flux, a bead with a rough wave shape will be formed in the middle and high heights, and the slag peeling properties will be deteriorated. On the other hand, a calcined or sintered flux has relatively coarse grains, a low bulk density, and a low amount of diffusible hydrogen, which can be easily produced. Furthermore, by using a fired type or sintered type flux, the penetration depth becomes shallower, and the reheating action of the next bead is effectively utilized to refine the structure. Next, the flux composition is limited for the following reasons.

先ず酸成性分(もしくは活性成分)としては、At2O
3が5%未満あるいはAt2O3とSlO2,TlO2
,ZrO2,MnOの1種以上の合計が15?未満の場
合スラグの粘件が小さすぎるためビード波形が荒く中高
ビードになり、スラグ剥離性が劣化し、またアークが不
安定になる。
First, as the acid component (or active component), At2O
3 is less than 5% or At2O3 and SlO2, TlO2
, ZrO2, MnO total is 15? If it is less than 1, the viscosity of the slag is too small, and the bead waveform becomes rough, medium to high bead, the slag removability deteriorates, and the arc becomes unstable.

反対にAt2O3が38%を超えた場合ビード巾が小さ
く、1層1パスの溶接においてビードが開先側壁に橋絡
し難い。また凝固割れが発生し易い。At2O3とSl
O2,TiO2,ZrO2,MnOの1種以上の合計が
80%を超えるとスラグ剥離性が劣化し、また溶接金属
の酸素量が多くなり靭性が低下する。ままた、SlO2
,TiO2,ZrO2,MnOはAt2O3の一部おき
かえ、あるいは溶接作業性改善、溶接金属成分の調整の
ため1種以上添加するが、その限定理由は次のようであ
る。SiO2は主lこ溶接作業性改善のため添加するが
、SiO2が23%を超えた場合スラグがガラス化し、
スラグ剥離性が劣化する。
On the other hand, when At2O3 exceeds 38%, the bead width is small and it is difficult for the bead to bridge the groove sidewall in one-layer, one-pass welding. Furthermore, solidification cracking is likely to occur. At2O3 and Sl
If the total content of one or more of O2, TiO2, ZrO2, and MnO exceeds 80%, slag removability deteriorates, and the amount of oxygen in the weld metal increases, resulting in a decrease in toughness. Matata, SlO2
, TiO2, ZrO2, and MnO are added to partially replace At2O3, or to improve welding workability and adjust the weld metal components, but the reason for this limitation is as follows. SiO2 is mainly added to improve welding workability, but if SiO2 exceeds 23%, the slag will vitrify.
Slag removability deteriorates.

また溶接金属の酸素量が多くなり靭性が低下する。Ti
O2は微量Tiの合金化や溶接作業件の調整のため添カ
ロするが25%を超えると、溶接金属のTi量が多くな
りすぎたりビード波形が荒くなる。
In addition, the amount of oxygen in the weld metal increases and the toughness decreases. Ti
O2 is added to alloy a small amount of Ti and to adjust welding work conditions, but if it exceeds 25%, the amount of Ti in the weld metal becomes too large and the bead waveform becomes rough.

ZrO2は塩基度の調整や溶接作業性の改善のため添加
するが、25%を超えるとビード波形が粗くなりホック
マークが発生し易い。MnOは溶接金属のMnの歩留の
調整や耐ボツタマーク・ブローホール性の改善のため添
カロするが、15%を超えると溶接金属の酸素量が多く
なりスラグ剥離性や靭性が劣化する。
ZrO2 is added to adjust the basicity and improve welding workability, but if it exceeds 25%, the bead waveform becomes rough and hook marks are likely to occur. MnO is added to adjust the Mn yield of the weld metal and improve the pottery mark and blowhole resistance, but if it exceeds 15%, the amount of oxygen in the weld metal increases and the slag removability and toughness deteriorate.

次に塩基性成分について説明すると先ずCaOが25%
を超えるとCr−MO鋼などの場合にスラグの焼付を生
じる。
Next, to explain the basic components, first of all, CaO is 25%
Exceeding this will cause slag seizure in the case of Cr-MO steel and the like.

MgOが35%を超えるとスラグが強固な結晶質のスラ
グになりスラグの除去が固難になる。BaOが30%を
超えるとアーク長が長くなり、かつフラツクスの密度が
大きくなりビード巾が小さく中高ビードになりスラグ剥
離性が劣化し融合不良を生じ易い。
When MgO exceeds 35%, the slag becomes a strong crystalline slag, making it difficult to remove the slag. If the BaO content exceeds 30%, the arc length becomes long, the density of the flux increases, the bead width becomes small and the bead becomes medium to high, the slag removability deteriorates, and fusion failure is likely to occur.

CaO,MgO,BaOのいずれか1種以上の合計が1
0%未満になるとスラグ剥離件が劣化し、また溶接金属
の酸素量が多くなり靭性が低下する。
The total of one or more of CaO, MgO, BaO is 1
If it is less than 0%, the slag peeling condition deteriorates, and the amount of oxygen in the weld metal increases, resulting in a decrease in toughness.

逆にCaO,MgO,BaOのいずれか1種以上の合計
が50%を超えると、融点が高くなりすぎビード波形が
荒く中高ビードになりスラグ剥離件が劣化する。次に金
属弗化物とはCaF2,MgF2,BaF2,MnF2
,AtF3などの1種以上を指し、弗素に換算した場合
、弗素量が2.5%未満の−場合スラグの流動件が悪く
ホックマークが発生する。
On the other hand, if the total content of any one or more of CaO, MgO, and BaO exceeds 50%, the melting point becomes too high, the bead waveform becomes rough and becomes a medium-height bead, and the slag removal properties deteriorate. Next, metal fluorides are CaF2, MgF2, BaF2, MnF2
, AtF3, etc. When converted to fluorine, if the amount of fluorine is less than 2.5%, the flowability of the slag is poor and hook marks occur.

またビードの広がりが小さく融合不良を生じ易い。さら
に溶接金属の靭件が低い。反対に弗素量が15%を超え
るとスラグの粘性が小さくなりすぎ、かつアークが不安
定になり波形が荒い中高ビードになりスラグ剥離性が劣
化する。またスラグ巻込み欠陥が発生し易い。さらlこ
、γルカリ金属化合物とは、固着剤の水ガラスのような
酸化物、あるいはNa2cO3,K2CO3,Li2C
O3の炭酸塩、またNa2SiF6,K2ZrF6など
の弗化物などの1種以上を指し、これらを酸化物に換算
した合計が2%未満になるとアークの安定件が劣り波形
が荒くなる。
Furthermore, the bead spread is small and fusion failure is likely to occur. Furthermore, the toughness of the weld metal is low. On the other hand, if the amount of fluorine exceeds 15%, the viscosity of the slag becomes too small and the arc becomes unstable, resulting in medium-high beads with rough waveforms and deterioration in slag removability. Furthermore, slag entrainment defects are likely to occur. A gamma alkali metal compound is an oxide such as water glass as a fixing agent, or an oxide such as Na2cO3, K2CO3, Li2C.
It refers to one or more types of carbonates of O3 and fluorides such as Na2SiF6 and K2ZrF6, and if the total amount of these in terms of oxides is less than 2%, the arc stability deteriorates and the waveform becomes rough.

逆に5?を超えるとスラグ量が多くなり、スラグの除去
性が悪くなる。さらに中高ビードになる。また、通常、
焼成型および焼結型フラツクス中には脱酸あるいは合金
を目的にフエロシリコン、フエロマンガン、金属マンガ
ン、金属アルミニウムなどの金属粉が添カロされている
が、添カロ量が3?を超えると使用中にこれら金属粉は
フラツクス粒子から分離し偏析し易い。
5 on the contrary? If it exceeds , the amount of slag will increase and the removability of slag will deteriorate. Furthermore, it becomes a medium-high bead. Also, usually
Metal powders such as ferrosilicon, ferromanganese, metal manganese, and metal aluminum are added to firing and sintering type fluxes for the purpose of deoxidation or alloying, but the amount of added calories is 3? If it exceeds this, these metal powders are likely to separate from flux particles and segregate during use.

した力乏つてフラツクス件状変化に多大の対策と厳重な
管理が必要になる。第2図はフラツクス中の金属粉が1
0%および3%のものの使用中の偏析を調べた結果で、
フラツクス回収機通過回数と金属粉の偏析庫、すなわち
100メツシユ以下のフラツクス中の金属粉含有量の使
用前と使用後の比草の関係を示す。
Due to the lack of power, many countermeasures and strict management will be required to deal with changes in flux conditions. Figure 2 shows that the metal powder in the flux is 1
The results of investigating the segregation during use of 0% and 3%
The relationship between the number of times the flux passes through the collector and the metal powder segregation storage, that is, the metal powder content in the flux of 100 mesh or less, before and after use is shown.

この結果から明らかなように金属粉を10%含有するフ
ラツクスは3,4回回収すると約1.5倍、5,6回回
収すると2倍近く偏析する。これに対して金属粉含有量
を3%にしたものは全く偏析しないことが判つた。した
がつて、金属粉を3%以下にしたものを使用することに
よつて金属粉の偏析に併う割れの発生や性能の劣化の心
配が全くなくなる。一方金属粉の添加量が0.2%未満
lこなると、溶接中溶融池後方のスラグが吹上げ、スラ
グおよびビードが凸凹になりスラグ剥離性が劣化する。
なお、本発明法に使用するフラツクス原料の酸化物はM
n3O4,Tl3O5などの過酸化物や亜酸化物でも同
様の効果が得られ、これらは、本発明では上記の安定酸
化物に換算して表現した。つぎに開先形状、溶接条件を
限定した理由を述べる。これらの条件はいずれも狭開先
化の効果を十分(こ発揮でき、かつ狭開先化による溶接
作業の劣化および欠陥の防止と溶接熱影響部の靭性の改
善を意図して設定されたものである。第1図は厚板狭開
先潜孤溶接における開先形状を模式的に示した正面断面
図であつて、図中ABB2A′で示されているのが従来
法の開先形状を示すものである。
As is clear from these results, the flux containing 10% metal powder segregates about 1.5 times when it is collected 3 or 4 times, and nearly twice when it is collected 5 or 6 times. On the other hand, it was found that when the metal powder content was 3%, there was no segregation at all. Therefore, by using a material with a metal powder content of 3% or less, there is no fear of cracking or performance deterioration due to metal powder segregation. On the other hand, if the amount of metal powder added is less than 0.2%, the slag at the rear of the molten pool will blow up during welding, the slag and beads will become uneven, and the slag removability will deteriorate.
The flux raw material oxide used in the method of the present invention is M
Similar effects can be obtained with peroxides and suboxides such as n3O4 and Tl3O5, and in the present invention, these are expressed in terms of the above-mentioned stable oxides. Next, the reason for limiting the groove shape and welding conditions will be explained. All of these conditions were set with the intention of fully demonstrating the effect of narrowing the groove, preventing deterioration and defects in welding work due to narrowing the groove, and improving the toughness of the weld heat affected zone. Fig. 1 is a front sectional view schematically showing the groove shape in narrow gap latent arc welding of thick plates, and the groove shape indicated by ABB2A' in the figure is the groove shape of the conventional method. It shows.

Abb′a′で示されているのが本発明法に用いられる
開先形状例を示すものである。開先Abb′a′におい
ては被溶接材1および2によつて形成された開先形状を
ほぼI型、開先深さをHとし、開先底部における開先間
隔Bb′の距離WBを6〜14m77!とし、開先表面
部における開先間隔Aa′の距離WFを12mm以上で
、かつHWB<WF≦2(−+7)とし、少なくとも開
先間隔すなわちCeの距離が18mm以上のところまで
はワイヤEを開先巾のほぼ中心に配置し、1層1パスで
その溶着厚さ=溶着断面積/開先巾を3〜6mm、溶接
速度を単電極の場合15〜40CTIL/MUl,2電
極の場合20〜70CIrL/Millで、上述のフラ
ツクスFを用いて溶接することによつてビード形状Cd
eが滑らかな凹となり母材べの溶込みPが小さくなり、
従来困難とされていた開先間隔18mm以下の溶接が容
易にでき、かつ高性能な溶接継手が得られるものである
Abb'a' indicates an example of the groove shape used in the method of the present invention. In the groove Abb'a', the groove shape formed by the materials to be welded 1 and 2 is approximately I-shaped, the groove depth is H, and the distance WB of the groove interval Bb' at the groove bottom is 6. ~14m77! Then, the distance WF of the groove interval Aa' on the groove surface part is 12 mm or more, and HWB<WF≦2(-+7), and the wire E is set at least until the groove interval, that is, the distance Ce is 18 mm or more. Place it approximately in the center of the groove width, and in one pass per layer, the welding thickness = weld cross-sectional area / groove width is 3 to 6 mm, and the welding speed is 15 to 40 CTIL/MUl for single electrode, 20 for two electrodes. ~70CIrL/Mill, by welding using the above-mentioned flux F, the bead shape Cd
e becomes a smooth concave, and the penetration P of the base material becomes smaller.
Welding with a groove spacing of 18 mm or less, which was conventionally considered difficult, can be easily performed, and a high-performance welded joint can be obtained.

以下さらに詳しく述べると、開先底部間隔WBが6m7
1L未満および開先表面部間隔が127nm未満では、
溶接入熱量を非常に小さくしないと溶着厚さが大となり
凝固割れが生じ易い。
To explain in more detail below, the groove bottom interval WB is 6m7
When it is less than 1 L and the groove surface spacing is less than 127 nm,
Unless the welding heat input is extremely small, the weld thickness will be large and solidification cracks will likely occur.

また開先側壁にアンダーカツトが生じスラグ剥離が困難
になる。さらに入熱量を少さくすると、溶融池が小さく
凝固が速いため僅かなワイヤ送給不良、フラツクス散布
高さの不適当により溶接が不安定になり、溶込み不良や
スラグ巻込みなどの欠陥が発生し易い。結局適正条件範
囲が狭くなり実用土問題がある。開先底部の開先巾WB
が14m77!を超え、あるいはH開先表面部の開先巾
WFが2(−+7)Muを超える場合、開先断面積が増
大し、その結果能搾が低下し、溶接材料の使用量も増大
するので好ましくない。
In addition, undercuts occur on the side walls of the groove, making it difficult to remove the slag. If the heat input is further reduced, the molten pool is small and solidification is rapid, resulting in slight wire feeding defects and inappropriate flux distribution height, making welding unstable, resulting in defects such as poor penetration and slag entrainment. Easy to do. In the end, the range of appropriate conditions becomes narrower, and there is a problem with practical soil. Bevel width WB at the bottom of the groove
is 14m77! or when the groove width WF of the H groove surface exceeds 2(-+7) Mu, the groove cross-sectional area increases, resulting in a decrease in efficiency and an increase in the amount of welding material used. Undesirable.

またWB>WFの場合、開先形状が台形となるためスラ
グの除去が困難になる。さらに、開先間隔が18mTI
L以下のところの溶接を1層1パスの溶接に限定したの
は、上述の作用効果を得るための条件であり、ふり分け
溶接すると母材の溶込みが深くなつたり開先壁と溶接金
属の谷間ができ、かつ水平姿勢に近くなることによりス
ラグ巻込みなどの欠陥を発生し易くなる。
Furthermore, when WB>WF, the groove shape becomes trapezoidal, making it difficult to remove the slag. Furthermore, the groove spacing is 18mTI.
The reason why welding below L is limited to one pass per layer is to achieve the above-mentioned effects. Swing welding causes deep penetration into the base metal and the possibility that the groove wall and weld metal This creates valleys and becomes nearly horizontal, making it more likely that defects such as slag entrainment will occur.

またふり分け溶接では1パスの溶着量が大巾に制限され
る。さらに溶接熱fこよる再熱効果が小さくなる。溶着
厚さ、すなわち溶着断面積/開先巾は実質的lこは所定
の開先巾における溶接条件によつて決まるもので、溶接
電流と溶接速度の組合せで決まる。
In addition, in split welding, the amount of welding in one pass is greatly limited. Furthermore, the reheating effect due to welding heat f becomes smaller. The weld thickness, that is, the weld cross-sectional area/groove width, is substantially determined by the welding conditions at a predetermined groove width, and is determined by the combination of welding current and welding speed.

そこで溶接電踵が小さく溶着厚さが3mm未満の場合に
は母材の溶込みが不十分となり溶込み不良を生じる。溶
接速度が大きくて溶着厚さが小さい場合も同様に溶込み
不良を生じ、さらにアンダーカツトやスラグ巻込みなど
の欠陥を発生し易い。逆に、溶着厚さが6mmを超える
場合はメタルの先走りにより溶込み不良を生じたり高温
割れが発生し易くなる。溶接速度が単電極の場合15c
m/Mm未満、2電極の場合20cm/m―未満の時は
溶融金属が溶融池からはみだし、溶融池前方に先走り溶
込み不足やスラグ巻込みを生じ易い。さらに本発明法の
大きな作用効果である次のビードによる再熱作用による
溶接熱影響部組織の微細化効果が十分得られず靭性が低
下する。溶接速度が単電極の場合40礪/Min超、2
電極の場合70CfL/Mm超になると凝固割れが発生
し易い。
Therefore, if the welding electrode is small and the welding thickness is less than 3 mm, penetration into the base material will be insufficient, resulting in poor penetration. When the welding speed is high and the weld thickness is small, poor penetration similarly occurs, and defects such as undercuts and slag entrainment are likely to occur. On the other hand, if the weld thickness exceeds 6 mm, poor penetration or hot cracking is likely to occur due to metal running ahead. If welding speed is single electrode, 15c
When it is less than m/Mm, or less than 20 cm/m- in the case of two electrodes, the molten metal protrudes from the molten pool, tends to lead to the front of the molten pool, causing insufficient penetration and slag inclusion. Furthermore, the effect of refining the structure of the weld heat-affected zone due to the reheating action of the next bead, which is a major effect of the method of the present invention, cannot be sufficiently obtained, resulting in a decrease in toughness. When the welding speed is single electrode, it is more than 40 cm/min, 2
In the case of electrodes, if it exceeds 70 CfL/Mm, solidification cracking is likely to occur.

さらに、融合不良やアンダーカツトを生じ1層1パスの
溶接が困難になる。なお、本発明法は1層1パスで溶接
することを基本とするものであるが板厚が100mm以
上の鋼板の場合などで開先間隔が20mm以上の部分を
従来法で溶接しても本発明法の狭開先化の効果は十分発
揮できる。
Furthermore, poor fusion and undercuts occur, making it difficult to weld one pass per layer. Although the method of the present invention is based on welding each layer in one pass, it is still possible to weld parts with groove spacing of 20 mm or more using the conventional method, such as when steel plates are 100 mm or more thick. The effect of narrowing the gap in the invention method can be fully demonstrated.

以上のように本発明は開先間隔を小さくし、1層1パス
で溶接することを基本とするもので次のようなすぐれた
作用効果が得られる。
As described above, the present invention is based on reducing the groove spacing and welding each layer in one pass, and provides the following excellent effects.

(1)開先断面積および累積ビード表面積が大巾に減少
するため高能宰で、かつ溶材の使用量が大巾に減少する
(1) Since the cross-sectional area of the groove and the cumulative bead surface area are greatly reduced, it is highly efficient and the amount of welding material used is greatly reduced.

12)ふり分け溶接でないので円周連続溶接においてワ
イヤのねらい位置の変更がなく、スラグ巻込みや溶込み
不足などの欠隔が発生し難い。
12) Since it is not split welding, there is no change in the target position of the wire during circumferential continuous welding, and gaps such as slag entrainment and insufficient penetration are unlikely to occur.

また、補助溶加材の添加も容易である。(3)母材の希
釈が非常に小さく、母材成分特にC,Nb,Vの影響が
小さく凝固割れが発生し難く良好な靭性が得られる。
Further, addition of auxiliary filler materials is also easy. (3) The dilution of the base material is very small, and the influence of the base material components, particularly C, Nb, and V, is small and solidification cracking is less likely to occur, resulting in good toughness.

(4)靭性の劣化しやすいボンドおよび熱影響部がほぼ
完全に次のビードの溶接により再熱され細粒化し良好な
靭件が得られる。
(4) The bond and heat-affected zone, which tend to deteriorate in toughness, are almost completely reheated by the next bead welding and become fine grained, resulting in good toughness.

(5)溶接層数が大巾に減少し、歪・残留応力および水
素の集積が少なくなるため中間SRが少なくあるいは省
略できる。
(5) The number of welded layers is greatly reduced, and the accumulation of strain, residual stress, and hydrogen is reduced, so intermediate SR can be reduced or omitted.

(6) 1層1パスで低速度で焼成フラツクスを用いて
溶接するためアークと未溶融金属との間lこ溶融金属が
介在し、この溶融金属を介してアーク熱が伝えられ母材
は溶融される。
(6) Since welding is performed using firing flux at low speed in one pass per layer, molten metal is interposed between the arc and unmolten metal, and the arc heat is transmitted through this molten metal, causing the base metal to melt. be done.

したがつてスラグが付着拘束され易い固体面が溶融池に
ほとんど発生しないのでスラグ巻込み欠陥が発生し難い
。以下本発明の効果を実施例に基いてさらに具体的lこ
述べる。
Therefore, since there are almost no solid surfaces in the molten pool to which slag is likely to adhere and be restrained, slag entrainment defects are less likely to occur. The effects of the present invention will be described in more detail below based on examples.

実施例 第1表および第2表に本発明法の鋼板とワイヤおよびフ
ラツタスの組合せ、溶接条件とS.R条件ならびに溶接
結果を示す。
Examples Tables 1 and 2 show the combinations of steel plates, wires and flats, welding conditions and S.I. The R conditions and welding results are shown.

また、同様に従来法と比較例を第1表および第2表に示
す。同表中番号1,2,3,4,5,6,7,8,16
,17,および18が本発明法であり番号9,10,1
1,12,13および14が比較例である。番号15お
よび19が従来法である。なお、これらの溶接に用いた
鋼板の開先形状寸法を第3図〜第8図に示す。
Similarly, the conventional method and comparative examples are shown in Tables 1 and 2. Numbers 1, 2, 3, 4, 5, 6, 7, 8, 16 in the same table
, 17, and 18 are the methods of the present invention, and numbers 9, 10, 1
1, 12, 13 and 14 are comparative examples. Numbers 15 and 19 are conventional methods. Note that the groove shapes and dimensions of the steel plates used for these weldings are shown in FIGS. 3 to 8.

また、鋼板・ワイヤおよびフラツクスをそれぞれ第3表
、第4表および第5表に示す。本発明法の場合、いずれ
も溶接の安定件がすぐれ、スラグ剥離性、ビード外観と
もに良好であり、かつ側曲げ試験の結果無欠陥であつた
Further, steel plates/wires and fluxes are shown in Tables 3, 4, and 5, respectively. In the case of the method of the present invention, welding stability was excellent in all cases, slag removability and bead appearance were both good, and there were no defects as a result of the side bending test.

また、本発明法は母材べの溶込みが非常に小さくNb含
有鋼の場合でも従来法のような靭性の異常低下は起らず
良好な値が得られた。
Further, in the method of the present invention, the penetration into the base metal is very small, and even in the case of Nb-containing steel, the abnormal decrease in toughness unlike the conventional method did not occur, and good values were obtained.

したがつて、母材成分中に溶接金属にとつて好ましくな
い成分が含まれているような鋼の溶接に本発明法が適し
ていることが判る。
Therefore, it can be seen that the method of the present invention is suitable for welding steel whose base metal components include components undesirable for the weld metal.

さらに、第2表1こ示すように本発明法による溶接熱影
響部の靭件は非常に良好である。
Furthermore, as shown in Table 2, the toughness of the heat-affected zone welded by the method of the present invention is very good.

それに加え、開先断面積は従来法にくらべ飛躍的に減少
しており、かつ溶着速度は従来の潜孤溶接法と同程度で
あるので、能宰が非常に向上する。
In addition, the cross-sectional area of the groove is dramatically reduced compared to the conventional method, and the welding speed is comparable to that of the conventional submerged arc welding method, so welding performance is greatly improved.

以上、詳述したように本発明法は母材成分の関係あるい
はHAZの靭性の問題で潜孤溶接の適用ができなかつた
鋼の溶接が容易に、かつ高能宰にできる。さらlこ、溶
材の使用量が少なく、かつ欠陥の発生が少ない。したが
つて信頼性の高い溶接継手が非常に経済的に得られ工業
的価値の極めて大なるものである。
As described above in detail, the method of the present invention enables easy and highly efficient welding of steels to which latent arc welding cannot be applied due to problems with base metal composition or HAZ toughness. The amount of welding material used is small, and defects are less likely to occur. Therefore, highly reliable welded joints can be obtained very economically and are of great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は厚板狭開先潜孤溶接における開先形状を模式的
lこ示した正面断面図、第2図はフラツクスのフラツク
ス回収機通過回数とフラツクス中の金属粉の偏析搾の関
係を示す線図、第3〜8図は実施例に用いられた開先形
状を示す正面断面図である。 1および2・・・・・・被溶接剤(母材)、3・・・・
・・溶接金属、E・・・・・・溶接ワイヤ、H・・・・
・・開先深さ、F・・・・・・フラツクス、WB,WF
・・・・・・開先幅、P・・・・・・溶込み深さ、B.
P・・・・・・バツキングパス、F.P・・・・・・フ
イニツシングパス。
Figure 1 is a front sectional view schematically showing the groove shape in narrow gap latent arc welding of thick plates, and Figure 2 shows the relationship between the number of times flux passes through a flux recovery machine and the segregation and extraction of metal powder in the flux. The diagrams shown in FIGS. 3 to 8 are front sectional views showing the groove shapes used in the examples. 1 and 2... Welding material (base metal), 3...
...Welding metal, E...Welding wire, H...
... Groove depth, F... Flux, WB, WF
...... Groove width, P... Penetration depth, B.
P...Batting pass, F. P...Finishing pass.

Claims (1)

【特許請求の範囲】[Claims] 1 スラグ形成剤を構成する酸性成分としてAl_2O
_3とSiO_2、TiO_2、ZrO_2、MnOの
いずれか1種以上を合計15〜80%で、かつAl_2
O_35〜38%、SiO_2≦23%、TiO_2≦
25%、ZrO_2≦25%、MnO≦15%、塩基性
成分としてCaO、MgO、BaOのいずれか1種以上
を合計10〜50%で、かつCaO≦25%、MgO≦
35%、BaO≦30%、また金属弗化物を弗素に換算
して合計2.5〜15%、アルカリ金属化合物を酸化物
に換算して合計2〜5%、金属粉0.2〜3%を必須成
分(重量%)として含有する焼成型または焼結型フラッ
クスを用いて、開先形状をほぼI型、開先深さをHとし
、その開先底部間隔W_Bを6〜14mm、開先表面の
間隔W_Fを12mm以上で、かつW_B<W_F≦2
(H/25+7)とし、少なくとも開先間隔が18mm
以下のところまでは1層1パスで、その溶着厚さ=溶着
断面積/開先巾が3〜6mmで、溶接速度を単電極の場
合15〜40cm/min、2電極の場合20〜70c
m/minで溶接することを特徴とする狭開先潜孤溶接
法。
1 Al_2O as an acidic component constituting the slag forming agent
_3 and one or more of SiO_2, TiO_2, ZrO_2, MnO in a total of 15 to 80%, and Al_2
O_35-38%, SiO_2≦23%, TiO_2≦
25%, ZrO_2≦25%, MnO≦15%, a total of 10 to 50% of any one or more of CaO, MgO, and BaO as basic components, and CaO≦25%, MgO≦
35%, BaO≦30%, metal fluoride converted to fluorine, total 2.5-15%, alkali metal compound converted to oxide, total 2-5%, metal powder 0.2-3% Using a fired type or sintered type flux containing as an essential component (wt%), the groove shape is approximately I type, the groove depth is H, the groove bottom interval W_B is 6 to 14 mm, and the groove is The surface interval W_F is 12 mm or more, and W_B<W_F≦2
(H/25+7), and the groove spacing is at least 18mm.
The following steps are performed in one pass per layer, with the welding thickness = weld cross-sectional area / groove width being 3 to 6 mm, and the welding speed being 15 to 40 cm/min for single electrode, 20 to 70 cm for two electrodes.
A narrow gap latent arc welding method characterized by welding at m/min.
JP54026655A 1979-03-09 1979-03-09 Narrow gap submerged arc welding method Expired JPS5946716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54026655A JPS5946716B2 (en) 1979-03-09 1979-03-09 Narrow gap submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54026655A JPS5946716B2 (en) 1979-03-09 1979-03-09 Narrow gap submerged arc welding method

Publications (2)

Publication Number Publication Date
JPS55120488A JPS55120488A (en) 1980-09-16
JPS5946716B2 true JPS5946716B2 (en) 1984-11-14

Family

ID=12199438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54026655A Expired JPS5946716B2 (en) 1979-03-09 1979-03-09 Narrow gap submerged arc welding method

Country Status (1)

Country Link
JP (1) JPS5946716B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137195A (en) * 1983-01-28 1984-08-07 Kobe Steel Ltd Baked flux for submerged arc welding
JPS59212191A (en) * 1983-05-17 1984-12-01 Kawasaki Steel Corp Baked flux for narrow gap submerged arc welding
US4683011A (en) * 1986-08-28 1987-07-28 The Lincoln Electric Company High penetration, high speed, agglomerated welding flux
CN104384754B (en) * 2014-11-14 2016-09-07 天津市永昌焊丝有限公司 A kind of narrow gap welding submerged arc welding flux
CN109530967A (en) * 2018-12-25 2019-03-29 四川大西洋焊接材料股份有限公司 Mating submerged arc welding flux, welding wire and the preparation method of Q690QE bridge steel
CN111112880A (en) * 2019-12-31 2020-05-08 哈尔滨威尔焊接有限责任公司 Welding flux for heat-resistant steel narrow-gap submerged arc welding, preparation and welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370054A (en) * 1976-12-02 1978-06-22 Daido Steel Co Ltd Welding method of heat proof alloy and welding material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370054A (en) * 1976-12-02 1978-06-22 Daido Steel Co Ltd Welding method of heat proof alloy and welding material

Also Published As

Publication number Publication date
JPS55120488A (en) 1980-09-16

Similar Documents

Publication Publication Date Title
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
US5004884A (en) Method of submerged arc welding a thick steel plate with large heat input and submerged arc welding flux
CN1966199B (en) Flux cored wire for gas protection electrical arc welding
US4764224A (en) Baked flux for submerged arc welding
US4436562A (en) Basic bonded fluxes for submerged arc welding having an excellent removability of slag at a narrow groove
EP2061624B1 (en) Saw flux system for improved as-cast weld metal toughness
JPS5946716B2 (en) Narrow gap submerged arc welding method
JPH09277087A (en) Flux cored wire for arc welding
JP2005279768A (en) Flux cored wire for welding and weld joint for steel structure
JPH0557448A (en) Fillet welding method with high efficiency for thick steel plates
JP3114958B2 (en) High efficiency fillet welding method for thick steel plate
GB2155045A (en) Flux cored wire electrodes
KR102051960B1 (en) Tandem gas shielded arc welding wire
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP3765761B2 (en) Bond flux for submerged arc welding
JP2001205483A (en) Flux-containing wire for gas shield arc welding
JPH05237693A (en) Self-shielded arc welding flux cored wire for all-position welding
KR102114091B1 (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent hot cracking resistance
KR100347293B1 (en) Metal cored wire for high speed gas shield arc fillet welding with Twin-tandem welding method
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JPH0852572A (en) Gas shielded metal-arc welding method
KR101889711B1 (en) Flux composition for submerged arc welding
CN111644779B (en) Argon-rich shielded flux-cored wire suitable for backing welding of ceramic liner and application
JP3463333B2 (en) Large heat input multilayer submerged arc welding method for thick steel plate
KR100466204B1 (en) A flux composition for submerged arc welding