JPH05237693A - Self-shielded arc welding flux cored wire for all-position welding - Google Patents

Self-shielded arc welding flux cored wire for all-position welding

Info

Publication number
JPH05237693A
JPH05237693A JP12556992A JP12556992A JPH05237693A JP H05237693 A JPH05237693 A JP H05237693A JP 12556992 A JP12556992 A JP 12556992A JP 12556992 A JP12556992 A JP 12556992A JP H05237693 A JPH05237693 A JP H05237693A
Authority
JP
Japan
Prior art keywords
welding
flux
wire
weight
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12556992A
Other languages
Japanese (ja)
Other versions
JPH0771760B2 (en
Inventor
Yoshiya Sakai
芳也 酒井
Yasuhiro Nagai
保広 永井
Kazuo Ikemoto
和夫 池本
Tetsuo Suga
哲男 菅
Masaharu Sato
正晴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12556992A priority Critical patent/JPH0771760B2/en
Publication of JPH05237693A publication Critical patent/JPH05237693A/en
Publication of JPH0771760B2 publication Critical patent/JPH0771760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the flux cored wire for self-shielded arc welding which can yield a weld metal having various excellent mechanical performance (more particularly toughness) without weld defects, such as pits and lack of fusion, in all welding positions by specifying the component compsn. of the flux to be filled in a steel sheath. CONSTITUTION:This self-shielded arc welding flux cored wire for all position welding is constituted by filling the particulate flux contg. the following components as essential components at 15 to 30% (weight %, hereafter the same) of the total wire of the wire into the steel sheath: The compsn. consists of 32 to 70% BaF2, 1 to 30% fluoride of an alkaline metal, 1 to 30% multi component oxide consisting of the oxide of alkaline earth metals selected from a group consisting of Ca, Sr and Ba and the oxide of metals selected from a group consisting of Fe, Mn, Ni, Co, Ti, Al, Zr, 3 to 12% Al, 2 to 10% Mg, 0.5 to 10% Mn, 0.5 to 20% Ni and 0.1 to 4% Zr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセルフシールドアーク溶
接用フラックス入りワイヤに関し、特にピットや融合不
良等の溶接欠陥がなく且つ高靭性の溶接金属を全姿勢溶
接で得ることのできるフラックス入りワイヤに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flux-cored wire for self-shielding arc welding, and more particularly to a flux-cored wire which is free from welding defects such as pits and fusion defects and which has a high toughness and can be obtained by all-position welding. It is a thing.

【0002】[0002]

【従来の技術】フラックス入りワイヤとは金属鞘内にフ
ラックスを充填したものであり、ここで使用されるフラ
ックスの一般的組成はスラグ形成剤又はシールド剤とし
てのCaF2 、脱酸・脱窒剤としてのAl、脱酸・シー
ルド剤としてのMg等を主成分とするものである。この
フラックス入りワイヤを用いるときは、シールドガスや
フラックスを別途供給する必要がないので溶接作業性が
良く、且つ耐風性に優れている等種々の利点を有してい
る。
2. Description of the Related Art A flux-cored wire is a metal sheath filled with flux, and the general composition of the flux used here is CaF 2 as a slag forming agent or a shielding agent, a deoxidizing / denitrifying agent. As a main component, and Mg as a deoxidizing / shielding agent as a main component. When this flux-cored wire is used, it is not necessary to separately supply a shielding gas or flux, so that it has various advantages such as good welding workability and excellent wind resistance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら現在のと
ころその用途は土木・建築等における屋外溶接の特定分
野に限られており、十分に活用されているとは言い難
い。この様に用途が限定され、他分野への普及が遅れて
いる理由としては、次の様な欠点が挙げられる。 脱酸・脱窒剤として添加するAl及び脱酸・シールド
剤として添加するMg等に由来する高融点のMgOやA
23 が生成スラグの主成分となるので、特に多層溶
接に適用したときにスラグの巻込みを生じ易い。 溶着金属中に多量のAlが歩留る他、酸素の異常減少
(50〜100ppm程度)によって結晶粒が粗大化し
易く、良好な切欠靭性が得られない。 生成スラグ及び溶融金属の表面張力が大きすぎるの
で、立向上進姿勢や上向姿勢のときにビードが垂れ易く
なる。 適正アーク電圧範囲が狭く、電圧やワイヤ突出し長さ
を厳密に管理しなければピットやブローホールをなくす
ことができない。 充填フラックス成分として蒸気圧の高いMgやCaF
2 を多量使用するので、ヒューム発生量が多く作業環境
を著しく損なう。
However, at present, its use is limited to a specific field of outdoor welding in civil engineering, construction, etc., and it cannot be said that it is fully utilized. The following drawbacks can be cited as reasons why the application is limited and the spread to other fields is delayed. High melting point MgO and A derived from Al added as deoxidizing / denitrifying agent and Mg added as deoxidizing / shielding agent
Since l 2 O 3 is the main component of the produced slag, slag entrainment is likely to occur especially when applied to multilayer welding. In addition to a large amount of Al retained in the deposited metal, abnormal reduction of oxygen (about 50 to 100 ppm) tends to cause coarsening of crystal grains, and good notch toughness cannot be obtained. Since the surface tensions of the generated slag and the molten metal are too large, the beads are likely to droop in the upright posture and the upward posture. The proper arc voltage range is narrow, and pits and blow holes cannot be eliminated unless the voltage and wire protrusion length are strictly controlled. Mg and CaF with high vapor pressure as the filling flux component
Since a large amount of 2 is used, the amount of fumes generated is large and the working environment is significantly impaired.

【0004】[0004]

【課題を解決するための手段】本発明者等は上記の様な
フラックス入りワイヤの欠点を解消し、その最大の特長
である優れた耐風性を幅広く活用できる様にしようとし
て鋭意研究を進めてきた。本発明はこうした研究の結果
完成したものであって、その構成は、鋼製鞘内に、下記
の成分を必須成分として含有する粉粒状フラックスを、
ワイヤ全重量に対して15〜30%(重量%:以下同
じ)充填してなるところに要旨が存在する。 BaF2 :32〜70% アルカリ金属のふっ化物:30% Ca,Sr及びBaよりなる群から選択されるアルカリ
土類金属の酸化物と、Fe,Mn,Ni,Co,Ti,
Al,Zrよりなる群から選択される金属の酸化物との
複合酸化物:1〜30% Al:3〜12% Mg:2〜10% Mn:0.5〜10% Ni:0.5〜20% Zr:0.1〜4%
[Means for Solving the Problems] The inventors of the present invention have eagerly studied to solve the above-mentioned drawbacks of the flux-cored wire and to make it possible to widely utilize the excellent wind resistance, which is the greatest feature of the flux-cored wire. It was The present invention has been completed as a result of these studies, and its constitution is a powdery and granular flux containing the following components as essential components in a steel sheath,
The gist is that the wire is filled in an amount of 15 to 30% (weight%: the same hereinafter) with respect to the total weight of the wire. BaF 2: 32 to 70% alkali metal fluoride: 30% Ca, and oxides of alkaline earth metal selected from the group consisting of Sr and Ba, Fe, Mn, Ni, Co, Ti,
Composite oxide with oxide of metal selected from the group consisting of Al and Zr: 1 to 30% Al: 3 to 12% Mg: 2 to 10% Mn: 0.5 to 10% Ni: 0.5 to 20% Zr: 0.1-4%

【0005】[0005]

【作用】以下本発明において粉粒状フラックスの含有成
分を定めた理由を詳細に説明する。まず主なスラグ形成
々分としてBaF2 を32〜70%含有させる。即ちB
aF2 は、スラグ形成剤として一般に使用されているC
aF2 やSrF2 等に比べて溶滴移行性及びシールド性
が良好であると共に、立向上進姿勢における溶融金属の
垂れ落ちを抑制する作用があり、こうした特徴は直流正
極性の場合に特に顕著に発揮される。BaF2 が32%
未満ではこれらの特徴が有効に発揮されず、一方70%
を越えるとスラグ生成量が過剰になりスラグ巻込み等の
溶接欠陥が発生し易くなる他溶接作業性も低下する。
The reason why the components contained in the powdery and granular flux are determined in the present invention will be described in detail below. First, 32 to 70% of BaF 2 is added as the main slag forming component. That is, B
aF 2 is C which is commonly used as a slag former.
Compared to aF 2 and SrF 2, it has better droplet transfer and shielding properties, and also has the effect of suppressing the drooling of the molten metal in the upright posture. These characteristics are particularly remarkable in the case of DC positive polarity. To be demonstrated. 32% of BaF 2
If less than 70%, these characteristics are not effectively exhibited, while 70%
If it exceeds the range, the amount of slag produced becomes excessive, welding defects such as slag inclusion are likely to occur, and the welding workability also deteriorates.

【0006】ところでBaF2 は、スラグ形成剤として
の性能からすれば次の様な欠点を有している。即ちBa
2 は従来のCaF2 やSrF2 等に比べて溶込みを浅
くする性質があり、しかも後述の脱酸剤・脱窒剤として
添加されるAlやMgの反応生成物であるAl23
MgOと共に高融点のスラグを形成する為、スラグの巻
込みや融合不良等の溶接欠陥を生じ易く、しかもビード
の光沢及び外観も良好とは言えない。こうしたBaF2
の欠点を改良する為、本発明では適量のアルカリ金属
ふっ化物及び、アルカリ土類金属酸化物と後述する金
属酸化物との複合酸化物の2者を併用する。
By the way, BaF 2 has the following drawbacks in view of its performance as a slag forming agent. That is Ba
F 2 has a property of making the penetration shallower than conventional CaF 2 and SrF 2 , and moreover, Al 2 O 3 which is a reaction product of Al and Mg added as a deoxidizing agent / denitrifying agent described later. Since a slag with a high melting point is formed together with MgO and MgO, welding defects such as slag entrainment and fusion failure are likely to occur, and the gloss and appearance of the beads cannot be said to be good. Such BaF 2
In order to improve the above-mentioned drawback, in the present invention, an appropriate amount of alkali metal fluoride and a composite oxide of an alkaline earth metal oxide and a metal oxide described later are used in combination.

【0007】まずアルカリ金属(Li,K,Na等)ふ
っ化物は、生成スラグの融点及び粘性を調整すると共に
アーク力を強く且つ安定化して溶込みを深くし、スラグ
の巻込み及び融合不良等の欠陥を抑える機能を果たす。
こうした機能を確保する為には1%以上含有させなけれ
ばならないが、30%を越えるとスラグの流動性が過大
となって被包性が低下しビード外観が悪化すると共に、
スラグが異常に強く固着して剥離性が悪くなり、更には
立向姿勢や上向姿勢でスラグ及び溶融金属の垂れ落ちが
著しくなる。尚フラックス中の水分は溶接金属に気孔を
発生させる原因となるので、アルカリ金属ふっ化物とし
ては難吸湿性のNa2 ZrF6 ,K2 SiF6 ,K2
rF6 ,LiF,LiBaF3 等が最適である。
First, the alkali metal (Li, K, Na, etc.) fluoride adjusts the melting point and viscosity of the produced slag, strengthens and stabilizes the arc force to deepen the penetration, and causes slag inclusion and fusion failure. Fulfills the function of suppressing defects.
In order to secure such a function, the content must be 1% or more, but if it exceeds 30%, the fluidity of the slag becomes excessive, the encapsulation property deteriorates, and the bead appearance deteriorates.
The slag abnormally strongly adheres and the releasability deteriorates, and further, the slag and the molten metal droop down significantly in the upright position and the upright position. Since the water content in the flux causes the generation of pores in the weld metal, Na 2 ZrF 6 , K 2 SiF 6 , and K 2 Z, which are hardly hygroscopic as an alkali metal fluoride, are used.
rF 6 , LiF, LiBaF 3 etc. are most suitable.

【0008】次にCa,Sr及びBaよりなる群から選
択されるアルカリ土類金属酸化物と、Fe,Mn,N
i,Co,Ti,Al,Zrよりなる群から選択される
金属の酸化物との複合酸化物は、ビードの外観及び光沢
を改善し且つスラグシールド効果を高めると共に、Al
やMg等の強力脱酸剤により過剰に脱酸された溶着金属
に酸素を補給して切欠靭性を高める作用があり、これら
の機能を有効に発揮させる為には上記複合酸化物を1%
以上含有させなければならない。しかし30%を越える
と溶滴が大きくなってスパッタが多発すると共にスラグ
の剥離性も悪化する。
Next, an alkaline earth metal oxide selected from the group consisting of Ca, Sr and Ba, and Fe, Mn, N
A composite oxide with an oxide of a metal selected from the group consisting of i, Co, Ti, Al and Zr improves the appearance and gloss of beads and enhances the slag shield effect, and
Oxygen is added to the weld metal excessively deoxidized by a strong deoxidizer such as Mg or Mg to enhance notch toughness. In order to effectively exhibit these functions, 1% of the above composite oxide is used.
The above must be contained. However, if it exceeds 30%, the droplets become large and spatter frequently occurs, and the slag removability deteriorates.

【0009】ところで前述のアルカリ土類金属酸化物は
空気中で吸湿したりCO2 を吸収し易く且つ高融点であ
るので、これを単独で使用すると気孔及びスラグ巻込み
等の溶接欠陥を起こし易く、スパッタも多発する。しか
しこれと前述の金属酸化物との間で複合酸化物を形成さ
せると難吸湿性で安定な化合物となり、またFe,Mn
の酸化物との複合酸化物はアルカリ土類金属酸化物単体
よりも融点が低くなる。これらの複合酸化物はMxy
z の一般式(式中MはCa,Sr,Baのいずれか、
NはFe,Mn,Ni,Co,Ti,Al,Zrのいず
れか、x,y及びzは正数を示す)で表わすことがで
き、例えばMがCaである複合酸化物としてはCaFe
24 ,Ca2 FeO5 ,Ca2 MnO4 ,CaMn2
4 ,CaMn310等が、MがSrである複合酸化物
としてはSr2 FeO4 ,Sr7 Fe1022,SrFe
2.5 ,Sr2 Fe25 ,Sr3 SiO5 ,SrSi
3,SrMnO3 ,Sr2 MnO4 ,Sr3 Mn27
,SrNiO3 ,SrTiO3 ,Sr3 Al26
Sr2 ZrO4 等が、またMがBaである複合酸化物と
してはBaFe24 ,Ba(MnO4)2 ,Ba3 Ni
4 ,BaSiO4 ,BaSiO3 ,Ba3 SiO4
が、夫々代表的なものとして例示される。ただし、Si
を含有する複合酸化物は、強力脱酸剤であるAl,Mg
により還元されて、溶着金属にSiとして歩留り、フェ
ライト結晶組織を粗大化して靭性を低下させるので本発
明の必須元素としなかった。
By the way, the above-mentioned alkaline earth metal oxide easily absorbs moisture in the air and absorbs CO 2 and has a high melting point. Therefore, when it is used alone, welding defects such as pores and slag inclusion are likely to occur. Also, spatter frequently occurs. However, when a complex oxide is formed between this and the above-mentioned metal oxide, it becomes a hardly hygroscopic and stable compound, and Fe, Mn
The composite oxide with the above oxide has a lower melting point than the alkaline earth metal oxide alone. These complex oxides are M x N y
The general formula of O z (wherein M is Ca, Sr, or Ba,
N can be represented by any of Fe, Mn, Ni, Co, Ti, Al, and Zr, and x, y, and z are positive numbers. For example, CaFe is a composite oxide in which M is Ca.
2 O 4 , Ca 2 FeO 5 , Ca 2 MnO 4 , CaMn 2
O 4 , CaMn 3 O 10, etc. are Sr 2 FeO 4 , Sr 7 Fe 10 O 22 , SrFe as complex oxides in which M is Sr.
O 2.5 , Sr 2 Fe 2 O 5 , Sr 3 SiO 5 , SrSi
O 3 , SrMnO 3 , Sr 2 MnO 4 , Sr 3 Mn 2 O 7
, SrNiO 3 , SrTiO 3 , Sr 3 Al 2 O 6 ,
Sr 2 ZrO 4, etc., and BaFe 2 O 4 , Ba (MnO 4 ) 2 , Ba 3 Ni as complex oxides in which M is Ba.
O 4 , BaSiO 4 , BaSiO 3 , Ba 3 SiO 4 and the like are illustrated as typical examples. However, Si
Is a strong deoxidizer for Al and Mg.
It is not included as an essential element of the present invention because it is reduced by the above method and remains in the deposited metal as Si, and the ferrite crystal structure is coarsened to lower the toughness.

【0010】Alは強力脱酸剤及び脱窒剤としてまた窒
素固定剤として不可欠の元素であり、大気中から侵入す
る酸素や窒素を捕捉して気孔の発生を防止する。こうし
たAlの効果を発揮させる為にはフラックス中に3%以
上含有させなければならないが、多すぎると溶着金属中
に過剰量のAlが歩留って晶粒が粗大化し脆弱になるの
で12%以下に抑えるべきである。尚Al源としては金
属Alの他、Fe−Al,Al−Mg,Al−Li等の
Al合金を使用することもできる。
Al is an indispensable element as a strong deoxidizing agent and denitrifying agent and as a nitrogen fixing agent, and traps oxygen and nitrogen invading from the atmosphere to prevent generation of pores. In order to exert such an effect of Al, it is necessary to contain 3% or more in the flux, but if too much is added, an excessive amount of Al is retained in the deposited metal and the crystal grains become coarse and fragile. It should be kept below. As the Al source, Al alloys such as Fe-Al, Al-Mg, and Al-Li can be used in addition to metallic Al.

【0011】Mgは強力な脱酸機能を有する他、アーク
熱によって容易に金属蒸気となり優れたシールド効果を
発揮する。Mg量が2%未満ではこうした効果が十分に
発揮されず、しかも併用するAlの歩留りが低下してA
lの脱窒効果及び窒素固定効果が十分に発揮されなくな
る。しかし多すぎるとヒューム発生量が著しく増加して
溶融池の観察が困難になると共に作業環境を汚染し、ま
たスパッタの増大及びスラグの粘性増大による被包性の
悪化を招くので10%以下に抑えるべきである。尚Mg
源としては金属Mgを使用することも可能であるが、こ
れはアーク熱によって気化が爆発的に進行しスパッタが
多発する傾向があるので、Al−Mg,Mg−Si,M
g−Si−Ca,Ni−Mg,Li−Mg等のMg合金
として含有させるのがよい。
In addition to having a strong deoxidizing function, Mg easily becomes a metal vapor by arc heat and exhibits an excellent shielding effect. If the amount of Mg is less than 2%, such effects are not sufficiently exhibited, and the yield of Al used in combination decreases, and
The denitrifying effect and nitrogen fixing effect of 1 cannot be fully exerted. However, if the amount is too large, the amount of fumes increases significantly, making it difficult to observe the molten pool, contaminating the work environment, and deteriorating the encapsulation due to an increase in spatter and viscosity of the slag. Should be. Incidentally Mg
It is also possible to use metallic Mg as a source, but this tends to cause explosive vaporization due to arc heat and frequent spattering, so Al-Mg, Mg-Si, M
It is preferable to contain it as a Mg alloy such as g-Si-Ca, Ni-Mg, and Li-Mg.

【0012】Mnは溶着金属の強度を高めると共に、溶
融金属の表面張力を下げてビード形状を整える作用もあ
り、少なくとも0.5%含有させなければならない。し
かし10%を越えると溶着金属の強度が過大になって延
性や耐割れ性が乏しくなる。Mn源としては金属Mnや
Fe−Mn,Fe−Si−Mn等のMn合金が使用され
るが、この他のMnOやMnO2 等の酸化物更にはLi
2 MnO3 ,SrMnO3 ,Ba(MnO4 )の様な複
合酸化物もMn源として使用することもできる。その理
由は、本発明で使用するフラックス中には、Mnよりも
酸素との親和力の大きい元素(AlやMg)が多量含ま
れているので、Mn酸化物は脱酸を受けて金属Mnに変
換されるからである。
Mn not only enhances the strength of the deposited metal, but also lowers the surface tension of the molten metal to adjust the bead shape, so that Mn must be contained in at least 0.5%. However, if it exceeds 10%, the strength of the deposited metal becomes excessive and ductility and crack resistance become poor. As the Mn source, metallic Mn and Mn alloys such as Fe-Mn and Fe-Si-Mn are used, but other oxides such as MnO and MnO 2 and further Li.
Complex oxides such as 2 MnO 3 , SrMnO 3 , Ba (MnO 4 ) can also be used as the Mn source. The reason is that the flux used in the present invention contains a large amount of elements (Al and Mg) having a greater affinity for oxygen than Mn, so the Mn oxide is deoxidized and converted to metallic Mn. Because it is done.

【0013】Niはオーステナイト生成元素であり、多
量のAlの歩留りによるフラックス結晶粒の粗大化を抑
制し溶融金属の切欠靭性を高める作用がある。こうした
効果は0.5%以上の配合で有効に発揮されるが、20
%を越えると強度が過大になって耐割れ性が乏しくな
る。Ni源としては金属Niの他、Fe−Ni−Cr,
Ni−Mg等のNi合金、あるいはNiO,Ba2 Ni
4 等の酸化物,複合酸化物が挙げられる。
Ni is an austenite forming element, and has an action of suppressing coarsening of flux crystal grains due to the yield of a large amount of Al and enhancing the notch toughness of the molten metal. Such an effect is effectively exhibited in a composition of 0.5% or more, but 20
If it exceeds%, the strength becomes excessive and the crack resistance becomes poor. As the Ni source, in addition to metallic Ni, Fe-Ni-Cr,
Ni alloy such as Ni-Mg, or NiO, Ba 2 Ni
Examples thereof include oxides such as O 4 and complex oxides.

【0014】Zrは溶着金属の結晶粒を微細化すると共
に侵入した窒素を固定して切欠靭性を改善する作用を有
しており、これらの効果は0.1%以上の添加で有効に
発揮されるが、4%を越えるとスラグの焼付きが著しく
なって剥離性が悪化する他、切欠靭性もかえって低下す
る。ちなみに図1は、BaF2 :50%,LiF:3.
5%,SrMnO3 :6%,Al:9.2%,Mg:7
%,Mn:0.5%,Ni:5%,残部Feよりなる基
本組成のフラックスに、ZrをFe−Zr(Zr:30
%)の形で0.1〜5%配合した粉粒状フラックスを、
軟鋼製鞘内にワイヤ全重量に対して20%充填し伸線加
工して得た1.6mmφのフラックス入りワイヤを用いて
溶接実験を行ない、フラックス中のZr量と切欠靭性の
関係を調べたものである。尚溶接試験条件は次の通りで
あった。
Zr has the function of refining the crystal grains of the deposited metal and fixing the invading nitrogen to improve the notch toughness, and these effects are effectively exhibited by the addition of 0.1% or more. However, if it exceeds 4%, seizure of the slag becomes remarkable, the peelability deteriorates, and the notch toughness rather deteriorates. By the way, FIG. 1 shows BaF 2 : 50%, LiF: 3.
5%, SrMnO 3 : 6%, Al: 9.2%, Mg: 7
%, Mn: 0.5%, Ni: 5%, balance Fe with Zr added to Fe-Zr (Zr: 30
%) In the form of 0.1-5%,
Welding experiments were conducted using a flux-cored wire of 1.6 mmφ obtained by drawing 20% of the total weight of the wire in a mild steel sheath and wire drawing, and investigated the relationship between the Zr content in the flux and the notch toughness. It is a thing. The welding test conditions were as follows.

【0015】[試験条件] 母材:SM−50A,板厚19mm 溶接姿勢:下向き、7層13バス 溶接電流:250A、DC(−) 溶接電圧:21V 溶接速度:15〜22cm/分 ワイヤ突出長さ:25mm 切欠靭性試験:JIS Z3112の2mmVノッチシ
ャルピー試験法
[Test Conditions] Base material: SM-50A, plate thickness 19 mm, welding position: downward, 7 layers 13 baths, welding current: 250 A, DC (-) welding voltage: 21 V, welding speed: 15-22 cm / min, wire protrusion length S: 25 mm Notch toughness test: 2 mm V notch Charpy test method of JIS Z3112

【0016】図1からも明らかな様に、Zrをフラック
ス中に0.1〜4%配合すると切欠靭性が著しく改善さ
れる。尚Zr源としてはFe−Zr,Zr−Si等の合
金やK2 ZrF6 ,Na2 ZrF6 等のふっ化物、ある
いはZrO2 ,ZrSiO4(ジルコンサンド),Li2
ZrO3 等の酸化物,複合酸化物が挙げられる。
As is clear from FIG. 1, notch toughness is remarkably improved by incorporating Zr in the flux in an amount of 0.1 to 4%. Note The Zr source Fe-Zr, Zr-Si or the like of the alloy or K 2 ZrF 6, fluoride such as Na 2 ZrF 6 or ZrO 2, ZrSiO 4, (zircon sand), Li 2
Examples thereof include oxides such as ZrO 3 and complex oxides.

【0017】本発明で使用するフラックスの必須成分は
上記の通りであるが、特に海洋構造物の様な低温靭性
[一般に(−10)〜(−60)℃]が要求される分野
に適用する場合は、更にTi:0.01〜0.5%、
B:0.01〜0.2%を配合し、またCe等の希土類
元素を配合することも効果的である。以下これらの副配
合成分についても簡単に説明を加える。
The essential components of the flux used in the present invention are as described above, but are particularly applied to fields requiring low temperature toughness [generally (-10) to (-60) ° C] such as offshore structures. In the case of Ti: 0.01 to 0.5%,
B: It is also effective to add 0.01 to 0.2%, and to add a rare earth element such as Ce. A brief description of these sub-compounding components is given below.

【0018】Tiは極めて少量で切欠靭性を高める作用
があり、その効果は0.01%以上で有効に発揮され
る。この場合前述した範囲のZrや0.01〜0.2%
のBと併用するとその効果は一段と顕著になる。但しT
i量が0.5%を越えるとスラグの焼付きが著しくな
り、ビード外観及び溶接能率が悪化する。尚Ti源とし
ては金属Ti,Fe−Ti等の合金の他、TiO2 やT
23 等の酸化物、あるいはLi2 TiO3 ,CaT
24 ,CaTiO3 等の複合酸化物を使用すること
もできる。
Ti has an action of enhancing notch toughness with an extremely small amount, and its effect is effectively exhibited at 0.01% or more. In this case, Zr in the range described above or 0.01 to 0.2%
When used in combination with B, the effect becomes more remarkable. However, T
If the amount of i exceeds 0.5%, seizure of the slag becomes remarkable, and the bead appearance and welding efficiency deteriorate. As the Ti source, in addition to metal Ti, alloys such as Fe-Ti, TiO 2 and T
Oxides such as i 2 O 3 or Li 2 TiO 3 , CaT
It is also possible to use a complex oxide such as i 2 O 4 or CaTiO 3 .

【0019】Bは単独では切欠靭性改善効果を殆ど示さ
ないが、前述の様に適量のTiと併用することによって
Tiの効果を助長する働きがある。こうした効果は0.
01%以上の配合で有効に発揮されるが、0.2%を越
えると焼入れ硬化によって耐割れ性が低下し、切欠靭性
も乏しくなる。B源としてはFe−B等の合金やB23
等の酸化物、あるいはLi247 ,Na247
等の複合酸化物が挙げられる。
Although B alone exhibits almost no notch toughness improving effect, it has a function of promoting the effect of Ti when used in combination with an appropriate amount of Ti as described above. Such an effect is 0.
When the content is more than 01%, it is effectively exhibited, but when it exceeds 0.2%, the quenching hardening lowers the crack resistance and the notch toughness becomes poor. As a B source, an alloy such as Fe-B or B 2 O 3
Oxides such as Li 2 B 4 O 7 , Na 2 B 4 O 7
And other complex oxides.

【0020】この他フラックス中には、スラグ形成剤と
してAl23 ,MgO,FeO,Fe23 ,Na2
O,K2 O,LiFeO2 ,Li2 MnO3 ,Li2
iO3 ,SiO2 等の酸化物やCaF2 ,SrF2 ,M
gF2 ,NaF,Na3 AlF6 ,Na2 SiF6 等の
ふっ化物、更にはLi2 CO3 ,Na2 CO3 ,BaC
3 ,CaCO3 ,MgCO3 ,SrCO3 ,MnCO
3 等の炭酸塩を配合することができ、又、溶接金属の高
温強度等の機械的性質や耐食性を改善する為にCr,M
o,Cu,Nb,V,Co,P等の元素を配合すること
もできる。
In addition to the above, the flux contains Al 2 O 3 , MgO, FeO, Fe 2 O 3 and Na 2 as slag forming agents.
O, K 2 O, LiFeO 2 , Li 2 MnO 3 , Li 2 S
Oxides such as iO 3 , SiO 2 and CaF 2 , SrF 2 , M
Fluorides such as gF 2 , NaF, Na 3 AlF 6 and Na 2 SiF 6 , as well as Li 2 CO 3 , Na 2 CO 3 and BaC.
O 3 , CaCO 3 , MgCO 3 , SrCO 3 , MnCO
Carbonates such as 3 can be added, and Cr, M are added to improve mechanical properties such as high temperature strength of weld metal and corrosion resistance.
Elements such as o, Cu, Nb, V, Co and P can also be blended.

【0021】以上、鋼製鞘内に充填するフラックス組成
について説明したが、それら各成分の効果を有効に発揮
させる為にはフラックスの充填率も極めて重要であり、
ワイヤ全重量に対する充填量が15〜30%の範囲とな
る様に充填率を設定しなければならない。即ち充填率が
15%未満では先に規定したフラックス構成々分の個々
の含有量が不足する為に満足な効果を得ることができ
ず、一方30%を越えると溶着金属中のAl等の合金量
が過剰になって目標程度の機械的性質が得られなくなっ
たり、あるいは生成スラグ量が過大になってスラグの巻
込みが著しくなったり溶接作業性が低下する等の問題が
現われる。
The flux composition to be filled in the steel sheath has been described above, but the flux filling rate is also extremely important in order to effectively bring out the effects of these components.
The filling rate must be set so that the filling amount with respect to the total weight of the wire is in the range of 15 to 30%. That is, if the filling rate is less than 15%, a satisfactory effect cannot be obtained because the individual contents of the flux components defined above are insufficient, while if it exceeds 30%, alloys such as Al in the weld metal are not obtained. There is a problem that the amount becomes excessive and the desired mechanical properties cannot be obtained, or the amount of generated slag becomes too large, the slag is significantly involved, and the welding workability is deteriorated.

【0022】鋼製鞘の材質としては軟鋼が最も一般的で
あるが、用途によっては低合金鋼や高合金鋼等を使用す
ることもでき、またその断面構造も特に限定されない
が、2mmφ以下の細径の場合は比較的単純な円筒形の
ものが、また2.4〜4mmφ程度の太径ワイヤの場合
は鞘材を内部へ複雑に折り込んだ構造のものが一般的で
ある。
Mild steel is the most common material for the steel sheath, but low-alloy steel, high-alloy steel, etc. can be used depending on the application, and the cross-sectional structure is not particularly limited, but it is 2 mmφ or less. In the case of a small diameter, a relatively simple cylindrical shape is used, and in the case of a large diameter wire of about 2.4 to 4 mmφ, a structure in which a sheath material is complicatedly folded inside is generally used.

【0023】[0023]

【発明の効果】本発明は概略以上の様に構成されてお
り、特に鋼製鞘内へ充填するフラックスの成分組成を特
定することによって、ピットや融合不良等の溶接欠陥が
なく且つ機械的諸特性(特に靭性)の優れた溶接金属を
あらゆる溶接姿勢で得ることのできるセルフシールドア
ーク溶接用フラックス入りワイヤを提供し得ることにな
った。次に実施例を挙げて本発明の効果を明確にする。
EFFECTS OF THE INVENTION The present invention is configured as described above, and in particular, by specifying the composition of the flux to be filled in the steel sheath, there are no welding defects such as pits and fusion defects, and mechanical properties are eliminated. It has become possible to provide a flux-cored wire for self-shielded arc welding, which makes it possible to obtain a weld metal having excellent properties (particularly toughness) in all welding positions. Next, the effects of the present invention will be clarified with reference to examples.

【0024】[0024]

【実施例】【Example】

実施例1 表1に示す化学成分の鋼製鞘内に、表2に示す成分組成
の粉粒状フラックスを充填(充填率20%)して伸線加
工し、2mmφのフラックス入りワイヤを製造した。得
られたワイヤを用いて下記の条件で溶接実験を行なっ
た。結果を表3および表4に示す。
Example 1 A steel sheath having the chemical composition shown in Table 1 was filled with a powdery granular flux having the composition shown in Table 2 (filling rate 20%), and wire drawing was performed to produce a 2 mmφ flux-cored wire. A welding experiment was conducted using the obtained wire under the following conditions. The results are shown in Tables 3 and 4.

【0025】[溶接条件] 試験板:JIS G3106,SM−50A,板厚45
mm×長さ500mm 開先形状:X開先(図2) 溶接電流:250(A),DO[ワイヤ(−)] 溶接電圧:21〜22(V) 溶接速度:13〜24(cm/分) ワイヤ突出長さ:20〜25(mm) 累層法:表・裏側共に8層14パス 溶接姿勢:下向 裏はつり:アークエアガウジング後グラインダで黒皮除
[Welding conditions] Test plate: JIS G3106, SM-50A, plate thickness 45
mm x length 500 mm Groove shape: X groove (Fig. 2) Welding current: 250 (A), DO [wire (-)] Welding voltage: 21-22 (V) Welding speed: 13-24 (cm / min) ) Wire protrusion length: 20-25 (mm) Formation method: 8 layers 14 passes for both front and back sides Welding position: Downward Back chipping: Black skin removed with grinder after arc air gouging

【0026】[試験法] 引張時間:JIS Z3111 衝撃試験:JIS Z3112 側曲げ試験:JIS Z3122 超音波探傷試験:JIS Z3060[Test Method] Tensile time: JIS Z3111 Impact test: JIS Z3112 Side bending test: JIS Z3122 Ultrasonic flaw detection test: JIS Z3060

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】*1 引張試験片:機械加工後試験前に1
00℃×24時間エージング処理 *2 側曲げ試験:曲げ角度180°、曲げ半径19m
m *3 超音波探傷試験:ブローホールについては総個数
を、またスラグ巻・融合不良については総長さを示す。 *4 溶接作業性の評価 ◎:優,○:良,△:不良 溶接電流×溶接電圧:下向姿勢250A×21V 立向姿勢170A×20V その他の溶接条件は下向継手溶接の条件に同じ。
* 1 Tensile test piece: 1 after machining before testing
Aging treatment at 00 ° C for 24 hours * 2 Side bending test: bending angle 180 °, bending radius 19m
m * 3 Ultrasonic flaw detection test: Total number of blowholes and total length of slag winding / fusion failure. * 4 Evaluation of welding workability ◎: Excellent, ○: Good, △: Poor Welding current × Welding voltage: Downward attitude 250A × 21V Vertical attitude 170A × 20V Other welding conditions are the same as those of downward joint welding.

【0032】実施例2〜8および比較例 表1に示す化学成分の鋼製鞘内に、表5に示す成分組成
の粉粒状フラックスを充填(充填率20%)して伸線加
工し、1.6mmφのフラックス入りワイヤを製造し
た。得られたワイヤを用いて下記の条件で溶接実験を行
なった。結果を表6に示す。 [溶接条件] 母材:SM−50A,板厚19mm 溶接姿勢:下向き、7層13バス 溶接電流:250A、DC(−) 溶接電圧:21V 溶接速度:15〜22cm/分 ワイヤ突出長さ:25mm 切欠靭性試験:JIS Z3112の2mmVノッチシ
ャルピー試験法
Examples 2 to 8 and Comparative Example A steel sheath having the chemical composition shown in Table 1 was filled with a powdery granular flux having the composition shown in Table 5 (filling rate 20%), and wire drawing was carried out. A flux-cored wire having a diameter of 0.6 mm was manufactured. A welding experiment was conducted using the obtained wire under the following conditions. The results are shown in Table 6. [Welding conditions] Base material: SM-50A, plate thickness 19 mm Welding position: downward, 7 layers 13 baths Welding current: 250 A, DC (-) Welding voltage: 21 V Welding speed: 15-22 cm / min Wire protrusion length: 25 mm Notch toughness test: JIS Z3112 2 mm V notch Charpy test method

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】*1 引張試験片:機械加工後試験前に1
00℃×24時間エージング処理 *4 溶接作業性の評価 ◎:優,○:良,△:不良 溶接電流×溶接電圧:下向姿勢250A×21V 立向姿勢170A×20V その他の溶接条件は下向継手溶接の条件に同じ。
* 1 Tensile test piece: 1 after machining before testing
00 ℃ × 24 hours aging treatment * 4 Welding workability evaluation ◎: Excellent, ○: Good, △: Poor Welding current × Welding voltage: Downward posture 250A × 21V Vertical posture 170A × 20V Other welding conditions are downward Same as the conditions for joint welding.

【0036】表3、4、6からも明らかな様に、本発明
で規定する要件を充足するワイヤ(実施例)を用いた場
合は、溶接作業性が良好でブローホールやスラグ巻込
み、融合不良等の欠陥がなく、溶着金属の機械的性質も
良好である。中でもフラックス中に適量のTi及びZr
を配合したワイヤ(実施例1)を用いて得た溶着金属の
低温(−30℃)切欠靭性は極めて優れている。これに
対し本発明の要件を欠く比較ワイヤを用いた場合は、溶
接作業性や機械的性質が劣悪であり、本発明の目的を達
成することができない。
As is clear from Tables 3, 4, and 6, when a wire (embodiment) satisfying the requirements specified in the present invention is used, the welding workability is good and blowholes, slag inclusion, and fusion are performed. There are no defects such as defects, and the mechanical properties of the deposited metal are good. Above all, appropriate amount of Ti and Zr in the flux
The low temperature (−30 ° C.) notch toughness of the deposited metal obtained by using the wire (Example 1) in which the above was compounded is extremely excellent. On the other hand, when the comparative wire lacking the requirements of the present invention is used, the welding workability and mechanical properties are poor, and the object of the present invention cannot be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】フラックス中のZr量と衝撃値の関係を示す実
験グラフである。
FIG. 1 is an experimental graph showing the relationship between the amount of Zr in flux and the impact value.

【図2】溶接実験で採用した開先形状を示す図である。FIG. 2 is a view showing a groove shape adopted in a welding experiment.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年5月18日[Submission date] May 18, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】[0004]

【課題を解決するための手段】本発明者等は上記の様な
フラックス入りワイヤの欠点を解消し、その最大の特長
である優れた耐風性を幅広く活用できる様にしようとし
て鋭意研究を進めてきた。本発明はこうした研究の結果
完成したものであって、その構成は、鋼製鞘内に、下記
の成分を必須成分として含有する粉粒状フラックスを、
ワイヤ全重量に対して15〜30%(重量%:以下同
じ)充填してなるところに要旨が存在する。 BaF2 :32〜70% アルカリ金属のふっ化物:1〜30% Ca,Sr及びBaよりなる群から選択されるアルカリ
土類金属の酸化物と、Fe,Mn,Ni,Co,Ti,
Al,Zrよりなる群から選択される金属の酸化物との
複合酸化物:1〜30% Al:3〜12% Mg:2〜10% Mn:0.5〜10% Ni:0.5〜20% Zr:0.1〜4%
[Means for Solving the Problems] The inventors of the present invention have eagerly studied to solve the above-mentioned drawbacks of the flux-cored wire and to make it possible to widely utilize the excellent wind resistance, which is the greatest feature of the flux-cored wire. It was The present invention has been completed as a result of these studies, and its constitution is a powdery and granular flux containing the following components as essential components in a steel sheath,
The gist is that the wire is filled in an amount of 15 to 30% (weight%: the same hereinafter) with respect to the total weight of the wire. BaF 2: 32 to 70% alkali metal fluoride: an oxide of 1 to 30% Ca, alkaline earth metal selected from the group consisting of Sr and Ba, Fe, Mn, Ni, Co, Ti,
Composite oxide with oxide of metal selected from the group consisting of Al and Zr: 1 to 30% Al: 3 to 12% Mg: 2 to 10% Mn: 0.5 to 10% Ni: 0.5 to 20% Zr: 0.1-4%

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】図1からも明らかな様に、Zrをフラック
ス中に0.1〜4%配合すると切欠靭性が著しく改善さ
れる。尚Zr源としてはFe−Zr,Zr−Si等の合
金が挙げられる。
As is clear from FIG. 1, notch toughness is remarkably improved by incorporating Zr in the flux in an amount of 0.1 to 4%. Examples of the Zr source include alloys such as Fe-Zr and Zr-Si.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】[0033]

【表5】 [Table 5]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】[0034]

【表6】 [Table 6]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼製鞘内に、下記の成分を必須成分とし
て含有する粉粒状フラックスを、ワイヤ全重量に対して
15〜30重量%充填してなることを特徴とする全姿勢
溶接用セルフシールドアーク溶接フラックス入りワイ
ヤ。 BaF2 :32〜70重量% アルカリ金属のふっ化物:1〜30重量% Ca、Sr及びBaよりなる群から選択されるアルカリ
土類金属の酸化物と、Fe,Mn,Ni,Co,Ti,
Al,Zrよりなる群から選択される金属の酸化物との
複合酸化物:1〜30重量% Al:3〜12重量% Mg:2〜10重量% Mn:0.5〜10重量% Ni:0.5〜20重量% Zr:0.1〜4重量%
1. A self-positioning tool for all-position welding, characterized in that a steel sheath is filled with 15 to 30% by weight of a powdery or granular flux containing the following components as essential components with respect to the total weight of the wire. Shield arc welding flux-cored wire. BaF 2 : 32 to 70% by weight Alkali metal fluoride: 1 to 30% by weight Alkaline earth metal oxide selected from the group consisting of Ca, Sr and Ba, and Fe, Mn, Ni, Co, Ti,
Composite oxide with oxide of metal selected from the group consisting of Al and Zr: 1 to 30% by weight Al: 3 to 12% by weight Mg: 2 to 10% by weight Mn: 0.5 to 10% by weight Ni: 0.5 to 20% by weight Zr: 0.1 to 4% by weight
JP12556992A 1992-04-17 1992-04-17 Self shielded arc welding flux cored wire for all position welding Expired - Lifetime JPH0771760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12556992A JPH0771760B2 (en) 1992-04-17 1992-04-17 Self shielded arc welding flux cored wire for all position welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12556992A JPH0771760B2 (en) 1992-04-17 1992-04-17 Self shielded arc welding flux cored wire for all position welding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57152430A Division JPS5942198A (en) 1982-08-31 1982-08-31 Flux cored wire for self-shielded arc welding

Publications (2)

Publication Number Publication Date
JPH05237693A true JPH05237693A (en) 1993-09-17
JPH0771760B2 JPH0771760B2 (en) 1995-08-02

Family

ID=14913438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12556992A Expired - Lifetime JPH0771760B2 (en) 1992-04-17 1992-04-17 Self shielded arc welding flux cored wire for all position welding

Country Status (1)

Country Link
JP (1) JPH0771760B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1743730A1 (en) * 2005-07-12 2007-01-17 Lincoln Global, Inc. Barium and lithium ratio for flux cored electrode
AU2006225197B2 (en) * 2005-10-31 2009-04-23 Lincoln Global, Inc. Synergistic welding system
US9333580B2 (en) 2004-04-29 2016-05-10 Lincoln Global, Inc. Gas-less process and system for girth welding in high strength applications
EP2969381A4 (en) * 2013-03-11 2016-11-30 Esab Group Inc An alloying composition for self-shielded fcaw wires with low diffusible hydrogen and high charpy "v"-notch impact toughness
KR20160139686A (en) * 2015-05-28 2016-12-07 현대종합금속 주식회사 Flux cored wire
EP3461581A1 (en) * 2017-09-29 2019-04-03 Lincoln Global, Inc. Aluminum-containing welding electrode and its production method
KR102112161B1 (en) * 2019-01-23 2020-05-19 현대종합금속 주식회사 Self-shielded flux cored wire of excellent impact toughness at post weld heat treatment
US11529697B2 (en) 2017-09-29 2022-12-20 Lincoln Global, Inc. Additive manufacturing using aluminum-containing wire

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333580B2 (en) 2004-04-29 2016-05-10 Lincoln Global, Inc. Gas-less process and system for girth welding in high strength applications
EP1743730A1 (en) * 2005-07-12 2007-01-17 Lincoln Global, Inc. Barium and lithium ratio for flux cored electrode
AU2006201290B2 (en) * 2005-07-12 2008-08-28 Lincoln Global, Inc. Barium and lithium ratio for flux cored electrode
AU2006201290C1 (en) * 2005-07-12 2009-01-22 Lincoln Global, Inc. Barium and lithium ratio for flux cored electrode
US7812284B2 (en) 2005-07-12 2010-10-12 Lincoln Global, Inc. Barium and lithium ratio for flux cored electrode
AU2006225197B2 (en) * 2005-10-31 2009-04-23 Lincoln Global, Inc. Synergistic welding system
EP2969381A4 (en) * 2013-03-11 2016-11-30 Esab Group Inc An alloying composition for self-shielded fcaw wires with low diffusible hydrogen and high charpy "v"-notch impact toughness
US10421160B2 (en) 2013-03-11 2019-09-24 The Esab Group, Inc. Alloying composition for self-shielded FCAW wires with low diffusible hydrogen and high Charpy V-notch impact toughness
US11648630B2 (en) 2013-03-11 2023-05-16 The Esab Group, Inc. Alloying composition for self-shielded FCAW wires
KR20160139686A (en) * 2015-05-28 2016-12-07 현대종합금속 주식회사 Flux cored wire
EP3461581A1 (en) * 2017-09-29 2019-04-03 Lincoln Global, Inc. Aluminum-containing welding electrode and its production method
JP2019063870A (en) * 2017-09-29 2019-04-25 リンカーン グローバル,インコーポレイテッド Aluminum-containing welding electrode
US11426824B2 (en) 2017-09-29 2022-08-30 Lincoln Global, Inc. Aluminum-containing welding electrode
US11529697B2 (en) 2017-09-29 2022-12-20 Lincoln Global, Inc. Additive manufacturing using aluminum-containing wire
KR102112161B1 (en) * 2019-01-23 2020-05-19 현대종합금속 주식회사 Self-shielded flux cored wire of excellent impact toughness at post weld heat treatment

Also Published As

Publication number Publication date
JPH0771760B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
JP4834191B2 (en) Flux-cored wire for gas shielded arc welding that can be welded in all positions
JP6809533B2 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
EP3208030B1 (en) Flux-cored wire for arc welding of duplex stainless steel
JP6953869B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP6891630B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JPS61286089A (en) Gas shielded arc welding method
JPH05237693A (en) Self-shielded arc welding flux cored wire for all-position welding
JP2614969B2 (en) Gas shielded arc welding titania-based flux cored wire
JPS5913955B2 (en) Composite wire for stainless steel welding
JP6953870B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
KR101719797B1 (en) Flux cored wire
WO2020012925A1 (en) Flux-cored wire for two-phase stainless steel welding, welding method and welding metal
GB2155045A (en) Flux cored wire electrodes
JP2857329B2 (en) Gas shielded arc welding method
CN104070305A (en) Flux cored wire for gas shielded arc welding
JPH09206984A (en) Gas shield arc welding for thin sheet
JPH05228691A (en) Flux cored wire for self-shielded arc welding
JPH0510199B2 (en)
JPH07328795A (en) Flux cored wire for gas shield arc welding
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal
CN113613829A (en) Ni-based alloy flux-cored wire
JP2628765B2 (en) Flux-cored wire for self-shielded arc welding
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP3513382B2 (en) Arc welding method for galvanized steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980602