JP3806790B2 - Process for producing spindle-shaped titanium dioxide - Google Patents

Process for producing spindle-shaped titanium dioxide Download PDF

Info

Publication number
JP3806790B2
JP3806790B2 JP31886996A JP31886996A JP3806790B2 JP 3806790 B2 JP3806790 B2 JP 3806790B2 JP 31886996 A JP31886996 A JP 31886996A JP 31886996 A JP31886996 A JP 31886996A JP 3806790 B2 JP3806790 B2 JP 3806790B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
hydrochloric acid
slurry
major axis
minor axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31886996A
Other languages
Japanese (ja)
Other versions
JPH10139434A (en
Inventor
豪 牧
正比呂 河本
光雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP31886996A priority Critical patent/JP3806790B2/en
Publication of JPH10139434A publication Critical patent/JPH10139434A/en
Application granted granted Critical
Publication of JP3806790B2 publication Critical patent/JP3806790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は長径が0.15〜0.30μmであり、かつ長径/短径の比が2〜8である紡錘状二酸化チタンの製造方法に関する。
【0002】
【従来の技術】
二酸化チタンは、塗料,化粧品の原料,トナーの電荷調整剤,プラスチック,ゴム,フィルムなどの充填剤として用いられており、紡錘状や針状といった形状を有するアスペクト比の大きな二酸化チタンも、その形状を生かした用途に用いられている。このような紡錘状二酸化チタンの製造方法には多くの方法が開示されている。
【0003】
特開昭62−281812号公報には紡錘状の二酸化チタンの簡単な製法が示されている。この方法によれば、四塩化チタン水溶液を湿式加水分解して水酸化チタンを生成させ、次いで、150〜600℃の温度で焼成し、ルチル化を行ない、比表面積が60〜250m2 のルチル形結晶構造をもつ二酸化チタンが得られるとだけ記載されている。
【0004】
特開昭63−307119号公報には、四塩化チタンまたは硫酸法によって得られる二酸化チタン水和物を原料とし、最大寸法0.01〜0.15μm、最大寸法と最短寸法との比が8:1から2:1の範囲内である針状二酸化チタンおよびその製造方法が開示されている。
【0005】
特公平6−76215号公報には、結晶の大きさが10〜100nm、すなわち0.1〜0.01μmの微結晶二酸化チタンの製法が開示されている。そこには、おおよそ次のような製造工程が示されている。
チタン鉄鉱を硫酸と反応させて濃縮、不純物除去の後、加水分解による沈殿によって得られた二酸化チタン水和物を、水酸化ナトリウム水溶液を加えて強塩基性にして沸点付近で加熱処理する。次いで、この処理物に塩酸を加えてpH2前後とし、温度を60℃にして更に塩酸を添加し、HCl濃度を8〜25g/lとする。更に温度を上げて90℃とし、120分間熟成する。最後にアルカリで中和し、ろ過,洗浄,乾燥,粉砕する。
【0006】
【発明が解決しょうとする課題】
一般的に”微粒子酸化チタン”と呼ばれる、平均粒子径0.1μm以下の酸化チタンは、可視光における透明性、ならびに紫外線遮蔽性を有するという物性を有してはいるものの、粒子が顔料用酸化チタンに比べて小さいだけに分散性が劣り、塗料,化粧品などの原料として使用する場合、分散時間がかかるなどの欠点を有していた。
本発明の目的は、上記分散性に関する欠点が解消され、しかも可視光における透明性ならびに紫外線遮蔽性という物性をも有する、結晶構造がルチル形であり、平均長径が0.15〜0.30μmであり、長径/短径の比が2〜8であるような紡錘状二酸化チタンの製造方法を提供することにある。
本発明でいうところの”紡錘状”とは、その形状が両端のとがった円柱形に似た形をしており、とがった両端を結ぶ長さ(長径)と円柱部の最も太い部分(短径)との比が2〜8であるものをいう。
【0007】
【課題を解決するための手段】
本発明者らは、製造条件を工夫することにより、上記二酸化チタンの製造方法を見出した。
すなわち本発明の要旨は、下記(a)〜(c)の工程よりなる、粒子の平均の大きさが、長径0.15〜0.3μm、短径0.03〜0.1μm、長径/短径比2〜8の範囲内であり、その形状が紡錘状である、ルチル形二酸化チタンの製造方法に存する。
(a) 二酸化チタン水和物に塩基処理を行い、得られた二酸化チタン水和物スラリーを塩酸で中和し、pHを6〜9にする:
(b) 中和した二酸化チタン水和物スラリーを40℃〜60℃に加熱し、そこにスラリー中の塩酸濃度が100%HCl換算で32〜48g/lとなる量の塩酸を、スラリー中に存在する二酸化チタン水和物のTiO2 換算1kgに対し、100%HCl換算で0.05〜0.20kg/分の速度で添加する:
(c) 塩酸添加後、更に加熱を行い、90℃〜沸点で熟成した後に、塩基で中和し、ろ過、水洗、乾燥を行う。
【0008】
本発明が従来の技術と異なる点は、工程(a)において塩基処理された二酸化チタン水和物スラリーを、塩酸で一旦pH6〜9に中和すること、および、工程(b)において塩酸の添加速度をスラリー中に存在する二酸化チタン水和物の量に応じて特定値の範囲内に設定することにある。
【0009】
以下、本発明を工程毎に説明する。
まず、原料として用いる二酸化チタン水和物は、四塩化チタン、チタンアルコキシド、硫酸チタニルなどから得られる。これらのうち、チタン鉄鉱を硫酸と反応させるいわゆる硫酸法によって得られる硫酸チタニルの加水分解から得られる二酸化チタン水和物が好ましい。
【0010】
工程(a)における二酸化チタン水和物の塩基処理とは、硫酸チタニルの加水分解によって得られた二酸化チタン水和物ケーキに塩基を加え、90〜100℃の温度で約2時間加熱処理し、処理後の反応生成物をろ過,洗浄することである。塩基としては一般に水酸化ナトリウム、水酸化カリウムなどが用いられる。本工程自体は公知であり、例えば、特開昭59−223231号公報、特公平6−76215号公報などに記載されている。
塩基処理された二酸化チタン水和物は、撹拌しながら、TiO2 換算で170g/l以下となるように水を加えてスラリー化する。170g/lを超えると、後の塩酸添加工程において増粘し、作業がしにくくなる。
次いで塩酸を加えてpH6〜9に中和する。この時pHが6より低いと、得られる二酸化チタンは、長径がせいぜい0.1μm以下の大きさにしかならず好ましくない。また、pHが9を超えてしまうと、後の工程で加える塩酸の添加後の塩酸濃度の安定化が保たれなくなってしまい、結果的に二酸化チタンの長径が大きくならず好ましくない。
【0011】
工程(a)によって塩酸で中和された状態にあるpH6〜9のスラリーは、工程(b)により撹拌しながら加熱され、40〜60℃の温度に調整される。この際、温度が60℃を超えると、得られる二酸化チタンの長径は0.1μm以下となってしまうので好ましくない。また、40℃より低い温度では、紡錘状の形状が形成されない。
上記温度に設定されたスラリーに塩酸を加え、スラリー中の塩酸濃度を100%HCl換算で32〜48g/lにする。塩酸を添加する際には、スラリー中の二酸化チタン水和物TiO2 換算1kgに対し、100%HCl換算で0.05〜0.2kg/分、好ましくは0.08〜0.13kg/分、の速度で塩酸を加えなければならない。
塩酸添加後の塩酸濃度が32g/lよりも低いと、形成される二酸化チタンの粒径が小さくなるので好ましくない。また逆に塩酸濃度が48g/lよりも高いと、得られる二酸化チタンの長径が大きくならず好ましくない。
また、塩酸の添加速度が0.05kg/分よりも小さいと、形成される二酸化チタンの長径が小さくなるので好ましくない。また逆に、添加速度が0.2kg/分を越えてしまうと得られる二酸化チタンは凝集体となってしまう。
従って、本添加工程においては、上記添加量、添加速度を適正に行なえるようにするために、事前の準備や添加設備を充分に検討しておく必要がある。
【0012】
工程(c)では、工程(b)の塩酸添加後、40〜60℃の温度範囲にある系に対し加熱を行い、温度を90℃〜沸点とし、30分以上の熟成を行なう。
熟成温度が90℃より低いと紡錘状とはならず、球状に近い形状のものが形成されるので好ましくない。
熟成時間は長いほど二酸化チタンの粒径分布が狭くなり均一なものが得られるが、余り長くなりすぎると経済的ではない。好ましくは1時間ないし3時間が適切である。
熟成後のスラリーは、例えば、アンモニア水,苛性ソーダ水溶液,炭酸ソーダ水溶液などの塩基により中和し、公知の方法でろ過,洗浄,乾燥する。
必要に応じ、500℃以下好ましくは200〜400℃の範囲内の任意の温度で30分以上焙焼しても構わない。焙焼温度が500℃を超えてしまうと粒子形状が丸味を帯びてしまうので、もはや紡錘状二酸化チタンとは呼べなくなってしまう。
【0013】
このようにして得られた紡錘状二酸化チタンは、引き続きその表面を公知の方法により、無機化合物、有機化合物、あるいはそれらの複合体などで被覆しても構わない。
たとえば、上記紡錘状二酸化チタンを、エックアトマイザーなどの乾式粉砕機やサンドグラインダーなどの湿式粉砕機に通した後、スラリー化し無機化合物,有機化合物あるいはそれらの複合体で二酸化チタン表面を被覆処理する。
無機化合物としてはケイ素,アルミニウム,ジルコニウム,亜鉛,アンチモン,マグネシウム,鉄,ニッケル,コバルトなどの酸化物や水酸化物などがあげられる。
有機化合物としてはラウリン酸,イソステアリン酸,ステアリン酸,パルミチン酸などの脂肪酸、環状あるいは直鎖のシリコーンオイルに代表される有機ケイ素化合物,チタニウムアルコキシドに代表される有機チタン化合物などがあげられる。
無機,有機複合体としては、例えばアルミニウムの水和酸化物とステアリン酸などの複合体や、亜鉛、アルミニウム、カルシウム、バリウムなどの脂肪酸金属石鹸などがある。
これらの無機化合物や有機化合物、複合体は各々単独でも、いずれか二種以上を組み合わせて用いることも可能である。
【0014】
本発明の製造方法によって得られる紡錘状二酸化チタンは、その大きさからすると、もはやいわゆる”微粒子酸化チタン”の範中には入らないが、それにもかかわらず、物性的には可視光における透明性や紫外線遮蔽性を有し、しかも分散に係る問題をも解消するものである。
【0015】
【発明の実施の形態】
次に本発明を実施例によって詳しく説明する。
【0016】
【実施例1】
工程(a)
常法により硫酸チタニル溶液を加水分解し、ろ過洗浄した含水二酸化チタンケーキ(二酸化チタン水和物)35kg(TiO2 換算で10kg)に、48%水酸化ナトリウム水溶液40kgを攪拌しながら投入し、その後加熱して95〜105℃の温度範囲で2時間攪拌した。次いで、このスラリーをろ過し、充分洗浄することにより塩基処理された二酸化チタン水和物を得た。この水和物ケーキに水を加えてスラリー化し、TiO2 換算濃度で110g/lに調整した。
このスラリーを攪拌しながら、35%塩酸を添加して、pH7.0とした。
工程(b)
上記スラリーを50℃に加熱し、この温度で35%塩酸12.5kgを、攪拌しながら4分間で添加し、塩酸添加後のスラリー中における塩酸濃度が、100%HCl換算で40g/lとなるようにした。
塩酸添加速度は、TiO2 換算1kg当たり0.11kg/分である。
工程(c)
塩酸添加に引き続き、スラリーの加熱を行い、100℃で2時間熟成した。
熟成後のスラリーに、アンモニア水を添加してpH=6.5に中和した。充分にろ過、水洗を行い、乾燥後、流体エネルギーミルで粉砕した。
得られた粉体は平均長径0.25μm、平均短径0.06μmの紡錘状の形をした二酸化チタンであった。X線回折装置による測定の結果、結晶形はルチル形であった。
【0017】
【実施例2】
工程(a)における35%塩酸添加後のpHを6.2とした以外は、実施例1と同じ処理を行った。
【0018】
【実施例3】
工程(a)における35%塩酸添加後のpHを8.8とした以外は、実施例1と同じ処理を行った。
【0019】
【実施例4】
工程(b)におけるスラリー温度を50℃から55℃とした以外は、実施例1と同じ処理を行った。
【0020】
【実施例5】
工程(b)におけるスラリー温度を50℃から45℃にした以外は、実施例1と同じ処理を行った。
【0021】
【実施例6】
工程(b)における35%塩酸添加時間を2.5分間とした(塩酸添加速度:TiO2 換算1kg当たり0.175kg/分)以外は、実施例1と同じ処理を行った。
【0022】
【実施例7】
工程(b)における35%塩酸添加時間を8分間とした(塩酸添加速度:TiO2 換算1kg当たり0.055kg/分)以外は、実施例1と同じ処理を行った。
【0023】
【実施例8】
工程(b)における塩酸添加後のスラリー中における塩酸濃度を37g/lとなるように、11.56kgの35%塩酸を4分間で添加した(塩酸添加速度:TiO2 換算1kg当たり0.1kg/分)以外は、実施例1と同じ処理を行った。
【0024】
【実施例9】
工程(b)における塩酸添加後のスラリー中における塩酸濃度を44g/lとなるように、13.75kgの35%塩酸を4分間で添加した(塩酸添加速度:TiO2 換算1kg当たり0.12kg/分)以外は、実施例1と同じ処理を行った。
【0025】
【実施例10】
実施例1で得た粉体試料をさらに330℃で焙焼した。
【0026】
【実施例11】
実施例1で得た粉体試料を水に分散し、TiO2 重量基準で200g/lのスラリー800mlを作成し、40℃に加熱して、撹拌しながらアルミン酸ソーダ水溶液(Al2 3 換算で200g/l)40mlと30%希硫酸を、pH5〜6に保ちながら10分間で添加した。更に60℃に加熱後、30分間撹拌した。これらをろ過、洗浄し、110℃で24時間乾燥した後、粉砕した。
【0027】
【比較例1】
工程(a)における35%塩酸添加後のpHを5.0とした以外は、実施例1と同じ処理を行った。得られた二酸化チタンの形状は紡錘状であったが、その長径はおおよそ100nmであり、後述の試験例で示すとおり、紫外線遮蔽能において優れた値を示さなかった。
【0028】
【比較例2】
工程(a)における35%塩酸添加後のpHを10.0とした以外は、実施例1と同じ処理を行った。得られた二酸化チタンは、比較例1の場合と同様な形状・機能を示した。
【0029】
【比較例3】
工程(b)における35%塩酸添加時間を15分間とした(塩酸添加速度:TiO2 換算1kg当たり0.029kg/分)以外は、実施例1と同じ処理を行った。得られた二酸化チタンは、比較例1の場合と同様な形状ならびに機能を示した。
【0030】
【比較例4】
工程(b)における35%塩酸添加時間を1分間とした(塩酸添加速度:TiO2 換算1kg当たり0.44kg/分)以外は、実施例1と同じ処理を行った。結果として得られたのは二酸化チタンの凝集体であり、後述の試験例で示すとおり、可視光線における透明性について優れた値を示さなかった。
【0031】
【比較例5】
工程(b)における塩酸添加後のスラリー中における塩酸濃度を30g/lとなるように、9.1kgの35%塩酸を4分間で添加した(塩酸添加速度:TiO2 換算1kg当たり0.08kg/分)以外は、実施例1と同じ処理を行った。得られた二酸化チタンは、平均粒径が0.1μm以下のいわゆる”微粒子”二酸化チタンであり、結晶形はアナタース形であった。
【0032】
【比較例6】
工程(b)における塩酸添加後のスラリー中における塩酸濃度を50g/lとなるように、15.75kgの35%塩酸を4分間で添加した(塩酸添加速度:TiO2 換算1kg当たり0.138kg/分)以外は実施例1と同じ処理を行った。得られた二酸化チタンは、比較例1の場合と同様な形状ならびに機能を示した。
【0033】
【比較例7】
実施例1で得た粉体試料をさらに550℃で焙焼した。得られた二酸化チタンは、上記加熱処理により粒子形状がいわゆる楕円状に変化し、可視光線における透明性が低下した。
【0034】
【比較例8】
工程(a)における35%塩酸添加後のpHを2とし、工程(b)における35%塩酸添加時間を15分間とした以外は実施例1と同じ処理を行った。得られた二酸化チタンの形状は針状に近い紡錘状であり、しかも長径はおおよそ50nmであり、後述の試験例で示すとおり、紫外線遮蔽能において優れた値を示さなかった。
【0035】
【試験例】
〔粒子の形状、平均長径、平均短径の測定〕
各実施例、比較例で得られた二酸化チタンを電子顕微鏡で観察し、写真撮影を行った。この電子顕微鏡写真から粒子の形状、長径、短径を読みとり、平均長径、平均短径を計算した。長径/短径の比は、平均長径/平均短径の比である。
【0036】
〔透明性、紫外線遮蔽能の測定〕
下記の配合で油分散体を作成した。
(1) 各実施例、比較例で得られた二酸化チタン 3g
(2) ブチレングリコール 27g
成分(1)、(2)にガラスビーズ(直径1.5mm)70gを加え、ペイントシェイカー(レッドデビル社製)にて1時間分散した。
試料油分散体をポリプロピレン製フィルム(厚み40μm)へ10μmの膜厚になるように塗布し、分光光度計(日立自記分光光度計U−3410)にて290nm〜700nmの散乱光も含めた全透過率を測定した。紫外線領域である290nm〜400nm、および可視光線領域である400nm〜700nmにおける透過率積分値(nm・%)をそれぞれ以下の式により求め、各々紫外線遮蔽能、透明性として各表に記載した。
すなわち、ここでいう紫外線遮蔽能とは、290〜400nmにおける透過率積分値で表したUV−A、UV−B領域の遮蔽効果を示したものであり、その数値が小さいほど紫外線遮蔽効果が優れている。また、透明性とは、400〜700nmにおける透過率積分値で表した可視光線に対する透明性を示したものであり、その数値が大きいほど透明性が優れている。
透過率積分値(nm・%)=Σ設定された波長領域(nm)×透過率(%)
【0037】
〔結晶形の測定〕
理学電機(株)Geigerflexにて試料の結晶形を測定した。測定条件は以下の通りである。
測定電圧:40kV 測定角度:5°〜60°
測定電流:35mA 走査測度:5°/min.
これらの測定の結果を表1および表2にまとめた。
【測定結果】
【0038】
【表1】

Figure 0003806790
【0039】
【表2】
Figure 0003806790
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing spindle-shaped titanium dioxide having a major axis of 0.15 to 0.30 μm and a major axis / minor axis ratio of 2 to 8.
[0002]
[Prior art]
Titanium dioxide is used as a filler for paints, cosmetic raw materials, toner charge control agents, plastics, rubber, films, etc., and titanium dioxide with a large aspect ratio such as a spindle shape or a needle shape also has its shape. It is used for applications that take advantage of Many methods for producing such spindle-shaped titanium dioxide have been disclosed.
[0003]
Japanese Patent Application Laid-Open No. 62-281812 discloses a simple method for producing spindle-shaped titanium dioxide. According to this method, a titanium tetrachloride aqueous solution is hydrolyzed to form titanium hydroxide, and then calcined at a temperature of 150 to 600 ° C. to perform rutile formation, and a rutile form having a specific surface area of 60 to 250 m 2 . It is described only that titanium dioxide having a crystal structure is obtained.
[0004]
In JP-A-63-307119, titanium dioxide hydrate obtained by a titanium tetrachloride or sulfuric acid method is used as a raw material, the maximum dimension is 0.01 to 0.15 μm, and the ratio of the maximum dimension to the shortest dimension is 8: An acicular titanium dioxide within the range of 1 to 2: 1 and a method for its production are disclosed.
[0005]
Japanese Examined Patent Publication No. 6-76215 discloses a method for producing microcrystalline titanium dioxide having a crystal size of 10 to 100 nm, that is, 0.1 to 0.01 μm. There are roughly shown the following manufacturing steps.
After reacting titanite with sulfuric acid to concentrate and remove impurities, titanium dioxide hydrate obtained by precipitation by hydrolysis is made strongly basic by adding aqueous sodium hydroxide solution and heat-treated near the boiling point. Next, hydrochloric acid is added to the treated product to obtain a pH of around 2, and the temperature is set to 60 ° C., and hydrochloric acid is further added to adjust the HCl concentration to 8 to 25 g / l. The temperature is further raised to 90 ° C. and aging is performed for 120 minutes. Finally, neutralize with alkali, filter, wash, dry and grind.
[0006]
[Problems to be solved by the invention]
Titanium oxide with an average particle diameter of 0.1 μm or less, generally called “fine-particle titanium oxide”, has the physical properties of transparency in visible light and ultraviolet shielding properties, but the particles are oxidized for pigments. Since it is small compared to titanium, it has poor dispersibility, and when used as a raw material for paints, cosmetics, etc., it has the disadvantage that it takes a long time for dispersion.
The object of the present invention is to solve the above-mentioned drawbacks related to dispersibility, and also to have the properties of transparency in visible light and ultraviolet shielding properties, the crystal structure is rutile, and the average major axis is 0.15 to 0.30 μm. Another object is to provide a process for producing spindle-shaped titanium dioxide having a major axis / minor axis ratio of 2 to 8.
The “spindle shape” as used in the present invention has a shape similar to a cylindrical shape with sharpened ends, and the length (major diameter) connecting the sharpened ends and the thickest portion (short) of the cylindrical portion. The ratio with respect to (diameter) is 2-8.
[0007]
[Means for Solving the Problems]
The present inventors have found a method for producing the above titanium dioxide by devising production conditions.
That is, the gist of the present invention consists of the following steps (a) to (c), in which the average particle size is: major axis 0.15-0.3 μm, minor axis 0.03-0.1 μm, major axis / short It exists in the manufacturing method of the rutile type titanium dioxide which is in the range of the diameter ratio 2-8, and the shape is a spindle shape.
(A) Titanium dioxide hydrate is treated with a base, and the resulting titanium dioxide hydrate slurry is neutralized with hydrochloric acid to adjust the pH to 6-9:
(B) The neutralized titanium dioxide hydrate slurry is heated to 40 ° C. to 60 ° C., and an amount of hydrochloric acid in which the hydrochloric acid concentration in the slurry is 32 to 48 g / l in terms of 100% HCl is added to the slurry. To 1 kg of TiO 2 equivalent of the existing titanium dioxide hydrate, it is added at a rate of 0.05 to 0.20 kg / min in terms of 100% HCl:
(C) After addition of hydrochloric acid, the mixture is further heated and aged at 90 ° C. to the boiling point, then neutralized with a base, filtered, washed with water, and dried.
[0008]
The present invention is different from the prior art in that the titanium dioxide hydrate slurry base-treated in step (a) is once neutralized with hydrochloric acid to pH 6-9, and hydrochloric acid is added in step (b). The speed is set within a specific value range depending on the amount of titanium dioxide hydrate present in the slurry.
[0009]
Hereinafter, this invention is demonstrated for every process.
First, titanium dioxide hydrate used as a raw material is obtained from titanium tetrachloride, titanium alkoxide, titanyl sulfate and the like. Of these, titanium dioxide hydrate obtained by hydrolysis of titanyl sulfate obtained by the so-called sulfuric acid method in which titanite is reacted with sulfuric acid is preferred.
[0010]
The base treatment of titanium dioxide hydrate in step (a) is to add a base to the titanium dioxide hydrate cake obtained by hydrolysis of titanyl sulfate, and heat-treat at a temperature of 90 to 100 ° C. for about 2 hours, The reaction product after the treatment is filtered and washed. As the base, sodium hydroxide, potassium hydroxide or the like is generally used. This process itself is known and is described in, for example, JP-A-59-223231 and JP-B-6-762215.
The base-treated titanium dioxide hydrate is slurried by adding water so as to be 170 g / l or less in terms of TiO 2 while stirring. If it exceeds 170 g / l, the viscosity increases in the subsequent hydrochloric acid addition step, and the operation becomes difficult.
Hydrochloric acid is then added to neutralize to pH 6-9. At this time, if the pH is lower than 6, the resulting titanium dioxide is not preferable because the major axis is at most 0.1 μm or less. On the other hand, if the pH exceeds 9, stabilization of the hydrochloric acid concentration after the addition of hydrochloric acid to be added in the subsequent step cannot be maintained, and as a result, the major axis of titanium dioxide is not increased, which is not preferable.
[0011]
The slurry having a pH of 6 to 9 in a state neutralized with hydrochloric acid in the step (a) is heated with stirring in the step (b) and adjusted to a temperature of 40 to 60 ° C. At this time, when the temperature exceeds 60 ° C., the major axis of the obtained titanium dioxide is not preferable because it becomes 0.1 μm or less. Further, at a temperature lower than 40 ° C., a spindle shape is not formed.
Hydrochloric acid is added to the slurry set at the above temperature so that the hydrochloric acid concentration in the slurry is 32 to 48 g / l in terms of 100% HCl. When adding hydrochloric acid, 0.05 kg to 0.2 kg / min, preferably 0.08 to 0.13 kg / min in terms of 100% HCl, with respect to 1 kg in terms of titanium dioxide hydrate TiO 2 in the slurry, Hydrochloric acid must be added at a rate of
If the concentration of hydrochloric acid after addition of hydrochloric acid is lower than 32 g / l, the particle size of the titanium dioxide formed is not preferable. Conversely, if the hydrochloric acid concentration is higher than 48 g / l, the major axis of the resulting titanium dioxide is not increased, which is not preferable.
On the other hand, when the addition rate of hydrochloric acid is less than 0.05 kg / min, the major axis of the formed titanium dioxide becomes small, which is not preferable. Conversely, when the addition rate exceeds 0.2 kg / min, the resulting titanium dioxide becomes an aggregate.
Therefore, in this addition process, it is necessary to fully consider advance preparation and addition equipment so that the addition amount and the addition speed can be appropriately performed.
[0012]
In step (c), after addition of hydrochloric acid in step (b), the system in the temperature range of 40 to 60 ° C. is heated to a temperature of 90 ° C. to boiling point and aged for 30 minutes or longer.
When the aging temperature is lower than 90 ° C., it is not preferable because it does not have a spindle shape, and a nearly spherical shape is formed.
The longer the aging time, the narrower the titanium dioxide particle size distribution and the more uniform it can be obtained, but it is not economical if it is too long. Preferably 1 hour to 3 hours is appropriate.
The slurry after aging is neutralized with a base such as aqueous ammonia, aqueous caustic soda solution or aqueous sodium carbonate solution, and is filtered, washed and dried by a known method.
If necessary, it may be roasted at 500 ° C. or less, preferably 200 to 400 ° C. for 30 minutes or more at any temperature. If the roasting temperature exceeds 500 ° C., the particle shape becomes rounded, so it can no longer be called spindle-shaped titanium dioxide.
[0013]
The surface of the spindle-shaped titanium dioxide thus obtained may be subsequently coated with an inorganic compound, an organic compound, or a composite thereof by a known method.
For example, the spindle-shaped titanium dioxide is passed through a dry pulverizer such as an ectomizer or a wet pulverizer such as a sand grinder, and then slurried to coat the surface of the titanium dioxide with an inorganic compound, an organic compound or a composite thereof.
Inorganic compounds include oxides and hydroxides of silicon, aluminum, zirconium, zinc, antimony, magnesium, iron, nickel, cobalt, and the like.
Examples of the organic compound include fatty acids such as lauric acid, isostearic acid, stearic acid, and palmitic acid, organic silicon compounds typified by cyclic or linear silicone oil, and organic titanium compounds typified by titanium alkoxide.
Examples of inorganic and organic composites include composites such as aluminum hydrated oxide and stearic acid, and fatty acid metal soaps such as zinc, aluminum, calcium, and barium.
These inorganic compounds, organic compounds, and composites can be used alone or in combination of any two or more thereof.
[0014]
The spindle-shaped titanium dioxide obtained by the production method of the present invention is no longer in the category of so-called “fine-particle titanium oxide” due to its size, but nevertheless the physical properties are transparency in visible light. And has an ultraviolet shielding property, and solves the problem of dispersion.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail by examples.
[0016]
[Example 1]
Step (a)
The titanyl sulfate solution was hydrolyzed by a conventional method, and 40 kg of 48% sodium hydroxide aqueous solution was added to 35 kg (10 kg in terms of TiO 2 ) of hydrous titanium dioxide cake (filtered and washed) with stirring. The mixture was heated and stirred at a temperature range of 95 to 105 ° C. for 2 hours. The slurry was then filtered and washed thoroughly to obtain a base-treated titanium dioxide hydrate. Water was added to the hydrate cake to make a slurry, and the hydrated TiO 2 concentration was adjusted to 110 g / l.
While stirring the slurry, 35% hydrochloric acid was added to adjust the pH to 7.0.
Step (b)
The slurry is heated to 50 ° C., and 12.5 kg of 35% hydrochloric acid is added at this temperature over 4 minutes with stirring, and the hydrochloric acid concentration in the slurry after addition of hydrochloric acid is 40 g / l in terms of 100% HCl. I did it.
The hydrochloric acid addition rate is 0.11 kg / min per 1 kg of TiO 2 .
Step (c)
Following the addition of hydrochloric acid, the slurry was heated and aged at 100 ° C. for 2 hours.
Ammonia water was added to the slurry after aging to neutralize to pH = 6.5. After sufficiently filtering and washing with water, it was dried and then pulverized with a fluid energy mill.
The obtained powder was titanium dioxide having a spindle shape with an average major axis of 0.25 μm and an average minor axis of 0.06 μm. As a result of measurement by an X-ray diffractometer, the crystal form was a rutile form.
[0017]
[Example 2]
The same treatment as in Example 1 was performed, except that the pH after addition of 35% hydrochloric acid in step (a) was 6.2.
[0018]
[Example 3]
The same treatment as in Example 1 was performed except that the pH after addition of 35% hydrochloric acid in step (a) was 8.8.
[0019]
[Example 4]
The same treatment as in Example 1 was performed except that the slurry temperature in the step (b) was changed from 50 ° C to 55 ° C.
[0020]
[Example 5]
The same treatment as in Example 1 was performed except that the slurry temperature in the step (b) was changed from 50 ° C to 45 ° C.
[0021]
[Example 6]
The same treatment as in Example 1 was performed except that the 35% hydrochloric acid addition time in step (b) was 2.5 minutes (hydrochloric acid addition rate: 0.175 kg / min per kg of TiO 2 ).
[0022]
[Example 7]
The same treatment as in Example 1 was performed except that the 35% hydrochloric acid addition time in step (b) was 8 minutes (hydrochloric acid addition rate: 0.055 kg / min per kg of TiO 2 ).
[0023]
[Example 8]
11.56 kg of 35% hydrochloric acid was added over 4 minutes so that the hydrochloric acid concentration in the slurry after addition of hydrochloric acid in step (b) was 37 g / l (hydrochloric acid addition rate: 0.1 kg / kg of TiO 2 converted per kg) Except for (min), the same processing as in Example 1 was performed.
[0024]
[Example 9]
13.75 kg of 35% hydrochloric acid was added over 4 minutes so that the hydrochloric acid concentration in the slurry after the addition of hydrochloric acid in step (b) was 44 g / l (hydrochloric acid addition rate: 0.12 kg / kg of TiO 2 converted per kg) Except for (min), the same processing as in Example 1 was performed.
[0025]
[Example 10]
The powder sample obtained in Example 1 was further baked at 330 ° C.
[0026]
Example 11
The powder sample obtained in Example 1 was dispersed in water to prepare 800 ml of a slurry of 200 g / l based on the weight of TiO 2 , heated to 40 ° C. and stirred with sodium aluminate aqueous solution (in terms of Al 2 O 3). 200 g / l) 40 ml and 30% dilute sulfuric acid were added over 10 minutes while maintaining the pH at 5-6. Furthermore, after heating to 60 degreeC, it stirred for 30 minutes. These were filtered, washed, dried at 110 ° C. for 24 hours, and then pulverized.
[0027]
[Comparative Example 1]
The same treatment as in Example 1 was performed, except that the pH after addition of 35% hydrochloric acid in step (a) was 5.0. The shape of the obtained titanium dioxide was spindle-shaped, but its major axis was approximately 100 nm, and as shown in the test examples described later, it did not show an excellent value in ultraviolet shielding ability.
[0028]
[Comparative Example 2]
The same treatment as in Example 1 was performed except that the pH after addition of 35% hydrochloric acid in step (a) was 10.0. The obtained titanium dioxide exhibited the same shape and function as in Comparative Example 1.
[0029]
[Comparative Example 3]
The same treatment as in Example 1 was performed except that the 35% hydrochloric acid addition time in step (b) was 15 minutes (hydrochloric acid addition rate: 0.029 kg / min per kg of TiO 2 conversion). The obtained titanium dioxide exhibited the same shape and function as in Comparative Example 1.
[0030]
[Comparative Example 4]
The same treatment as in Example 1 was performed except that the 35% hydrochloric acid addition time in step (b) was 1 minute (hydrochloric acid addition rate: 0.44 kg / min per kg of TiO 2 ). As a result, an aggregate of titanium dioxide was obtained, and as shown in a test example described later, an excellent value for transparency in visible light was not shown.
[0031]
[Comparative Example 5]
9.1 kg of 35% hydrochloric acid was added over 4 minutes so that the hydrochloric acid concentration in the slurry after addition of hydrochloric acid in step (b) was 30 g / l (hydrochloric acid addition rate: 0.08 kg / kg of TiO 2 converted per kg) Except for (min), the same processing as in Example 1 was performed. The obtained titanium dioxide was so-called “fine particle” titanium dioxide having an average particle diameter of 0.1 μm or less, and the crystal form was anatase.
[0032]
[Comparative Example 6]
15.75 kg of 35% hydrochloric acid was added over 4 minutes so that the hydrochloric acid concentration in the slurry after the addition of hydrochloric acid in step (b) was 50 g / l (hydrochloric acid addition rate: 0.138 kg / kg of TiO 2 converted per kg) The same treatment as in Example 1 was performed except for (min). The obtained titanium dioxide exhibited the same shape and function as in Comparative Example 1.
[0033]
[Comparative Example 7]
The powder sample obtained in Example 1 was further baked at 550 ° C. The obtained titanium dioxide changed its particle shape into a so-called elliptical shape by the heat treatment, and the transparency in visible light was lowered.
[0034]
[Comparative Example 8]
The same treatment as in Example 1 was performed except that the pH after addition of 35% hydrochloric acid in step (a) was 2, and the 35% hydrochloric acid addition time in step (b) was 15 minutes. The obtained titanium dioxide had a spindle shape close to a needle shape, and the major axis was about 50 nm. As shown in the test examples described later, it did not show an excellent value in ultraviolet shielding ability.
[0035]
[Test example]
(Measurement of particle shape, average major axis, average minor axis)
The titanium dioxide obtained in each Example and Comparative Example was observed with an electron microscope and photographed. The shape, major axis and minor axis of the particles were read from this electron micrograph, and the average major axis and the average minor axis were calculated. The ratio of major axis / minor axis is the ratio of average major axis / average minor axis.
[0036]
[Measurement of transparency and UV shielding ability]
An oil dispersion was prepared with the following composition.
(1) 3 g of titanium dioxide obtained in each example and comparative example
(2) Butylene glycol 27g
70 g of glass beads (diameter 1.5 mm) were added to components (1) and (2), and the mixture was dispersed with a paint shaker (manufactured by Red Devil) for 1 hour.
The sample oil dispersion was applied to a polypropylene film (thickness 40 μm) so as to have a thickness of 10 μm, and totally transmitted including scattered light of 290 nm to 700 nm with a spectrophotometer (Hitachi's own spectrophotometer U-3410). The rate was measured. The transmittance integral values (nm ·%) in the ultraviolet region of 290 nm to 400 nm and the visible light region of 400 nm to 700 nm were determined by the following formulas, respectively, and described in the respective tables as the ultraviolet shielding ability and transparency, respectively.
That is, the ultraviolet shielding ability here indicates the shielding effect in the UV-A and UV-B regions expressed by the integral value of transmittance at 290 to 400 nm, and the smaller the value, the better the ultraviolet shielding effect. ing. Transparency refers to transparency with respect to visible light expressed as an integral value of transmittance at 400 to 700 nm. The larger the value, the better the transparency.
Transmittance integral value (nm ·%) = Σ set wavelength region (nm) × transmittance (%)
[0037]
(Measurement of crystal form)
The crystal form of the sample was measured with Geigerflex, Rigaku Corporation. The measurement conditions are as follows.
Measurement voltage: 40 kV Measurement angle: 5 ° -60 °
Measurement current: 35 mA Scanning measure: 5 ° / min.
The results of these measurements are summarized in Tables 1 and 2.
【Measurement result】
[0038]
[Table 1]
Figure 0003806790
[0039]
[Table 2]
Figure 0003806790

Claims (5)

粒子の平均の大きさが、長径0.15〜0.3μm、短径0.03〜0.1μm、長径/短径比2〜8の範囲内であり、その形状が紡錘状である、下記(a)〜(c)の工程よりなるルチル形二酸化チタンの製造方法:
(a) 二酸化チタン水和物に塩基処理を行い、得られた二酸化チタン水和物スラリーを塩酸で中和し、pHを6〜9にする:
(b) 中和した二酸化チタン水和物スラリーを40℃〜60℃に加熱し、そこにスラリー中の塩酸濃度が100%HCl換算で32〜48g/lとなる量の塩酸を、スラリー中に存在する二酸化チタン水和物のTiO2 換算1kgに対し、100%HCl換算で0.05〜0.20kg/分の速度で添加する:
(c) 塩酸添加後、更に加熱を行い、90℃〜沸点で熟成した後に、塩基で中和し、ろ過、水洗、乾燥を行う。
The average size of the particles is in the range of a major axis of 0.15 to 0.3 μm, a minor axis of 0.03 to 0.1 μm, and a major axis / minor axis ratio of 2 to 8, and the shape thereof is a spindle shape. A method for producing rutile titanium dioxide comprising steps (a) to (c):
(A) Titanium dioxide hydrate is treated with a base, and the resulting titanium dioxide hydrate slurry is neutralized with hydrochloric acid to adjust the pH to 6-9:
(B) The neutralized titanium dioxide hydrate slurry is heated to 40 ° C. to 60 ° C., and an amount of hydrochloric acid in which the hydrochloric acid concentration in the slurry is 32 to 48 g / l in terms of 100% HCl is added to the slurry. To 1 kg of TiO 2 equivalent of the existing titanium dioxide hydrate, it is added at a rate of 0.05 to 0.20 kg / min in terms of 100% HCl:
(C) After addition of hydrochloric acid, the mixture is further heated and aged at 90 ° C. to the boiling point, then neutralized with a base, filtered, washed with water, and dried.
工程(b)における塩酸の添加速度が、0.08〜0.13kg/分である請求項1に記載の二酸化チタンの製造方法。The method for producing titanium dioxide according to claim 1, wherein the addition rate of hydrochloric acid in the step (b) is 0.08 to 0.13 kg / min. 得られる二酸化チタン粒子の大きさが、平均長径0.2〜0.28μm、平均短径0.05〜0.07μm、長径/短径比3〜5である請求項1に記載の二酸化チタンの製造方法。2. The titanium dioxide particles according to claim 1, wherein the obtained titanium dioxide particles have an average major axis of 0.2 to 0.28 μm, an average minor axis of 0.05 to 0.07 μm, and a major axis / minor axis ratio of 3 to 5. Production method. さらに200℃〜400℃の焙焼温度で処理することを特徴とする請求項1に記載の二酸化チタンの製造方法。Furthermore, it processes at the baking temperature of 200 to 400 degreeC, The manufacturing method of the titanium dioxide of Claim 1 characterized by the above-mentioned. 工程(a)で原料として用いる二酸化チタン水和物は、硫酸チタニルを加水分解し、得られた沈殿をろ過、洗浄したものである請求項1に記載の二酸化チタンの製造方法。The method for producing titanium dioxide according to claim 1, wherein the titanium dioxide hydrate used as a raw material in the step (a) is obtained by hydrolyzing titanyl sulfate and filtering and washing the resulting precipitate.
JP31886996A 1996-11-13 1996-11-13 Process for producing spindle-shaped titanium dioxide Expired - Lifetime JP3806790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31886996A JP3806790B2 (en) 1996-11-13 1996-11-13 Process for producing spindle-shaped titanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31886996A JP3806790B2 (en) 1996-11-13 1996-11-13 Process for producing spindle-shaped titanium dioxide

Publications (2)

Publication Number Publication Date
JPH10139434A JPH10139434A (en) 1998-05-26
JP3806790B2 true JP3806790B2 (en) 2006-08-09

Family

ID=18103881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31886996A Expired - Lifetime JP3806790B2 (en) 1996-11-13 1996-11-13 Process for producing spindle-shaped titanium dioxide

Country Status (1)

Country Link
JP (1) JP3806790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027404B1 (en) * 2018-06-29 2019-10-02 (주)쓰리에이씨 Manufacturing method of Titanium dioxide nanoparticles dispersed solution, Titanium dioxide nanoparticles dispersed solution manufactured by the same, and preparing method of Titanium dioxide film using the Titanium dioxide nanoparticles dispersed solution having excellent deodorization effect for removing formaldehyde, ammonia, acetaldehyde, acetic acid and toluene

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338245A (en) * 2001-05-16 2002-11-27 Tayca Corp Dispersion with high concentration of particulate titanium oxide
US7371275B2 (en) 2004-07-02 2008-05-13 E.I. Du Pont De Nemours And Company Titanium dioxide pigment and polymer compositions
WO2017159286A1 (en) * 2016-03-15 2017-09-21 大塚化学株式会社 Inorganic filler for rubber, rubber composition and tire
JP6939785B2 (en) 2016-06-29 2021-09-22 住友大阪セメント株式会社 Titanium oxide particles, and titanium oxide particle dispersions and cosmetics using them.
JP7247792B2 (en) 2019-07-03 2023-03-29 住友大阪セメント株式会社 Titanium oxide powder, dispersion and cosmetics using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027404B1 (en) * 2018-06-29 2019-10-02 (주)쓰리에이씨 Manufacturing method of Titanium dioxide nanoparticles dispersed solution, Titanium dioxide nanoparticles dispersed solution manufactured by the same, and preparing method of Titanium dioxide film using the Titanium dioxide nanoparticles dispersed solution having excellent deodorization effect for removing formaldehyde, ammonia, acetaldehyde, acetic acid and toluene

Also Published As

Publication number Publication date
JPH10139434A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
JP2781433B2 (en) Aqueous dispersion system of titanium dioxide and method for producing the same
JP4018770B2 (en) Fan-shaped titanium oxide, method for producing fan-shaped or plate-shaped titanium oxide, and use thereof
EP0684208B1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
JP3925886B2 (en) Spherical titanium dioxide aggregate formed from small spherical particles of titanium dioxide and method for producing the same
JP3898792B2 (en) Method for producing surface-treated titanium oxide sol
JP5170342B2 (en) Method for producing dispersion of rutile titanium oxide particles
JPH07247119A (en) Titanium dioxide aqueous dispersion
JP4495801B2 (en) Method for producing rutile ultrafine titanium dioxide
JP3806790B2 (en) Process for producing spindle-shaped titanium dioxide
JPS6345123A (en) Fine powder titanium dioxide composition
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JP4201880B2 (en) Butterfly-like rutile titanium oxide, method for producing the same, and use thereof
JPH0350120A (en) Production of titanium dioxide pigment powder
JPH02194065A (en) Minute titanium dioxide composition
JPS59223231A (en) Manufacture of fine-grained rutile type titanium oxide
JPH10251018A (en) Production of electronically conductive fine tin oxide powder and electrically conductive tin oxide sol
JP3732265B2 (en) Spindle-shaped fine particle titanium dioxide and method for producing the same
JPH05330825A (en) Iron containing superfine rutile titanium dioxide particle and its production
JPH02194063A (en) Minute titanium dioxide powder
JP3877235B2 (en) Rutile-type titanium dioxide particles and production method thereof
JP2852482B2 (en) Iron-containing titanium dioxide and method for producing the same
JP4256134B2 (en) Method for producing iron-containing acicular titanium dioxide fine particles
US3459575A (en) Titanium pigment manufacture
JPH07242422A (en) Fine particle-shaped acicular titanium oxide and production thereof
JP3537466B2 (en) Fine powder of titanium dioxide and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150526

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term