JPH10139434A - Production of spindle-type titanium dioxide - Google Patents

Production of spindle-type titanium dioxide

Info

Publication number
JPH10139434A
JPH10139434A JP8318869A JP31886996A JPH10139434A JP H10139434 A JPH10139434 A JP H10139434A JP 8318869 A JP8318869 A JP 8318869A JP 31886996 A JP31886996 A JP 31886996A JP H10139434 A JPH10139434 A JP H10139434A
Authority
JP
Japan
Prior art keywords
titanium dioxide
hydrochloric acid
slurry
major axis
dioxide hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8318869A
Other languages
Japanese (ja)
Other versions
JP3806790B2 (en
Inventor
Takeshi Maki
豪 牧
Masahiro Kawamoto
正比呂 河本
Mitsuo Harada
光雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP31886996A priority Critical patent/JP3806790B2/en
Publication of JPH10139434A publication Critical patent/JPH10139434A/en
Application granted granted Critical
Publication of JP3806790B2 publication Critical patent/JP3806790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a useful method for producing spindle type rutile titanium dioxide having a major axis of 0.15-0.30μm and a major axis/minor axis ratio of 2-8. SOLUTION: This method for producing spindle type titanium dioxide comprises (a) treating titanium dioxide hydrate with a base and subsequently neutralizing the obtained titanium dioxide hydrate slurry with hydrochloric acid into a pH of 6-9; (b) heating the neutralized titanium dioxide hydrate slurry at 40-60 deg.C and subsequently adding hydrochloric acid to the heated slurry at a rate of 0.05-0.20kg/min (converted into 100% HCl) per kg (converted into TiO2 ) of the titanium dioxide hydrate contained in the slurry in such an amount that the concentration of hydrochloric acid in the slurry is 32-48g/liter converted into 10% HCl; and (c) further heating the mixture, ageing the mixture at 90 deg.C to the boiling point, neutralizing the aged mixture, filtering the neutralized product, washing the separated solid products with water and subsequently drying the product. The obtained titanium dioxide is improved in detects related to dispersibility, and has physical properties such as good visible light transparency and good UV light-shielding ability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は長径が0.15〜
0.30μmであり、かつ長径/短径の比が2〜8であ
る紡錘状二酸化チタンの製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing a material having a major axis of 0.15 to 0.15 mm.
The present invention relates to a method for producing spindle-shaped titanium dioxide having a diameter of 0.30 μm and a ratio of major axis / minor axis of 2 to 8.

【0002】[0002]

【従来の技術】二酸化チタンは、塗料,化粧品の原料,
トナーの電荷調整剤,プラスチック,ゴム,フィルムな
どの充填剤として用いられており、紡錘状や針状といっ
た形状を有するアスペクト比の大きな二酸化チタンも、
その形状を生かした用途に用いられている。このような
紡錘状二酸化チタンの製造方法には多くの方法が開示さ
れている。
2. Description of the Related Art Titanium dioxide is used as a raw material for paints and cosmetics,
It is used as a charge control agent for toner, and as a filler for plastics, rubber, and films.
It is used for applications that take advantage of its shape. Many methods have been disclosed for producing such spindle-shaped titanium dioxide.

【0003】特開昭62−281812号公報には紡錘
状の二酸化チタンの簡単な製法が示されている。この方
法によれば、四塩化チタン水溶液を湿式加水分解して水
酸化チタンを生成させ、次いで、150〜600℃の温
度で焼成し、ルチル化を行ない、比表面積が60〜25
0m2 のルチル形結晶構造をもつ二酸化チタンが得られ
るとだけ記載されている。
[0003] Japanese Patent Application Laid-Open No. 62-281812 discloses a simple method for producing spindle-shaped titanium dioxide. According to this method, titanium hydroxide is produced by wet hydrolysis of an aqueous solution of titanium tetrachloride, and then calcined at a temperature of 150 to 600 ° C. to perform rutile, and a specific surface area of 60 to 25.
It is stated only that a titanium dioxide having a rutile crystal structure of 0 m 2 is obtained.

【0004】特開昭63−307119号公報には、四
塩化チタンまたは硫酸法によって得られる二酸化チタン
水和物を原料とし、最大寸法0.01〜0.15μm、
最大寸法と最短寸法との比が8:1から2:1の範囲内
である針状二酸化チタンおよびその製造方法が開示され
ている。
JP-A-63-307119 discloses that titanium tetrachloride or titanium dioxide hydrate obtained by a sulfuric acid method is used as a raw material and has a maximum size of 0.01 to 0.15 μm,
An acicular titanium dioxide having a ratio of the largest dimension to the smallest dimension in the range of 8: 1 to 2: 1 and a method for producing the same are disclosed.

【0005】特公平6−76215号公報には、結晶の
大きさが10〜100nm、すなわち0.1〜0.01
μmの微結晶二酸化チタンの製法が開示されている。そ
こには、おおよそ次のような製造工程が示されている。
チタン鉄鉱を硫酸と反応させて濃縮、不純物除去の後、
加水分解による沈殿によって得られた二酸化チタン水和
物を、水酸化ナトリウム水溶液を加えて強塩基性にして
沸点付近で加熱処理する。次いで、この処理物に塩酸を
加えてpH2前後とし、温度を60℃にして更に塩酸を
添加し、HCl濃度を8〜25g/lとする。更に温度
を上げて90℃とし、120分間熟成する。最後にアル
カリで中和し、ろ過,洗浄,乾燥,粉砕する。
Japanese Patent Publication No. 6-76215 discloses that the size of a crystal is 10 to 100 nm, that is, 0.1 to 0.01.
A process for producing micron microcrystalline titanium dioxide is disclosed. There, the following manufacturing process is roughly shown.
After reacting ilmenite with sulfuric acid and concentrating and removing impurities,
Titanium dioxide hydrate obtained by precipitation by hydrolysis is made strongly basic by adding an aqueous solution of sodium hydroxide, and is heated near the boiling point. Next, hydrochloric acid is added to the treated product to adjust the pH to around 2, the temperature is raised to 60 ° C., and hydrochloric acid is further added to adjust the HCl concentration to 8 to 25 g / l. Further raise the temperature to 90 ° C. and ripen for 120 minutes. Finally, neutralize with alkali, filter, wash, dry and pulverize.

【0006】[0006]

【発明が解決しょうとする課題】一般的に”微粒子酸化
チタン”と呼ばれる、平均粒子径0.1μm以下の酸化
チタンは、可視光における透明性、ならびに紫外線遮蔽
性を有するという物性を有してはいるものの、粒子が顔
料用酸化チタンに比べて小さいだけに分散性が劣り、塗
料,化粧品などの原料として使用する場合、分散時間が
かかるなどの欠点を有していた。本発明の目的は、上記
分散性に関する欠点が解消され、しかも可視光における
透明性ならびに紫外線遮蔽性という物性をも有する、結
晶構造がルチル形であり、平均長径が0.15〜0.3
0μmであり、長径/短径の比が2〜8であるような紡
錘状二酸化チタンの製造方法を提供することにある。本
発明でいうところの”紡錘状”とは、その形状が両端の
とがった円柱形に似た形をしており、とがった両端を結
ぶ長さ(長径)と円柱部の最も太い部分(短径)との比
が2〜8であるものをいう。
The titanium oxide having an average particle diameter of 0.1 μm or less, which is generally called “fine particle titanium oxide”, has the properties of being transparent in visible light and having ultraviolet shielding properties. However, the particles are inferior in dispersibility because they are small compared to titanium oxide for pigments, and have disadvantages such as long dispersing time when used as a raw material for paints and cosmetics. An object of the present invention is to solve the above-mentioned disadvantages relating to dispersibility, and also have the properties of transparency in visible light and ultraviolet shielding properties, the crystal structure is rutile, and the average major axis is 0.15 to 0.3.
An object of the present invention is to provide a method for producing spindle-shaped titanium dioxide having a diameter of 0 μm and a ratio of major axis / minor axis of 2 to 8. The “spindle shape” as used in the present invention has a shape similar to a pointed cylindrical shape at both ends, the length (long axis) connecting the sharpened ends and the thickest portion (short) of the cylindrical portion. (Diameter) is 2 to 8.

【0007】[0007]

【課題を解決するための手段】本発明者らは、製造条件
を工夫することにより、上記二酸化チタンの製造方法を
見出した。すなわち本発明の要旨は、下記(a)〜
(c)の工程よりなる、粒子の平均の大きさが、長径
0.15〜0.3μm、短径0.03〜0.1μm、長
径/短径比2〜8の範囲内であり、その形状が紡錘状で
ある、ルチル形二酸化チタンの製造方法に存する。 (a) 二酸化チタン水和物に塩基処理を行い、得られ
た二酸化チタン水和物スラリーを塩酸で中和し、pHを
6〜9にする: (b) 中和した二酸化チタン水和物スラリーを40℃
〜60℃に加熱し、そこにスラリー中の塩酸濃度が10
0%HCl換算で32〜48g/lとなる量の塩酸を、
スラリー中に存在する二酸化チタン水和物のTiO2
算1kgに対し、100%HCl換算で0.05〜0.
20kg/分の速度で添加する: (c) 塩酸添加後、更に加熱を行い、90℃〜沸点で
熟成した後に、塩基で中和し、ろ過、水洗、乾燥を行
う。
Means for Solving the Problems The present inventors have found a method for producing the above titanium dioxide by devising production conditions. That is, the gist of the present invention is as follows:
The average size of the particles obtained in the step (c) is within a range of a major axis of 0.15 to 0.3 μm, a minor axis of 0.03 to 0.1 μm, and a major axis / minor axis ratio of 2 to 8, The present invention resides in a method for producing rutile titanium dioxide having a spindle shape. (A) Titanium dioxide hydrate is subjected to a base treatment, and the obtained titanium dioxide hydrate slurry is neutralized with hydrochloric acid to a pH of 6 to 9: (b) Neutralized titanium dioxide hydrate slurry At 40 ° C
6060 ° C., and the concentration of hydrochloric acid in the slurry was 10
Hydrochloric acid in an amount of 32 to 48 g / l in terms of 0% HCl,
For 1 kg of titanium dioxide hydrate present in the slurry in terms of TiO 2 , 0.05 to 0.1% in terms of 100% HCl.
Add at a rate of 20 kg / min: (c) After the addition of hydrochloric acid, the mixture is further heated, aged at 90 ° C. to the boiling point, neutralized with a base, filtered, washed with water and dried.

【0008】本発明が従来の技術と異なる点は、工程
(a)において塩基処理された二酸化チタン水和物スラ
リーを、塩酸で一旦pH6〜9に中和すること、およ
び、工程(b)において塩酸の添加速度をスラリー中に
存在する二酸化チタン水和物の量に応じて特定値の範囲
内に設定することにある。
The present invention is different from the prior art in that the base-treated titanium dioxide hydrate slurry in step (a) is neutralized once with hydrochloric acid to pH 6 to 9, and in step (b). The purpose is to set the rate of adding hydrochloric acid within a specific value range according to the amount of titanium dioxide hydrate present in the slurry.

【0009】以下、本発明を工程毎に説明する。まず、
原料として用いる二酸化チタン水和物は、四塩化チタ
ン、チタンアルコキシド、硫酸チタニルなどから得られ
る。これらのうち、チタン鉄鉱を硫酸と反応させるいわ
ゆる硫酸法によって得られる硫酸チタニルの加水分解か
ら得られる二酸化チタン水和物が好ましい。
Hereinafter, the present invention will be described step by step. First,
Titanium dioxide hydrate used as a raw material is obtained from titanium tetrachloride, titanium alkoxide, titanyl sulfate and the like. Of these, titanium dioxide hydrate obtained from the hydrolysis of titanyl sulfate obtained by the so-called sulfuric acid method of reacting ilmenite with sulfuric acid is preferred.

【0010】工程(a)における二酸化チタン水和物の
塩基処理とは、硫酸チタニルの加水分解によって得られ
た二酸化チタン水和物ケーキに塩基を加え、90〜10
0℃の温度で約2時間加熱処理し、処理後の反応生成物
をろ過,洗浄することである。塩基としては一般に水酸
化ナトリウム、水酸化カリウムなどが用いられる。本工
程自体は公知であり、例えば、特開昭59−22323
1号公報、特公平6−76215号公報などに記載され
ている。塩基処理された二酸化チタン水和物は、撹拌し
ながら、TiO2 換算で170g/l以下となるように
水を加えてスラリー化する。170g/lを超えると、
後の塩酸添加工程において増粘し、作業がしにくくな
る。次いで塩酸を加えてpH6〜9に中和する。この時
pHが6より低いと、得られる二酸化チタンは、長径が
せいぜい0.1μm以下の大きさにしかならず好ましく
ない。また、pHが9を超えてしまうと、後の工程で加
える塩酸の添加後の塩酸濃度の安定化が保たれなくなっ
てしまい、結果的に二酸化チタンの長径が大きくならず
好ましくない。
The base treatment of titanium dioxide hydrate in step (a) is to add a base to a titanium dioxide hydrate cake obtained by hydrolysis of titanyl sulfate,
Heat treatment is performed at a temperature of 0 ° C. for about 2 hours, and the reaction product after the treatment is filtered and washed. As the base, sodium hydroxide, potassium hydroxide and the like are generally used. This step itself is known, for example, as described in JP-A-59-22323.
No. 1 and Japanese Patent Publication No. 6-76215. Water is added to the base-treated titanium dioxide hydrate to form a slurry while stirring so that the water content is 170 g / l or less in terms of TiO 2 . If it exceeds 170 g / l,
Viscosity increases in the subsequent hydrochloric acid addition step, making it difficult to work. Then, hydrochloric acid is added to neutralize to pH 6-9. At this time, if the pH is lower than 6, the obtained titanium dioxide has a major axis of at most 0.1 μm or less, which is not preferable. On the other hand, if the pH exceeds 9, stability of the hydrochloric acid concentration after the addition of hydrochloric acid added in a later step cannot be maintained, and as a result, the major axis of titanium dioxide is not increased, which is not preferable.

【0011】工程(a)によって塩酸で中和された状態
にあるpH6〜9のスラリーは、工程(b)により撹拌
しながら加熱され、40〜60℃の温度に調整される。
この際、温度が60℃を超えると、得られる二酸化チタ
ンの長径は0.1μm以下となってしまうので好ましく
ない。また、40℃より低い温度では、紡錘状の形状が
形成されない。上記温度に設定されたスラリーに塩酸を
加え、スラリー中の塩酸濃度を100%HCl換算で3
2〜48g/lにする。塩酸を添加する際には、スラリ
ー中の二酸化チタン水和物TiO2 換算1kgに対し、
100%HCl換算で0.05〜0.2kg/分、好ま
しくは0.08〜0.13kg/分、の速度で塩酸を加
えなければならない。塩酸添加後の塩酸濃度が32g/
lよりも低いと、形成される二酸化チタンの粒径が小さ
くなるので好ましくない。また逆に塩酸濃度が48g/
lよりも高いと、得られる二酸化チタンの長径が大きく
ならず好ましくない。また、塩酸の添加速度が0.05
kg/分よりも小さいと、形成される二酸化チタンの長
径が小さくなるので好ましくない。また逆に、添加速度
が0.2kg/分を越えてしまうと得られる二酸化チタ
ンは凝集体となってしまう。従って、本添加工程におい
ては、上記添加量、添加速度を適正に行なえるようにす
るために、事前の準備や添加設備を充分に検討しておく
必要がある。
The slurry having a pH of 6 to 9, which has been neutralized with hydrochloric acid in step (a), is heated with stirring in step (b) to adjust the temperature to 40 to 60 ° C.
At this time, if the temperature exceeds 60 ° C., the major axis of the obtained titanium dioxide is not more than 0.1 μm, which is not preferable. At a temperature lower than 40 ° C., a spindle-shaped shape is not formed. Hydrochloric acid is added to the slurry set to the above temperature, and the concentration of hydrochloric acid in the slurry is adjusted to 3 in terms of 100% HCl.
2 to 48 g / l. When adding hydrochloric acid, 1 kg of titanium dioxide hydrate TiO 2 in the slurry is
Hydrochloric acid must be added at a rate of 0.05 to 0.2 kg / min, preferably 0.08 to 0.13 kg / min in terms of 100% HCl. Hydrochloric acid concentration after adding hydrochloric acid is 32g /
If it is lower than 1, the particle diameter of the titanium dioxide formed is undesirably small. Conversely, when the hydrochloric acid concentration is 48 g /
If it is higher than 1, the major axis of the obtained titanium dioxide is not increased, which is not preferable. In addition, the addition rate of hydrochloric acid is 0.05
If it is less than kg / min, the length of the formed titanium dioxide is small, which is not preferable. Conversely, if the addition rate exceeds 0.2 kg / min, the obtained titanium dioxide will be aggregated. Therefore, in the present addition step, it is necessary to sufficiently examine the preparation and the addition equipment in advance so that the above addition amount and addition rate can be appropriately performed.

【0012】工程(c)では、工程(b)の塩酸添加
後、40〜60℃の温度範囲にある系に対し加熱を行
い、温度を90℃〜沸点とし、30分以上の熟成を行な
う。熟成温度が90℃より低いと紡錘状とはならず、球
状に近い形状のものが形成されるので好ましくない。熟
成時間は長いほど二酸化チタンの粒径分布が狭くなり均
一なものが得られるが、余り長くなりすぎると経済的で
はない。好ましくは1時間ないし3時間が適切である。
熟成後のスラリーは、例えば、アンモニア水,苛性ソー
ダ水溶液,炭酸ソーダ水溶液などの塩基により中和し、
公知の方法でろ過,洗浄,乾燥する。必要に応じ、50
0℃以下好ましくは200〜400℃の範囲内の任意の
温度で30分以上焙焼しても構わない。焙焼温度が50
0℃を超えてしまうと粒子形状が丸味を帯びてしまうの
で、もはや紡錘状二酸化チタンとは呼べなくなってしま
う。
In the step (c), after the addition of hydrochloric acid in the step (b), the system in the temperature range of 40 to 60 ° C. is heated to a temperature of 90 ° C. to the boiling point, and ripening is performed for 30 minutes or more. If the aging temperature is lower than 90 ° C., it does not become spindle-shaped and a shape close to spherical is formed, which is not preferable. The longer the aging time, the narrower the particle size distribution of titanium dioxide and a uniform one can be obtained, but if it is too long, it is not economical. Preferably one to three hours is appropriate.
The aged slurry is neutralized with a base such as aqueous ammonia, aqueous sodium hydroxide solution, aqueous sodium carbonate solution, and the like.
Filtration, washing and drying are performed by known methods. 50 if necessary
It may be roasted at 0 ° C. or lower, preferably at an arbitrary temperature in the range of 200 to 400 ° C. for 30 minutes or more. Roasting temperature is 50
If the temperature exceeds 0 ° C., the particle shape becomes rounded, so that it can no longer be called spindle-shaped titanium dioxide.

【0013】このようにして得られた紡錘状二酸化チタ
ンは、引き続きその表面を公知の方法により、無機化合
物、有機化合物、あるいはそれらの複合体などで被覆し
ても構わない。たとえば、上記紡錘状二酸化チタンを、
エックアトマイザーなどの乾式粉砕機やサンドグライン
ダーなどの湿式粉砕機に通した後、スラリー化し無機化
合物,有機化合物あるいはそれらの複合体で二酸化チタ
ン表面を被覆処理する。無機化合物としてはケイ素,ア
ルミニウム,ジルコニウム,亜鉛,アンチモン,マグネ
シウム,鉄,ニッケル,コバルトなどの酸化物や水酸化
物などがあげられる。有機化合物としてはラウリン酸,
イソステアリン酸,ステアリン酸,パルミチン酸などの
脂肪酸、環状あるいは直鎖のシリコーンオイルに代表さ
れる有機ケイ素化合物,チタニウムアルコキシドに代表
される有機チタン化合物などがあげられる。無機,有機
複合体としては、例えばアルミニウムの水和酸化物とス
テアリン酸などの複合体や、亜鉛、アルミニウム、カル
シウム、バリウムなどの脂肪酸金属石鹸などがある。こ
れらの無機化合物や有機化合物、複合体は各々単独で
も、いずれか二種以上を組み合わせて用いることも可能
である。
[0013] The spindle-shaped titanium dioxide thus obtained may be subsequently coated on its surface with an inorganic compound, an organic compound or a complex thereof by a known method. For example, the spindle-shaped titanium dioxide is
After passing through a dry pulverizer such as an Ek atomizer or a wet pulverizer such as a sand grinder, the slurry is slurried and the surface of the titanium dioxide is coated with an inorganic compound, an organic compound or a complex thereof. Examples of the inorganic compound include oxides and hydroxides of silicon, aluminum, zirconium, zinc, antimony, magnesium, iron, nickel, cobalt and the like. Lauric acid as an organic compound,
Examples thereof include fatty acids such as isostearic acid, stearic acid, and palmitic acid, organic silicon compounds represented by cyclic or linear silicone oils, and organic titanium compounds represented by titanium alkoxide. Examples of the inorganic or organic composite include a composite such as a hydrated oxide of aluminum and stearic acid, and a fatty acid metal soap such as zinc, aluminum, calcium, and barium. These inorganic compounds, organic compounds and composites can be used alone or in combination of two or more.

【0014】本発明の製造方法によって得られる紡錘状
二酸化チタンは、その大きさからすると、もはやいわゆ
る”微粒子酸化チタン”の範中には入らないが、それに
もかかわらず、物性的には可視光における透明性や紫外
線遮蔽性を有し、しかも分散に係る問題をも解消するも
のである。
The spindle-shaped titanium dioxide obtained by the production method of the present invention no longer falls within the scope of so-called "fine-particle titanium oxide" in view of its size, but nevertheless, is physically characterized by visible light. It has transparency and ultraviolet shielding property in the above, and also solves the problem of dispersion.

【0015】[0015]

【発明の実施の形態】次に本発明を実施例によって詳し
く説明する。
Next, the present invention will be described in detail with reference to examples.

【0016】[0016]

【実施例1】 工程(a) 常法により硫酸チタニル溶液を加水分解し、ろ過洗浄し
た含水二酸化チタンケーキ(二酸化チタン水和物)35
kg(TiO2 換算で10kg)に、48%水酸化ナト
リウム水溶液40kgを攪拌しながら投入し、その後加
熱して95〜105℃の温度範囲で2時間攪拌した。次
いで、このスラリーをろ過し、充分洗浄することにより
塩基処理された二酸化チタン水和物を得た。この水和物
ケーキに水を加えてスラリー化し、TiO2 換算濃度で
110g/lに調整した。このスラリーを攪拌しなが
ら、35%塩酸を添加して、pH7.0とした。 工程(b) 上記スラリーを50℃に加熱し、この温度で35%塩酸
12.5kgを、攪拌しながら4分間で添加し、塩酸添
加後のスラリー中における塩酸濃度が、100%HCl
換算で40g/lとなるようにした。塩酸添加速度は、
TiO2 換算1kg当たり0.11kg/分である。 工程(c) 塩酸添加に引き続き、スラリーの加熱を行い、100℃
で2時間熟成した。熟成後のスラリーに、アンモニア水
を添加してpH=6.5に中和した。充分にろ過、水洗
を行い、乾燥後、流体エネルギーミルで粉砕した。得ら
れた粉体は平均長径0.25μm、平均短径0.06μ
mの紡錘状の形をした二酸化チタンであった。X線回折
装置による測定の結果、結晶形はルチル形であった。
Example 1 Step (a) A hydrous titanium dioxide cake (titanium dioxide hydrate) 35 obtained by hydrolyzing a titanyl sulfate solution by a conventional method, and filtering and washing the same.
40 kg of a 48% aqueous sodium hydroxide solution was added to the resulting mixture (40 kg in terms of TiO 2 ) while stirring, and then heated and stirred in a temperature range of 95 to 105 ° C. for 2 hours. Next, the slurry was filtered and sufficiently washed to obtain a base-treated titanium dioxide hydrate. The hydrate cake adding water slurried, adjusted to 110g / l in terms of TiO 2 concentration. While stirring this slurry, 35% hydrochloric acid was added to adjust the pH to 7.0. Step (b) The slurry is heated to 50 ° C., and at this temperature, 12.5 kg of 35% hydrochloric acid is added with stirring for 4 minutes, and the concentration of hydrochloric acid in the slurry after adding hydrochloric acid is 100% HCl.
It was adjusted to 40 g / l in conversion. Hydrochloric acid addition rate,
It is 0.11 kg / min per kg of TiO 2 conversion. Step (c) After the addition of hydrochloric acid, the slurry is heated to 100 ° C.
For 2 hours. Aqueous ammonia was added to the aged slurry to neutralize to pH = 6.5. After sufficiently filtering and washing with water and drying, the mixture was pulverized with a fluid energy mill. The obtained powder had an average major axis of 0.25 μm and an average minor axis of 0.06 μm.
m of spindle-shaped titanium dioxide. As a result of measurement by an X-ray diffractometer, the crystal form was a rutile form.

【0017】[0017]

【実施例2】工程(a)における35%塩酸添加後のp
Hを6.2とした以外は、実施例1と同じ処理を行っ
た。
Example 2 p after addition of 35% hydrochloric acid in step (a)
The same processing as in Example 1 was performed except that H was set to 6.2.

【0018】[0018]

【実施例3】工程(a)における35%塩酸添加後のp
Hを8.8とした以外は、実施例1と同じ処理を行っ
た。
Example 3 p after adding 35% hydrochloric acid in step (a)
The same processing as in Example 1 was performed, except that H was set to 8.8.

【0019】[0019]

【実施例4】工程(b)におけるスラリー温度を50℃
から55℃とした以外は、実施例1と同じ処理を行っ
た。
Embodiment 4 The slurry temperature in the step (b) was set to 50 ° C.
The same processing as in Example 1 was performed except that the temperature was changed to 55 ° C.

【0020】[0020]

【実施例5】工程(b)におけるスラリー温度を50℃
から45℃にした以外は、実施例1と同じ処理を行っ
た。
Embodiment 5 The slurry temperature in the step (b) was 50 ° C.
The same processing as in Example 1 was performed except that the temperature was changed to 45 ° C.

【0021】[0021]

【実施例6】工程(b)における35%塩酸添加時間を
2.5分間とした(塩酸添加速度:TiO2 換算1kg
当たり0.175kg/分)以外は、実施例1と同じ処
理を行った。
Embodiment 6 The addition time of 35% hydrochloric acid in the step (b) was set to 2.5 minutes (hydrochloric acid addition rate: 1 kg in terms of TiO 2).
Per 0.175 kg / min).

【0022】[0022]

【実施例7】工程(b)における35%塩酸添加時間を
8分間とした(塩酸添加速度:TiO2 換算1kg当た
り0.055kg/分)以外は、実施例1と同じ処理を
行った。
Example 7 The same treatment as in Example 1 was carried out except that the addition time of 35% hydrochloric acid in the step (b) was changed to 8 minutes (hydrochloric acid addition rate: 0.055 kg / min per kg of TiO 2 ).

【0023】[0023]

【実施例8】工程(b)における塩酸添加後のスラリー
中における塩酸濃度を37g/lとなるように、11.
56kgの35%塩酸を4分間で添加した(塩酸添加速
度:TiO2 換算1kg当たり0.1kg/分)以外
は、実施例1と同じ処理を行った。
[Embodiment 8] The concentration of hydrochloric acid in the slurry after the addition of hydrochloric acid in step (b) was adjusted to be 37 g / l.
The same treatment as in Example 1 was performed except that 56 kg of 35% hydrochloric acid was added in 4 minutes (hydrochloric acid addition rate: 0.1 kg / min per kg of TiO 2 ).

【0024】[0024]

【実施例9】工程(b)における塩酸添加後のスラリー
中における塩酸濃度を44g/lとなるように、13.
75kgの35%塩酸を4分間で添加した(塩酸添加速
度:TiO2 換算1kg当たり0.12kg/分)以外
は、実施例1と同じ処理を行った。
Example 9 13. The concentration of hydrochloric acid in the slurry after the addition of hydrochloric acid in step (b) was adjusted to be 44 g / l.
The same treatment as in Example 1 was performed except that 75 kg of 35% hydrochloric acid was added in 4 minutes (hydrochloric acid addition rate: 0.12 kg / min per kg of TiO 2 ).

【0025】[0025]

【実施例10】実施例1で得た粉体試料をさらに330
℃で焙焼した。
Example 10 The powder sample obtained in Example 1 was further added to 330
Roasted at ℃.

【0026】[0026]

【実施例11】実施例1で得た粉体試料を水に分散し、
TiO2 重量基準で200g/lのスラリー800ml
を作成し、40℃に加熱して、撹拌しながらアルミン酸
ソーダ水溶液(Al2 3 換算で200g/l)40m
lと30%希硫酸を、pH5〜6に保ちながら10分間
で添加した。更に60℃に加熱後、30分間撹拌した。
これらをろ過、洗浄し、110℃で24時間乾燥した
後、粉砕した。
Example 11 The powder sample obtained in Example 1 was dispersed in water,
800 ml of 200 g / l slurry based on TiO 2 weight
Is prepared, heated to 40 ° C., and stirred while an aqueous sodium aluminate solution (200 g / l in terms of Al 2 O 3 ) is prepared.
1 and 30% diluted sulfuric acid were added over 10 minutes while maintaining pH 5-6. After further heating to 60 ° C., the mixture was stirred for 30 minutes.
These were filtered, washed, dried at 110 ° C. for 24 hours, and then pulverized.

【0027】[0027]

【比較例1】工程(a)における35%塩酸添加後のp
Hを5.0とした以外は、実施例1と同じ処理を行っ
た。得られた二酸化チタンの形状は紡錘状であったが、
その長径はおおよそ100nmであり、後述の試験例で
示すとおり、紫外線遮蔽能において優れた値を示さなか
った。
Comparative Example 1 p after adding 35% hydrochloric acid in step (a)
The same processing as in Example 1 was performed except that H was set to 5.0. The shape of the obtained titanium dioxide was spindle-shaped,
Its major axis was about 100 nm, and did not show an excellent value in ultraviolet shielding ability as shown in Test Examples described later.

【0028】[0028]

【比較例2】工程(a)における35%塩酸添加後のp
Hを10.0とした以外は、実施例1と同じ処理を行っ
た。得られた二酸化チタンは、比較例1の場合と同様な
形状・機能を示した。
Comparative Example 2 p after adding 35% hydrochloric acid in step (a)
The same processing as in Example 1 was performed except that H was set to 10.0. The obtained titanium dioxide exhibited the same shape and function as in Comparative Example 1.

【0029】[0029]

【比較例3】工程(b)における35%塩酸添加時間を
15分間とした(塩酸添加速度:TiO2 換算1kg当
たり0.029kg/分)以外は、実施例1と同じ処理
を行った。得られた二酸化チタンは、比較例1の場合と
同様な形状ならびに機能を示した。
Comparative Example 3 The same treatment as in Example 1 was carried out except that the addition time of 35% hydrochloric acid in the step (b) was changed to 15 minutes (hydrochloric acid addition rate: 0.029 kg / min per kg of TiO 2 ). The obtained titanium dioxide showed the same shape and function as in Comparative Example 1.

【0030】[0030]

【比較例4】工程(b)における35%塩酸添加時間を
1分間とした(塩酸添加速度:TiO2 換算1kg当た
り0.44kg/分)以外は、実施例1と同じ処理を行
った。結果として得られたのは二酸化チタンの凝集体で
あり、後述の試験例で示すとおり、可視光線における透
明性について優れた値を示さなかった。
Comparative Example 4 The same treatment as in Example 1 was carried out except that the time of adding 35% hydrochloric acid in the step (b) was changed to 1 minute (rate of adding hydrochloric acid: 0.44 kg / min per 1 kg of TiO 2 ). The result was an aggregate of titanium dioxide, which did not show an excellent value for transparency in visible light, as shown in the test examples described later.

【0031】[0031]

【比較例5】工程(b)における塩酸添加後のスラリー
中における塩酸濃度を30g/lとなるように、9.1
kgの35%塩酸を4分間で添加した(塩酸添加速度:
TiO2 換算1kg当たり0.08kg/分)以外は、
実施例1と同じ処理を行った。得られた二酸化チタン
は、平均粒径が0.1μm以下のいわゆる”微粒子”二
酸化チタンであり、結晶形はアナタース形であった。
Comparative Example 5 9.1 The hydrochloric acid concentration in the slurry after the addition of hydrochloric acid in the step (b) was adjusted to 9.1 so as to be 30 g / l.
kg of 35% hydrochloric acid was added in 4 minutes (hydrochloric acid addition rate:
Except 0.08 kg / min per kg of TiO 2 )
The same processing as in Example 1 was performed. The obtained titanium dioxide was a so-called "fine particle" titanium dioxide having an average particle size of 0.1 μm or less, and the crystal form was anatase.

【0032】[0032]

【比較例6】工程(b)における塩酸添加後のスラリー
中における塩酸濃度を50g/lとなるように、15.
75kgの35%塩酸を4分間で添加した(塩酸添加速
度:TiO2 換算1kg当たり0.138kg/分)以
外は実施例1と同じ処理を行った。得られた二酸化チタ
ンは、比較例1の場合と同様な形状ならびに機能を示し
た。
Comparative Example 6 15. The hydrochloric acid concentration in the slurry after the addition of hydrochloric acid in the step (b) was adjusted to be 50 g / l.
The same process as in Example 1 was performed except that 75 kg of 35% hydrochloric acid was added over 4 minutes (hydrochloric acid addition rate: 0.138 kg / min per 1 kg of TiO 2 ). The obtained titanium dioxide showed the same shape and function as in Comparative Example 1.

【0033】[0033]

【比較例7】実施例1で得た粉体試料をさらに550℃
で焙焼した。得られた二酸化チタンは、上記加熱処理に
より粒子形状がいわゆる楕円状に変化し、可視光線にお
ける透明性が低下した。
Comparative Example 7 The powder sample obtained in Example 1 was further heated to 550 ° C.
Roasted. The particle shape of the obtained titanium dioxide was changed to a so-called elliptical shape by the heat treatment, and transparency in visible light was reduced.

【0034】[0034]

【比較例8】工程(a)における35%塩酸添加後のp
Hを2とし、工程(b)における35%塩酸添加時間を
15分間とした以外は実施例1と同じ処理を行った。得
られた二酸化チタンの形状は針状に近い紡錘状であり、
しかも長径はおおよそ50nmであり、後述の試験例で
示すとおり、紫外線遮蔽能において優れた値を示さなか
った。
Comparative Example 8 p after adding 35% hydrochloric acid in step (a)
H was set to 2, and the same treatment as in Example 1 was performed except that the addition time of 35% hydrochloric acid in the step (b) was changed to 15 minutes. The shape of the obtained titanium dioxide is a spindle shape close to a needle shape,
Moreover, the major axis was about 50 nm, and did not show an excellent value in the ultraviolet shielding ability as shown in the test examples described later.

【0035】[0035]

【試験例】[Test example]

〔粒子の形状、平均長径、平均短径の測定〕各実施例、
比較例で得られた二酸化チタンを電子顕微鏡で観察し、
写真撮影を行った。この電子顕微鏡写真から粒子の形
状、長径、短径を読みとり、平均長径、平均短径を計算
した。長径/短径の比は、平均長径/平均短径の比であ
る。
(Measurement of particle shape, average major axis, average minor axis) Each example,
Observe the titanium dioxide obtained in the comparative example with an electron microscope,
Photographs were taken. The particle shape, major axis, and minor axis were read from the electron micrograph, and the average major axis and average minor axis were calculated. The ratio of major axis / minor axis is the ratio of average major axis / average minor axis.

【0036】〔透明性、紫外線遮蔽能の測定〕下記の配
合で油分散体を作成した。 (1) 各実施例、比較例で得られた二酸化チタン 3g (2) ブチレングリコール 27g 成分(1)、(2)にガラスビーズ(直径1.5mm)
70gを加え、ペイントシェイカー(レッドデビル社
製)にて1時間分散した。試料油分散体をポリプロピレ
ン製フィルム(厚み40μm)へ10μmの膜厚になる
ように塗布し、分光光度計(日立自記分光光度計U−3
410)にて290nm〜700nmの散乱光も含めた
全透過率を測定した。紫外線領域である290nm〜4
00nm、および可視光線領域である400nm〜70
0nmにおける透過率積分値(nm・%)をそれぞれ以
下の式により求め、各々紫外線遮蔽能、透明性として各
表に記載した。すなわち、ここでいう紫外線遮蔽能と
は、290〜400nmにおける透過率積分値で表した
UV−A、UV−B領域の遮蔽効果を示したものであ
り、その数値が小さいほど紫外線遮蔽効果が優れてい
る。また、透明性とは、400〜700nmにおける透
過率積分値で表した可視光線に対する透明性を示したも
のであり、その数値が大きいほど透明性が優れている。 透過率積分値(nm・%)=Σ設定された波長領域(n
m)×透過率(%)
[Measurement of Transparency and UV-Shielding Ability] An oil dispersion was prepared with the following composition. (1) 3 g of titanium dioxide obtained in each of Examples and Comparative Examples (2) 27 g of butylene glycol Glass beads (1.5 mm in diameter) on components (1) and (2)
70 g was added, and the mixture was dispersed for 1 hour using a paint shaker (manufactured by Red Devil Co.). The sample oil dispersion was applied to a polypropylene film (thickness: 40 μm) so as to have a thickness of 10 μm, and was then applied to a spectrophotometer (Hitachi Automatic Recording Spectrophotometer U-3).
At 410), the total transmittance including the scattered light of 290 nm to 700 nm was measured. 290 nm to 4 in the ultraviolet region
00 nm and 400 nm to 70 in the visible light region.
The transmittance integral value (nm ·%) at 0 nm was determined by the following formula, and the results were shown in each table as the ultraviolet shielding ability and transparency. That is, the term “ultraviolet shielding ability” as used herein refers to a shielding effect in the UV-A and UV-B regions represented by a transmittance integrated value at 290 to 400 nm, and the smaller the numerical value, the better the ultraviolet shielding effect. ing. The transparency indicates transparency with respect to visible light represented by an integral value of transmittance at 400 to 700 nm. The larger the value, the better the transparency. Transmittance integral value (nm ·%) = ΣSet wavelength region (n
m) x transmittance (%)

【0037】〔結晶形の測定〕理学電機(株)Geigerfl
exにて試料の結晶形を測定した。測定条件は以下の通り
である。 測定電圧:40kV 測定角度:5°〜60° 測定電流:35mA 走査測度:5°/min. これらの測定の結果を表1および表2にまとめた。
[Measurement of crystal form] Geigerfl Co., Ltd.
The crystal form of the sample was measured in ex. The measurement conditions are as follows. Measurement voltage: 40 kV Measurement angle: 5 ° to 60 ° Measurement current: 35 mA Scanning measure: 5 ° / min. The results of these measurements are summarized in Tables 1 and 2.

【測定結果】【Measurement result】

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒子の平均の大きさが、長径0.15〜
0.3μm、短径0.03〜0.1μm、長径/短径比
2〜8の範囲内であり、その形状が紡錘状である、下記
(a)〜(c)の工程よりなるルチル形二酸化チタンの
製造方法: (a) 二酸化チタン水和物に塩基処理を行い、得られ
た二酸化チタン水和物スラリーを塩酸で中和し、pHを
6〜9にする: (b) 中和した二酸化チタン水和物スラリーを40℃
〜60℃に加熱し、そこにスラリー中の塩酸濃度が10
0%HCl換算で32〜48g/lとなる量の塩酸を、
スラリー中に存在する二酸化チタン水和物のTiO2
算1kgに対し、100%HCl換算で0.05〜0.
20kg/分の速度で添加する: (c) 塩酸添加後、更に加熱を行い、90℃〜沸点で
熟成した後に、塩基で中和し、ろ過、水洗、乾燥を行
う。
1. The method according to claim 1, wherein the average size of the particles is 0.15 to 0.55.
0.3 μm, minor axis 0.03 to 0.1 μm, major axis / minor axis ratio is in the range of 2 to 8 and the shape is spindle-shaped, rutile type comprising the following steps (a) to (c) Production method of titanium dioxide: (a) Titanium dioxide hydrate is subjected to a base treatment, and the obtained titanium dioxide hydrate slurry is neutralized with hydrochloric acid to adjust pH to 6 to 9: (b) Neutralized Titanium dioxide hydrate slurry at 40 ° C
6060 ° C., and the concentration of hydrochloric acid in the slurry was 10
Hydrochloric acid in an amount of 32 to 48 g / l in terms of 0% HCl,
For 1 kg of titanium dioxide hydrate present in the slurry in terms of TiO 2 , 0.05 to 0.1% in terms of 100% HCl.
Add at a rate of 20 kg / min: (c) After the addition of hydrochloric acid, the mixture is further heated, aged at 90 ° C. to the boiling point, neutralized with a base, filtered, washed with water and dried.
【請求項2】 工程(b)における塩酸の添加速度が、
0.08〜0.13kg/分である請求項1に記載の二
酸化チタンの製造方法。
2. The addition rate of hydrochloric acid in the step (b) is as follows:
The method for producing titanium dioxide according to claim 1, wherein the amount is 0.08 to 0.13 kg / min.
【請求項3】 得られる二酸化チタン粒子の大きさが、
平均長径0.2〜0.28μm、平均短径0.05〜
0.07μm、長径/短径比3〜5である請求項1に記
載の二酸化チタンの製造方法。
3. The size of the obtained titanium dioxide particles is:
Average major axis 0.2 ~ 0.28μm, average minor axis 0.05 ~
The method for producing titanium dioxide according to claim 1, wherein the ratio of major axis / minor axis is 3 to 5 at 0.07 µm.
【請求項4】 さらに200℃〜400℃の焙焼温度で
処理することを特徴とする請求項1に記載の二酸化チタ
ンの製造方法。
4. The method for producing titanium dioxide according to claim 1, further comprising treating at a roasting temperature of 200 ° C. to 400 ° C.
【請求項5】 工程(a)で原料として用いる二酸化チ
タン水和物は、硫酸チタニルを加水分解し、得られた沈
殿をろ過、洗浄したものである請求項1に記載の二酸化
チタンの製造方法。
5. The method for producing titanium dioxide according to claim 1, wherein the titanium dioxide hydrate used as a raw material in the step (a) is obtained by hydrolyzing titanyl sulfate, and filtering and washing the obtained precipitate. .
JP31886996A 1996-11-13 1996-11-13 Process for producing spindle-shaped titanium dioxide Expired - Lifetime JP3806790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31886996A JP3806790B2 (en) 1996-11-13 1996-11-13 Process for producing spindle-shaped titanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31886996A JP3806790B2 (en) 1996-11-13 1996-11-13 Process for producing spindle-shaped titanium dioxide

Publications (2)

Publication Number Publication Date
JPH10139434A true JPH10139434A (en) 1998-05-26
JP3806790B2 JP3806790B2 (en) 2006-08-09

Family

ID=18103881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31886996A Expired - Lifetime JP3806790B2 (en) 1996-11-13 1996-11-13 Process for producing spindle-shaped titanium dioxide

Country Status (1)

Country Link
JP (1) JP3806790B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338245A (en) * 2001-05-16 2002-11-27 Tayca Corp Dispersion with high concentration of particulate titanium oxide
US7371275B2 (en) 2004-07-02 2008-05-13 E.I. Du Pont De Nemours And Company Titanium dioxide pigment and polymer compositions
WO2017159286A1 (en) * 2016-03-15 2017-09-21 大塚化学株式会社 Inorganic filler for rubber, rubber composition and tire
WO2018003851A1 (en) 2016-06-29 2018-01-04 住友大阪セメント株式会社 Titanium oxide particles, and titanium oxide particle dispersion and cosmetics using same
WO2021002456A1 (en) 2019-07-03 2021-01-07 住友大阪セメント株式会社 Titanium oxide powder, and dispersion and cosmetics using same
RU2801392C1 (en) * 2023-02-07 2023-08-08 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method for producing ferromagnetic oxygen-deficient titanium dioxide in the bronze phase

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027404B1 (en) * 2018-06-29 2019-10-02 (주)쓰리에이씨 Manufacturing method of Titanium dioxide nanoparticles dispersed solution, Titanium dioxide nanoparticles dispersed solution manufactured by the same, and preparing method of Titanium dioxide film using the Titanium dioxide nanoparticles dispersed solution having excellent deodorization effect for removing formaldehyde, ammonia, acetaldehyde, acetic acid and toluene

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338245A (en) * 2001-05-16 2002-11-27 Tayca Corp Dispersion with high concentration of particulate titanium oxide
US7371275B2 (en) 2004-07-02 2008-05-13 E.I. Du Pont De Nemours And Company Titanium dioxide pigment and polymer compositions
CN108884277B (en) * 2016-03-15 2020-11-27 大塚化学株式会社 Inorganic filler for rubber, rubber composition, and tire
JP6227849B1 (en) * 2016-03-15 2017-11-08 大塚化学株式会社 Inorganic filler for rubber, rubber composition and tire
CN108884277A (en) * 2016-03-15 2018-11-23 大塚化学株式会社 Rubber inorganic filling material, rubber composition and tire
WO2017159286A1 (en) * 2016-03-15 2017-09-21 大塚化学株式会社 Inorganic filler for rubber, rubber composition and tire
WO2018003851A1 (en) 2016-06-29 2018-01-04 住友大阪セメント株式会社 Titanium oxide particles, and titanium oxide particle dispersion and cosmetics using same
KR20190021346A (en) 2016-06-29 2019-03-05 스미토모 오사카 세멘토 가부시키가이샤 Titanium dioxide particles, dispersion of titanium dioxide particles using the same, and cosmetic
EP3480167A4 (en) * 2016-06-29 2019-12-04 Sumitomo Osaka Cement Co., Ltd. Titanium oxide particles, and titanium oxide particle dispersion and cosmetics using same
US10717658B2 (en) 2016-06-29 2020-07-21 Sumitomo Osaka Cement Co., Ltd. Titanium oxide particles, and titanium oxide particle dispersion and cosmetics using same
WO2021002456A1 (en) 2019-07-03 2021-01-07 住友大阪セメント株式会社 Titanium oxide powder, and dispersion and cosmetics using same
KR20220034101A (en) 2019-07-03 2022-03-17 스미토모 오사카 세멘토 가부시키가이샤 Titanium oxide powder, dispersion liquid and cosmetic using same
RU2801392C1 (en) * 2023-02-07 2023-08-08 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method for producing ferromagnetic oxygen-deficient titanium dioxide in the bronze phase

Also Published As

Publication number Publication date
JP3806790B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP3307667B2 (en) Process for producing particulate titanium dioxide, particulate titanium dioxide and aqueous suspension thereof
DE3941543B4 (en) dispersions
EP0684208B1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
AU2006202179B2 (en) Lower-energy process for preparing passivated inorganic nanoparticles
JP4018770B2 (en) Fan-shaped titanium oxide, method for producing fan-shaped or plate-shaped titanium oxide, and use thereof
JP3925886B2 (en) Spherical titanium dioxide aggregate formed from small spherical particles of titanium dioxide and method for producing the same
JPH0661457B2 (en) Oil dispersion and method for producing the same
WO2012023621A1 (en) Method for producing dispersion of rutile-type titanium oxide particles
JPH07247119A (en) Titanium dioxide aqueous dispersion
JPH10158015A (en) Production of surface-treated titanium dioxide sol
JPH1081517A (en) Superfine titanium oxide and its production
JP4495801B2 (en) Method for producing rutile ultrafine titanium dioxide
JP5966084B2 (en) Method for producing titanium dioxide pigment using ultrasonic treatment
US5837050A (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
JP3806790B2 (en) Process for producing spindle-shaped titanium dioxide
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JPH02194065A (en) Minute titanium dioxide composition
JP4201880B2 (en) Butterfly-like rutile titanium oxide, method for producing the same, and use thereof
JP2717904B2 (en) Iron-containing ultrafine rutile titanium dioxide and method for producing the same
JPS59223231A (en) Manufacture of fine-grained rutile type titanium oxide
JP3732265B2 (en) Spindle-shaped fine particle titanium dioxide and method for producing the same
JPH02194063A (en) Minute titanium dioxide powder
JP2852482B2 (en) Iron-containing titanium dioxide and method for producing the same
JP4256134B2 (en) Method for producing iron-containing acicular titanium dioxide fine particles
JP4382612B2 (en) Cosmetics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150526

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term