WO2017159286A1 - Inorganic filler for rubber, rubber composition and tire - Google Patents

Inorganic filler for rubber, rubber composition and tire Download PDF

Info

Publication number
WO2017159286A1
WO2017159286A1 PCT/JP2017/007021 JP2017007021W WO2017159286A1 WO 2017159286 A1 WO2017159286 A1 WO 2017159286A1 JP 2017007021 W JP2017007021 W JP 2017007021W WO 2017159286 A1 WO2017159286 A1 WO 2017159286A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
rubber
oxide particles
inorganic filler
rubber composition
Prior art date
Application number
PCT/JP2017/007021
Other languages
French (fr)
Japanese (ja)
Inventor
春奈 西本
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Priority to JP2017531784A priority Critical patent/JP6227849B1/en
Priority to CN201780016855.5A priority patent/CN108884277B/en
Publication of WO2017159286A1 publication Critical patent/WO2017159286A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to an inorganic filler for rubber capable of improving wet grip properties when used in a tire, a rubber composition containing the same, and a tire using the same.
  • Patent Document 1 it is known to use a rubber composition in which an inorganic filler is blended in a rubber component.
  • titanium-based materials are easy to handle, inexpensive, and highly environmentally safe, they are being studied for use in various applications. However, it is not known that sufficient wet grip properties can be obtained with a rubber composition containing a titanium-based material.
  • An object of the present invention is to provide an inorganic filler for rubber that exhibits excellent wet grip properties when used in a tire, a rubber composition containing the same, and a tire using the same.
  • the present inventor provides the following inorganic filler for rubber, rubber composition and tire.
  • Item 1 Consisting of titanium oxide particles having a heating weight loss rate of 0.4 to 10.0% by mass in a temperature range of 200 to 800 ° C. when heated from 40 ° C. to 1000 ° C. at a heating rate of 10 ° C./min. , Inorganic filler for rubber.
  • Item 2 The inorganic filler for rubber according to Item 1, wherein the titanium oxide particles have a specific surface area of 5 to 1000 m 2 / g.
  • Item 3 The inorganic filler for rubber according to Item 1 or 2, wherein the titanium oxide particles have an average particle size of 10.0 ⁇ m or less.
  • Item 5 The inorganic filler for rubber according to any one of Items 1 to 4, wherein the titanium oxide particles have an aqueous dispersion pH value of 2.0 to 11.0.
  • Item 6 The inorganic filler for rubber according to any one of Items 1 to 5, wherein a treatment layer made of a surface treatment agent is formed on the surface of the titanium oxide particles.
  • Item 7 A rubber composition comprising the rubber component and the inorganic filler for rubber according to any one of Items 1 to 6.
  • Item 8 The rubber composition according to Item 7, wherein the rubber component is a diene rubber.
  • Item 9 The rubber composition according to Item 7 or 8, wherein the compounding amount of the inorganic filler for rubber is 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  • Item 10 The rubber composition according to any one of Items 7 to 9, which is used for tire treads.
  • Item 11 A tire comprising the rubber composition according to any one of Items 7 to 10 in a tread portion.
  • the rubber composition containing the inorganic filler for rubber of the present invention can exhibit excellent wet grip properties when used in a tire.
  • the tire of the present invention is excellent in wet grip properties.
  • FIG. 1 is a view showing an X-ray diffraction chart of titanium oxide particles A obtained in Production Example 1 of the present invention.
  • FIG. 2 is a view showing an X-ray diffraction chart of titanium oxide particles B obtained in Production Example 2 of the present invention.
  • FIG. 3 is a view showing an X-ray diffraction chart of the titanium oxide particles C obtained in Production Example 3 of the present invention.
  • FIG. 4 is a view showing an X-ray diffraction chart of titanium oxide particles D obtained in Production Example 4 of the present invention.
  • FIG. 5 is a view showing an X-ray diffraction chart of the titanium oxide particles E obtained in Production Example 5 of the present invention.
  • FIG. 1 is a view showing an X-ray diffraction chart of titanium oxide particles A obtained in Production Example 1 of the present invention.
  • FIG. 2 is a view showing an X-ray diffraction chart of titanium oxide particles B obtained in Production Example 2 of the present invention.
  • FIG. 3 is a view
  • the inorganic filler for rubber of the present invention has a weight loss rate of 0.4 in a temperature range of 200 to 800 ° C. when heated from 40 ° C. to 1000 ° C. at a rate of temperature increase of 10 ° C./min in an inert gas stream. It consists of titanium oxide particles of ⁇ 10.0 mass%. It is considered that the titanium oxide particles of the present invention contain chemically adsorbed water and hydroxyl groups, and the chemically adsorbed water evaporates and dehydrates the hydroxyl groups in the above temperature range, and finally becomes titanium oxide.
  • the reason for specifying the heating weight reduction rate is that by evaluating the heating weight reduction rate in the temperature range, the physically adsorbed water evaporates before reaching the temperature range, and the chemically adsorbed water and hydroxyl groups of the titanium oxide particles This is because the amount of titanium oxide particles that can be evaluated and can provide excellent wet grip properties can be specified.
  • the heating weight reduction rate in the temperature range of 200 to 800 ° C. of the titanium oxide particles of the present invention is 0.4 to 10.0% by mass, preferably 1.0 to 8.0% by mass. It is more preferably from 0.5 to 7.0% by mass, even more preferably from 2.0 to 6.5% by mass, and particularly preferably from 2.3 to 6.0% by mass.
  • the shape of the titanium oxide particles of the present invention is not particularly limited, but is preferably a non-fibrous particle such as a plate shape, a spherical shape, and an indefinite shape from the viewpoint of influence on the environment.
  • the specific surface area (BET method) of the titanium oxide particles of the present invention is usually 5 to 1000 m 2 / g, preferably 10 to 500 m 2 / g, more preferably 30 to 200 m 2 / g, More preferably, it is 50 to 150 m 2 / g.
  • the average particle size of the titanium oxide particles of the present invention is usually 10.0 ⁇ m or less, preferably 0.01 to 10.0 ⁇ m, more preferably 0.1 to 10.0 ⁇ m, still more preferably.
  • the thickness is 0.1 to 5.0 ⁇ m, particularly preferably 0.5 to 2.0 ⁇ m. If the average particle size exceeds 10.0 ⁇ m, it is not preferable from the viewpoint of the fracture resistance characteristics of the rubber, and if the average particle size is too small, it is not preferable from the viewpoint of the toxicity of the fine particles.
  • the average particle size means a particle size having an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method.
  • the titanium oxide particles of the present invention are compounds known as hydrolysates of water-soluble titanium compounds such as titanium sulfate and titanium chloride, such as “titanium oxide hydrate”, “hydrous titanium oxide”, “metatitanic acid”. And the like.
  • titanium oxide hydrate a compound having a peak pattern similar to that of anatase type titanium oxide, but unlike titanium oxide, it is a low crystalline compound.
  • “low crystallinity” is different from an amorphous compound having no specific peak in X-ray diffraction, and is different from a crystalline compound having a sharp peak, and shows an intermediate peak.
  • the full width at half maximum of the maximum peak is 0.10 ° or more.
  • the full width at half maximum is preferably 0.10 ° to 2.00 °, more preferably 0.45 ° to 1.80 °.
  • the titanium oxide particles of the present invention can be obtained, for example, by hydrolysis of a titanium sulfate solution, and titanium oxide particles obtained in the production process of “sulfuric acid method titanium oxide” can also be used.
  • “Sulfuric acid method titanium oxide” is a method of obtaining titanium oxide by dissolving raw ore of titanium oxide in sulfuric acid and purifying it, and firing the purified product. Usually, titanium ore, ilmenite ore, natural Rutile or the like can be dissolved by heating in concentrated sulfuric acid to obtain a titanium sulfate solution.
  • Titanium oxide particles obtained by hydrolysis of titanium sulfate may contain a large amount of sulfuric acid in the production process as impurities, which may cause deterioration of rubber components and equipment used. Therefore, it is preferable to disperse the titanium oxide particles in water, wash the sulfuric acid content by adding alkali, filter the solid content, dry, and pass through to obtain the titanium oxide particles of the present invention. .
  • the concentration of the dispersion and the amount of alkali added in the washing are not particularly limited as long as the dispersion of the titanium oxide particles is stable, and can be appropriately selected from a wide range.
  • the alkali include sodium hydroxide, potassium hydroxide, and ammonia. Two or more alkalis may be used in combination as required.
  • titanium ions are said to be complex compounds bonded to water molecules and form chain or network bonds as hydrolysis proceeds. This compound grows until it becomes colloidal, and finally precipitates to obtain titanium oxide particles. For this reason, titanium oxide particles obtained by hydrolysis of titanium sulfate have a large specific surface area, have many hydroxyl groups and chemically adsorbed water, and are considered to provide excellent wet grip properties. Further, since the titanium oxide particles have more hydroxyl groups than titanium oxide, it is considered that the titanium oxide particles become a low crystalline compound unlike titanium oxide.
  • the titanium oxide particles of the present invention may be used after being fired for the purpose of evaporating excess chemically adsorbed water or the like so as not to change the structure due to heat in the production and processing of the rubber composition. .
  • the calcination temperature is preferably 800 ° C. or less, and more preferably 500 ° C. or less. Since the intended firing effect may not be obtained when the firing temperature is low, the firing temperature is preferably 200 ° C. or higher.
  • the calcination time is 2 to 8 hours because crystallization may progress and transfer to titanium oxide may occur if the calcination time is long, and the intended calcination effect may not be obtained if the calcination time is short. It is preferable.
  • the aqueous dispersion pH value of the titanium oxide particles of the present invention is preferably 2.0 to 11.0, more preferably 4.0 to 8.0. If the water dispersion pH value is less than 2.0, a large amount of sulfuric acid is contained, which may cause deterioration of rubber components and equipment used. On the other hand, if the water dispersion pH value is larger than 11.0, the alkali content increases, and there is a risk of deterioration of the rubber component or equipment used.
  • a treatment layer made of a surface treatment agent is formed on the surface of the titanium oxide particles for the purpose of improving dispersibility and improving adhesion with a rubber component.
  • the surface treatment agent include coupling agents such as a titanium coupling agent and a silane coupling agent.
  • a silane coupling agent is preferable.
  • silane coupling agents include sulfide, polysulfide, thioester, thiol, olefin, epoxy, amino, and alkyl silane coupling agents, which may be used alone. Alternatively, two or more kinds may be mixed and used.
  • sulfide-based silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (3-methyldimethoxysilylpropyl) tetrasulfide, and bis ( 2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-methyldimethoxysilylpropyl) disulfide, bis (2-triethoxysilyl) Ethyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-methyldimethoxysilylpropyl) trisulfide, bis (2- Triethoxy
  • thioester-based silane coupling agents include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, and 3-lauroylthiopropyltriethoxysilane.
  • thiol-based silane coupling agent examples include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and the like.
  • olefin-based silane coupling agents include dimethoxymethylvinylsilane, vinyltrimethoxysilane, dimethylethoxyvinylsilane, diethoxymethylvinylsilane, triethoxyvinylsilane, vinyltris (2-methoxyethoxy) silane, allyltrimethoxysilane, allyltri Ethoxysilane, p-styryltrimethoxysilane, 3- (methoxydimethoxydimethylsilyl) propyl acrylate, 3- (trimethoxysilyl) propyl acrylate, 3- [dimethoxy (methyl) silyl] propyl methacrylate, 3- (trimethoxysilyl) Propyl methacrylate, 3- [dimethoxy (methyl) silyl] propyl methacrylate, 3- (triethoxysilyl) propyl methacrylate, 3- [tris (to Methylsiloxy) silane
  • epoxy-based silane coupling agents include 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyltrimethoxysilane, diethoxy (3-glycidyloxypropyl) methylsilane, and triethoxy (3-glycidyloxypropyl) silane. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.
  • amino silane coupling agents examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyl. Trimethoxysilane, 3-aminopropyltriethoxysilane, 3-ethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl)- Examples include 2-aminoethyl-3-aminopropyltrimethoxysilane. Of these, 3-aminopropyltriethoxysilane is preferred.
  • alkyl-based silane coupling agents include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, isobutyltrimethoxysilane, and isobutyltriethoxy.
  • Examples include silane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, and n-decyltrimethoxysilane.
  • bis (3-triethoxysilylpropyl) tetrasulfide can be particularly preferably used.
  • a known surface treatment method can be used as a method for forming a treatment layer comprising a surface treatment agent on the surface of the titanium oxide particles.
  • a solvent that promotes hydrolysis for example, water, alcohol, or these
  • the surface treatment agent is dissolved in a mixed solvent) as a solution, and the solution is sprayed onto the titanate compound particles, or the integral blend method in which the titanate compound particles and the surface treatment agent are blended with the rubber component.
  • the amount of the surface treatment agent when the surface treatment agent is treated on the surface of the titanate compound particles of the present invention is not particularly limited, but in the case of a wet method, the surface treatment agent is 0 with respect to 100 parts by mass of the titanate compound particles.
  • the solution of the surface treatment agent may be sprayed so as to be 1 to 20% by mass.
  • the surface treatment agent is added to the rubber component so that the surface treatment agent is 1 to 50 parts by mass, preferably 10 to 40 parts by mass with respect to 100 parts by mass of the titanate compound particles. That's fine.
  • the rubber composition of the present invention is a rubber composition obtained by blending the above-mentioned inorganic filler for rubber with a rubber component.
  • the rubber component used in the rubber composition of the present invention is not particularly limited, but a diene rubber is preferably used from the viewpoint of excellent strength.
  • the diene rubber include natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), butyl rubber (IIR), ethylene propylene diene rubber (EPDM), acrylonitrile butadiene rubber ( NBR), rubbers such as styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), and modified rubbers of these, and rubber components containing one or more of these are preferred. From the viewpoint of a balance between low rolling resistance and high wet grip properties, it is particularly preferable to use styrene butadiene rubber (SBR, which may be modified).
  • SBR styrene butadiene rubber
  • the blending amount of the inorganic filler in the rubber composition of the present invention is preferably 1 to 100 parts by weight, more preferably 5 to 70 parts by weight, with respect to 100 parts by weight of the rubber component. More preferably, it is 40 mass parts. By setting it within this range, it is possible to obtain even better wet grip properties.
  • carbon black silica (white carbon), calcium carbonate (CaCO 3 ), alumina (Al 2 O 3 ), alumina hydrate (Al 2 O 3 .H) are used as reinforcing fillers.
  • reinforcing fillers can be used alone or in combination of two or more, and among these, carbon black and silica can be suitably used.
  • the total amount of the reinforcing filler is preferably 5 to 200 parts by mass, and more preferably 30 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  • the surface of the reinforcing filler may be organically treated in order to improve the affinity with the rubber component.
  • rubber chemicals usually used in the rubber industry can be appropriately blended.
  • softeners such as process oil
  • vulcanizing agents such as sulfur, vulcanization accelerators, vulcanization acceleration aids, anti-aging agents, stearic acid, zinc white (zinc oxide), scorch inhibitors, ozone inhibitors, processing Auxiliaries, waxes, resins, foaming agents, stearic acid, vulcanization retarders, and the like can be blended within the range of blending amounts that are usually used, if necessary.
  • the rubber composition of the present invention is obtained by kneading using an open kneader such as a roll or a kneading machine such as a closed kneader such as a Banbury mixer, and is vulcanized after molding to It can be applied to rubber products.
  • the rubber composition of the present invention can be used for tire treads, under treads, carcass, sidewalls, bead parts, etc., particularly for tire applications, and among these, excellent wet grip properties can be exhibited. It is preferably used as a tire tread rubber.
  • the tire of the present invention is characterized in that the rubber composition of the present invention is used in the tread portion, and thereby has excellent wet grip properties.
  • the tire of the present invention there is no particular limitation on the points other than using the rubber composition of the present invention in the tread portion, and the tire composition can be appropriately configured according to a conventional method.
  • Titanium oxide particles A 100 g of titanium oxide particles 1 (water content 50%, average particle size 2.5 ⁇ m) obtained in the production process of sulfuric acid method titanium oxide was dispersed in 10 L of deionized water to obtain a dispersion. A 48 mass% potassium hydroxide aqueous solution was added to the obtained dispersion so that the pH of the dispersion was 7, and the mixture was stirred. After stirring, the solid was collected by filtration, dried and sieved to obtain titanium oxide particles A.
  • the average particle diameter of the obtained titanium oxide particles A was measured with a laser diffraction particle size distribution analyzer (SALD-2100, manufactured by Shimadzu Corporation), and the specific surface area was measured according to JIS Z8830. It was shown in 1.
  • the heating weight reduction rate of the obtained titanium oxide particles A in the temperature range of 200 to 800 ° C. was 10 ° C./min under a nitrogen stream of 200 ml / min using 10 mg of sample TG-DTA manufactured by Seiko Instruments Inc.
  • the weight loss rate in the temperature range of 200 to 800 ° C. was calculated from the results, and the results are shown in Table 1.
  • FIGS. 1-10. The measurement was performed using an X-ray diffraction measurement apparatus (Rigaku Corporation, Ultimate IV), and the half width of the peak corresponding to the crystal plane (101) of titanium oxide in the range of 2 ⁇ 20 ° to 30 ° is shown in Table 1. It was.
  • the aqueous dispersion pH value of the obtained titanium oxide particles A was determined by immersing a pH meter (manufactured by HORIBA, Castany Lab pH meter F-21) in the dispersion after stirring for 10 minutes at a 1% by mass slurry concentration of the titanium oxide particles A.
  • the stable pH value after stirring for 3 minutes is shown in Table 1.
  • Table 1 shows the average particle diameter, specific surface area, heating weight loss rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles B.
  • X-ray diffraction charts of the titanium oxide particles B are shown in FIG. 2 and FIG.
  • Table 1 shows the average particle diameter, specific surface area, heating weight loss rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles C.
  • X-ray diffraction charts of the titanium oxide particles C are shown in FIG. 3 and FIG.
  • Table 1 shows the average particle diameter, specific surface area, heating weight reduction rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles D.
  • X-ray diffraction charts of the titanium oxide particles D are shown in FIG. 4 and FIG.
  • Titanium oxide particles E Titanium oxide particles A obtained in Production Example 1 were baked at 800 ° C. for 6 hours to obtain titanium oxide particles E.
  • Table 1 shows the average particle diameter, specific surface area, rate of weight loss by heating in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles E.
  • X-ray diffraction charts of the titanium oxide particles E are shown in FIG. 5 and FIG.
  • Titanium oxide particles F 100 g of titanium oxide particles 2 (water content 50%, average particle size 1.1 ⁇ m) obtained in the production process of sulfuric acid method titanium oxide was dispersed in 10 L of deionized water to obtain a dispersion. A 48 mass% potassium hydroxide aqueous solution was added to the obtained dispersion so that the pH of the dispersion was 7, and the mixture was stirred. After stirring, the solid was collected by filtration, dried and sieved to obtain titanium oxide particles F.
  • Table 1 shows the average particle diameter, specific surface area, heating weight loss rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles F.
  • Table 1 shows the full width at half maximum of the titanium oxide particles F.
  • Table 1 shows the average particle diameter, specific surface area, heating weight loss rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles G.
  • the full width at half maximum of the titanium oxide particles G is shown in Table 1.
  • Titanium oxide particles H 100 g of titanium oxide particles 2 (water content 50%, average particle size 1.1 ⁇ m) obtained in the production process of sulfuric acid method titanium oxide was dispersed in 10 L of deionized water to obtain a dispersion. A 48 mass% potassium hydroxide aqueous solution was added to the obtained dispersion so that the pH of the dispersion was 4, and the mixture was stirred. After stirring, the solid was collected by filtration, dried, sieved, and calcined at 500 ° C. for 6 hours to obtain titanium oxide particles H.
  • Table 1 shows the average particle diameter, specific surface area, rate of weight loss by heating in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles H.
  • the full width at half maximum of the titanium oxide particles H is shown in Table 1.
  • Table 1 also shows the specific surface area, average particle diameter, half-value width, and heating weight loss rate in the temperature range of 200 to 800 ° C. of titanium oxide (anatase) particles used in Comparative Example 1 described below.
  • Examples 1 to 13 and Comparative Examples 1 and 2 The ingredients listed in Table 2, excluding the vulcanization accelerator and sulfur, were kneaded for 3 to 5 minutes in a 1.5 L closed mixer, and the master batch released when the temperature reached 140 to 170 ° C was listed in Table 2.
  • a vulcanization accelerator and sulfur were added at a ratio and kneaded with a 10-inch open roll to obtain a composition.
  • This composition was press vulcanized in a mold at 150 ° C. for 40 minutes to prepare a test sample of the desired rubber composition.
  • Examples 1 to 13 using the titanium oxide particles A to H in the present invention showed excellent wet grip properties as compared with Comparative Examples 1 and 2.
  • Examples 1 to 3 and 11 to 13 using titanium oxide particles A to C and F to H have better wet grip properties than Examples 4 and 5 using titanium oxide particles D and E. Show.
  • Examples 11 to 13 using the titanium oxide particles F to H having a small average particle diameter are the same as those in Example 1 using the titanium oxide particles A having a large average particle diameter and aluminum hydroxide. Compared with the comparative example 2 used, the outstanding abrasion resistance was shown. Moreover, it turns out from the comparison with Example 11 and Example 12 and 13 that the abrasion resistance which was further excellent is shown by using a titanium oxide particle with a small specific surface area.

Abstract

The purpose of the present invention is to provide an inorganic filler for rubber, which exhibits excellent wet grip performance when used in a tire, a rubber composition that contains the inorganic filler, and a tire that uses the rubber composition. Provided is an inorganic filler for rubber, the filler comprising titanium oxide particles which have a weight loss ratio of 0.4-10.0 mass% within the temperature range 200-800ºC when heated from 40ºC to 1000ºC at a temperature increase rate of 10ºC/min. Preferably, the specific surface area of the titanium oxide particles is 5-1000 m2/g, the average particle diameter of the titanium oxide particles is 10.0 μm or less, the half value width of a peak within the range 2θ = 20-30° is 0.10° or more in X-Ray diffraction analysis of the titanium oxide particles, the water-dispersed pH value of the titanium oxide particles is 2.0-11.0, and a treatment layer comprising a surface treatment agent is formed on the surface of the titanium oxide particles.

Description

ゴム用無機充填材、ゴム組成物及びタイヤInorganic filler for rubber, rubber composition and tire
 本発明は、タイヤに用いた場合にウェットグリップ性を向上させることができるゴム用無機充填材、それを含有するゴム組成物及びそれを用いたタイヤに関する。 The present invention relates to an inorganic filler for rubber capable of improving wet grip properties when used in a tire, a rubber composition containing the same, and a tire using the same.
 雨天時の濡れた路面を自動車が走行すると、タイヤと路面との間に水が介在するため、タイヤのグリップ性能が低下し、ブレーキをかけたときの制動距離が伸びるという問題がある。自動車の安全性を高めるために、この湿潤路面でのグリップ性能(ウェットグリップ性)に優れたタイヤが求められている。 When a vehicle travels on a wet road surface in rainy weather, water intervenes between the tire and the road surface, so that there is a problem that the grip performance of the tire is lowered and the braking distance is increased when the brake is applied. In order to enhance the safety of automobiles, tires having excellent grip performance (wet grip performance) on this wet road surface are required.
 これに対して、特許文献1のように、ゴム成分中に無機充填材を配合したゴム組成物を用いることが知られている。 On the other hand, as disclosed in Patent Document 1, it is known to use a rubber composition in which an inorganic filler is blended in a rubber component.
 一方で、チタン系材料は、取扱いが容易であり、低廉で、さらに環境安全性の高い材料であることから、様々な用途においての利用が検討されている。しかし、チタン系材料を配合したゴム組成物で十分なウェットグリップ性が得られることは知られていない。 On the other hand, since titanium-based materials are easy to handle, inexpensive, and highly environmentally safe, they are being studied for use in various applications. However, it is not known that sufficient wet grip properties can be obtained with a rubber composition containing a titanium-based material.
特開2007-217543号公報JP 2007-217543 A
 本発明の目的は、タイヤに用いた場合に、優れたウェットグリップ性を発揮するゴム用無機充填材、それを含有するゴム組成物、及びそれを用いたタイヤを提供することにある。 An object of the present invention is to provide an inorganic filler for rubber that exhibits excellent wet grip properties when used in a tire, a rubber composition containing the same, and a tire using the same.
 本発明者は、以下のゴム用無機充填材、ゴム組成物及びタイヤを提供する。 The present inventor provides the following inorganic filler for rubber, rubber composition and tire.
 項1 昇温速度10℃/分で40℃から1000℃まで加熱したときの200~800℃の温度範囲における加熱重量減少率が0.4~10.0質量%であるチタン酸化物粒子からなる、ゴム用無機充填材。 Item 1 Consisting of titanium oxide particles having a heating weight loss rate of 0.4 to 10.0% by mass in a temperature range of 200 to 800 ° C. when heated from 40 ° C. to 1000 ° C. at a heating rate of 10 ° C./min. , Inorganic filler for rubber.
 項2 前記チタン酸化物粒子の比表面積が5~1000m/gである、項1に記載のゴム用無機充填材。 Item 2 The inorganic filler for rubber according to Item 1, wherein the titanium oxide particles have a specific surface area of 5 to 1000 m 2 / g.
 項3 前記チタン酸化物粒子の平均粒子径が10.0μm以下である、項1又は2に記載のゴム用無機充填材。 Item 3. The inorganic filler for rubber according to Item 1 or 2, wherein the titanium oxide particles have an average particle size of 10.0 µm or less.
 項4 前記チタン酸化物粒子のX線回折における2θ=20°~30°の範囲内におけるピークの半値幅が0.10°以上である、項1~3のいずれか一項に記載のゴム用無機充填材。 Item 4. The rubber according to any one of Items 1 to 3, wherein a half width of a peak in the range of 2θ = 20 ° to 30 ° in X-ray diffraction of the titanium oxide particles is 0.10 ° or more. Inorganic filler.
 項5 前記チタン酸化物粒子の水分散pH値が2.0~11.0である、項1~4のいずれか一項に記載のゴム用無機充填材。 Item 5. The inorganic filler for rubber according to any one of Items 1 to 4, wherein the titanium oxide particles have an aqueous dispersion pH value of 2.0 to 11.0.
 項6 前記チタン酸化物粒子の表面に表面処理剤からなる処理層が形成されている、項1~5のいずれか一項に記載のゴム用無機充填材。 Item 6. The inorganic filler for rubber according to any one of Items 1 to 5, wherein a treatment layer made of a surface treatment agent is formed on the surface of the titanium oxide particles.
 項7 ゴム成分に、項1~6のいずれか一項に記載のゴム用無機充填材を配合してなる、ゴム組成物。 Item 7. A rubber composition comprising the rubber component and the inorganic filler for rubber according to any one of Items 1 to 6.
 項8 前記ゴム成分がジエン系ゴムである、項7に記載のゴム組成物。 Item 8. The rubber composition according to Item 7, wherein the rubber component is a diene rubber.
 項9 前記ゴム用無機充填材の配合量が、ゴム成分100質量部に対して1~100質量部である、項7又は8に記載のゴム組成物。 Item 9 The rubber composition according to Item 7 or 8, wherein the compounding amount of the inorganic filler for rubber is 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
 項10 タイヤトレッド用である、項7~9のいずれか一項に記載のゴム組成物。 Item 10. The rubber composition according to any one of Items 7 to 9, which is used for tire treads.
 項11 項7~10のいずれか一項に記載のゴム組成物をトレッド部に用いてなる、タイヤ。 Item 11 A tire comprising the rubber composition according to any one of Items 7 to 10 in a tread portion.
 本発明のゴム用無機充填材を配合したゴム組成物は、タイヤに用いた場合に、優れたウェットグリップ性を発揮することができる。本発明のタイヤは、ウェットグリップ性に優れている。 The rubber composition containing the inorganic filler for rubber of the present invention can exhibit excellent wet grip properties when used in a tire. The tire of the present invention is excellent in wet grip properties.
図1は、本発明の製造例1で得られたチタン酸化物粒子AのX線回折チャートを示す図である。FIG. 1 is a view showing an X-ray diffraction chart of titanium oxide particles A obtained in Production Example 1 of the present invention. 図2は、本発明の製造例2で得られたチタン酸化物粒子BのX線回折チャートを示す図である。FIG. 2 is a view showing an X-ray diffraction chart of titanium oxide particles B obtained in Production Example 2 of the present invention. 図3は、本発明の製造例3で得られたチタン酸化物粒子CのX線回折チャートを示す図である。FIG. 3 is a view showing an X-ray diffraction chart of the titanium oxide particles C obtained in Production Example 3 of the present invention. 図4は、本発明の製造例4で得られたチタン酸化物粒子DのX線回折チャートを示す図である。FIG. 4 is a view showing an X-ray diffraction chart of titanium oxide particles D obtained in Production Example 4 of the present invention. 図5は、本発明の製造例5で得られたチタン酸化物粒子EのX線回折チャートを示す図である。FIG. 5 is a view showing an X-ray diffraction chart of the titanium oxide particles E obtained in Production Example 5 of the present invention. 図6は、本発明の製造例1~5で得られたチタン酸化物粒子A~E及び比較例1で用いた酸化チタン(アナターゼ)粒子のX線回折チャートにおける結晶面(101)に相当する部分の拡大図である。FIG. 6 corresponds to the crystal plane (101) in the X-ray diffraction chart of the titanium oxide particles A to E obtained in Production Examples 1 to 5 of the present invention and the titanium oxide (anatase) particles used in Comparative Example 1. It is an enlarged view of a part.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments.
 本発明のゴム用無機充填材は、不活性ガス気流下、昇温速度10℃/分で40℃から1000℃まで加熱したときの200~800℃の温度範囲における加熱重量減少率が0.4~10.0質量%であるチタン酸化物粒子からなる。本発明のチタン酸化物粒子には、化学吸着された水、水酸基が存在し、前記温度範囲において化学吸着された水の蒸発、水酸基の脱水反応が起こり、最終的に酸化チタンになると考えられる。加熱重量減少率を特定する理由は、前記温度範囲の加熱重量減少率を評価することで、前記温度範囲に到達するまでに物理吸着水が蒸発し、チタン酸化物粒子の化学吸着水および水酸基の量を評価することができ、優れたウェットグリップ性を付与することができるチタン酸化物粒子を特定することができるからである。 The inorganic filler for rubber of the present invention has a weight loss rate of 0.4 in a temperature range of 200 to 800 ° C. when heated from 40 ° C. to 1000 ° C. at a rate of temperature increase of 10 ° C./min in an inert gas stream. It consists of titanium oxide particles of ˜10.0 mass%. It is considered that the titanium oxide particles of the present invention contain chemically adsorbed water and hydroxyl groups, and the chemically adsorbed water evaporates and dehydrates the hydroxyl groups in the above temperature range, and finally becomes titanium oxide. The reason for specifying the heating weight reduction rate is that by evaluating the heating weight reduction rate in the temperature range, the physically adsorbed water evaporates before reaching the temperature range, and the chemically adsorbed water and hydroxyl groups of the titanium oxide particles This is because the amount of titanium oxide particles that can be evaluated and can provide excellent wet grip properties can be specified.
 本発明のチタン酸化物粒子の200~800℃の温度範囲における加熱重量減少率は、0.4~10.0質量%であり、1.0~8.0質量%であることが好ましく、1.5~7.0質量%であることがより好ましく、2.0~6.5質量%であることが更に好ましく、2.3~6.0質量%であることが特に好ましい。 The heating weight reduction rate in the temperature range of 200 to 800 ° C. of the titanium oxide particles of the present invention is 0.4 to 10.0% by mass, preferably 1.0 to 8.0% by mass. It is more preferably from 0.5 to 7.0% by mass, even more preferably from 2.0 to 6.5% by mass, and particularly preferably from 2.3 to 6.0% by mass.
 本発明のチタン酸化物粒子の形状は特に限定されないが、環境への影響の観点から、板状、球状、不定形状等の非繊維状の粒子であることが好ましい。 The shape of the titanium oxide particles of the present invention is not particularly limited, but is preferably a non-fibrous particle such as a plate shape, a spherical shape, and an indefinite shape from the viewpoint of influence on the environment.
 本発明のチタン酸化物粒子の比表面積(BET法)は、通常、5~1000m/gであり、好ましくは10~500m/gであり、より好ましくは30~200m/gであり、さらに好ましくは50~150m/gである。比表面積を、このような範囲に調整することにより、ゴム成分中へより良好に分散することができ、より一層優れたウェットグリップ性と、優れた耐摩耗性を得ることができる。 The specific surface area (BET method) of the titanium oxide particles of the present invention is usually 5 to 1000 m 2 / g, preferably 10 to 500 m 2 / g, more preferably 30 to 200 m 2 / g, More preferably, it is 50 to 150 m 2 / g. By adjusting the specific surface area to such a range, it can be more favorably dispersed in the rubber component, and more excellent wet grip properties and excellent wear resistance can be obtained.
 本発明のチタン酸化物粒子の平均粒子径は、通常は10.0μm以下であり、好ましくは0.01~10.0μmであり、より好ましくは0.1~10.0μmであり、更に好ましくは0.1~5.0μm、特に好ましくは0.5~2.0μmである。平均粒子径が10.0μmを超えるとゴムの耐破壊性特性の観点から好ましくなく、平均粒子径が小さすぎると微粒子の毒性の観点から好ましくない。本発明において平均粒子径とは、レーザー回折・散乱法によって求めた粒度分布における積算値50%の粒子径を意味する。 The average particle size of the titanium oxide particles of the present invention is usually 10.0 μm or less, preferably 0.01 to 10.0 μm, more preferably 0.1 to 10.0 μm, still more preferably. The thickness is 0.1 to 5.0 μm, particularly preferably 0.5 to 2.0 μm. If the average particle size exceeds 10.0 μm, it is not preferable from the viewpoint of the fracture resistance characteristics of the rubber, and if the average particle size is too small, it is not preferable from the viewpoint of the toxicity of the fine particles. In the present invention, the average particle size means a particle size having an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method.
 本発明のチタン酸化物粒子は、硫酸チタン、塩化チタン等の水溶性チタン化合物の加水分解物として知られている化合物、例えば、「酸化チタン水和物」、「含水酸化チタン」、「メタチタン酸」等と称される化合物と同様の組成を有するものである。X線回折においては、アナターゼ型の酸化チタンと似たピークパターンを有するが、酸化チタンとは異なり低結晶性の化合物である。本発明において「低結晶性」とは、X線回折において、特定のピークを持たないアモルファスの化合物とは異なり、また急峻なピークをもつ結晶性の化合物とも異なり、その中間的なピークを示す。中間的なピークとは、2θ=20°~30°の範囲内にある酸化チタンの結晶面(101)に対応するピークの半値幅が0.10°以上であることをいう。なお、2θ=20°~30°の範囲内に複数のピークが存在するときは、最大ピークの半値幅が0.10°以上であることをいう。半値幅は、好ましくは0.10°~2.00°であり、より好ましくは0.45°~1.80°である。半値幅を、このような範囲に調整することにより、より一層優れたウェットグリップ性を得ることができる。本発明において半値幅とは、X線回折によって得られたピークの1/2の高さの箇所の幅を意味する。 The titanium oxide particles of the present invention are compounds known as hydrolysates of water-soluble titanium compounds such as titanium sulfate and titanium chloride, such as “titanium oxide hydrate”, “hydrous titanium oxide”, “metatitanic acid”. And the like. In X-ray diffraction, it has a peak pattern similar to that of anatase type titanium oxide, but unlike titanium oxide, it is a low crystalline compound. In the present invention, “low crystallinity” is different from an amorphous compound having no specific peak in X-ray diffraction, and is different from a crystalline compound having a sharp peak, and shows an intermediate peak. The intermediate peak means that the half width of the peak corresponding to the crystal plane (101) of titanium oxide in the range of 2θ = 20 ° to 30 ° is 0.10 ° or more. In addition, when a plurality of peaks exist within the range of 2θ = 20 ° to 30 °, it means that the full width at half maximum of the maximum peak is 0.10 ° or more. The full width at half maximum is preferably 0.10 ° to 2.00 °, more preferably 0.45 ° to 1.80 °. By adjusting the full width at half maximum in such a range, it is possible to obtain even better wet grip properties. In the present invention, the half-value width means the width of a portion having a height half that of a peak obtained by X-ray diffraction.
 本発明のチタン酸化物粒子は、例えば、硫酸チタン溶液の加水分解により得ることができ、「硫酸法酸化チタン」の製造工程で得られるチタン酸化物粒子を用いることもできる。「硫酸法酸化チタン」とは、酸化チタンの原料鉱石等を硫酸に溶解して精製して、その精製物を焼成することで酸化チタンを得る方法であり、通常、チタン鉱石、イルメナイト鉱石、天然ルチル等を濃硫酸中で加熱することにより溶解して硫酸チタン溶液を得ることができる。 The titanium oxide particles of the present invention can be obtained, for example, by hydrolysis of a titanium sulfate solution, and titanium oxide particles obtained in the production process of “sulfuric acid method titanium oxide” can also be used. "Sulfuric acid method titanium oxide" is a method of obtaining titanium oxide by dissolving raw ore of titanium oxide in sulfuric acid and purifying it, and firing the purified product. Usually, titanium ore, ilmenite ore, natural Rutile or the like can be dissolved by heating in concentrated sulfuric acid to obtain a titanium sulfate solution.
 硫酸チタンの加水分解により得られるチタン酸化物粒子は、不純物として製造工程の硫酸分が多く含まれていることがあり、ゴム成分の劣化や、使用機材の劣化のおそれがある。そのため、チタン酸化物粒子を水に分散させ、アルカリを添加することにより硫酸分を洗浄し、固形分を濾取、乾燥、篩い通しすることで、本発明のチタン酸化物粒子とすることが好ましい。 Titanium oxide particles obtained by hydrolysis of titanium sulfate may contain a large amount of sulfuric acid in the production process as impurities, which may cause deterioration of rubber components and equipment used. Therefore, it is preferable to disperse the titanium oxide particles in water, wash the sulfuric acid content by adding alkali, filter the solid content, dry, and pass through to obtain the titanium oxide particles of the present invention. .
 上記洗浄における分散液の濃度、アルカリ添加量は、チタン酸化物粒子の分散が安定していれば特に制限はなく、広い範囲から適宜選択できる。アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア等を例示することができる。アルカリは必要に応じて2種以上を併用してもよい。 The concentration of the dispersion and the amount of alkali added in the washing are not particularly limited as long as the dispersion of the titanium oxide particles is stable, and can be appropriately selected from a wide range. Examples of the alkali include sodium hydroxide, potassium hydroxide, and ammonia. Two or more alkalis may be used in combination as required.
 硫酸チタン溶液において、チタンイオンは、水分子と結合した錯化合物となり、加水分解の進行にともなって鎖状あるいは網目状結合を形成するといわれている。この化合物はコロイド状になるまで成長し、ついには沈殿することでチタン酸化物粒子を得ることができる。このため硫酸チタンの加水分解により得られるチタン酸化物粒子は、比表面積が大きく、多くの水酸基、化学吸着された水を有しており、優れたウェットグリップ性が得られるものと考えられる。また、前記チタン酸化物粒子は、酸化チタンよりも多くの水酸基を有することから、酸化チタンとは異なり低結晶性の化合物になると考えられる。 In the titanium sulfate solution, titanium ions are said to be complex compounds bonded to water molecules and form chain or network bonds as hydrolysis proceeds. This compound grows until it becomes colloidal, and finally precipitates to obtain titanium oxide particles. For this reason, titanium oxide particles obtained by hydrolysis of titanium sulfate have a large specific surface area, have many hydroxyl groups and chemically adsorbed water, and are considered to provide excellent wet grip properties. Further, since the titanium oxide particles have more hydroxyl groups than titanium oxide, it is considered that the titanium oxide particles become a low crystalline compound unlike titanium oxide.
 本発明のチタン酸化物粒子は、ゴム組成物の製造、加工工程の熱により構造変化しないようにするため、過剰な化学吸着された水等を蒸発させる等の目的により焼成して用いてもよい。上記焼成温度が高くなると結晶化が進行し酸化チタンに転移するため、焼成温度は800℃以下にすることが好ましく、500℃以下にすることがより好ましい。上記焼成温度が低くなると目的とする焼成効果が得られない場合があることから、焼成温度は200℃以上にすることが好ましい。上記焼成時間が長くなると結晶化が進行し酸化チタンに転移するおそれがあるため、また焼成時間が短くなると目的とする焼成効果が得られない場合があるため、焼成時間は2~8時間であることが好ましい。 The titanium oxide particles of the present invention may be used after being fired for the purpose of evaporating excess chemically adsorbed water or the like so as not to change the structure due to heat in the production and processing of the rubber composition. . As the calcination temperature increases, crystallization proceeds and transitions to titanium oxide. Therefore, the calcination temperature is preferably 800 ° C. or less, and more preferably 500 ° C. or less. Since the intended firing effect may not be obtained when the firing temperature is low, the firing temperature is preferably 200 ° C. or higher. The calcination time is 2 to 8 hours because crystallization may progress and transfer to titanium oxide may occur if the calcination time is long, and the intended calcination effect may not be obtained if the calcination time is short. It is preferable.
 本発明のチタン酸化物粒子の水分散pH値は、好ましくは2.0~11.0であり、より好ましくは4.0~8.0である。水分散pH値が2.0未満であれば、硫酸分が多く含まれ、ゴム成分の劣化や使用機器の劣化のおそれがある。また、水分散pH値が11.0より大きければ、アルカリ分が多くなり、ゴム成分の劣化や使用機器の劣化のおそれがある。 The aqueous dispersion pH value of the titanium oxide particles of the present invention is preferably 2.0 to 11.0, more preferably 4.0 to 8.0. If the water dispersion pH value is less than 2.0, a large amount of sulfuric acid is contained, which may cause deterioration of rubber components and equipment used. On the other hand, if the water dispersion pH value is larger than 11.0, the alkali content increases, and there is a risk of deterioration of the rubber component or equipment used.
 本発明のチタン酸化物粒子は、分散性の向上、ゴム成分との密着性の向上等を目的として、チタン酸化物粒子の表面に表面処理剤からなる処理層が形成されていることが好ましい。前記表面処理剤としては、チタンカップリング剤、シランカップリング剤等のカップリング剤が挙げられ、これらのなかでもシランカップリング剤が好ましい。シランカップリング剤の例として、スルフィド系、ポリスルフィド系、チオエステル系、チオール系、オレフィン系、エポキシ系、アミノ系、アルキル系等のシランカップリング剤が挙げられ、これらを1種単独で用いてもよく、2種以上を混合して用いてもよい。 In the titanium oxide particles of the present invention, it is preferable that a treatment layer made of a surface treatment agent is formed on the surface of the titanium oxide particles for the purpose of improving dispersibility and improving adhesion with a rubber component. Examples of the surface treatment agent include coupling agents such as a titanium coupling agent and a silane coupling agent. Among these, a silane coupling agent is preferable. Examples of silane coupling agents include sulfide, polysulfide, thioester, thiol, olefin, epoxy, amino, and alkyl silane coupling agents, which may be used alone. Alternatively, two or more kinds may be mixed and used.
 スルフィド系のシランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-メチルジメトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(3-メチルジメトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-メチルジメトキシシリルプロピル)トリスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)テトラスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)トリスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)ジスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)テトラスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)トリスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)ジスルフィド、ビス(2-モノエトキシジメチルシリルエチル)テトラスルフィド、ビス(2-モノエトキシジメチルシリルエチル)トリスルフィド、ビス(2-モノエトキシジメチルシリルエチル)ジスルフィド等を挙げることができる。 Examples of sulfide-based silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (3-methyldimethoxysilylpropyl) tetrasulfide, and bis ( 2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-methyldimethoxysilylpropyl) disulfide, bis (2-triethoxysilyl) Ethyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-methyldimethoxysilylpropyl) trisulfide, bis (2- Triethoxysilylethyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) tetrasulfide, bis (3-monoethoxydimethylsilylpropyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) disulfide, bis (3- Monomethoxydimethylsilylpropyl) tetrasulfide, bis (3-monomethoxydimethylsilylpropyl) trisulfide, bis (3-monomethoxydimethylsilylpropyl) disulfide, bis (2-monoethoxydimethylsilylethyl) tetrasulfide, bis (2 -Monoethoxydimethylsilylethyl) trisulfide, bis (2-monoethoxydimethylsilylethyl) disulfide and the like.
 チオエステル系のシランカップリング剤としては、例えば、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシラン等を挙げることができる。 Examples of thioester-based silane coupling agents include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, and 3-lauroylthiopropyltriethoxysilane. 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoylthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane, 2-hexanoylthioethyltrimethoxysilane, 2-octane Neu Lucio ethyltrimethoxysilane, 2- deca Neu thio ethyltrimethoxysilane, and 2-lauroyl thio ethyl trimethoxysilane.
 チオール系のシランカップリング剤としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン等を挙げることができる。 Examples of the thiol-based silane coupling agent include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and the like.
 オレフィン系のシランカップリング剤としては、例えば、ジメトキシメチルビニルシラン、ビニルトリメトキシシラン、ジメチルエトキシビニルシラン、ジエトキシメチルビニルシラン、トリエトキシビニルシラン、ビニルトリス(2-メトキシエトキシ)シラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p-スチリルトリメトキシシラン、3-(メトキシジメトキシジメチルシリル)プロピルアクリレート、3-(トリメトキシシリル)プロピルアクリレート、3-[ジメトキシ(メチル)シリル]プロピルメタクリレート、3-(トリメトキシシリル)プロピルメタクリレート、3-[ジメトキシ(メチル)シリル]プロピルメタクリレート、3-(トリエトキシシリル)プロピルメタクリレート、3-[トリス(トリメチルシロキシ)シリル]プロピルメタクリレート等を挙げることができる。 Examples of olefin-based silane coupling agents include dimethoxymethylvinylsilane, vinyltrimethoxysilane, dimethylethoxyvinylsilane, diethoxymethylvinylsilane, triethoxyvinylsilane, vinyltris (2-methoxyethoxy) silane, allyltrimethoxysilane, allyltri Ethoxysilane, p-styryltrimethoxysilane, 3- (methoxydimethoxydimethylsilyl) propyl acrylate, 3- (trimethoxysilyl) propyl acrylate, 3- [dimethoxy (methyl) silyl] propyl methacrylate, 3- (trimethoxysilyl) Propyl methacrylate, 3- [dimethoxy (methyl) silyl] propyl methacrylate, 3- (triethoxysilyl) propyl methacrylate, 3- [tris (to Methylsiloxy) silyl] propyl methacrylate, and the like.
 エポキシ系のシランカップリング剤としては、例えば、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシラン、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、トリエトキシ(3-グリシジルオキシプロピル)シラン、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。 Examples of epoxy-based silane coupling agents include 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyltrimethoxysilane, diethoxy (3-glycidyloxypropyl) methylsilane, and triethoxy (3-glycidyloxypropyl) silane. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.
 アミノ系のシランカップリング剤としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-エトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン等を挙げることができる。これらのうち3-アミノプロピルトリエトキシシランが好ましい。 Examples of amino silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyl. Trimethoxysilane, 3-aminopropyltriethoxysilane, 3-ethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl)- Examples include 2-aminoethyl-3-aminopropyltrimethoxysilane. Of these, 3-aminopropyltriethoxysilane is preferred.
 アルキル系のシランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン等を挙げることができる。 Examples of alkyl-based silane coupling agents include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, isobutyltrimethoxysilane, and isobutyltriethoxy. Examples include silane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, and n-decyltrimethoxysilane.
 これらシランカップリング剤の中でも、ビス(3-トリエトキシシリルプロピル)テトラスルフィドを特に好ましく使用することができる。 Among these silane coupling agents, bis (3-triethoxysilylpropyl) tetrasulfide can be particularly preferably used.
 チタン酸化物粒子の表面に表面処理剤からなる処理層を形成する方法としては、公知の表面処理方法を使用することができ、例えば、加水分解を促進する溶媒(例えば、水、アルコール又はこれらの混合溶媒)に表面処理剤を溶解して溶液として、その溶液をチタン酸化合物粒子に噴霧する湿式法、ゴム成分にチタン酸化合物粒子と表面処理剤とを配合するインテグラルブレンド法等でなされる。 As a method for forming a treatment layer comprising a surface treatment agent on the surface of the titanium oxide particles, a known surface treatment method can be used. For example, a solvent that promotes hydrolysis (for example, water, alcohol, or these) The surface treatment agent is dissolved in a mixed solvent) as a solution, and the solution is sprayed onto the titanate compound particles, or the integral blend method in which the titanate compound particles and the surface treatment agent are blended with the rubber component. .
 表面処理剤を本発明のチタン酸化合物粒子の表面へ処理する際の該表面処理剤の量は特に限定されないが、湿式法の場合、チタン酸化合物粒子100質量部に対して表面処理剤が0.1~20質量%となるように表面処理剤の溶液を噴霧すればよい。また、インテグラルブレンド法の場合は、チタン酸化合物粒子100質量部に対して表面処理剤が1~50質量部、好ましくは10~40質量部になるように表面処理剤をゴム成分に配合すればよい。表面処理剤の量を前記範囲内にすることで、ゴム成分との密着性がより一層向上し、チタン酸化合物粒子の分散性をより一層向上することができる。 The amount of the surface treatment agent when the surface treatment agent is treated on the surface of the titanate compound particles of the present invention is not particularly limited, but in the case of a wet method, the surface treatment agent is 0 with respect to 100 parts by mass of the titanate compound particles. The solution of the surface treatment agent may be sprayed so as to be 1 to 20% by mass. In the case of the integral blend method, the surface treatment agent is added to the rubber component so that the surface treatment agent is 1 to 50 parts by mass, preferably 10 to 40 parts by mass with respect to 100 parts by mass of the titanate compound particles. That's fine. By setting the amount of the surface treatment agent within the above range, the adhesion with the rubber component can be further improved, and the dispersibility of the titanic acid compound particles can be further improved.
 本発明のゴム組成物は、ゴム成分に、上述のゴム用無機充填材を配合してなる、ゴム組成物である。 The rubber composition of the present invention is a rubber composition obtained by blending the above-mentioned inorganic filler for rubber with a rubber component.
 本発明のゴム組成物に用いるゴム成分は特に限定されないが、強度に優れている観点からジエン系ゴムを用いることが好ましい。ジエン系ゴムとしては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、ブチルゴム(IIR)、エチレンプロピレンジエンゴム(EPDM)、アクリロニトリルブタジエンゴム(NBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)等のゴム、これらの変性ゴムが挙げられ、これらのうち1種又は2種以上を含むゴム成分が好ましい。低い転がり抵抗と高いウェットグリップ性とのバランスの観点から、スチレンブタジエンゴム(SBR、変性されていても良い)を用いることが特に好ましい。 The rubber component used in the rubber composition of the present invention is not particularly limited, but a diene rubber is preferably used from the viewpoint of excellent strength. Examples of the diene rubber include natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), butyl rubber (IIR), ethylene propylene diene rubber (EPDM), acrylonitrile butadiene rubber ( NBR), rubbers such as styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), and modified rubbers of these, and rubber components containing one or more of these are preferred. From the viewpoint of a balance between low rolling resistance and high wet grip properties, it is particularly preferable to use styrene butadiene rubber (SBR, which may be modified).
 本発明のゴム組成物における上述の無機充填材の配合量は、ゴム成分100質量部に対して1~100質量部であることが好ましく、5~70質量部であることがより好ましく、10~40質量部であることが更に好ましい。この範囲とすることで、より一層優れたウェットグリップ性を得ることができる。 The blending amount of the inorganic filler in the rubber composition of the present invention is preferably 1 to 100 parts by weight, more preferably 5 to 70 parts by weight, with respect to 100 parts by weight of the rubber component. More preferably, it is 40 mass parts. By setting it within this range, it is possible to obtain even better wet grip properties.
 本発明のゴム組成物には、補強性充填材として、カーボンブラック、シリカ(ホワイトカーボン)、炭酸カルシウム(CaCO)、アルミナ(Al)、アルミナ水和物(Al・HO)、水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(Ca・SiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、アクリル酸亜鉛、メタクリル酸亜鉛、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等を配合することができる。これら補強性充填材は、いずれか1種又は2種以上を混合して使用することができ、上記のうちでも、カーボンブラック及びシリカを好適に用いることができる。補強性充填材の総配合量は、ゴム成分100質量部に対し、好ましくは5~200質量部、より好適には30~100質量部である。なお、これらの補強性充填材では、ゴム成分との親和性を向上させるために、該補強性充填材の表面が有機処理されていてもよい。 In the rubber composition of the present invention, carbon black, silica (white carbon), calcium carbonate (CaCO 3 ), alumina (Al 2 O 3 ), alumina hydrate (Al 2 O 3 .H) are used as reinforcing fillers. 2 O), aluminum hydroxide [Al (OH) 3 ], aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3 ) , Talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO), calcium hydroxide [Ca (OH) 2], magnesium aluminum oxide (MgO · Al 2 O 3) , clay (Al 2 O 3 · 2S O 2), kaolin (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O) Aluminum silicate (Al 2 SiO 5 , Al 4 · 3SiO 4 · 5H 2 O etc.), magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), calcium silicate (Ca 2 · SiO 4 etc.), silicic acid Aluminum calcium (Al 2 O 3 · CaO · 2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO (OH) 2 · nH 2 O], zirconium carbonate [Zr (CO 3 ) 2 ], zinc acrylate, zinc methacrylate, various types of zeolite such as hydrogen, Crystalline aluminosilicates containing Lucari metal or alkaline earth metal can be blended. These reinforcing fillers can be used alone or in combination of two or more, and among these, carbon black and silica can be suitably used. The total amount of the reinforcing filler is preferably 5 to 200 parts by mass, and more preferably 30 to 100 parts by mass with respect to 100 parts by mass of the rubber component. In these reinforcing fillers, the surface of the reinforcing filler may be organically treated in order to improve the affinity with the rubber component.
 本発明のゴム組成物には、上記各成分に加えて、ゴム業界で通常使用されるゴム薬品を適宜配合することができる。例えば、プロセスオイル等の軟化剤、硫黄等の加硫剤、加硫促進剤、加硫促進助剤、老化防止剤、ステアリン酸、亜鉛華(酸化亜鉛)、スコーチ防止剤、オゾン防止剤、加工助剤、ワックス、樹脂、発泡剤、ステアリン酸、加硫遅延剤等を、必要に応じて、通常使用される配合量の範囲内で配合することができる。 In the rubber composition of the present invention, in addition to the above components, rubber chemicals usually used in the rubber industry can be appropriately blended. For example, softeners such as process oil, vulcanizing agents such as sulfur, vulcanization accelerators, vulcanization acceleration aids, anti-aging agents, stearic acid, zinc white (zinc oxide), scorch inhibitors, ozone inhibitors, processing Auxiliaries, waxes, resins, foaming agents, stearic acid, vulcanization retarders, and the like can be blended within the range of blending amounts that are usually used, if necessary.
 本発明のゴム組成物は、ロール等の開放式混練機や、バンバリーミキサー等の密閉式混練機等の混練機を用いて混練することによって得られ、成形加工後に加硫を行うことで、各種ゴム製品に適用することが可能である。本発明のゴム組成物は、特に、タイヤ用途として、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等の各部材に用いることができ、これらの中でも、優れたウェットグリップ性を発揮できることから、タイヤトレッド用ゴムとして好適に使用される。 The rubber composition of the present invention is obtained by kneading using an open kneader such as a roll or a kneading machine such as a closed kneader such as a Banbury mixer, and is vulcanized after molding to It can be applied to rubber products. The rubber composition of the present invention can be used for tire treads, under treads, carcass, sidewalls, bead parts, etc., particularly for tire applications, and among these, excellent wet grip properties can be exhibited. It is preferably used as a tire tread rubber.
 本発明のタイヤは、上記本発明のゴム組成物をトレッド部に使用した点に特徴を有し、これにより、優れたウェットグリップ性を備えるものである。本発明のタイヤにおいては、上記本発明のゴム組成物をトレッド部に用いる以外の点については特に制限はなく、常法に従い適宜構成することができる。 The tire of the present invention is characterized in that the rubber composition of the present invention is used in the tread portion, and thereby has excellent wet grip properties. In the tire of the present invention, there is no particular limitation on the points other than using the rubber composition of the present invention in the tread portion, and the tire composition can be appropriately configured according to a conventional method.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention.
 (製造例1:チタン酸化物粒子A)
 硫酸法酸化チタンの製造工程において得られたチタン酸化物粒子1(含水率50%、平均粒子径2.5μm)100gを脱イオン水10Lに分散し分散液を得た。得られた分散液に48質量%水酸化カリウム水溶液を分散液のpHが7になるように添加し攪拌した。攪拌後、固体を濾取、乾燥、篩い通しすることで、チタン酸化物粒子Aを得た。
(Production Example 1: Titanium oxide particles A)
100 g of titanium oxide particles 1 (water content 50%, average particle size 2.5 μm) obtained in the production process of sulfuric acid method titanium oxide was dispersed in 10 L of deionized water to obtain a dispersion. A 48 mass% potassium hydroxide aqueous solution was added to the obtained dispersion so that the pH of the dispersion was 7, and the mixture was stirred. After stirring, the solid was collected by filtration, dried and sieved to obtain titanium oxide particles A.
 得られたチタン酸化物粒子Aの平均粒子径は、レーザー回折式粒度分布測定装置(島津製作所社製、SALD-2100)により測定し、比表面積はJIS Z8830により準拠して測定し、結果を表1に示した。 The average particle diameter of the obtained titanium oxide particles A was measured with a laser diffraction particle size distribution analyzer (SALD-2100, manufactured by Shimadzu Corporation), and the specific surface area was measured according to JIS Z8830. It was shown in 1.
 得られたチタン酸化物粒子Aの200~800℃の温度範囲における加熱重量減少率は、サンプル10mgを、セイコーインスツル社製TG-DTAを用いて、窒素気流200ml/分下、10℃/分で40~1000℃の範囲まで測定し、その結果から200~800℃の温度範囲における重量減少率を算出し、結果を表1に示した。 The heating weight reduction rate of the obtained titanium oxide particles A in the temperature range of 200 to 800 ° C. was 10 ° C./min under a nitrogen stream of 200 ml / min using 10 mg of sample TG-DTA manufactured by Seiko Instruments Inc. The weight loss rate in the temperature range of 200 to 800 ° C. was calculated from the results, and the results are shown in Table 1.
 得られたチタン酸化物粒子AのX線回折チャートを、図1及び図6に示した。測定は、X線回折測定装置(リガク社製、UltimaIV)により行い、2θ=20°~30°の範囲内にある酸化チタンの結晶面(101)に対応するピークの半値幅を表1に示した。 An X-ray diffraction chart of the obtained titanium oxide particles A is shown in FIGS. The measurement was performed using an X-ray diffraction measurement apparatus (Rigaku Corporation, Ultimate IV), and the half width of the peak corresponding to the crystal plane (101) of titanium oxide in the range of 2θ = 20 ° to 30 ° is shown in Table 1. It was.
 得られたチタン酸化物粒子Aの水分散pH値は、チタン酸化物粒子Aの1質量%スラリー濃度で10分間撹拌後、pH計(HORIBA製、カスタニーラボpHメーターF-21)を分散液に浸し、3分間撹拌後の安定したpH値であり、その結果を表1に示した。 The aqueous dispersion pH value of the obtained titanium oxide particles A was determined by immersing a pH meter (manufactured by HORIBA, Castany Lab pH meter F-21) in the dispersion after stirring for 10 minutes at a 1% by mass slurry concentration of the titanium oxide particles A. The stable pH value after stirring for 3 minutes is shown in Table 1.
 (製造例2:チタン酸化物粒子B)
 製造例1で得られたチタン酸化物粒子Aを200℃で6時間焼成することで、チタン酸化物粒子Bを得た。
(Production Example 2: Titanium oxide particles B)
The titanium oxide particles A obtained in Production Example 1 were baked at 200 ° C. for 6 hours to obtain titanium oxide particles B.
 得られたチタン酸化物粒子Bの平均粒子径、比表面積、200~800℃の温度範囲における加熱重量減少率、水分散pH値を表1に示した。チタン酸化物粒子BのX線回折チャートを図2及び図6に、半値幅を表1に示した。 Table 1 shows the average particle diameter, specific surface area, heating weight loss rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles B. X-ray diffraction charts of the titanium oxide particles B are shown in FIG. 2 and FIG.
 (製造例3:チタン酸化物粒子C)
 製造例1で得られたチタン酸化物粒子Aを400℃で6時間焼成することで、チタン酸化物粒子Cを得た。
(Production Example 3: Titanium oxide particles C)
The titanium oxide particles A obtained in Production Example 1 were fired at 400 ° C. for 6 hours to obtain titanium oxide particles C.
 得られたチタン酸化物粒子Cの平均粒子径、比表面積、200~800℃の温度範囲における加熱重量減少率、水分散pH値を表1に示した。チタン酸化物粒子CのX線回折チャートを図3及び図6に、半値幅を表1に示した。 Table 1 shows the average particle diameter, specific surface area, heating weight loss rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles C. X-ray diffraction charts of the titanium oxide particles C are shown in FIG. 3 and FIG.
 (製造例4:チタン酸化物粒子D)
 製造例1で得られたチタン酸化物粒子Aを600℃で6時間焼成することで、チタン酸化物粒子Dを得た。
(Production Example 4: Titanium oxide particles D)
The titanium oxide particles A obtained in Production Example 1 were baked at 600 ° C. for 6 hours to obtain titanium oxide particles D.
 得られたチタン酸化物粒子Dの平均粒子径、比表面積、200~800℃の温度範囲における加熱重量減少率、水分散pH値を表1に示した。チタン酸化物粒子DのX線回折チャートを図4及び図6に、半値幅を表1に示した。 Table 1 shows the average particle diameter, specific surface area, heating weight reduction rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles D. X-ray diffraction charts of the titanium oxide particles D are shown in FIG. 4 and FIG.
 (製造例5:チタン酸化物粒子E)
 製造例1で得られたチタン酸化物粒子Aを800℃で6時間焼成することで、チタン酸化物粒子Eを得た。
(Production Example 5: Titanium oxide particles E)
Titanium oxide particles A obtained in Production Example 1 were baked at 800 ° C. for 6 hours to obtain titanium oxide particles E.
 得られたチタン酸化物粒子Eの平均粒子径、比表面積、200~800℃の温度範囲における加熱重量減少率、水分散pH値を表1に示した。チタン酸化物粒子EのX線回折チャートを図5及び図6に、半値幅を表1に示した。 Table 1 shows the average particle diameter, specific surface area, rate of weight loss by heating in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles E. X-ray diffraction charts of the titanium oxide particles E are shown in FIG. 5 and FIG.
 (製造例6:チタン酸化物粒子F)
 硫酸法酸化チタンの製造工程において得られたチタン酸化物粒子2(含水率50%、平均粒子径1.1μm)100gを脱イオン水10Lに分散し分散液を得た。得られた分散液に48質量%水酸化カリウム水溶液を分散液のpHが7になるように添加し攪拌した。攪拌後、固体を濾取、乾燥、篩い通しすることで、チタン酸化物粒子Fを得た。
(Production Example 6: Titanium oxide particles F)
100 g of titanium oxide particles 2 (water content 50%, average particle size 1.1 μm) obtained in the production process of sulfuric acid method titanium oxide was dispersed in 10 L of deionized water to obtain a dispersion. A 48 mass% potassium hydroxide aqueous solution was added to the obtained dispersion so that the pH of the dispersion was 7, and the mixture was stirred. After stirring, the solid was collected by filtration, dried and sieved to obtain titanium oxide particles F.
 得られたチタン酸化物粒子Fの平均粒子径、比表面積、200~800℃の温度範囲における加熱重量減少率、水分散pH値を表1に示した。チタン酸化物粒子Fの半値幅を表1に示した。 Table 1 shows the average particle diameter, specific surface area, heating weight loss rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles F. Table 1 shows the full width at half maximum of the titanium oxide particles F.
 (製造例7:チタン酸化物粒子G)
 製造例6で得られたチタン酸化物粒子Fを500℃で6時間焼成することで、チタン酸化物粒子Gを得た。
(Production Example 7: Titanium oxide particles G)
The titanium oxide particles F obtained in Production Example 6 were baked at 500 ° C. for 6 hours to obtain titanium oxide particles G.
 得られたチタン酸化物粒子Gの平均粒子径、比表面積、200~800℃の温度範囲における加熱重量減少率、水分散pH値を表1に示した。チタン酸化物粒子Gの半値幅を表1に示した。 Table 1 shows the average particle diameter, specific surface area, heating weight loss rate in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles G. The full width at half maximum of the titanium oxide particles G is shown in Table 1.
 (製造例8:チタン酸化物粒子H)
 硫酸法酸化チタンの製造工程において得られたチタン酸化物粒子2(含水率50%、平均粒子径1.1μm)100gを脱イオン水10Lに分散し分散液を得た。得られた分散液に48質量%水酸化カリウム水溶液を分散液のpHが4になるように添加し攪拌した。攪拌後、固体を濾取、乾燥、篩い通しし、500℃で6時間焼成することで、チタン酸化物粒子Hを得た。
(Production Example 8: Titanium oxide particles H)
100 g of titanium oxide particles 2 (water content 50%, average particle size 1.1 μm) obtained in the production process of sulfuric acid method titanium oxide was dispersed in 10 L of deionized water to obtain a dispersion. A 48 mass% potassium hydroxide aqueous solution was added to the obtained dispersion so that the pH of the dispersion was 4, and the mixture was stirred. After stirring, the solid was collected by filtration, dried, sieved, and calcined at 500 ° C. for 6 hours to obtain titanium oxide particles H.
 得られたチタン酸化物粒子Hの平均粒子径、比表面積、200~800℃の温度範囲における加熱重量減少率、水分散pH値を表1に示した。チタン酸化物粒子Hの半値幅を表1に示した。 Table 1 shows the average particle diameter, specific surface area, rate of weight loss by heating in the temperature range of 200 to 800 ° C., and water dispersion pH value of the obtained titanium oxide particles H. The full width at half maximum of the titanium oxide particles H is shown in Table 1.
 なお、表1には、以下に説明する比較例1に用いる酸化チタン(アナターゼ)粒子の比表面積、平均粒子径、半値幅及び200~800℃の温度範囲における加熱重量減少率も示す。 Table 1 also shows the specific surface area, average particle diameter, half-value width, and heating weight loss rate in the temperature range of 200 to 800 ° C. of titanium oxide (anatase) particles used in Comparative Example 1 described below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例1~13及び比較例1~2)
 加硫促進剤と硫黄を除く表2に記載の成分を、1.5Lの密閉型ミキサーで3~5分間混練し、140~170℃に達したときに放出したマスターバッチに表2に記載の割合で加硫促進剤と硫黄を添加して10インチのオープンロールで混練し、組成物を得た。この組成物を金型中で150℃ 、40分間プレス加硫して目的とするゴム組成物の試験サンプルを作製した。
(Examples 1 to 13 and Comparative Examples 1 and 2)
The ingredients listed in Table 2, excluding the vulcanization accelerator and sulfur, were kneaded for 3 to 5 minutes in a 1.5 L closed mixer, and the master batch released when the temperature reached 140 to 170 ° C was listed in Table 2. A vulcanization accelerator and sulfur were added at a ratio and kneaded with a 10-inch open roll to obtain a composition. This composition was press vulcanized in a mold at 150 ° C. for 40 minutes to prepare a test sample of the desired rubber composition.
 なお、表2に記載の主な成分としては、以下のもの用いた。 The main ingredients listed in Table 2 were as follows.
 SBR:商品名「RC2557S」、中国石油独山子石化公司社製
 ブタジエンゴム:商品名「BR9000」、中国石化斉魯石油化工公司社製
 シリカ:商品名「HD165MP」、無錫確成硅化学有限公司社製
 カーボンブラック:商品名「N234」、Cabot社製
 シランカップリング剤:商品名「Si69」、Evonik Industries AG社製
 老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(6PPD)
 加硫促進剤(DPG):1,3-ジフェニルグアニジン
 加硫促進剤(CBS):N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
SBR: Trade name “RC2557S”, China Petroleum Doksan Petrochemical Co., Ltd. Butadiene rubber: Trade name “BR9000”, China Petrochemical Co., Ltd. Petrochemical Co., Ltd. Silica: Trade name “HD165MP”, Wuxi Chengsei Chemical Co., Ltd Manufactured carbon black: Trade name “N234”; Cabot silane coupling agent: Trade name “Si69”; Evonik Industries AG aging inhibitor: N-phenyl-N ′-(1,3-dimethylbutyl) -p -Phenylenediamine (6PPD)
Vulcanization accelerator (DPG): 1,3-diphenylguanidine Vulcanization accelerator (CBS): N-cyclohexyl-2-benzothiazolylsulfenamide
 (ウェットグリップ性の評価方法)
 上記で得られたゴム組成物の試験サンプル(実施例1~13及び比較例1~2)を、ブリティッシュ・ポータブル・スキッドテスターを用いて、室温(25℃)の条件で測定し、比較例2を100にした指数で表示した。数値は大きい程、ウェットグリップ性が優れていることを示す。結果を、表2に示す。
(Evaluation method of wet grip)
Test samples (Examples 1 to 13 and Comparative Examples 1 and 2) of the rubber composition obtained above were measured at room temperature (25 ° C.) using a British portable skid tester. Is expressed as an index with a value of 100. It shows that wet grip property is excellent, so that a numerical value is large. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明におけるチタン酸化物粒子A~Hを用いた実施例1~13は、比較例1及び2に比べ、優れたウェットグリップ性を示した。特に、チタン酸化物粒子A~C及びF~Hを用いた実施例1~3及び11~13は、チタン酸化物粒子D及びEを用いた実施例4及び5よりも優れたウェットグリップ性を示している。 As shown in Table 2, Examples 1 to 13 using the titanium oxide particles A to H in the present invention showed excellent wet grip properties as compared with Comparative Examples 1 and 2. In particular, Examples 1 to 3 and 11 to 13 using titanium oxide particles A to C and F to H have better wet grip properties than Examples 4 and 5 using titanium oxide particles D and E. Show.
 (アクロン摩耗の評価方法)
 上記で得られたゴム組成物の試験サンプル(実施例1、実施例11~13及び比較例2)を、アクロン式摩耗試験機及び直径65.0mm、内径12.0mm、厚み12mmのサンプルを使用して、室温(25℃)にて、サンプル回転速度76rpm/min、砥石回転速度34rpm/min、傾角15°、及び荷重1700gの条件下で、摩耗量を測定した。使用した砥石は材質が酸化アルミニウムで形状が直径150mm、内径32mm、厚み25mmであるものを使用した。数値が小さい程、耐摩耗性が優れていることを示す。結果を表3に示す。
(Akron wear evaluation method)
The rubber composition test samples (Example 1, Examples 11 to 13 and Comparative Example 2) obtained above were used with an Akron abrasion tester and a sample having a diameter of 65.0 mm, an inner diameter of 12.0 mm and a thickness of 12 mm. Then, the amount of wear was measured at room temperature (25 ° C.) under the conditions of a sample rotation speed of 76 rpm / min, a grindstone rotation speed of 34 rpm / min, an inclination angle of 15 °, and a load of 1700 g. The grindstone used was made of aluminum oxide and the shape was 150 mm in diameter, 32 mm in inner diameter, and 25 mm in thickness. It shows that abrasion resistance is excellent, so that a numerical value is small. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、平均粒子径の小さいチタン酸化物粒子F~Hを用いた実施例11~13は、平均粒子径の大きいチタン酸化物粒子Aを用いた実施例1や水酸化アルミを用いた比較例2と比べ、優れた耐摩耗性を示した。また、実施例11と実施例12及び13との比較から、比表面積が小さいチタン酸化物粒子を用いることでより一層優れた耐摩耗性を示していることがわかる。 As shown in Table 3, Examples 11 to 13 using the titanium oxide particles F to H having a small average particle diameter are the same as those in Example 1 using the titanium oxide particles A having a large average particle diameter and aluminum hydroxide. Compared with the comparative example 2 used, the outstanding abrasion resistance was shown. Moreover, it turns out from the comparison with Example 11 and Example 12 and 13 that the abrasion resistance which was further excellent is shown by using a titanium oxide particle with a small specific surface area.

Claims (11)

  1.  昇温速度10℃/分で40℃から1000℃まで加熱したときの200~800℃の温度範囲における加熱重量減少率が0.4~10.0質量%であるチタン酸化物粒子からなる、ゴム用無機充填材。 A rubber comprising titanium oxide particles having a heating weight reduction rate of 0.4 to 10.0% by mass in a temperature range of 200 to 800 ° C. when heated from 40 ° C. to 1000 ° C. at a rate of temperature increase of 10 ° C./min. Inorganic filler.
  2.  前記チタン酸化物粒子の比表面積が5~1000m/gである、請求項1に記載のゴム用無機充填材。 The inorganic filler for rubber according to claim 1, wherein the titanium oxide particles have a specific surface area of 5 to 1000 m 2 / g.
  3.  前記チタン酸化物粒子の平均粒子径が10.0μm以下である、請求項1又は2に記載のゴム用無機充填材。 The inorganic filler for rubber according to claim 1 or 2, wherein the titanium oxide particles have an average particle size of 10.0 µm or less.
  4.  前記チタン酸化物粒子のX線回折における2θ=20°~30°の範囲内におけるピークの半値幅が0.10°以上である、請求項1~3のいずれか一項に記載のゴム用無機充填材。 The inorganic for rubber according to any one of claims 1 to 3, wherein a half width of a peak in a range of 2θ = 20 ° to 30 ° in X-ray diffraction of the titanium oxide particles is 0.10 ° or more. Filler.
  5.  前記チタン酸化物粒子の水分散pH値が2.0~11.0である、請求項1~4のいずれか一項に記載のゴム用無機充填材。 The inorganic filler for rubber according to any one of claims 1 to 4, wherein the titanium oxide particles have an aqueous dispersion pH value of 2.0 to 11.0.
  6.  前記チタン酸化物粒子の表面に表面処理剤からなる処理層が形成されている、請求項1~5のいずれか一項に記載のゴム用無機充填材。 The inorganic filler for rubber according to any one of claims 1 to 5, wherein a treatment layer comprising a surface treatment agent is formed on the surface of the titanium oxide particles.
  7.  ゴム成分に、請求項1~6のいずれか一項に記載のゴム用無機充填材を配合してなる、ゴム組成物。 A rubber composition comprising the rubber component and the inorganic filler for rubber according to any one of claims 1 to 6.
  8.  前記ゴム成分がジエン系ゴムである、請求項7に記載のゴム組成物。 The rubber composition according to claim 7, wherein the rubber component is a diene rubber.
  9.  前記ゴム用無機充填材の配合量が、ゴム成分100質量部に対して1~100質量部である、請求項7又は8に記載のゴム組成物。 The rubber composition according to claim 7 or 8, wherein the compounding amount of the inorganic filler for rubber is 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  10.  タイヤトレッド用である、請求項7~9のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 7 to 9, which is used for tire treads.
  11.  請求項7~10のいずれか一項に記載のゴム組成物をトレッド部に用いてなる、タイヤ。 A tire comprising the tread portion using the rubber composition according to any one of claims 7 to 10.
PCT/JP2017/007021 2016-03-15 2017-02-24 Inorganic filler for rubber, rubber composition and tire WO2017159286A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017531784A JP6227849B1 (en) 2016-03-15 2017-02-24 Inorganic filler for rubber, rubber composition and tire
CN201780016855.5A CN108884277B (en) 2016-03-15 2017-02-24 Inorganic filler for rubber, rubber composition, and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051346 2016-03-15
JP2016-051346 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017159286A1 true WO2017159286A1 (en) 2017-09-21

Family

ID=59850880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007021 WO2017159286A1 (en) 2016-03-15 2017-02-24 Inorganic filler for rubber, rubber composition and tire

Country Status (3)

Country Link
JP (1) JP6227849B1 (en)
CN (1) CN108884277B (en)
WO (1) WO2017159286A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623003A (en) * 1985-06-28 1987-01-09 Catalysts & Chem Ind Co Ltd Scaly inorganic oxide and production thereof
JPS63307119A (en) * 1987-05-30 1988-12-14 チオクサイド グループ ピーエルシー Granular substance
JPH06279618A (en) * 1993-03-25 1994-10-04 Ishihara Sangyo Kaisha Ltd Rodlike fine particulate electrically conductive titanium oxide and production thereof
JPH10139434A (en) * 1996-11-13 1998-05-26 Teika Corp Production of spindle-type titanium dioxide
JPH1112148A (en) * 1997-06-20 1999-01-19 Kose Corp Cosmetic
WO2014178311A1 (en) * 2013-04-30 2014-11-06 旭化成ケミカルズ株式会社 Titanium oxide-containing composition, polymer composition, and molded body
WO2017051690A1 (en) * 2015-09-24 2017-03-30 大塚化学株式会社 Porous titanate compound particles and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623003A (en) * 1985-06-28 1987-01-09 Catalysts & Chem Ind Co Ltd Scaly inorganic oxide and production thereof
JPS63307119A (en) * 1987-05-30 1988-12-14 チオクサイド グループ ピーエルシー Granular substance
JPH06279618A (en) * 1993-03-25 1994-10-04 Ishihara Sangyo Kaisha Ltd Rodlike fine particulate electrically conductive titanium oxide and production thereof
JPH10139434A (en) * 1996-11-13 1998-05-26 Teika Corp Production of spindle-type titanium dioxide
JPH1112148A (en) * 1997-06-20 1999-01-19 Kose Corp Cosmetic
WO2014178311A1 (en) * 2013-04-30 2014-11-06 旭化成ケミカルズ株式会社 Titanium oxide-containing composition, polymer composition, and molded body
WO2017051690A1 (en) * 2015-09-24 2017-03-30 大塚化学株式会社 Porous titanate compound particles and method for producing same

Also Published As

Publication number Publication date
JPWO2017159286A1 (en) 2018-03-22
JP6227849B1 (en) 2017-11-08
CN108884277B (en) 2020-11-27
CN108884277A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
RU2461592C2 (en) Rubber mixure and tyre
JP6896574B2 (en) Additives, rubber compositions, and tires for imparting wear resistance and braking properties to rubber components
US6838495B2 (en) Rubber composition comprising composite pigment
WO2016174628A1 (en) Vulcanisable elastomeric materials for components of tyres comprising modified silicate fibres, and tyres thereof
KR102405234B1 (en) Hydrous silicic acid for rubber reinforcement filling
EP1340787A1 (en) Tread rubber composition and pneumatic tire employing the same
EP3653667B1 (en) Rubber composition and tire
RU2749274C2 (en) Elastomeric materials for tire components and tires containing modified silicate fibers
JP7229683B2 (en) Rubber composition and tire
JP6227849B1 (en) Inorganic filler for rubber, rubber composition and tire
US20090124724A1 (en) Rubber Composition And Pneumatic Tire
WO2016199429A1 (en) Rubber composition and tire
JP2002348412A (en) Rubber composition for tire tread and pneumatic tire using it
CN110191917B (en) Organic-inorganic composite material for rubber reinforcement, method for preparing the same, and rubber composition for tire comprising the same
JP2019052227A (en) Rubber composition and tire
WO2023277057A1 (en) Rubber composition and tire
JP2003055503A (en) Rubber composition for tire tread and pneumatic tire using the same
JP2023518736A (en) Rubber compositions, rubber products and tires
JP2021070750A (en) Rubber composition and tire
WO2018225743A1 (en) Rubber composition, method for producing rubber composition, and tire
JP2010116468A (en) Rubber composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766291

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766291

Country of ref document: EP

Kind code of ref document: A1