JPS623003A - Scaly inorganic oxide and production thereof - Google Patents

Scaly inorganic oxide and production thereof

Info

Publication number
JPS623003A
JPS623003A JP60142243A JP14224385A JPS623003A JP S623003 A JPS623003 A JP S623003A JP 60142243 A JP60142243 A JP 60142243A JP 14224385 A JP14224385 A JP 14224385A JP S623003 A JPS623003 A JP S623003A
Authority
JP
Japan
Prior art keywords
oxide
inorganic
thickness
inorganic oxide
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60142243A
Other languages
Japanese (ja)
Other versions
JPH0575684B2 (en
Inventor
Goro Sato
護郎 佐藤
Michio Komatsu
通郎 小松
Hirokazu Tanaka
博和 田中
Susumu Fujii
進 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP60142243A priority Critical patent/JPS623003A/en
Publication of JPS623003A publication Critical patent/JPS623003A/en
Publication of JPH0575684B2 publication Critical patent/JPH0575684B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce scaly inorganic oxide having improved transparency and relatively long side in comparison with thickness, by freezing a colloidal solution of an inorganic oxide, precipitating particles of the inorganic oxide between crystal plane of a solvent and removing the solvent. CONSTITUTION:A colloidal solution consisting of one or more organic oxides of TiO2, SiO2, Al2O3, Fe2O3, ZrO2, SnO and Sb2O3 and/or hydrous inorganic oxide is cooled at a temperature to freeze the solution and frozen in a given time. Consequently, colloidal particles in the solution are separated and precipitated on the gaps between the crystal planes of the solvent of the colloidal solution. The frozen material is dried in a vacuum and the solvent is removed while keeping the frozen material at a temperature not to thaw the frozen material. Consequently, the scaly inorganic oxide or hydrous inorganic oxide having 0.05-5mum thickness, >=5 ratio (aspect ratio) of the maximum length of side to thickness and improved transparency is obtained.

Description

【発明の詳細な説明】 L!よ五丑■分! 本発明は、透明でかつほぼ一定の厚さを有する新規な鱗
片状の無機酸化物およびその製造方法に関する。
[Detailed Description of the Invention] L! Yo five ox ■ minutes! The present invention relates to a novel scale-like inorganic oxide that is transparent and has a substantially constant thickness, and a method for producing the same.

口の 1的背景ならびにその4題引 ・無機物質特に無
機酸化物は、通常塊状あるいは粒子状の形態をなしてい
るが、ある種の無機物質は鱗片状をなしている。鱗片状
をなす無機物質としては、雲母、セリサイトなどの天然
鉱物、合成雲母、鱗片状グラフフィト、ガラスフレーク
あるいはリン酸カルシウムのような鱗片状結晶があり、
電気部品、建材、塗料、プラスチック用フィラー、化粧
品などに幅広く使用されている。
1. Background of the mouth and its 4 topics - Inorganic substances, especially inorganic oxides, are usually in the form of lumps or particles, but some inorganic substances are in the form of scales. Examples of scaly inorganic substances include natural minerals such as mica and sericite, synthetic mica, scaly graphite, glass flakes, and scaly crystals such as calcium phosphate.
It is widely used in electrical parts, building materials, paints, plastic fillers, cosmetics, etc.

これらのうち合成鱗片状無機物質は、以下のようにして
合成されてきた。たとえば合成雲母は、S i 02 
、Na、、o、MgO,Fなど原料を所定の組成になる
ように水に溶解して調製した溶液を、オートクレーブ中
で水熱合成することにより製造されているが、その製造
工程では水などにより膨潤し雲母の層間が広がるなどの
理由により、得られる鱗片状物の厚さが一定しないとい
う問題点がめった。またガラスフレークは、溶融ガラス
を薄いフィルム状にした後、冷却して鱗片状にすること
により製造されているが、(qられる鱗片状物の厚さは
数μm〜10数μm程度であり、これより薄い鱗片状物
はjqられていないのが現状である。
Among these, synthetic scaly inorganic substances have been synthesized as follows. For example, synthetic mica is S i 02
It is manufactured by hydrothermally synthesizing a solution prepared by dissolving raw materials such as , Na, , O, MgO, F, etc. in water to a predetermined composition in an autoclave, but in the manufacturing process, water etc. Due to reasons such as swelling and spreading of mica layers, the thickness of the scale-like material obtained was often inconsistent. Glass flakes are manufactured by making molten glass into a thin film and then cooling it to make it into scales. At present, scale-like substances thinner than this are not processed.

さらにリン酸カルシウムのような鱗片状結晶は、通常溶
液中で薄片状の結晶を析出させることによって製造され
るが、この方法では1qられる鱗片状物の厚さをコント
ロールすることは困難であるという問題点がおった。
Furthermore, scaly crystals such as calcium phosphate are usually produced by precipitating flaky crystals in a solution, but this method has the problem that it is difficult to control the thickness of the scaly crystals produced by 1q. There was a thunderstorm.

ところで酸化チタン、酸化ケイ素、酸化アルミニウム、
酸化鉄、酸化ジルコニウム、酸化スズ、酸化アンチモン
などの無i酸化物は、天然に存在するものであってもあ
るいは種々の方法で合成されたものであっても、その形
状はいずれも球形あるいは不定形であって、厚さに比較
して片の長さが非常に長い鱗片状物は得られていない。
By the way, titanium oxide, silicon oxide, aluminum oxide,
Iron-free oxides such as iron oxide, zirconium oxide, tin oxide, and antimony oxide, whether naturally occurring or synthesized by various methods, have a spherical or irregular shape. No scale-like material has been obtained that has a regular shape and the length of the pieces is very long compared to the thickness.

また上記の無機酸化物は球形あるいは不定形であるため
、可視光の透過率は低く、透明性に優れているものは得
にくかった。
Furthermore, since the above-mentioned inorganic oxides are spherical or amorphous, their visible light transmittance is low, making it difficult to obtain ones with excellent transparency.

ところでもし上記の無機酸化物を透明性に優れしかも厚
さに比較して片の長さが非常に長い鱗片状に形成するこ
とができれば、触媒あるいはその担体、電気部品、建材
用フィラー、塗料用フィラー、プラスチック用フィラー
、化粧料としての用途が期待される。
By the way, if the above-mentioned inorganic oxides could be formed into scales with excellent transparency and very long pieces compared to their thickness, they could be used as catalysts or their carriers, electrical parts, fillers for building materials, and paints. It is expected to be used as fillers, plastic fillers, and cosmetics.

本発明者らは、酸化チタン、酸化ケイ素、酸化アルミニ
ウム、酸化鉄、酸化ジルコニウム、酸化スズ、酸化アン
チモンなどの無機酸化物を透明性に優れしかも厚さに比
較して片の艮ざが非常に長い鱗片状に形成すべく研究し
たところ、上記無機酸化物のコロイド溶液を凍結した後
溶媒を除去すれば、上記酸化物の鱗片状物を製造しうろ
ことを見出して本発明を完成するに至った。
The present inventors have discovered that inorganic oxides such as titanium oxide, silicon oxide, aluminum oxide, iron oxide, zirconium oxide, tin oxide, and antimony oxide have excellent transparency and are extremely thin compared to their thickness. After researching how to form scales into long scales, it was discovered that by freezing a colloidal solution of the inorganic oxide and removing the solvent, scales could be produced from the oxide, leading to the completion of the present invention. Ta.

発明の目的 本発明は、透明性に優れしかも厚さに比較して片の長さ
が非常に長い、酸化チタン、酸化ケイ素、酸化アルミニ
ウム、酸化鉄、酸化ジルコニウム、酸化スズ、酸化アン
チモンからなる11fから選ばれた1種または2種以上
の無機酸化物からなる鱗片状物ならびにぞの製造方法を
提供することを目的としている。
Purpose of the Invention The present invention provides 11f made of titanium oxide, silicon oxide, aluminum oxide, iron oxide, zirconium oxide, tin oxide, and antimony oxide, which has excellent transparency and has a very long piece length compared to its thickness. The object of the present invention is to provide a scale-like material made of one or more kinds of inorganic oxides selected from the following, and a method for producing the same.

発明の概要 本発明では、新規な、透明性に侵れしかも厚さに比較し
て片の長さが非常に長い鱗片状の酸化チタン、酸化ケイ
素、酸化アルミニウム、酸化鉄、酸化ジルコニム、酸化
スズ、酸化アンチモンからなる群から選ばれた1種また
は2種以上の無機酸化物が提供される。
SUMMARY OF THE INVENTION The present invention uses novel scaly titanium oxide, silicon oxide, aluminum oxide, iron oxide, zirconium oxide, and tin oxide that impair transparency and have extremely long pieces compared to their thickness. , antimony oxide, and one or more inorganic oxides selected from the group consisting of antimony oxide.

この鱗片状の無機酸化物においては、厚さは1Oμm以
下好ましくは0.05〜2μmであって、厚さと片の最
長長さの比(アスペク1〜比)は、5以上好ましくは1
0以上であり、また550nmの可視光の透過率は60
%以上好ましくは80%以上であることが望ましい。
In this scale-like inorganic oxide, the thickness is 10 μm or less, preferably 0.05 to 2 μm, and the ratio of the thickness to the longest length of the flakes (aspect ratio 1 to 1) is 5 or more, preferably 1
0 or more, and the transmittance of visible light at 550 nm is 60
% or more, preferably 80% or more.

また本発明に係る透明性に優れしかも厚さに比較して片
の長さが非常に長い鱗片状の無!1酸化物または含水無
機酸化物の製造方法は、無機酸化物または含水無機酸化
物おるいはこの両者のコロイド溶液を凍結し、コロ身ド
溶液の溶媒の結晶面と結晶面の間隙に無機酸化物粒子ま
たは含水無機酸化物粒子おるいはこの両者を析出せしめ
た後、凍結物が解凍しない温度に保持しながら溶媒を除
去することを特徴としている。
In addition, according to the present invention, there is a scaly material which is excellent in transparency and whose length is very long compared to its thickness. The method for producing a single oxide or a hydrous inorganic oxide involves freezing a colloidal solution of an inorganic oxide, a hydrous inorganic oxide, or both, and adding inorganic oxide to the gap between the crystal planes of the solvent of the colloid solution. The method is characterized in that after precipitating the material particles, the water-containing inorganic oxide particles, or both, the solvent is removed while maintaining the temperature at a temperature at which the frozen material does not thaw.

上記の無機酸化物としては、酸化チタン、酸化ケイ素、
酸化アルミニウム、酸化鉄、酸化ジルコニウム、酸化ス
ズ、酸化アンチモンなどが用いられる。
The above inorganic oxides include titanium oxide, silicon oxide,
Aluminum oxide, iron oxide, zirconium oxide, tin oxide, antimony oxide, etc. are used.

発明の詳細な説明 以下本発明をより具体的に説明づる。Detailed description of the invention The present invention will be explained in more detail below.

本発明に係る無Iar!i化物は、透明性に優れしかも
厚さに比較して片の長さが非常に長い鱗片状をしており
、酸化チタン、酸化ケイ素、酸化アルミニウム、酸化鉄
、酸化ジルコニム、酸化スズ、酸化アンチモンからなる
群から選ばれた1種または2種以上から構成されている
No Iar! according to the present invention! I-oxides have a scale-like shape with excellent transparency and extremely long pieces compared to their thickness, and include titanium oxide, silicon oxide, aluminum oxide, iron oxide, zirconium oxide, tin oxide, and antimony oxide. It is composed of one or more selected from the group consisting of:

この鱗片状無機酸化物においては、厚さは10μm以下
好ましくは0.05〜2μmであることが望ましい。こ
の厚さが10μmを越えると、鱗片状物としての特性を
期待することができなくなるため好ましくなく、一方0
.05μm未満では鱗片状物の機械的強度か弱すぎるた
め好ましくない。また厚さと片の最長長さとの比である
アスペクト比は、5以上好ましくは10以上である。こ
のアスペクト比が5未満では、粒状のものと比較して鱗
片状物としての特性を期待することができなくなるため
好ましくない。さらに本発明に係る方法により得られる
鱗片状の無機酸化物は、透明性に優れており、550n
mの可視光の透過率は60%以上好ましくは80%以上
であることが望ましい。なお本発明に係る鱗片状無機酸
化物の可視光透過率は、本発、明に係る鱗片状の無a酸
化物10車最部に流動パラフィン90単回部を加え、ホ
モミキサー(特殊機化工業製)にて良く分散させた後、
この分散液を透明石英板に厚さ5μmの膜厚になるよう
に塗布し、分光・光度訓により550nmの波長を有す
る可視光の透過率を測定することによって決定した。
The thickness of this flaky inorganic oxide is desirably 10 μm or less, preferably 0.05 to 2 μm. If the thickness exceeds 10 μm, it is undesirable because the characteristics of a scale-like material cannot be expected;
.. If it is less than 0.05 μm, the mechanical strength of the scale-like material is too weak, which is not preferable. Further, the aspect ratio, which is the ratio between the thickness and the longest length of the piece, is 5 or more, preferably 10 or more. If the aspect ratio is less than 5, it is not preferable because the characteristics of a scale-like material cannot be expected compared to a granular material. Furthermore, the scaly inorganic oxide obtained by the method according to the present invention has excellent transparency and has a 550 nm
It is desirable that the visible light transmittance of m is 60% or more, preferably 80% or more. Note that the visible light transmittance of the scaly inorganic oxide according to the present invention is calculated by adding 90 parts of liquid paraffin to the top of the 10-car scaly inorganic oxide according to the present invention, After dispersing well with industrially manufactured
This dispersion was applied to a transparent quartz plate to a thickness of 5 μm, and the transmittance of visible light having a wavelength of 550 nm was determined using spectroscopy and photometry.

本発明に係る鱗片状無機酸化物は、酸化チタン、酸化ケ
イ素、酸化アルミニウム、酸化鉄、酸化ジルコニム、酸
化スズ、酸化アンチモン単独で構成されていてもよく、
またこれらの2種以上の無機酸化物から構成されていて
もよい。
The scaly inorganic oxide according to the present invention may be composed of titanium oxide, silicon oxide, aluminum oxide, iron oxide, zirconium oxide, tin oxide, antimony oxide alone,
It may also be composed of two or more of these inorganic oxides.

以下本発明に係る透明性に優れしかも厚さに比較して片
の長さが非常に長い鱗片状の無v3酸化物の製造方法に
ついて説明する。
Hereinafter, a method for producing a scale-like V3 oxide-free material having excellent transparency and having a very long piece length compared to its thickness will be described according to the present invention.

まず、所定濃度の1種または2種以上の無機酸化物また
は含水無機酸化物あるいはこの両者のコロイド溶液を、
これらの溶液が凍結する温度以下に冷却して所定時間内
に凍結させる。このコロイド溶液を凍結させると、溶液
中のコロイド粒子は溶媒から分離して凍結したコロイド
溶液の溶媒の結晶面と結晶面の間隙に析出してくる。こ
のようにして析出した無I酸化物または含水無機酸化物
は、互いに重合または凝集して鱗片状となる。次いで、
この凍結物を鱗片状物の形状を保持させたま゛ま適宜の
方法で乾燥して溶媒を除去すれば目的の鱗片状物を得る
ことができる。
First, a colloidal solution of one or more inorganic oxides or hydrous inorganic oxides or both at a predetermined concentration is prepared.
These solutions are cooled below the freezing temperature and frozen within a predetermined time. When this colloidal solution is frozen, the colloidal particles in the solution are separated from the solvent and precipitate in the gaps between the crystal planes of the solvent of the frozen colloidal solution. The I-free oxides or hydrous inorganic oxides thus precipitated polymerize or aggregate with each other to form scales. Then,
The desired scale-like product can be obtained by drying the frozen product using an appropriate method to remove the solvent while maintaining the shape of the scale-like product.

本発明でいう無機酸化物および含水無機酸化物のコロイ
ド溶液とは、水ガラスなどのアルカリ珪酸塩の脱アルカ
リ、エチルシリケートの加水分解などで得られる珪酸溶
液またはシリカコロイドあるいは鉱酸塩または有機酸塩
の加水分解などにより得られるチタン、スズ、ジルコニ
ウム、鉄、アンチモンなどの酸化物のコロイド溶液を含
んで意味しているが、本発明で用いられるコロイド溶液
は、上記の方法により得られたものに限定されるもので
はなく、いかなる方法で製造されたものでもよい。
In the present invention, the colloidal solutions of inorganic oxides and hydrous inorganic oxides refer to silicic acid solutions, silica colloids, mineral salts, or organic acids obtained by dealkalization of alkali silicates such as water glass, hydrolysis of ethyl silicate, etc. Although this term includes colloidal solutions of oxides such as titanium, tin, zirconium, iron, and antimony obtained by hydrolysis of salts, the colloidal solutions used in the present invention include those obtained by the above method. It is not limited to, and may be manufactured by any method.

このようなコロイド溶液中めコロイド粒子の平均粒子径
は250mμ以下好ましくは80mμ以下であることが
望ましい。コロイド粒子の平均粒子径は小さければ小さ
いほど析出するコロイド粒子は密にかつ強固に重合ある
いは凝集し、得られる鱗片状の無機酸化物の透明性およ
び強度は優れたものとなる。一方平均粒子径が250m
μを越えると、凍結時に溶媒の結晶面の間隙に析出した
コロイド粒子は、粒子径が大きいために表面エネルギー
が小ざくなり、析出粒子間の結合力は弱くなる。このた
め凍結物を乾燥して溶媒を除去しても、鱗片状無機酸化
物は得られず、粉末状物または塊状物しか得られない。
The average particle diameter of the colloid particles in such a colloid solution is desirably 250 mμ or less, preferably 80 mμ or less. The smaller the average particle diameter of the colloidal particles, the more densely and firmly the precipitated colloidal particles will polymerize or aggregate, and the obtained scale-like inorganic oxide will have excellent transparency and strength. On the other hand, the average particle diameter is 250m
When μ is exceeded, the colloidal particles precipitated in the gaps between the crystal planes of the solvent during freezing have a large particle size, so the surface energy becomes small, and the bonding force between the precipitated particles becomes weak. Therefore, even if the frozen product is dried to remove the solvent, a scaly inorganic oxide cannot be obtained, but only a powder or a lump can be obtained.

コロイド溶液中の無は酸化物または含水無機酸化物濃度
は、酸化物基準で0.1重M%以上であれば、目的とす
る鱗片状物が得られる。酸化物の濃度が高くなるととも
に、他の凍結条件が同じであれば、溶媒の結晶面の間隙
に析出する粒子が多くなるため、厚い鱗片状物が得られ
る。しかし、酸化物の濃度があまり高くなるとコロイド
溶液として安定に存在し得なくなり、そのような高濃度
のコロイド溶液を用いても鱗片状の無機酸化物は得られ
ない。上記のことを勘案すると、本発明の目的に使用可
能なコロイド溶液の濃度は、酸化物の種類によっても大
ぎく変化するが、たとえば酸化ケイ素の場合には60重
量%以下であることが好ましく、酸化アルミニウムの場
合には10fflff1%以下であり酸化チタンの場合
には40重量%以下でおることが好ましい。また0、1
重量%以下になると鱗片状のものが得られにくい、また
得られたとしても厚さが極端に薄いため取り扱い時に破
壊して粉化しやすくなるため好ましくない。
When the concentration of the inorganic oxide or the hydrated inorganic oxide in the colloidal solution is 0.1% by weight or more based on the oxide, the desired scale-like material can be obtained. As the concentration of the oxide increases, and other freezing conditions remain the same, more particles will precipitate in the gaps between the crystal planes of the solvent, resulting in thick scales. However, if the concentration of the oxide becomes too high, it cannot exist stably as a colloidal solution, and even if such a highly concentrated colloidal solution is used, a scale-like inorganic oxide cannot be obtained. Considering the above, the concentration of the colloidal solution that can be used for the purpose of the present invention varies greatly depending on the type of oxide, but for example, in the case of silicon oxide, it is preferably 60% by weight or less, In the case of aluminum oxide, it is preferably 10fflff1% or less, and in the case of titanium oxide, it is preferably 40% by weight or less. Also 0, 1
If it is less than % by weight, it is difficult to obtain a scale-like product, and even if it is obtained, the thickness is extremely thin and it is easy to break and powder when handled, which is not preferable.

得られる鱗片状無機酸化物の厚さをコントロールするも
う1つの因子は、コロイド溶液の凍結時間すなわち所定
のコロイド溶液が完全に凍結するまでに要する時間でお
る。凍結時間が短かいほど溶媒の単一結晶が小さくなり
、この結晶の結晶化時に溶媒から分離されるコロイド粒
子の儂も少なくなり結晶面間隙にできる鱗片状物は薄く
なる。
Another factor that controls the thickness of the resulting flaky inorganic oxide is the freezing time of the colloidal solution, ie, the time required for a given colloidal solution to completely freeze. The shorter the freezing time, the smaller the single crystal of the solvent becomes, and the fewer colloidal particles are separated from the solvent during crystallization of this crystal, the thinner the scales formed in the interstices of the crystal planes become.

逆に凍結時間を艮くすると、溶媒の単−結晶が大きくな
り、結晶化時に溶媒から分離されるコロイド粒子の瓜が
多くなるので厚い鱗片状物が(qられる。たとえば、濃
度1.0重量%の珪酸コロイド溶液を7秒で凍結させる
と約0.1μmの厚さの鱗片状物が1qられるが、一方
同じコロイド溶液を約60分で凍結させると約2.0μ
mの厚さの鱗片状物が得られる。
Conversely, if the freezing time is increased, the single crystals of the solvent become larger and more colloidal particles are separated from the solvent during crystallization, resulting in thick scales (for example, when the concentration is 1.0 wt. % silicic acid colloid solution in 7 seconds, 1q of scales with a thickness of about 0.1 μm are produced, whereas when the same colloidal solution is frozen in about 60 minutes, about 2.0 μm in thickness is produced.
A scale of m thickness is obtained.

ところで凍結時間を極端に短かくすると、ついにはいわ
ゆる瞬間凍結の状態となり、コロイド溶液の溶媒と]ロ
イド粒子とが分離する前に凍結してしまうので鱗片状物
は得られない。したがってコロイド溶液の凍結に際して
は、溶媒が凍結して結晶化する間にコロイド粒子が溶媒
から分離しノて析出するのに充分な時間をかける必要が
ある。
By the way, if the freezing time is made extremely short, the colloidal solution will eventually reach a so-called instant freezing state, and the colloidal solution will freeze before the solvent and the colloidal particles are separated, making it impossible to obtain scales. Therefore, when freezing a colloidal solution, it is necessary to allow sufficient time for the colloidal particles to separate from the solvent and precipitate while the solvent is frozen and crystallized.

ここで、コロイド粒子径30mμの含水酸化チタンコロ
イド溶液から鱗片状の酸化チタンを製造するに際して、
凍結時間と、コロイド溶液中の酸化物濃度と、得られる
鱗片状の酸化チタンの厚みとの関係を第1図に示す。こ
の第1図から、酸化チタンの濃度が1.0重量%である
場合には、厚さ0.1μの鱗片状の酸化チタンを得るに
は凍結時間を6秒とすればよく、また厚さ2.O,um
の鱗片状の酸化チタンを1昇るには凍結時間を約50分
とり−ればよいことがわかる。
Here, when producing scale-like titanium oxide from a hydrous titanium oxide colloidal solution with a colloidal particle diameter of 30 mμ,
FIG. 1 shows the relationship between the freezing time, the oxide concentration in the colloidal solution, and the thickness of the obtained scale-like titanium oxide. From this Figure 1, when the concentration of titanium oxide is 1.0% by weight, it is sufficient to set the freezing time to 6 seconds to obtain scaly titanium oxide with a thickness of 0.1μ; 2. O,um
It can be seen that approximately 50 minutes of freezing time is required to freeze the scale-like titanium oxide.

同様にコロイド粒子径20mμの酸化アルミニウムコロ
イド溶液から鱗片状の酸化アルミニウムを製造するに際
して、凍結時間と、コロイド溶液中の酸化物濃度と、得
られる鱗片状の酸化アルミニウムの厚みとの関係を第2
図に示ず。またコロイド粒子径12mμの酸化ケイ素コ
ロイド溶液から鱗片状の酸化ケイ素を製造するに際して
、凍結時間と、コロイド溶液中の酸化物の濃度と、得ら
れる鱗片状酸化ケイ素の厚みとの関係を第3図に示す。
Similarly, when producing scaly aluminum oxide from an aluminum oxide colloidal solution with a colloidal particle size of 20 mμ, the relationship between the freezing time, the oxide concentration in the colloidal solution, and the thickness of the obtained scaly aluminum oxide was determined using the following method.
Not shown. Furthermore, when producing scaly silicon oxide from a silicon oxide colloidal solution with a colloidal particle diameter of 12 mμ, Figure 3 shows the relationship between the freezing time, the concentration of oxide in the colloidal solution, and the thickness of the obtained scaly silicon oxide. Shown below.

このようにコロイド溶液の凍結時間はjqられる鱗片状
の無機酸化物の厚みに大きな影響を与えるが、コロイド
溶液の凍結時間は、主としてコロイド溶液の冷却速度を
変化させることによって変えることができる。具体的に
は、所定濃度のコロイド溶液を満たした容器を冷凍装置
にセットし、所定の時間内に凍結が完了するように冷却
速度を設定してコロイド溶液を凍結させる。このとぎコ
ロイド溶液を満たず容器としては、コロイド溶液の層が
薄くなるような容器、たとえば底の浅い平らな容器を用
い、これを一方向または上下方向すなわち容器の底から
のみまたは底と上部との両方から冷却するようにすると
、溶媒の結晶が容器の底から上方に向って、または容器
の底部と上部とから中心に向って成長し、はぼ液深と同
程度の長さを有する鱗片状の無機酸化物が得られる。
As described above, the freezing time of the colloidal solution has a large effect on the thickness of the scale-like inorganic oxide to be jqed, and the freezing time of the colloidal solution can be changed mainly by changing the cooling rate of the colloidal solution. Specifically, a container filled with a colloidal solution of a predetermined concentration is set in a freezing device, and the colloidal solution is frozen by setting a cooling rate so that freezing is completed within a predetermined time. Use a container in which the layer of colloidal solution becomes thin, such as a flat container with a shallow bottom. When cooling from both sides, solvent crystals grow upward from the bottom of the container or from the bottom and top of the container toward the center, forming scales with a length comparable to the depth of the liquid. An inorganic oxide of the form is obtained.

このときのコロイド溶液の液層の厚さく液深)は、冷却
温度が同じであれば、薄いほど凍結時間を短くすること
ができる。また厚いほど凍結時間は長くなるがあまり厚
くなると、出来た鱗片状物の厚みが不均一となるなどの
不都合が生じて好ましくない。したがってコロイド溶液
の液層の厚さは100mm以下好ましくは5Qmm以下
であることが望ましい。
At this time, if the cooling temperature is the same, the thinner the liquid layer of the colloidal solution (the liquid depth), the shorter the freezing time. Further, the thicker the material, the longer the freezing time, but if it becomes too thick, problems such as uneven thickness of the resulting scaly material occur, which is not preferable. Therefore, it is desirable that the thickness of the liquid layer of the colloidal solution is 100 mm or less, preferably 5 Q mm or less.

次に、このようにして凍結させたコロイド溶液から溶媒
を除去する。この溶媒除去操作は、溶媒が完全に除去さ
れた後にも析出したコロイド粒子が鱗片状の形状を保持
しているような方法で行われる。この方法としては、凍
結乾燥が好ましい方法である。すなわち、前述のような
方法により凍結させたコロイド溶液を冷凍装置から取り
出した後、凍結物が解凍しない温度に保持しながら通常
の真空乾燥を行って溶媒を除去する。このような方法で
溶媒を充分に除去すれば、得られた鱗片状物を常温にも
どしても、粉末状にならず鱗片状の形状を保つことかで
きる。
The solvent is then removed from the colloidal solution thus frozen. This solvent removal operation is performed in such a way that the precipitated colloidal particles retain their scaly shape even after the solvent is completely removed. Freeze-drying is a preferred method for this. That is, after the colloidal solution frozen by the method described above is taken out from the freezing device, the solvent is removed by normal vacuum drying while maintaining the temperature at a temperature that does not thaw the frozen material. If the solvent is sufficiently removed by such a method, even if the obtained scale-like material is returned to room temperature, it will not become powder-like and will maintain its scale-like shape.

このような方法により得られた鱗片状の無機酸化物は、
このままでも各種の用途に供することができるが、用途
に応じてはざらに強度が要求される場合があり、この場
合には適宜温度たとえば350〜900 ’Cで焼成す
ると強度に優れた鱗片状無機酸化物が得られる。
The scale-like inorganic oxide obtained by this method is
Although it can be used as it is for various purposes, depending on the purpose there are cases where a high degree of strength is required. Oxide is obtained.

本発明の方法で得られた透明でかつ鱗片状の無lff1
酸化物は、非常に薄い薄片状で厚さも平均しており、し
かも無機酸化物であるため耐熱性、耐酸性、耐アルカリ
性、耐溶剤性に優れている。また天然物の鱗片状鉱物で
ある雲母あるいはセリサイトと比較して、非常に純度が
高く均質であることから種々の用途に用いられる。
Transparent and scaly free lff1 obtained by the method of the present invention
The oxide has a very thin flaky shape with an average thickness, and since it is an inorganic oxide, it has excellent heat resistance, acid resistance, alkali resistance, and solvent resistance. Furthermore, compared to mica or sericite, which are natural scaly minerals, it is extremely pure and homogeneous, so it is used for various purposes.

たとえば従来では、酸化ケイ素、酸化アルミニウム、酸
化チタンなどの無m酸化物の粉末を成形触媒あるいは担
体原料に用いようとする場合には、これらの無機酸化物
のみで成・形することは困難でおるため、通常天然鉱物
である雲母あるいはセリサイトなどを滑剤として適量添
加することが多かった。しかし上記のようにして得られ
た触媒または担体は、雲母などの滑剤を添加した分だけ
、あるいはそれ以上に触媒活性が低下するという欠点が
ある。しかるに本発明で得られる鱗片状の無機酸化物を
原料として使用すれば、触媒活性の低下を来たすことな
く、成形触媒または担体を製造することができる。
For example, in the past, when trying to use powders of non-molecular oxides such as silicon oxide, aluminum oxide, and titanium oxide as molded catalysts or carrier materials, it was difficult to mold and mold them using only these inorganic oxides. Therefore, appropriate amounts of natural minerals such as mica or sericite were often added as lubricants. However, the catalyst or carrier obtained as described above has a drawback in that the catalytic activity is reduced by or more than the addition of a lubricant such as mica. However, if the scaly inorganic oxide obtained in the present invention is used as a raw material, a shaped catalyst or carrier can be produced without reducing the catalytic activity.

また、本発明に係る鱗片状の無機酸化物をプラスチック
添加剤として用いれば、得られるプラスチックは、耐衝
撃性が改良され、かつ薄片状でおるため配向性が良いの
で表面硬度も改良されるとともに耐熱性も向上するとい
う効果が得られる。
Furthermore, if the flaky inorganic oxide according to the present invention is used as a plastic additive, the resulting plastic will have improved impact resistance, and since it is flaky, it will have good orientation and improve surface hardness. The effect of improving heat resistance can also be obtained.

さらに耐熱性セラミック成形体に酸化アルミニウム、酸
化ケイ素、酸化ジルコニアからなる鱗片状の無機酸化物
を添加すれば、成形時の成形性が改良されかつ得られる
耐熱性セラミックの熱スポーリン性および耐圧強度が改
良される。
Furthermore, by adding a scale-like inorganic oxide consisting of aluminum oxide, silicon oxide, and zirconia oxide to the heat-resistant ceramic molded body, the formability during molding can be improved, and the heat spore resistance and pressure resistance of the resulting heat-resistant ceramic can be improved. Improved.

本発明に係る鱗片状の酸化チタンまたは酸化鉄は、紫外
線吸収効果があるので、塗料に添加すると塗料の耐候性
が向上し、かつハードコート材としても効果がある。ま
た、ポリエチレンフィルムあるいはポリプロピレンフィ
ルムなどのフィルムに上記の鱗片状の酸化チタンまた酸
化鉄を混入して紫外線カツトフィルムとし、これを農業
用ビニールハウスに使用すれば、おる種の植物では成長
促進効果が期待できる。
The flaky titanium oxide or iron oxide according to the present invention has an ultraviolet absorption effect, so when added to a paint, the weather resistance of the paint is improved and it is also effective as a hard coat material. In addition, if a film such as polyethylene film or polypropylene film is mixed with the above-mentioned scaly titanium oxide or iron oxide to make a UV-cut film and used in agricultural greenhouses, it will have a growth-promoting effect on certain types of plants. You can expect it.

ざらに、本発明に係る酸化チタン、酸化鉄、酸化ケイ素
、酸化アルミニウム、酸化ジルコニウムなどの鱗片状の
無機酸化物を、従来化粧料に使用されている雲母あるい
はセリサイトなどと同じくアスペクト比を10〜200
に調製して、化粧料として種々の化粧品に使用すれば、
天然の雲母などと比較して不純物が極端に少なく均質で
あることから皮膚に対する安全性が向上し、かつ厚さが
天然物と比較して薄いため使用感および伸びが良好で、
化粧落ちが少なく素肌の美しさを損なうことのない透明
感のある化粧品組成物が得られる。
In general, the scale-like inorganic oxides of the present invention, such as titanium oxide, iron oxide, silicon oxide, aluminum oxide, and zirconium oxide, have an aspect ratio of 10, the same as mica or sericite, which are conventionally used in cosmetics. ~200
If it is prepared and used in various cosmetics as cosmetics,
Compared to natural mica, it contains extremely few impurities and is homogeneous, making it safer for the skin, and being thinner than natural products, it feels good when used and spreads well.
To obtain a transparent cosmetic composition that hardly removes makeup and does not impair the beauty of bare skin.

また本発明に係る酸化チタンまたは酸化鉄は、紫外線遮
蔽剤として従来使用されている粒子状の酸化チタンと比
較し、優れた紫外線吸収能および紫外線遮蔽能を有して
おり、かつ取り扱いが簡単でしかも分散性が良いため、
化粧品基材中に多量に使用しても使用感は損なわれず、
しかも透明感のある皮膚に対する紫外線からの保護作用
を有する化粧品組成物を得ることができる。
Furthermore, the titanium oxide or iron oxide according to the present invention has superior ultraviolet absorption and ultraviolet shielding abilities compared to the particulate titanium oxide conventionally used as an ultraviolet screening agent, and is easy to handle. Moreover, because of its good dispersibility,
Even when used in large quantities in cosmetic base materials, the feeling of use is not impaired.
Furthermore, it is possible to obtain a cosmetic composition that has a transparent effect on the skin and protects the skin from ultraviolet rays.

このほかに本発明に係る鱗片状の無機酸化物は、潤滑剤
、樹脂、ゴム耐摩耗性改良用高硬度フィラー、艶消フィ
ラー、無収縮フィラーなどの種々の用途に用いることが
できる。
In addition, the scaly inorganic oxide according to the present invention can be used in various applications such as lubricants, resins, high hardness fillers for improving rubber wear resistance, matte fillers, and non-shrinkage fillers.

RflJI至四】 本発明では、従来粒子状物しか得られていない無りa酸
化物に関して、透明性に優れかつ均一な厚みを有し、し
かも厚さに比較して片の長さが非常に大きい鱗片状の無
機酸化物が19られる。このためこの鱗片状の無機酸化
物を、触媒おるいは担体、電気部品、建材用フィラー、
塗料用フィラー、プラスチック用フィラー、化粧料など
として用いることができる。
RflJI to 4] In the present invention, compared to the oxide which has conventionally been obtained only in the form of particles, it has excellent transparency and uniform thickness, and the length of the pieces is very short compared to the thickness. Large scale-like inorganic oxides are produced. Therefore, this scale-like inorganic oxide can be used as a catalyst or carrier, electrical parts, filler for building materials, etc.
It can be used as paint filler, plastic filler, cosmetics, etc.

また本発明では、従来粒子物しか得られていない無機酸
化物に関して、透明性に優れかつ均一な厚みを有し、し
かも厚さに比較して片の長さが非常に大きい鱗片状の無
機酸化物の製造方法が提供される。
In addition, in the present invention, regarding inorganic oxides that have conventionally been obtained only in the form of particles, we have developed scaly inorganic oxides that have excellent transparency and uniform thickness, and the length of the pieces is very large compared to the thickness. A method of manufacturing an article is provided.

以下本発明を実施例により説明するが、本発明はこれら
の実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例 1 水ガラスを陽イオン交換樹脂で脱アルカリして得られた
、粒径12mμの酸化ケイ木コロイドを種々の濃度で含
む酸化ケイ素コロイド溶液1’Okgを凍結時間を変化
させて凍結させ、次いで凍結乾燥を行って、鱗片状の含
水酸化ケイ素を得た。これを600 ’Cで3時間焼成
し透明でかつ鱗片状の酸化ケイ素をIHた。コロイド溶
液中の酸化ケイ素の濃度と、凍結時間と、1qられだ鱗
片状の酸化ケイ素の厚みとの関係を表1に示す。
Example 1 10 kg of a silicon oxide colloid solution containing various concentrations of silicon oxide colloid with a particle size of 12 mμ obtained by dealkalizing water glass with a cation exchange resin was frozen by varying the freezing time, Next, freeze-drying was performed to obtain scaly hydrated silicon oxide. This was fired at 600'C for 3 hours to produce transparent and flaky silicon oxide by IH. Table 1 shows the relationship between the concentration of silicon oxide in the colloidal solution, the freezing time, and the thickness of 1q scale-like silicon oxide.

同様に80mμの酸化ケイ素コロイド粒子を調製して、
コロイド溶液中の酸化ケイ素の温度と、凍結時間と、j
qられた鱗片状の酸化ケイ素の厚みとの関係を表1に示
す。
Similarly, silicon oxide colloidal particles of 80 mμ were prepared,
Temperature of silicon oxide in colloidal solution, freezing time, j
Table 1 shows the relationship between the q and the thickness of the scale-like silicon oxide.

表  1 実施例 2 硫酸チタニルを加水分解して得られた、粒径3Qmμの
○水酸化チタンコロイドを種々の濃度で含む酸化チタン
コロイド溶液10kgを、凍結時間を変化させて凍結さ
せ、次いで凍結乾燥を行った。
Table 1 Example 2 10 kg of a titanium oxide colloid solution containing various concentrations of titanium hydroxide colloid with a particle size of 3 Qmμ obtained by hydrolyzing titanyl sulfate was frozen for various freezing times, and then freeze-dried. I did it.

jqられた鱗片状酸化チタンを600’″Cで3時間焼
成して透明でかつ鱗片状の酸化チタンを得た。
The flaky titanium oxide thus obtained was fired at 600'''C for 3 hours to obtain transparent and flaky titanium oxide.

コロイド溶液中の酸化チタンの濃度と、凍結時間と、得
られた鱗片状酸化ケイ素の厚みとの関係を表2に示す。
Table 2 shows the relationship between the concentration of titanium oxide in the colloidal solution, the freezing time, and the thickness of the obtained flaky silicon oxide.

表  2 実施例 3 酸化アルミニウムゲルに酢酸を加え90°Cで熟成して
得られた、粒径20mμの酸化アルミニウムコロイドを
種々の6度で含む酸化アルミニウムコロイド溶液10k
c+を、凍結時間を変化させて凍結させ、次いで凍結乾
燥を行なった。得られた鱗片状の含水酸化アルミニウム
を550’Cで3時間焼成して透明でかつ鱗片状の酸化
アルミニウムを得た。
Table 2 Example 3 Aluminum oxide colloid solution 10k containing aluminum oxide colloid with a particle size of 20 mμ at various 6 degrees, obtained by adding acetic acid to aluminum oxide gel and aging at 90°C
c+ was frozen for varying freezing times and then freeze-dried. The resulting flaky hydrated aluminum oxide was calcined at 550'C for 3 hours to obtain transparent and flaky aluminum oxide.

コロイド溶液中の酸化アルミニウムの濃度と、凍結時間
と、得られた鱗片状の酸化アルミニウムの厚みとの関係
を表3に示す。
Table 3 shows the relationship between the concentration of aluminum oxide in the colloidal solution, the freezing time, and the thickness of the obtained scaly aluminum oxide.

表  3 実施例 4 実施例1〜3で用いた酸化ケイ素、酸化チタン、酸化ア
ルミニウムコロイド溶液から2種類を選びそれぞれ同量
ずつ混合して混合コロイド溶液を調製した。これを所定
時間で凍結させた後凍結乾燥した。得られた鱗片状の含
水酸化物を600 ’Cて3時間焼成して透明でかつ鱗
片状の混合酸化物を得た。
Table 3 Example 4 Two colloidal solutions of silicon oxide, titanium oxide, and aluminum oxide used in Examples 1 to 3 were selected and mixed in equal amounts to prepare a mixed colloidal solution. This was frozen for a predetermined time and then freeze-dried. The obtained scale-like hydrous oxide was calcined at 600'C for 3 hours to obtain a transparent and scale-like mixed oxide.

酸化物の重量比と、コロイド溶液の濃度と、凍結時間と
、得られた鱗片状物の厚さとの関係を表4に示す。
Table 4 shows the relationship between the weight ratio of the oxide, the concentration of the colloidal solution, the freezing time, and the thickness of the obtained scaly material.

実施例 5 硫酸鉄水溶液をアンモニアで中和して1qられたゲルに
硝酸を加えて硝酸解捏した鉄を酸化物換算で5重1%含
有する鉄コロイド溶液(コロイド粒子径10mμ>10
kgを18分間で凍結させ、次いで凍結乾燥を行ない、
鱗片状の含水酸化鉄を得た。これを500℃で3時間焼
成し、厚さ2μmの透明鱗片状酸化鉄を得た。
Example 5 An iron colloidal solution (colloid particle size 10 mμ > 10
kg for 18 minutes, then freeze-drying,
A scale-like hydrated iron oxide was obtained. This was fired at 500° C. for 3 hours to obtain transparent flaky iron oxide with a thickness of 2 μm.

実施例 6 三酸化アンチモンを過酸化水素水で溶解して得られるア
ンチモンを酸化物換算で6重I%含有するアンチモン溶
液(コロイドの粒径15mμ)、10kgを30分間で
凍結させ、次いで凍結乾燥を行ない鱗片状の含水酸化ア
ンチモンを得た。これを500℃で3時間焼成し、厚さ
2.0μmの透明でかつ鱗片状の酸化アンチモンを得た
Example 6 10 kg of an antimony solution (colloid particle size 15 mμ) containing 6% antimony obtained by dissolving antimony trioxide in a hydrogen peroxide solution (colloid particle size 15 mμ) was frozen for 30 minutes, and then freeze-dried. A scaly hydrated antimony oxide was obtained. This was baked at 500° C. for 3 hours to obtain transparent, flaky antimony oxide with a thickness of 2.0 μm.

X塵fPJ  7 塩化スズ水溶液をアンモニアで中和して得られたゲルに
塩酸を0口えて塩酸解捏したスズを酸化物換算で10重
量%含有するスズコロイド溶液(コロイドの粒子径15
mμ)1に!:lを6分間で凍結させ、次いで凍結乾燥
を行ない鱗片状の含水酸化スズを得た。これを650’
Cで3時間焼成して厚さ2μmの透明でかつ鱗片状の酸
化スズを得た。
X dust fPJ 7 Tin colloidal solution containing 10% by weight of tin (colloid particle size 15
mμ) to 1! :1 was frozen for 6 minutes and then freeze-dried to obtain scale-like hydrous tin oxide. 650'
C. for 3 hours to obtain transparent, scaly tin oxide with a thickness of 2 μm.

X塵叢一旦 市販ジルコニアゲルの酢酸解捏によるジルコンを酸化物
換算で5重間%含有するジルコニアコロイド溶液(コロ
イドの粒子径10mμ>1k(Jを20分間で凍結させ
、次いで凍結乾燥を行ない鱗片状含水酸化ジルコニアを
得た。これを600℃で3時間焼成し、厚さ2μmの透
明でかつ鱗片状の酸化ジルコニアを1qた。
A zirconia colloid solution containing 5% by weight of zircon (colloid particle size 10 mμ > 1k (colloid particle size 10 mμ > 1 k) (colloid particle size 10 mμ > 1 k) is obtained by decomposing a commercially available zirconia gel in acetic acid for 20 minutes, and then freeze-drying it to obtain scales. This was fired at 600° C. for 3 hours to obtain 1 q of transparent, scale-like zirconia oxide with a thickness of 2 μm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、コロイド粒子径30mμの含水酸化チタンコ
ロイド溶液から鱗片状の酸化チタンを製造するに際して
、凍結時間と、コロイド溶液中の酸化物温度と、1りら
れる鱗片状の酸化チタンの厚みとの関係を示す図であり
、第2図はコロイド粒子径20mμの酸化アルミニウム
コロ、イド溶液から鱗片状の酸化アルミニウムを製造す
るに際して、凍結時間と、コロイド溶液中の酸化物温度
と、jqられる鱗片状の酸化アルミニウムの厚みとの関
係を示す図であり、第3図はコロイド粒子径12rt1
μの酸化ケイ素コロイド溶液から鱗片状の酸化ケイ素を
製造するに際して、凍結時間と、コロイド溶液中の酸化
物の濃度と、jqられる鱗片状の酸゛化ケイ素の厚みと
の関係を示す図である。 特許出願人     触媒化成工業株式会社第  1 
 図 凍  結  時  間 (秒) 第  2  図 凍  結  時  間 (秒)
Figure 1 shows the freezing time, the oxide temperature in the colloidal solution, and the thickness of the scale-like titanium oxide that is produced when producing scale-like titanium oxide from a hydrous titanium oxide colloidal solution with a colloidal particle size of 30 mμ. FIG. 2 shows the relationship between the freezing time, the temperature of the oxide in the colloidal solution, and the scale of the scale when producing scale-like aluminum oxide from an aluminum oxide colloid solution with a colloidal particle size of 20 mμ. FIG. 3 is a diagram showing the relationship between the thickness of aluminum oxide and the colloidal particle diameter
FIG. 2 is a diagram showing the relationship between the freezing time, the concentration of oxide in the colloidal solution, and the thickness of the flaky silicon oxide to be jqed when producing scaly silicon oxide from a μ silicon oxide colloidal solution. . Patent applicant: Catalysts & Chemicals Industry Co., Ltd. No. 1
Figure freezing time (sec) Figure 2 freezing time (sec)

Claims (4)

【特許請求の範囲】[Claims] (1)酸化チタン、酸化ケイ素、酸化アルミニウム、酸
化鉄、酸化ジルコニウム、酸化スズ、酸化アンチモンか
らなる群から選ばれた1種または2種以上からなる透明
性に優れしかも厚さに比較して片の長さが長い鱗片状の
無機酸化物または含水無機酸化物。
(1) Made of one or more selected from the group consisting of titanium oxide, silicon oxide, aluminum oxide, iron oxide, zirconium oxide, tin oxide, and antimony oxide.It has excellent transparency and is thin compared to its thickness. Scale-like inorganic oxides or hydrous inorganic oxides with long lengths.
(2)厚みが0.05〜5μmであり、厚みと片の最長
長さとの比(アスペクト比)が5以上であることを特徴
とする特許請求の範囲第1項に記載の鱗片状の無機酸化
物または含水無機酸化物。
(2) The scale-like inorganic material according to claim 1, which has a thickness of 0.05 to 5 μm and a ratio of the thickness to the longest length of the piece (aspect ratio) of 5 or more. Oxides or hydrous inorganic oxides.
(3)無機酸化物または含水無機酸化物あるいはこの両
者のコロイド溶液を凍結し、コロイド溶液の溶媒の結晶
面と結晶面の間隙に無機酸化物粒子または含水酸化物粒
子あるいはこの両者を析出せしめた後、凍結物が解凍し
ない温度に保持しながら溶媒を除去することを特徴とす
る、鱗片状の無機酸化物または含水無機酸化物の製造方
法。
(3) A colloidal solution of an inorganic oxide, a hydrous inorganic oxide, or both is frozen, and inorganic oxide particles, hydrous oxide particles, or both are precipitated in the gap between the crystal planes of the solvent of the colloidal solution. A method for producing a scaly inorganic oxide or a hydrated inorganic oxide, the method comprising: removing the solvent while maintaining the frozen product at a temperature at which it will not thaw.
(4)無機酸化物が、酸化チタン、酸化ケイ素、酸化ア
ルミニウム、酸化鉄、酸化ジルコニウム、酸化スズ、酸
化アンチモンからなる群から選択される1種または2種
以上であることを特徴とする特許請求の範囲第3項に記
載の鱗片状の無機酸化物または含水無機酸化物の製造方
法。
(4) A patent claim characterized in that the inorganic oxide is one or more selected from the group consisting of titanium oxide, silicon oxide, aluminum oxide, iron oxide, zirconium oxide, tin oxide, and antimony oxide. A method for producing a scaly inorganic oxide or a hydrous inorganic oxide according to item 3.
JP60142243A 1985-06-28 1985-06-28 Scaly inorganic oxide and production thereof Granted JPS623003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142243A JPS623003A (en) 1985-06-28 1985-06-28 Scaly inorganic oxide and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142243A JPS623003A (en) 1985-06-28 1985-06-28 Scaly inorganic oxide and production thereof

Publications (2)

Publication Number Publication Date
JPS623003A true JPS623003A (en) 1987-01-09
JPH0575684B2 JPH0575684B2 (en) 1993-10-21

Family

ID=15310768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142243A Granted JPS623003A (en) 1985-06-28 1985-06-28 Scaly inorganic oxide and production thereof

Country Status (1)

Country Link
JP (1) JPS623003A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374904A (en) * 1986-09-17 1988-04-05 Kawasaki Steel Corp Production of inorganic fine powder
JPH0439362A (en) * 1990-06-06 1992-02-10 Agency Of Ind Science & Technol Alumina pigment for coating compound
JPH06279095A (en) * 1992-08-21 1994-10-04 Saint Gobain Norton Ind Ceramics Corp Method for manufacture of ceramic substance and product thereof
JPH06293517A (en) * 1993-04-05 1994-10-21 Sumitomo Metal Mining Co Ltd Production of indium-tin oxide aciculate powder
JPH07195972A (en) * 1994-01-10 1995-08-01 Fumiaki Hasegawa Carrier for vehicle
EP0861806A1 (en) * 1997-02-28 1998-09-02 Titan Kogyo Kabushiki Kaisha Fan- or disk-shaped titanium oxide particles, processes for production thereof and uses thereof
WO2005118479A1 (en) * 2004-05-28 2005-12-15 Imperial Chemical Industries Plc Indium tin oxide
JP2006161104A (en) * 2004-12-08 2006-06-22 Toyo Seikan Kaisha Ltd Method for removing resin-coating from resin-coated metal formed body and titanium formed body obtained by this method
JP2009029645A (en) * 2007-07-25 2009-02-12 Nippon Chem Ind Co Ltd Flake-like hydrous titanium oxide, production method of the same and flake-like titanium oxide
JP2011063481A (en) * 2009-09-17 2011-03-31 Nippon Chem Ind Co Ltd Flake like silica presenting opal like color play effect, and method for manufacturing the same
US8388871B2 (en) 2006-04-07 2013-03-05 Sumitomo Metal Mining Co., Ltd. Translucent conductive film forming coating liquid, translucent conductive film, and dispersive type electroluminescent device
WO2017159286A1 (en) * 2016-03-15 2017-09-21 大塚化学株式会社 Inorganic filler for rubber, rubber composition and tire
JP2018090453A (en) * 2016-12-05 2018-06-14 堺化学工業株式会社 Flaky titanium oxide, and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795671B2 (en) * 1998-05-29 2006-07-12 旭硝子エスアイテック株式会社 Cosmetics containing silica-metal oxide fine particle composite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921504A (en) * 1982-07-10 1984-02-03 デグツサ・アクチエンゲゼルシヤフト Inorganic pigment and manufacture
JPS59141414A (en) * 1984-01-23 1984-08-14 Osaka Packing Seizosho:Kk Formed amorphous silica
JPS60103032A (en) * 1983-11-01 1985-06-07 Nippon Mining Co Ltd Manufacture of fine zirconium oxide powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921504A (en) * 1982-07-10 1984-02-03 デグツサ・アクチエンゲゼルシヤフト Inorganic pigment and manufacture
JPS60103032A (en) * 1983-11-01 1985-06-07 Nippon Mining Co Ltd Manufacture of fine zirconium oxide powder
JPS59141414A (en) * 1984-01-23 1984-08-14 Osaka Packing Seizosho:Kk Formed amorphous silica

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374904A (en) * 1986-09-17 1988-04-05 Kawasaki Steel Corp Production of inorganic fine powder
JPH0575683B2 (en) * 1986-09-17 1993-10-21 Kawasaki Steel Co
JPH0439362A (en) * 1990-06-06 1992-02-10 Agency Of Ind Science & Technol Alumina pigment for coating compound
JP2549452B2 (en) * 1990-06-06 1996-10-30 工業技術院長 Alumina pigment for paint
JPH06279095A (en) * 1992-08-21 1994-10-04 Saint Gobain Norton Ind Ceramics Corp Method for manufacture of ceramic substance and product thereof
JPH06293517A (en) * 1993-04-05 1994-10-21 Sumitomo Metal Mining Co Ltd Production of indium-tin oxide aciculate powder
JPH07195972A (en) * 1994-01-10 1995-08-01 Fumiaki Hasegawa Carrier for vehicle
EP0861806A1 (en) * 1997-02-28 1998-09-02 Titan Kogyo Kabushiki Kaisha Fan- or disk-shaped titanium oxide particles, processes for production thereof and uses thereof
US6099634A (en) * 1997-02-28 2000-08-08 Titan Kogyo Kabushiki Kaisha Fan- or disk-shaped titanium oxide particles, processes for production thereof and uses thereof
WO2005118479A1 (en) * 2004-05-28 2005-12-15 Imperial Chemical Industries Plc Indium tin oxide
JP2006161104A (en) * 2004-12-08 2006-06-22 Toyo Seikan Kaisha Ltd Method for removing resin-coating from resin-coated metal formed body and titanium formed body obtained by this method
JP4548105B2 (en) * 2004-12-08 2010-09-22 東洋製罐株式会社 Method of removing resin coating from resin-coated metal molded body and titanium molded body obtained by the method
US8388871B2 (en) 2006-04-07 2013-03-05 Sumitomo Metal Mining Co., Ltd. Translucent conductive film forming coating liquid, translucent conductive film, and dispersive type electroluminescent device
JP2009029645A (en) * 2007-07-25 2009-02-12 Nippon Chem Ind Co Ltd Flake-like hydrous titanium oxide, production method of the same and flake-like titanium oxide
JP2011063481A (en) * 2009-09-17 2011-03-31 Nippon Chem Ind Co Ltd Flake like silica presenting opal like color play effect, and method for manufacturing the same
WO2017159286A1 (en) * 2016-03-15 2017-09-21 大塚化学株式会社 Inorganic filler for rubber, rubber composition and tire
JP6227849B1 (en) * 2016-03-15 2017-11-08 大塚化学株式会社 Inorganic filler for rubber, rubber composition and tire
CN108884277A (en) * 2016-03-15 2018-11-23 大塚化学株式会社 Rubber inorganic filling material, rubber composition and tire
CN108884277B (en) * 2016-03-15 2020-11-27 大塚化学株式会社 Inorganic filler for rubber, rubber composition, and tire
JP2018090453A (en) * 2016-12-05 2018-06-14 堺化学工業株式会社 Flaky titanium oxide, and production method thereof

Also Published As

Publication number Publication date
JPH0575684B2 (en) 1993-10-21

Similar Documents

Publication Publication Date Title
JPS623003A (en) Scaly inorganic oxide and production thereof
US5403513A (en) Titanium oxide sol and process for preparation thereof
US4076549A (en) Amorphous precipitated siliceous pigments for cosmetic or dentifrice use and methods for their preparation
US4764497A (en) Amorphous, spherical inorganic compound and process for preparation thereof
GB2263903B (en) Spherical granules of porous silica or silicate, process for the production thereof, and applications thereof
JPH07506081A (en) Improved method for producing silica-coated inorganic particles
JPH02500972A (en) Improvements in and related to vitreous silica
JPH02275733A (en) Semiconductor-containing glass and its production
US4038098A (en) Amorphous precipitated siliceous pigments for cosmetic or dentrifice use and methods for their production
JP4069330B2 (en) Method for producing titanium oxide-tin oxide composite sol
CN102229700A (en) Epoxy resin nanometer montmorillonite composite material and preparation method thereof
CN101982487A (en) New heat-resistant material special for packaging film of polyethylene tyre and preparation method thereof
JP3876521B2 (en) Ultraviolet shielding fine powder composition and use thereof
JP2509214B2 (en) Inorganic filler
JPS6163526A (en) Preparation of spherical basic magnesium carbonate
JP2000247639A (en) Production of solution for forming titanium dioxide
KR101517369B1 (en) Process for preparing zirconia sol
JPH05306115A (en) Production of mica particles
JP2989580B1 (en) Fibrous silica and method for producing the same
JP2827616B2 (en) Zinc stannate powder for encapsulant and its production method and use
Agustina et al. Synthesis and characterization of ZnO/silica aerogel nanocomposites
KR102070379B1 (en) Method for producing synthetic hectorite at low temperature and atmospheric pressure
JPH0986924A (en) Spherical agglomerated particle and its production
JPS5910705B2 (en) Method for producing stable inorganic pigment composition
JP6129025B2 (en) Silica-alumina shaped particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term