JP3806759B2 - 水平偏波アンテナ - Google Patents

水平偏波アンテナ Download PDF

Info

Publication number
JP3806759B2
JP3806759B2 JP2001085389A JP2001085389A JP3806759B2 JP 3806759 B2 JP3806759 B2 JP 3806759B2 JP 2001085389 A JP2001085389 A JP 2001085389A JP 2001085389 A JP2001085389 A JP 2001085389A JP 3806759 B2 JP3806759 B2 JP 3806759B2
Authority
JP
Japan
Prior art keywords
slit
waveguide
vertical
slit portions
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001085389A
Other languages
English (en)
Other versions
JP2002290149A (ja
Inventor
正人 田中
恭一 飯草
孝 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2001085389A priority Critical patent/JP3806759B2/ja
Publication of JP2002290149A publication Critical patent/JP2002290149A/ja
Application granted granted Critical
Publication of JP3806759B2 publication Critical patent/JP3806759B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直線偏波アンテナに関し、特にスリットアンテナおよびTMモードまたはTEMモードの給電導波路で構成される進行波形スリットアンテナに関する。
【0002】
【従来の技術】
従来より、導波路に沿って直線状のスリットを設けることにより導波路から電磁波を徐々に放射する漏れ波アンテナと呼ばれる技術がある。この漏れ波アンテナでは、導波路がTEモードの場合に直線状のスリットから直線偏波が放射される。
【0003】
一方、任意のアンテナパターンを成形する(ビーム成形する)方法として、複数の素子アンテナを配列し、各素子アンテナに給電する電磁波の振幅と位相を制御するアレーアンテナの技術がある。
【0004】
一つの基地局アンテナで広い部屋を万遍無く照らすことができるようにしたり、移動局アンテナでビーム追尾を必要としないでも通信を確保するためには、水平面内で無指向性であるアンテナが望まれる。
【0005】
そこで、本発明者らは、水平面内無指向性を実現する同軸円筒スロットアレーアンテナを提案している。同軸円筒スロットアレーアンテナは、オーバーサイズ同軸導波路の外導体に複数のスロットを設けたアンテナである。この同軸円筒スロットアレーアンテナは、マイクロストリップ線路に比べて導波路の誘電体を厚くできるため低損失である。また、給電波が同軸モードであるので、アンテナ軸を垂直に設置することにより、水平面内無指向性を実現することができる。さらに、スロットの大きさおよび位置を軸方向に制御することにより、垂直面内にビーム成形可能である。
【0006】
【発明が解決しようとする課題】
上記の漏れ波アンテナでは、導波路がTEモードの場合に直線状のスリットから直線偏波が放射される。しかしながら、導波路がTMモードあるいはTEMモードの場合には、導波路に沿った直線状のスリットからは電磁波が放射されない。そのため、TMモードまたはTEMモードの導波路に直線状のスリットを設けてもアンテナとして機能しない。
【0007】
また、TEモードの導波路を用いた漏れ波アンテナでは、電磁波の放射源である磁流の位相が管内波長にほぼ等しい間隔で揃う。そのため、放射源の高密度化が図れない。
【0008】
一方、上記の同軸円筒スロットアレーアンテナのアンテナ軸を垂直に設置した場合、スロットを水平に設けることにより垂直偏波は容易に得られる。しかし、給電波がTEMモードであるため、垂直スロットは励振されない。
【0009】
そこで、本発明者らは、1対のスロットをハの字状に配置した斜めスロットペアを提案している。図13は斜めスロットペアを示す図である。図13の斜めスロットペア700は、1対の斜めスロット710,720により構成される。斜めスロット710,720はTEMモード波の給電方向に対してそれぞれ角度αおよび−α傾斜している。これにより、水平磁流成分に誘発されて垂直磁流成分も励振される。この場合、垂直偏波の成分のみが打ち消されるように斜めスロット710,720が逆方向に傾けられ、かつ次式のようなスロット間隔Dで配置される。
【0010】
D/λg=Dcosθ/λ0 +1/2 …(1)
ここで、λgは管内波長、λ0 は自由空間波長である。また、ここでは、TEMモード波の給電方向を垂直方向(z軸方向)とする。また、垂直方向(z軸方向)からの仰角をθで表す。このような斜めスロットペア700によれば、水平偏波を実現することができる。しかしながら、図13の斜めスロットペア700においては、全ての仰角θに関して上記の条件を満たすことはできないという限界がある。
【0011】
そこで、本発明者らは、垂直スロットの両端部の同じ側に水平スロットを接続した大括弧形スロットを提案している。図14は大括弧形スロットを示す図である。
【0012】
図14の大括弧型スロット600は、垂直スロット610および1対の短い水平スロット620,630により構成される。垂直スロット610は、垂直方向(z軸方向)に配置される。垂直スロット610の両端部の同じ側に水平スロット620,630が直角に接続されている。水平スロット620,630の間隔(垂直スロット610の長さ)Lは、管内波長λgのほぼ1/2に設定される。TEMモード波が垂直方向(z軸方向)に給電されると、水平スロット620,630は励振されるが、垂直スロット610は励振されない。
【0013】
図14の大括弧形スロット600においては、水平スロット620,630の間隔Lがほぼλg/2に設定されているので、水平スロット620,630には逆向き(逆相)の磁流M+1,M-1が励振される。これらの磁流M+1,M-1は、垂直スロット610に同じ向きの磁流を励振しようとする。また、垂直スロット610の長さLがほぼλg/2であるため、共振が起こりやすくなる。それにより、垂直スロット610に磁流M0 が励振される。このような垂直方向の磁流M0 により効率的に水平偏波が送受信される。一方、2つの水平スロット620,630に励振される磁流M+1,M-1は逆相であるため、互いに打ち消し合う。したがって、垂直偏波の送受信は抑制される。
【0014】
このようにして、図14の大括弧形スロット600を用いると、水平偏波同軸円筒スロットアレーアンテナを構成することができる。
【0015】
図14の大括弧形スロット600においては、垂直磁流は同軸導波路のTMモードあるいはTEMモード波により直接励振されないが、逆に垂直磁流が励振されても給電波への影響が生じにくく、同軸導波路内での反射が小さいという特徴を有する。
【0016】
ただし、大括弧形スロット600を用いてアレーアンテナを構成した場合には、図13の斜めスロットペア700を用いた場合と比較して、全てのスロット600が同じ方向に揃うため、スロット600間の相互結合が大きく、また、その配列分布に影響を受けやすい。このため、励磁分布の制御においては、この影響を考慮する必要がある。
【0017】
図13の斜めスロットペア700および図14の大括弧形スロット600を比較すると、大括弧形スロット600の方が垂直方向および水平方向の占有面積が小さいことがわかる。そのため、水平偏波アンテナの小型化および高密度化が可能となる。
【0018】
しかしながら、水平偏波の送受信を効率的に行うことができ、さらに小型化および高密度化が可能な水平偏波アンテナが望まれている。
【0019】
本発明の目的は、導波路がTMモードあるいはTEMモードの場合にも電磁波の送受信を効率的に行うことができるとともに小型化および高密度化が可能なスリットアンテナを提供することである。
【0020】
本発明の他の目的は、水平偏波の送受信を効率的に行うことができるとともに小型化および高密度化が可能なTEMモードの給電導波路で構成される進行波形スリットアンテナを提供することである。
【0021】
【課題を解決するための手段および発明の効果】
第1の発明に係るアンテナは、電磁波を伝搬するTMモードまたはTEMモードの導波路に矩形波状に蛇行するように延びるスリットが設けられ、スリットは、導波路中の電磁波の進行方向に垂直な方向および平行な方向に間隔を隔てて配置されかつ電磁波の進行方向に平行に延びる複数の第1のスリット部と、導波路中の電磁波の進行方向に間隔を隔てて配置されかつ各第1のスリット部の端部と他の第1のスリット部の端部とに接続されるように第1のスリット部に対して直角に延びる複数の第2のスリット部とを有し、複数の第2のスリット部の励振により複数の第1のスリット部の励振を誘発し電磁波の進行方向と垂直な第1の偏波が発生するとともに複数の第2のスリット部による第2の偏波が打ち消されるように複数の第1のスリット部の長さが管内波長のほぼ2分の1に設定されたものである。
【0022】
本発明に係るアンテナにおいては、矩形波状のスリットにおいてTMモードまたはTEMモードの導波路中の電磁波の進行方向に垂直な第2のスリット部の励振により導波路中の電磁波の進行方向に平行な第1のスリット部の励振を誘発し電磁波の進行方向に垂直な第1の偏波が発生する。
【0023】
したがって、TMモードまたはTEMモードの導波路により、電磁波の送受信を効率的に行うことができる。
【0024】
この場合、複数の第1のスリット部の長さが管内波長のほぼ2分の1に設定されることにより、複数の第2のスリット部による第2の偏波が互いに打ち消される。それにより、第1の偏波のみの直線偏波を効率的に発生することができる。
【0025】
た、管内波長のほぼ2分の1間隔の各第1のスリット部には同相の磁流が励振されるため、放射源が高密度に分布する。それにより、グレーティングローブが抑制される。また、小型化および高密度化が図られる
【0026】
第2の発明に係るアンテナは、端部および外周面を有する内部導体と、内部導体の端部上および外周面上に形成された誘電体と、誘電体を介して内部導体の端部上に形成された端部領域および誘電体を介して内部導体の外周面上に形成された外周部領域を有する外部導体と、外部導体の端部領域および内部導体の端部の各中心から外部導体と内部導体との間の誘電体に給電する給電部とを備え、内部導体の端部と外部導体の端部領域との間の誘電体が所定の管内波長の電磁波を伝搬する半径方向導波路を形成し、内部導体の外周面と外部導体の外周部領域との間の誘電体が管内波長の電磁波を伝搬するTEMモードの同軸導波路を形成し、外部導体の外周部領域に一端部から他端部に延びる複数の矩形波状のスリットが設けられ、複数のスリットの各々は、同軸導波路の周方向および軸方向に間隔を隔てて配置されかつ同軸導波路の軸方向に平行に延びる複数の第1のスリット部と、同軸導波路の軸方向に間隔を隔てて配置されかつ各第1のスリット部の端部と他の第1のスリット部の端部とに接続されるように第1のスリット部に対して直角に延びる複数の第2のスリット部とを有し、複数の第2のスリット部の励振により複数の第1のスリット部の励振を誘発し同軸導波路の軸方向と垂直な第1の偏波が発生するとともに複数の第2のスリット部による第2の偏波が打ち消されるように複数の第1のスリット部の長さが管内波長のほぼ2分の1に設定されたものである。
【0027】
本発明に係るアンテナにおいては、矩形波状の各スリットにおいて、TEMモードの同軸導波路の軸方向に垂直な複数の第2のスリット部の励振により同軸導波路の軸方向に平行な複数の第1のスリット部の励振を誘発し同軸導波路の軸方向に垂直な第1の偏波が発生する。
【0028】
この場合、複数の第1のスリット部の長さが管内波長のほぼ2分の1に設定されている ので、複数の第2のスリット部による第2の偏波が互いに打ち消される。それにより、水平偏波を効率的に発生することができる。
【0029】
のようにして、TEMモードの給電導波路で構成される進行波形スリットアレーアンテナが構成されるので、水平面内無指向性の水平偏波アンテナが実現する。
【0030】
また、各スリットが矩形波状に形成されているので、同軸導波路の周方向において、各スリットの占有面積が小さくなる。それにより、水平偏波アンテナの周方向の小型化および高密度化が図られる
【0031】
隣接するスリットにおける第2のスリット部が、同軸導波路の軸方向における同じ位置に配置されることが好ましい。それにより、各スリットの第1のスリット部の励振により発生される第1の偏波が同相で励振される。したがって、水平偏波を効率的に発生することができる。
【0032】
【発明の実施の形態】
図1(a),(b)は本発明の一実施の形態における水平偏波アンテナのそれぞれ縦断面図および外観図である。図1の水平偏波アンテナは水平偏波同軸円筒スリットアレーアンテナである。
【0033】
図1において、内部導体1は、円柱状の銅等により形成され、1対の円形状端面および外周面を有する。内部導体1の1対の円形状端面および外周面はフッ素樹脂等の誘電体2により被覆されている。この誘電体2は、内部導体1の円形状端面に接する円盤部と、内部導体1の外周面に接する円筒部とを有する。
【0034】
誘電体2の外面は外部導体3により被覆されている。この外部導体3は、誘電体2を介して内部導体1の1対の円形状端面に対向する円盤部と、誘電体2を介して内部導体1の外周面に対向する円筒部とを有する。
【0035】
外部導体3の外周面には、後述する複数のスリット6が形成されている。内部導体1の円形状端面および外部導体3の円盤部の各中心には同軸線路7,8がそれぞれ接続されている。矢印10で示すように一方の同軸線路7から給電が行われる。他方の同軸線路8の端部には終端素子9が取り付けられている。
【0036】
内部導体1および外部導体3の中心軸がアンテナ軸となる。以下の説明では、水平偏波アンテナのアンテナ軸を垂直方向(z軸方向)に配置するものとする。
【0037】
図1の水平偏波アンテナにおいては、誘電体2の円盤部の中心から給電された電磁波が誘電体2の円盤部を半径方向の外側に向かって進行することによりラジアル導波路5が形成される。また、電磁波がこのラジアル導波路5を経由して円筒部に到達すると、円筒部を他方の円盤部に向かって進行することによりオーバーサイズ同軸導波路4が形成される。
【0038】
電磁波がオーバーサイズ同軸導波路4を伝搬する過程で外部導体3に形成された複数のスリット6から外部へ電磁波が放射される。複数のスリット6は周方向に所定間隔で配置されている。そのため、各スリット6からの放射電波による電界および磁界の強度分布は周方向にほぼ均一となる。
【0039】
なお、水平偏波アンテナの送受信の可逆性により、外部導体3のスリット6が電磁波を受けた場合には、逆のプロセスで受信が行われる。
【0040】
図1(a)において、オーバーサイズ同軸導波路4の長さをL0で表し、外径をR1で表し、内径をR2で表す。また、図1(b)において、垂直方向(z軸方向)からの仰角をθで表し、方位角をφで表す。
【0041】
図2は図1の水平偏波アンテナに形成されるスリットの配列パターンを示す展開図である。
【0042】
図2のスリット6をミアンダ形(蛇行状)スリットと呼ぶ。各ミアンダ形スリット6は矩形波状に形成されている。図2の例では、複数のミアンダ形スリット6が図1の外部導体3の円筒部の一端部から他端部に延びかつ周方向に一定間隔で配列される。
【0043】
図3は本発明の原理を説明するための図であり、(a)は大括弧形スロットの向きと垂直磁流の向きとの関係を示し、(b)は複数の大括弧形スロットの組み合わせと垂直磁流との関係を示し、(c)はミアンダ形スリットを示す。
【0044】
図3(a)において、左側の大括弧形スロット600を大括弧開く形スロットと呼び、右側の大括弧形スロット600を大括弧閉じる形スロットと呼ぶ。図3(a)に示すように、大括弧形スロット600においては、大括弧の向きによって励振される垂直磁流の向きが異なる。左側の大括弧開く形スロットでは、垂直スロット610に下向きの磁流M0 が励振される。一方、右側の大括弧閉じる形スロットでは、垂直スロット610に上向きの磁流M0 が励振される。
【0045】
そこで、図3(b)に示すように、大括弧開く形スロットと大括弧閉じるスロットとをz軸方向に管内波長λgのほぼ1/2ずらして配置する。これにより、各大括弧形スロットの600の垂直スロット610を同じ向きに励振することが可能となる。
【0046】
このような配置方法においては、同じ向きの大括弧形スロットのみを配置した場合に比べ、z軸方向における大括弧形スロット600の間隔(素子間隔)が半分になる。その結果、素子間隔が大きくなることにより発生するグレーティングローブを抑制することができる。
【0047】
このように、複数の大括弧形スロット600を交互に逆向きに配置することにより、水平偏波を実現することができる。しかしながら、図3(b)の配置によれば、大括弧形スロット600が本来有しているか横方向(z軸方法に垂直な方向)の占有面積が小さくなるという長所を生かせなくなる。図3(c)に示すミアンダ形スリット6では、横方向の占有面積を小さくすることができる。
【0048】
この場合、垂直スリット部61の長さが管内波長λgのほぼ2分の1となるので、後述するように、通常の直線状のスリットに比べ放射源が高密度に分布する。それにより、直線偏波を効率的に発生することができるとともに、グレーティングローブが抑制される。
【0049】
ここで、大括弧形スロット600の中心線で測定される水平スロット620,630の間隔(垂直スロット610の長さ)をLとし、垂直スロット610の幅をwとし、水平スロット620,630の長さをsとし、水平スロット620,630の幅をw'と定義する。
【0050】
図3(c)において、ミアンダ形スリット6は、複数の垂直スリット部61および複数の短い水平スリット部62,63により構成される。複数の垂直スリット部61は、垂直方向(z軸方向)に延びるように配置され、かつ交互に水平方向に間隔を隔てて配置される。隣接する垂直スリット部61の端部を接続するように水平スリット部62,63が垂直スリット部61に対して直角に配置されている。
【0051】
垂直スリット部61の長さはLであり、垂直スリット部61の幅はwであり、水平スリット部62,63の長さはsであり、水平スリット部62,63の幅はw'である。垂直スリット部61の長さLは、管内波長λgのほぼ1/2に設定される。
【0052】
図15は本発明のアンテナによるグレーティングローブの抑制効果を説明するための図であり、(a)はTEモードの導波路に沿った直線状のスリットにおける磁流を示し、(b)はTMモードまたはTEMモードの導波路に沿ったミアンダ形スリットにおける磁流を示す。
【0053】
図15(a)に示すように、直線状のスリット800においては、管内波長λgの間隔で同相の磁流が励振される。図15(b)に示すように、ミアンダ形スリット6においては、管内波長λgの2分の1の間隔で垂直スリット部61に同相の磁流が励振される。そのため、ミアンダ形スリット6においては、直線状のスリット800に比べて、放射源が高密度に分布する。それにより、グレーティングローブが抑制される。
【0054】
(A)定式化
ここで、図3(c)のミアンダ形スリット6を図3(b)の大括弧形スロット600の重ね合わせと考え、水平偏波および垂直偏波を一般化して定式化を行う。
【0055】
図3(b)の大括弧形スロット600において、水平偏波EH を送受信する垂直磁流は、水平スロット620,630に励振される磁流M+1,M-1の逆相成分により励振されると考えられる。また、垂直偏波EV は水平スロット620,630に生じる励振の同相成分により送受信される。水平偏波EH および垂直偏波EV は次式(2),(3)によりそれぞれ表される。
【0056】
H ∝M-1exp(−jk(z−L/2))−M+1exp(−jk(z+L/2)) …(2)
V ∝M-1exp(−jk(z−L/2))exp(−jk0 L/2cosθ)+M+1exp(−jk(z+L/2))exp(jk0 L/2cosθ) …(3)
ここで、M+1およびM-1は水平スロット620,630に励振される磁流の大きさを表す。大括弧形スロット600では、水平スロット620,630の長さが等しくかつ位置もほぼ近いことから、M-1=M+1と考えられる。
【0057】
したがって、上式(2),(3)は次式(4),(5)のように変形することができる。
【0058】
H =jAexp(−jkz)sin(πL/λg) …(4)
V =Bexp(−jkz)cos{πL/(χλg)} …(5)
χ=1/(−1+cosθ0 /√εr ) …(6)
ここで、jは虚数単位を表す。また、θ0 は主ビーム方向の仰角である。また、AおよびBは水平スロット620,630にそれぞれ励振される磁流によって送受信される水平偏波および垂直偏波の振幅を表す実数パラメータである。
【0059】
上式(4),(5)から水平スロット620,630の間隔Lおよび仰角θによらず、水平偏波EH は垂直偏波EV よりも位相が90[度]進んでいることがわかる。
【0060】
一方、図3(c)のミアンダ形スリット6においては、水平スリット部62,63が単独で存在しない。ここでは、水平スリット部62,63の長さが等しいと仮定し、M-1=M+1とする。したがって、ミアンダ形スリット6においても、上式(2),(3)は上式(4),(5)のように変形することができる。
【0061】
したがって、図3(c)のミアンダ形スリット6においても、上式(4),(5)から水平スリット部62,63の間隔(垂直スリット部61の長さ)Lおよび仰角θによらず、水平偏波EH は垂直偏波EV よりも位相が90[度]進んでいることがわかる。
【0062】
(B)水平偏波条件
上式(4),(5)から水平偏波と垂直偏波との位相差は垂直スリット部61の長さLによらず90[度]であることがわかる。このことから、水平偏波および垂直偏波の振幅を等しくすることにより円偏波を送受信することがわかる。また、上式(5),(6)に示すように、垂直偏波は、光路差があるため、主ビーム方向の仰角θ0 の依存性を有する。主ビーム方向の仰角θ0 の方向で垂直偏波が0すなわち水平偏波となる条件は、次式(7)で与えられる。
【0063】
L=χλg/2 …(7)
ブロードサイド方向において水平偏波となる条件は、θ0=90[度]として次式のようになる。
【0064】
L=λg/2 …(8)
これは、図3(b)の大括弧形スロット600で用いた条件と同じである。上式(7)はL=Dとすれば、図13の斜めスロットペア700における水平偏波条件の式(1)と等価になる。
【0065】
(C)位相制御
図10はミアンダ形スリット6における磁流および垂直スリット部61の座標系を示す図である。図10(a)において、ミアンダ形スリット6における磁流を矢印で示す。
【0066】
また、図10(a),(b)に示すように、任意のi番目の垂直スリット部61の長さをLi とし、i番目の垂直スリット部61の中心位置の座標をzi とする。ここで、iは1〜nの任意の整数である。この場合、水平スリット部62の座標はzi −Li/2となり、水平スリット部63の座標はzi +Li /2となる。
【0067】
上式(4),(5)から、磁流の励振位相は垂直スリット部61の中心位置zi で決まることがわかる。したがって、i番目の素子における磁流の励振位相は垂直スリット部61の中心位置zi により制御する。等間隔アレーの場合、i番目の素子における磁流の励振位相をψi とすると、垂直スリット部61の中心位置zi は、励振位相ψi と、等間隔アレーでなくなるために生じる光路長の変化とを考慮して、次式(9)により与えられる。
【0068】
i −zi-1 =χλg(1+(ψi −ψi-1 )/2π−χ) …(9)
(D)振幅制御
垂直偏波の送受信の割合(振幅)を表す実数パラメータBは、水平スリット部62,63の長さsおよび幅w'に依存すると考えられる。また、水平偏波の送受信の割合(振幅)を表す実数パラメータAは、垂直スロット部61の長さLおよび幅wに依存するとともに、垂直スロット部61を起動する水平磁流(垂直偏波)の実数パラメータBすなわち水平スリット部62,63の長さsおよび幅w'にも依存すると考えられる。このように、水平偏波は、垂直スリット部61の長さLおよび幅wならびに水平スリット部62,63の長さsおよび幅w'により変化する。
【0069】
(E)スリットの拘束条件
ミアンダ形スリット6の場合には、大括弧形スロット600の場合と異なり、垂直スロット部61の中心位置zi と垂直スリット部61の長さLi とが次式(10)の関係を有する。
【0070】
(Li-1 +Li )/2=zi −zi-1 …(10)
したがって、位相制御のために素子位置(垂直スロット部61の中心位置)zi が決まると、垂直スロット部61の長さLを自由に選ぶことができない。ゆえに、水平偏波の条件式(7)を満足するためにや、振幅制御のために、垂直スロット部61の長さLを自由に選択することができない。また、水平スリット部62,63は、その両側の垂直スロット部61の励振振幅に影響を与えるため、水平スリット部62,63の長さsおよび幅w'により独立に水平偏波を制御することは難しい。そのため、振幅制御は、垂直スロット部61の幅wにより行うことが望ましい。
【0071】
なお、上式(10)により、垂直スロット部61の長さLi は一義的に決定されない。垂直スリット部61の長さLi をほぼ均一にするためには、垂直スリット部61の長さLi を次式(11)により与えられる垂直スリット部61の長さの平均値Lavに近い値に選ぶことが望ましい。
【0072】
av=(zn −z1 )/(n−1) …(11)
(F)ビーム成形
以上をまとめると、ミアンダ形スリット6を用いた垂直面内ビームの成形は、図11に示す手順で行われる。まず、垂直面内成形ビームE(θ)の主ビーム方向の仰角θ0 から上式(6)に従ってχの値を計算する。
【0073】
次に、垂直面内成形ビームE(θ)から計算される磁流の励振位相ψi の分布から上記のχの値を上式(9)に代入することにより、垂直スリット部61の中心位置zi の分布を決定する。
【0074】
さらに、上式(11)を考慮しながら上式(10)を用いて垂直スリット部61の長さLi の分布を求める。
【0075】
一方、垂直面内成形ビームE(θ)における励振振幅Pi の分布からスリット6の結合率γi の分布を求める。なお、結合率γi は、1管内波長当たりのスリットの電磁放射の割合を表す。
【0076】
そして、結合率γi の最小値γmin および最大値γmax を実現できるように、B(s,w')の関係から、水平スリット部62,63の長さsおよび幅w'を定める。さらに、A(L,w,s,w')の関係から、垂直スリット部61の長さLi および結合率γi の分布を用いて必要な垂直スリット部61の幅wi を求める。
【0077】
ここで、A(L,w,s,w')は、実数パラメータAが垂直スロット部61の長さLおよび幅wならびに水平スリット部62,63の長さsおよび幅w'に依存することを意味する。また、B(s,w')は、実数パラメータBが水平スリット部62,63の長さsおよび幅w'に依存することを意味する。
【0078】
【実施例】
実施例として、図1の外部導体3に図3(c)に示した複数のミアンダ形スリット6を軸の周りに20本等間隔に配列した水平偏波同軸円筒アレーアンテナを試作し、設計周波数15GHzで指向性を測定した。図1の水平偏波アンテナにおいて、オーバーサイズ同軸導波路4の外径R1は24mmであり、内径R2は20mmであり、長さL0は約280mmである。誘電体2の比誘電率εr は約2.2である。
【0079】
比較例1として、外部導体3に図13に示した複数の斜めスロットペア700の並びを軸の周りに20本等間隔に配列した同軸円筒アレーアンテナを試作した。また、比較例2として、外部導体3に図3(b)に示した大括弧開く形スロットおよび大括弧閉じる形スロットの並びを軸の周りに等間隔に20本配列した同軸円筒アレーアンテナを試作した。さらに、比較例3として、外部導体3に複数の直線状のスリットを軸の周りに等間隔に20本配列した同軸円筒アレーアンテナを試作した。
【0080】
ミアンダ形スリット6における垂直スリット部61の長さLは管内波長の1/2である6.79mm、幅wは0.6mmであり、水平スリット部62,63の長さsは2.0mm、幅w'は0.6mmである。斜めスロットペア700における斜めスロット710,720の長さLは6.0mm、幅wは0.6mmであり、角度αは45[度]である。大括弧形スロット600における垂直スロット610の長さLは6.79mm、幅wは0.6mmであり、水平スロット620,630の長さsは2.0mm、幅w'は0.6mmである。直線状スリットの幅は0.6mmである。
【0081】
図4は斜めスロットペアを用いたアレーアンテナの垂直面内指向性を示す図である。図5は大括弧開く形スロットおよび大括弧閉じる形スロットを用いたアレーアンテナの垂直面内指向性を示す図である。図6は直線状のスリットを用いたアレーアンテナの垂直面内指向性を示す図である。図7はミアンダ形スリットを用いたアレーアンテナの垂直面内指向性を示す図である。図4〜図7において、横軸は仰角θを表し、縦軸は利得を表す。また、実線は水平偏波を表し、破線は垂直偏波を表す。
【0082】
図5に示すように、大括弧形スロット600を交互に逆向きに配列したアレーアンテナにより水平偏波を得ることができる。また、図4および図5の比較から、大括弧形スロット600を用いたアレーアンテナでは、斜めスロットペア700を用いたアレーアンテナに比べて交差偏波識別度(水平偏波と垂直偏波とのレベル差)が良好になることがわかる。
【0083】
図6に示すように、直線状のスリットを用いたアレーアンテナでは、水平偏波のレベルが垂直偏波のレベルと等しくなっている。このことより、直線状の垂直なスリットは効率的に励振されないことが確認できる。
【0084】
図7に示すように、ミアンダ形スリット6を用いたアレーアンテナでは、水平偏波が実現され、主ビームがブロードサイド方向に向いていることがわかる。このミアンダ形スリット6は、図3(b)の大括弧形スロット600の水平スロット620,630を重ねて接続した形状となっているので、大括弧形スロット600と同様に、水平スリット部62,63が垂直スリット部61の励振を起動していると考えられる。
【0085】
図4および図7を比較すると、ミアンダ形スリット6を用いた場合には、斜めスロットペア700を用いた場合に比べて、良好な交差偏波識別度が確保されていることがわかる。
【0086】
次に、円筒面走査近傍界測定法の理論に従って、完全な水平面内無指向性の仮定のもと、遠方界指向性より円筒面近傍の等価磁流開口面分布を計算した結果を図8および図9に示す。図8は大括弧開く形スロットおよび大括弧閉じる形スロットを用いたアレーアンテナの円筒面近傍の等価磁流開口面分布を示す図である。図9はミアンダ形スリットを用いたアレーアンテナの円筒面近傍の等価磁流開口面分布を示す図である。
【0087】
図8および図9において、給電部は横軸の負の側に位置する。横軸はz軸方向の位置を表し、縦軸は振幅および位相を表す。実線は垂直磁流MV を表し、破線は水平磁流MH を表す。また、太線は振幅を表し、細線は位相を表す。
【0088】
図8および図9から、大括弧形スロット600を用いたアレーアンテナの場合にも、ミアンダ形スリット6を用いたアレーアンテナの場合にも、ほぼ均一な開口面分布が実現されていることがわかる。
【0089】
また、ミアンダ形スリット6を用いたアレーアンテナでは、交差偏波を送受信する等価的水平磁流の振幅が大括弧形スロット600を用いたアレーアンテナよりも約15dB大きいことがわかる。
【0090】
振幅と位相分布の傾きから、単位構造当たりの結合率γと等価的な管内波長λg'を計算した結果をリターンロスの測定値とともに表1に示す。
【0091】
【表1】
Figure 0003806759
【0092】
表1の結果から、水平スリット部62,63(水平スロット620,630)の長さsおよび幅wが等しい場合、ミアンダ形スリット6の方が大括弧形スロット600に比べて結合率γが小さくなることがわかる。
【0093】
以上のように、ミアンダ形スリット6を用いることにより、同軸円筒アレーアンテナが水平偏波を送受信できることを実験により確認した。この構造により、周方向のスリットの占有面積を減少させることができ、スリットの配列の高密度化およびスロットとの同時配列などの応用が可能となる。
【0094】
垂直面内ビーム成形においては、垂直スリット部61の中心位置よりその励振位相が制御される。また、励振振幅は、垂直スリット部61の幅wにより制御することが適当であると考えられる。
【0095】
なお、本発明に係る円偏波アンテナの形状は図1に示した形状に限定されない。図12は本発明の他の実施の形態における水平偏波アンテナの縦断面図である。図12の水平偏波アンテナは水平偏波同軸円筒スリットアレーアンテナである。
【0096】
図12の例では、内部導体1は、1対の円錐状端部および外周面を有する。内部導体1の1対の円錐状端部および外周面は誘電体2により被覆されている。この誘電体2は、内部導体1の円錐状端部に接する円錐状端部と、内部導体1の外周面に接する円筒部とを有する。
【0097】
誘電体2の外面は外部導体3により被覆されている。この外部導体3は、誘電体2を介して内部導体1の1対の円錐状端部上に位置する円錐状端部と、誘電体2を介して内部導体1の外周面上に位置する円筒部とを有する。
【0098】
外部導体3の外周面には、図1の水平偏波アンテナと同様の複数のスリット6が形成されている。内部導体1の円錐状端部および外部導体3の円錐状端部の各中心には同軸線路7,8がそれぞれ接続されている。
【0099】
図12の水平偏波アンテナにおいても、図1の水平偏波アンテナと同様に、水平偏波を効率的に発生することができるとともに、周方向に小型化および高密度化を図ることができる。
【0100】
なお、上記実施の形態の水平偏波アンテナでは、内部導体1、誘電体2および外部導体3の断面を円形としているが、内部導体1、誘電体2および外部導体3の断面を楕円形としてもよい。この場合にも、水平偏波を効率的に発生することができるとともに、周方向に小型化および高密度化を図ることができる。
【0101】
また、上記実施の形態では、同軸導波路で構成される進行波形スリットアレーアンテナについて説明しているが、導波路は同軸導波路に限定されず、ミアンダ形スリットの数は複数に限定されない。例えば、同軸導波路以外の導波路に1つのミアンダ形スリット6を設けてもよい。
【図面の簡単な説明】
【図1】本発明の一実施の形態における水平偏波アンテナの縦断面図および外観図である。
【図2】図1の水平偏波アンテナに形成されるスリットの配列パターンを示す展開図である。
【図3】大括弧形スロットの向きと垂直磁流の向きとの関係、大括弧開く形スロットおよび大括弧閉じる形スロットの組み合わせと垂直磁流との関係およびミアンダ形スリットを示す図である。
【図4】斜めスロットペアを用いたアレーアンテナの垂直面内指向性を示す図である。
【図5】大括弧開く形スロットおよび大括弧閉じる形スロットを用いたアレーアンテナの垂直面内指向性を示す図である。
【図6】直線状のスリットを用いたアレーアンテナの垂直面内指向性を示す図である。
【図7】ミアンダ形スリットを用いたアレーアンテナの垂直面内指向性を示す図である。
【図8】大括弧開く形スロットおよび大括弧閉じる形スロットを用いたアレーアンテナの円筒面近傍の等価磁流開口面分布を示す図である。
【図9】ミアンダ形スリットを用いたアレーアンテナの円筒面近傍の等価磁流開口面分布を示す図である。
【図10】ミアンダ形スリットにおける磁流および垂直スリット部の座標系を示す図である。
【図11】垂直面内ビーム成形の制御手順を示す図である。
【図12】本発明の他の実施の形態における水平偏波アンテナの縦断面図である。
【図13】斜めスロットペアを示す図である。
【図14】大括弧形スロットを示す図である。
【図15】本発明のアンテナによるグレーティングローブの抑制効果を説明するための図である。
【符号の説明】
1 内部導体
2 誘電体
3 外部導体
4 オーバーサイズ同軸導波路
5 ラジアル導波路
6 ミアンダ形スリット
7,8 同軸線路
9 終端素子
61 垂直スリット部
62,63 水平スリット部

Claims (3)

  1. 電磁波を伝搬するTMモードまたはTEMモードの導波路に矩形波状に蛇行するように延びるスリットが設けられ、
    前記スリットは、
    前記導波路中の電磁波の進行方向に垂直な方向および平行な方向に間隔を隔てて配置されかつ前記電磁波の進行方向に平行に延びる複数の第1のスリット部と、
    前記導波路中の電磁波の進行方向に間隔を隔てて配置されかつ各第1のスリット部の端部と他の第1のスリット部の端部とに接続されるように第1のスリット部に対して直角に延びる複数の第2のスリット部とを有し、
    前記複数の第2のスリット部の励振により前記複数の第1のスリット部の励振を誘発し前記電磁波の進行方向と垂直な第1の偏波が発生するとともに前記複数の第2のスリット部による第2の偏波が打ち消されるように前記複数の第1のスリット部の長さが管内波長のほぼ2分の1に設定されたことを特徴とするアンテナ。
  2. 端部および外周面を有する内部導体と、
    前記内部導体の前記端部上および前記外周面上に形成された誘電体と、
    前記誘電体を介して前記内部導体の前記端部上に形成された端部領域および前記誘電体を介して前記内部導体の外周面上に形成された外周部領域を有する外部導体と、
    前記外部導体の前記端部領域および前記内部導体の前記端部の各中心から前記外部導体と前記内部導体との間の前記誘電体に給電する給電部とを備え、
    前記内部導体の端部と前記外部導体の前記端部領域との間の前記誘電体が所定の管内波長の電磁波を伝搬する半径方向導波路を形成し、前記内部導体の前記外周面と前記外部導体の前記外周部領域との間の前記誘電体が前記管内波長の電磁波を伝搬するTEMモードの同軸導波路を形成し、
    前記外部導体の前記外周部領域に一端部から他端部に延びる複数の矩形波状のスリットが設けられ、
    前記複数のスリットの各々は、
    前記同軸導波路の周方向および軸方向に間隔を隔てて配置されかつ前記同軸導波路の軸方向に平行に延びる複数の第1のスリット部と、
    前記同軸導波路の軸方向に間隔を隔てて配置されかつ各第1のスリット部の端部と他の第1のスリット部の端部とに接続されるように第1のスリット部に対して直角に延びる複数の第2のスリット部とを有し、
    前記複数の第2のスリット部の励振により前記複数の第1のスリット部の励振を誘発し前記同軸導波路の軸方向と垂直な第1の偏波が発生するとともに前記複数の第2のスリット部による第2の偏波が打ち消されるように前記複数の第1のスリット部の長さが前記管内波長のほぼ2分の1に設定されたことを特徴とするアンテナ。
  3. 互いに隣接するスリットにおける前記複数の第2のスリット部は、前記同軸導波路の軸方向において同じ位置に配置されたことを特徴とする請求項2記載のアンテナ。
JP2001085389A 2001-03-23 2001-03-23 水平偏波アンテナ Expired - Lifetime JP3806759B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001085389A JP3806759B2 (ja) 2001-03-23 2001-03-23 水平偏波アンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001085389A JP3806759B2 (ja) 2001-03-23 2001-03-23 水平偏波アンテナ

Publications (2)

Publication Number Publication Date
JP2002290149A JP2002290149A (ja) 2002-10-04
JP3806759B2 true JP3806759B2 (ja) 2006-08-09

Family

ID=18940904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001085389A Expired - Lifetime JP3806759B2 (ja) 2001-03-23 2001-03-23 水平偏波アンテナ

Country Status (1)

Country Link
JP (1) JP3806759B2 (ja)

Also Published As

Publication number Publication date
JP2002290149A (ja) 2002-10-04

Similar Documents

Publication Publication Date Title
US10530060B2 (en) Single-layered end-fire circularly polarized substrate integrated waveguide horn antenna
Nepa et al. Technologies for near‐field focused microwave antennas
JP3923360B2 (ja) スロットアレーアンテナ及びスロットアレーアンテナ装置
JP5616103B2 (ja) アンテナ装置およびレーダ装置
US9263807B2 (en) Waveguide or slot radiator for wide E-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
JP4727568B2 (ja) 導波管アレーアンテナ
JP2010050700A (ja) アンテナ装置およびそれを備えたアレーアンテナ装置
Malhat et al. Planar reconfigurable plasma leaky-wave antenna with electronic beam-scanning for MIMO applications
JP3806759B2 (ja) 水平偏波アンテナ
KR101813227B1 (ko) 안테나 장치
Rotman et al. The sandwich wire antenna: A new type of microwave line source radiator
JP3569732B2 (ja) 円偏波アンテナ
KR20040100328A (ko) 도파관용 슬롯 안테나
Bagheri et al. Stable phase‐centre horn antenna using 3D printed dielectric rod for aperture efficiency improvement of space‐fed antennas
JP4108246B2 (ja) ループアンテナ
JP3360118B2 (ja) 水平偏波アンテナ
Zhao et al. Design of A CPW‐FED C‐Shaped Slot Array Antenna for Coal Mine/Tunnel Applications
JP2003152441A (ja) 平面形円偏波導波管スロットアンテナ及び平面形円偏波導波管アレーアンテナ並びに平面形導波管スロットアンテナ及び平面形導波管アレーアンテナ
Parvathi et al. A Novel Low‐profile Rectangular Dielectric Resonator Antenna with enhanced gain for 5G New Radio band applications
JP2001196850A (ja) 導波管スロットアンテナ
Adamiuk et al. Principle for the Realization of Dual‐Orthogonal Linearly Polarized Antennas for UWB Technique
Saffold Theory and Application of Dielectric Rod Antennas and Arrays
Chen et al. Design of an ultrabroadband and compact H‐plane sectoral ridged horn‐reflector array
Iigusa et al. A horizontally polarized slot-array antenna on a coaxial cylinder
JPH0555822A (ja) ビームチルト導波管アレーアンテナ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3806759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term