JP3805575B2 - 油圧回路装置 - Google Patents

油圧回路装置 Download PDF

Info

Publication number
JP3805575B2
JP3805575B2 JP25538899A JP25538899A JP3805575B2 JP 3805575 B2 JP3805575 B2 JP 3805575B2 JP 25538899 A JP25538899 A JP 25538899A JP 25538899 A JP25538899 A JP 25538899A JP 3805575 B2 JP3805575 B2 JP 3805575B2
Authority
JP
Japan
Prior art keywords
pressure
control
signal
valves
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25538899A
Other languages
English (en)
Other versions
JP2001082410A (ja
Inventor
勇作 野沢
良純 西村
欣也 高橋
光久 東ケ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP25538899A priority Critical patent/JP3805575B2/ja
Publication of JP2001082410A publication Critical patent/JP2001082410A/ja
Application granted granted Critical
Publication of JP3805575B2 publication Critical patent/JP3805575B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は2つの吐出ポートから同一流量の圧油を吐出する可変容量形のポンプ装置を備えた建設機械の油圧回路装置に係わり、特にミニシヨベル等の小型建設機械に用いて好適な2フローウェー形の油圧ポンプと呼ばれるポンプ装置を備えた油圧回路装置に関する。
【0002】
【従来の技術】
建設機械の代表例である油圧ショベルは、最低限、2個の走行モータと1個の旋回モータ及びブーム2個、アーム、バケットの各シリンダの合計7個の油圧アクチュエータを設ける必要がある。このような油圧ショベルには一般に2ポンプシステムと呼ばれる油圧駆動装置が使用されている。この油圧駆動装置は、複数の油圧アクチュエータの相互干渉を極力避けて運転できるようにするために方向制御弁を2つのグループに分け、それに対応して2つの油圧ポンプを接続したものである。図10に従来の2ポンプシステムの一例を示す。なお、図10は回路の概要を示すのが主目的であるので、一部の方向制御弁とアクチュエータは省略してある。
【0003】
図10において、101及び102はそれぞれ可変容量形の油圧ポンプであり、これら油圧ポンプ101,102にはそれぞれ方向制御弁群103及び104が接続されている。図10では、方向制御弁群103,104はそれぞれ2個の方向制御弁103−1,103−2及び104−1,104−2のみを有するものとして示している。方向制御弁103−1,103−2及び104−1,104−2は、中立位置で油圧ポンプ101,102をセンターバイパス通路110,111を介してタンク109に接続するオープンセンター形である。これら方向制御弁は油圧リモートコントロール弁からの制御信号圧により操作される。図10では、方向制御弁103−2,104−2のリモートコントロール弁105,106のみを示している。これらリモートコントロール弁105,106の制御信号圧のうち、方向制御弁群103側の最高圧はシャトル弁107a,107b,…により信号油路107に検出され、方向制御弁群104側の最高圧はシャトル弁108a,108b,…により信号油路108に検出され、それぞれ油圧ポンプ101の傾転制御器101−1及び油圧ポンプ102の傾転制御器102−1へ伝達され、検出信号圧に比例した油圧ポンプ101,102の傾転制御(容量制御)を行っている。これは一般的に油圧ポンプのポジティブ制御(ポジコン)と呼ばれている。
【0004】
油圧ポンプ101,102がポジティブ制御により容量制御を行う主な理由は、方向制御弁103−1,103−2及び104−1,104−2がオープンセンタ形であり、流量制御にブリードオフ制御を利用していることによる。即ち、方向制御弁103−1,103−2及び104−1,104−2はセンターバイパス通路110,111につながるセンターバイパス絞りを有し、このセンターバイパス絞りは方向制御弁が中立位置にあるときに最大の開口面積であり、方向制御弁がストロークするに従ってセンターバイパス絞りの開口面積は小さくなる。ブリードオフ制御とは、方向制御弁を中立位置からストロークしメータイン絞りの開口面積を増加させる間、油圧ポンプの吐出油をセンターバイパス絞りからタンク109にブリードさせつつセンターバイパス絞りの開口面積を小さくし、油圧ポンプの吐出圧を高めることで油圧ポンプの吐出油をメータイン絞りを通過させアクチュエータに供給する流量制御である。このブリードオフ制御で固定容量形の油圧ポンプを用いた場合は、方向制御弁のストロークが小さくアクチュエータへの制御流量が少ない場合は、センターバイパス絞りの開口面積が大きくタンク109へのブリード流量が多くなり、エネルギーの浪費となる。リモートコントロール弁の制御信号圧を用い油圧ポンプの容量制御をすることにより、油圧ポンプの吐出流量を必要とする流量に極力近付けることができ、そのような欠点を解消できる。
【0005】
一方、近年、都市土木で油圧ショベルの利用が増加するに伴い、上部旋回体が旋回しても車幅から旋回体がはみ出ない超旋回機あるいは後方小旋回機と称される小型ショベルあるいはミニショベルの需要が増加している。このような油圧ショベルを設計製造する場合にはエンジンと油圧ポンプの長手方向の寸法を極力小さくすることが望まれる(例えば、「小松テクニカルレポート」、1994 VOL 40 NO. 1、 第100頁参照)。
【0006】
また、2つの吐出ポートから同一流量の圧油を吐出する2ポンプ機能を有しかつ長手方向の寸法を極力短縮した油圧ポンプとして2フローウェー形ピストンポンプが知られている(例えば「実用油圧ポケットブック」、1995年版、日本油空圧工業会発行、第112頁参照)。この油圧ポンプは、1個の可変容量形ポンプ機構と1個の吸入ポートと2個の吐出ポートを持ち、1個の吸入ポートから圧油を吸い込み、2個の吐出ポートから同一流量の圧油を吐出するものであり、ポンプ寸法も1個のポンプと同等である。このように2フローウェー形の油圧ポンプは1個のポンプ構造及び寸法で2個のポンプ機能が得られるため、取り付けスペースに制約が多いミニシヨベルで好んで利用されている。
【0007】
2フローウェー形の油圧ポンプを用いて構成した従来の油圧回路装置の一例を図11に示す。図中、図10に示した部材と同等のものには同じ符号を付している。なお、図11も回路の概要を示すのが主目的であるので、一部の方向制御弁及びアクチュエータは省略してある。
【0008】
図11において、121は2フローウェー形の油圧ポンプであり、油圧ポンプ121は1つの可変容量機構122と1つの吸入ポート123と2つの吐出ポート124a,124bを有し、かつ吐出圧力と吐出流量の積(出力馬力)を一定に制御するための馬力制御ピストン部125を有している。油圧ポンプ121の2つの吐出ポート124a,124bはそれぞれ上記の方向制御弁群103及び104に接続されている。
【0009】
【発明が解決しようとする課題】
図11に示した油圧回路装置は、ポンプ装置として2フローウェー形の油圧ポンプ121を用いているため、図10に示した2ポンプシステムに比べポンプ装置の長手方向の寸法が短く、取り付けスペースに制約が多いミニシヨベルで好んで利用されている。しかし、2フローウェー形の油圧ポンプ121の場合、容量制御は馬力制御だけであり、リモートコントロール弁の制御信号圧に対応した容量制御は行っていない。従って、図11の油圧回路装置では、図10に示した2ポンプシステムで固定容量形の油圧ポンプを用いた場合と同様、アクチュエータへの制御流量が少ないときはタンク109へのブリード流量が多くなり、エネルギーの浪費となる。
【0010】
このような問題を解決する方法として、図11の油圧回路装置の油圧ポンプ121の容量制御に図10のシステムと同様のポジティブ制御を採用し、リモートコントロール弁の制御信号圧に応じてポンプ容量を制御することが考えられる。しかし、この場合は次のような問題を生じる。
【0011】
図11の油圧ポンプ121の容量制御にポジティブ制御を採用する場合、図10に示す信号油路107,108にシャトル弁を追加設置し、油圧ポンプ121に新たにポジティブ制御用の傾転制御部を設け、シャトル弁で選択した信号油路107,108の高い方の圧力を油圧ポンプ121のポジティブ制御用の傾転制御部に誘導することになる。
【0012】
しかし、このように油圧ポンプ121の容量制御を行った場合は、油圧ポンプ121は1個の可変容量機構122しか持たないため、2つの吐出ポート124a,124bからは方向制御弁群103,104の操作状況に係わらず同一の流量が吐出される。
【0013】
また、オープンセンター形の方向制御弁103−1,103−2及び104−1,104−2は、上記のように中立位置からストロークするに従って開口面積が小さくなるセンターバイパス絞りを有し、図11のシステムの場合、そのセンターバイパス絞りの中立位置における最大の開口面積は、方向制御弁の非操作時にその中立位置で適切な圧力(スタンバイ圧力)が得られるよう設定される。しかし、油圧ポンプ121をポジティブ制御で容量制御する場合は、ポジティブ制御される油圧ポンプの吐出流量は方向制御弁が中立位置にあるとき最少で、方向制御弁がストロークするに従って増大するため、方向制御弁103−1,103−2及び104−1,104−2のセンターバイパス絞りは、方向制御弁の非操作時で油圧ポンプ121が最少の吐出流量にあるときに、その最少の吐出流量で適切な圧力(スタンバイ圧力)が得られるよう、中立位置におけるセンターバイパス絞りの最大の開口面積が設定されることになる。
【0014】
ここで、上記のように図11の油圧ポンプ121に図10のポジティブ制御を採用したシステムで、方向制御群104のみが操作され、方向制御弁群103は操作されず、方向制御弁群104の信号油路108(図10参照)からの圧力が、最大吐出量を要求する信号として油圧ポンプ121の傾転制御部に誘導されている場合を想定する。この場合、方向制御弁群103側は操作されていないにも係わらず、油圧ポンプ121の吐出ポート124aから最大の流量が吐出され、この最大の吐出流量が、油圧ポンプ121の最少の吐出流量で適切な圧力(スタンバイ圧力)が得られるよう設定された中立位置にある方向制御弁群103の方向制御弁103−1,103−2のセンターバイパス絞りに供給される。このため、方向制御弁103−1,103−2が中立位置にあるにも係わらず吐出ポート124aの吐出圧力はメインのリリーフ弁(図示せず)が作動するような高圧となり、方向制御弁103−1,103−2を微操作しても微少流量制御が難しく、ファインコントロールが困難となる。
【0015】
このように図11の油圧回路装置に図10のポンプ制御システムを適用しようとすると、制御されるポンプ吐出流量とセンターバイパス絞りの開口面積の間にずれが生じ、ファインコントロール性が悪化する。
【0016】
本発明の目的は、2つの吐出ポートから同一流量の圧油を吐出する可変容量形のポンプ装置の容量制御にポジティブ制御を採用し、かつファインコントロールが可能となる油圧回路装置を提供することである。
【0017】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明は、2つの吐出ポートを有し、この2つの吐出ポートから同一流量の圧油を吐出する可変容量形のポンプ装置と、このポンプ装置からの圧油により駆動される複数のアクチュエータと、前記ポンプ装置の2つの吐出ポートにそれぞれ接続された第1及び第2圧油供給油路と、この第1及び第2圧油供給油路にそれぞれ接続され、前記複数のアクチュエータに供給される圧油の流れを制御するオープンセンター形の複数の方向制御弁をそれぞれ有する第1及び第2方向制御弁群とを備える油圧回路装置において、前記第1方向制御弁群に含まれる方向制御弁の操作信号により第1制御信号を生成する第1信号生成手段と、前記第2方向制御弁群に含まれる方向制御弁の操作信号により第2制御信号を生成する第2信号生成手段と、前記第1及び第2方向制御弁群に含まれる全ての方向制御弁の操作信号により第3制御信号を生成する第3信号生成手段と、前記第3制御信号に応じて前記ポンプ装置の容量を制御するポンプ制御手段と、前記第1及び第2圧油供給油路からそれぞれ分岐しタンクに接続される第1及び第2分岐油路と、この第1及び第2分岐油路にそれぞれ設けられ、前記第3制御信号が前記第1制御信号と第2制御信号のうちの自身が係わる制御信号より大きいとき、両制御信号との差に応じて動作して、前記第1及び第2圧油供給油路のうち自身が係わる圧油供給油路の余剰流量をタンクに還流する第1及び第2可変絞り弁とを備えるものとする。
【0018】
このように第1及び第2分岐油路と第1及び第2可変絞り弁とを設けることにより、第1及び第2方向制御弁群の片側のみが操作され、ポンプ制御手段による容量制御で油圧ポンプの2つの吐出ポートから同一流量の圧油が吐出されていても、第1及び第2可変絞り弁のうち方向制御弁群が操作されていない側の可変絞り弁が第3制御信号と自身に係わる制御信号との差に応じて動作して余剰流量をタンクに還流することとなるため、方向制御弁群が操作されていない側の吐出ポートの吐出圧力が適正化され、ファインコントロールが可能となる。
【0019】
(2)上記(1)において、好ましくは、前記第3制御信号の最大値を規制する信号制限手段を更に備え、前記第1及び第2可変絞り弁は、前記信号制限手段の出力信号と前記自身が係わる制御信号との差に応じて動作する。
【0020】
これにより第3制御信号となる操作信号がポンプ装置の吐出流量を最大とする値以上に大きく出力された場合でも、それに合わせて第3制御信号の最大値を規制し第1及び第2可変絞り弁の開口面積を制限することで、タンクに還流する流量が多くなり過ぎることが防止され、適切なスタンバイ圧力を確保できる。
【0021】
(3)上記(2)において、好ましくは、前記信号制限手段は減圧弁である。
【0022】
これにより制御信号が油圧信号である場合に第3制御信号の最大値を規制できる。
【0023】
(4)また、上記(1)において、好ましくは、前記第1及び第2可変絞り弁は、前記自身に係わる制御信号が中立から増大するとき、ある値に達するまでの間、開口面積を閉じる側に一定の初期力を付与する第1及び第2初期力付与手段をそれぞれ有する。
【0024】
これにより第1及び第2方向制御弁群の片側のみが操作され、ポンプ制御手段による容量制御で油圧ポンプの2つの吐出ポートから同一流量の圧油が吐出されていても、方向制御弁群が操作されていない側の制御信号が上記ある値に達するまでの間は上記一定の初期力が与えられるため、アクチュエータに供給可能な流量を最少に保つよう流量特性を設定でき、より良好なファインコントロールが可能となる。
【0025】
(5)上記(4)において、好ましくは、前記第1及び第2初期力付与手段は、前記自身に係わる制御信号がある値に達すると、前記第1及び第2可変絞り弁との当接を解除するピストンとばねの組み合わせである。
【0026】
これにより制御信号が油圧信号である場合に上記初期力を付与できる。
【0027】
(6)更に、上記(1)において、好ましくは、前記第1及び第2分岐油路に前記第1及び第2可変絞り弁と直列にそれぞれ設けられ、第1及び第2可変絞り弁の前後差圧を一定に保つ第1及び第2圧力補償弁を更に備える。
【0028】
これによりポンプ吐出圧が変動しても開口面積に応じた流量をタンクに還流できる。
【0029】
(7)上記(6)において、好ましくは、前記第1及び第2圧力補償弁及び前記第1及び第2可変絞り弁はそれぞれスプールを備えたスプール弁であり、前記第1及び第2圧力補償弁のスプールを前記第1及び第2可変絞り弁のスプールに内蔵させたものとする。
【0030】
これにより弁構造をコンパクトにできる。
【0031】
(8)また、上記(1)において、好ましくは、前記ポンプ装置は、1つの容量制御機構により2つの吐出ポートから同一流量を吐出する2フローウェー形の油圧ポンプである。
【0032】
これにより1個のポンプ構造及び寸法で2個のポンプ機能が得られ、取り付けスペースに制約が多いミニシヨベルに好適な回路構造となる。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
【0034】
まず、図1〜図6により本発明の第1の実施形態を説明する。
【0035】
図1は本発明の第1の実施形態による油圧駆動装置を示している。本実施形態の油圧駆動装置は油圧ショベル、例えばミニショベルに搭載されるものであり、ミニショベルは、最低限、2個の走行モータと1個の旋回モータ及びブーム2個、アーム、バケットの各シリンダの合計7個の油圧アクチュエータを必要とするが、図1は油圧駆動装置の回路の概要を示すのが主目的であるので、一部の方向制御弁とアクチュエータは省略してある。
【0036】
図1において、11は2フローウェー形の油圧ポンプであり、油圧ポンプ11は1つの可変容量機構、例えば傾転制御機構12と1つの吸入ポート13と2つの吐出ポート14a,14bを有している。また、油圧ポンプ11は、吐出圧力と吐出流量の積(出力馬力)を一定にするよう可変容量機構12を制御する馬力制御ピストン部15と、ポジティブ制御信号圧に応じた吐出流量となるよう可変容量機構12を制御するポジティブ制御ピストン部16とを有している。油圧ポンプ11の一方の吐出ポート14aは圧油供給油路30を介して方向制御弁群3に接続され、他方の吐出ポート14bは圧油供給油路32を介して方向制御弁群4に接続されている。
【0037】
方向制御弁群3,4は、それぞれ、方向制御弁3−1,3−2及び4−1,4−2を有し、方向制御弁3−1,3−2及び4−1,4−2は、中立位置で油圧ポンプ11の各吐出ポート14a,14bをセンターバイパス通路17,18を介してタンク9に接続するオープンセンター形である。これら方向制御弁は油圧リモートコントロール弁からの制御信号圧により操作される。図1では、方向制御弁3−2,4−2のリモートコントロール弁5,6のみを示している。これらリモートコントロール弁5,6,…の制御信号圧のうち、方向制御弁群3側の最高圧(以下、方向制御弁群3側のリモコン最高圧という)はシャトル弁7a,7b,7cによりトーナメント方式で信号油路7に検出され、方向制御弁群4側の最高圧(以下、方向制御弁群4側のリモコン最高圧という)はシャトル弁8a,8b,8cによりトーナメント方式で信号油路8に検出され、更に信号油路7と信号油路8の高圧側(以下、全方向制御弁のリモコン最高圧という)がシャトル弁19により信号油路20に検出され、信号油路20の圧力がポジティブ制御信号圧として油圧ポンプ11のポジティブ制御ピストン部16に伝達される。
【0038】
以上の構成は、図11に示した従来の油圧回路装置の2フローウェー形の油圧ポンプの容量制御にポジティブ制御を採用したシステムに相当するものである。本発明は、このようなシステムにおいて、油圧ポンプ11が単一の可変容量機構12で容量制御されることにより生じる前述した弊害を解消するため、2つの方向制御弁群3,4のそれぞれの圧油供給油路30,32に次のような回路を付加している。
【0039】
圧油供給油路30からは下流端がタンク9に接続された油路31が分岐している。分岐油路31には、信号圧の差圧(後述)に比例した絞り開口となるよう作動し、ブリードオフ制御を行う差圧比例絞り弁21−1が設置されている。また、分岐油路31において差圧比例絞り弁21−1の上流側には圧力補償弁22−1が配置されている。圧力補償弁22−1には差圧比例絞り弁21−1の絞りの前後差圧が油路27−1,28−1を介して伝達され、差圧比例絞り弁21−1の絞りの前後差圧をばね22aで定まる一定の値に保つ働きをする。これにより、圧油供給油路30の圧力(油圧ポンプ1の吐出圧)は負荷圧に応じて大幅に変化するが、この圧力変化が補償され、差圧比例絞り弁21−1の絞り開口に比例したブリード流量が得られる。
【0040】
差圧比例絞り弁21−1は絞り開口を開く側に受圧部21aを有し、絞り開口を閉じる側に受圧部21bを有している。受圧部21aは信号油路20にこれから分岐する信号油路24−1及びこの信号油路24−1に設けられた減圧弁23−1を介して接続され、信号油路20の圧力(全方向制御弁のリモコン最高圧)又はこの圧力を減圧弁23−1で減圧した圧力が信号圧として伝達され、受圧部21bは信号油路7にこれから分岐する信号油路25を介して接続され、信号油路7の圧力(方向制御弁群3側のリモコン最高圧)が信号圧として伝達される。ポジティブ制御ピストン部16は全方向制御弁のリモコン最高圧がある値、例えば17barの第2リモコン圧Pbに達すると油圧ポンプ11の各吐出ポート14a,14bの吐出流量を最大吐出流量に制御する流量制御特性を有している(後述)。減圧弁23−1はこの流量制御特性に合わせて受圧部21aに伝達される信号圧の高圧側を制限補正するものであり、上記17barの第2リモコン圧Pb相当の力をばね23aで設定し、信号油路20の圧力(全方向制御弁のリモコン最高圧)が当該第2リモコン圧Pbを超えるとそれ以上の信号圧の上昇を制限するよう作動する。
【0041】
また、差圧比例絞り弁21−1は、絞り開口を閉じる側にピストン50−1とばね51−1を有している。ポジティブ制御ピストン部16は全方向制御弁のリモコン最高圧がある値、例えば7barの第1リモコン圧Paに達するまでは油圧ポンプ11の各吐出ポート14a,14bの吐出流量を最小吐出流量に保持する流量制御特性を有している(後述)。ピストン50−1とばね51−1はこの流量制御特性に合わせて差圧比例絞り弁21−1の絞り開口の閉じ方向の初期力を設定するものであり、上記7barの第1リモコン圧Pa相当の力をばね51−1で設定し、受圧部21bに伝達される信号圧(方向制御弁群3側のリモコン最高圧)が当該第1リモコン圧Paよりも低いときは、ピストン50−1とばね51−1が受圧部21bの油圧力を無効にしつつ当該第1リモコン圧Paに相当する初期力を絞り開口の閉じ方向に与え、信号圧がその値よりも高くなると、ピストン50−1とばね51−1の働きを解除する。
【0042】
圧油供給油路32側も同様であり、同等の部品には同じ参照番号の添え字1に代え添え字2を付している。圧油供給油路32から油路33が分岐し、この分岐油路33に差圧比例絞り弁21−2及び圧力補償弁22−2が設けられている。差圧比例絞り弁21−2の絞り開口を閉じる側の受圧部21bは信号油路8にこれから分岐する信号油路26を介して接続され、信号油路8の圧力(方向制御弁群4側のリモコン最高圧)が信号圧として伝達される。それ以外の構成は圧油供給油路30側と同様である。
【0043】
なお、図1の実施形態では信号油路20から分岐した2つの信号油路24−1,24−2を分岐し、それぞれに減圧弁23−1,23−2を配置したが、この分岐油路及び減圧弁は1つに纏めることができる。この場合は、1つの減圧弁の出力側が分岐し、左右の差圧比例絞り弁21−1,21−2の受圧部21aに接続される。
【0044】
図2にリモートコントロール弁5,6の出力特性とポジティブ制御ピストン部16のポンプ流量制御特性を示す。
【0045】
図2の第4象現はリモートコントロール弁5,6の出力特性を示し、縦軸はリモートコントロール弁5,6の操作ストロークS、横軸はリモートコントロール弁5,6の出力圧(以下、リモコン圧という)Pi1,Pi2(以下、Piで代表する)である。操作ストロークSがフルストロークに対し25%までは不感帯領域であり、Pi=0である。操作ストロークSが25%になるとPi=7bar(以下、適宜第1リモコン圧Paという)となり、操作ストロークSが25%から85%までの間は操作ストロークSの増大に応じてリモコン圧Piは25barまで上昇し、操作ストロークSが85%になるとPi=40barとなり、以後Pi=40barで一定となる。
【0046】
図2の第1象現はポジティブ制御ピストン部16のポンプ流量制御特性を示し、横軸はリモコン圧Piが信号油路20にリモコン最高圧Pimaxとして検出された場合の当該リモコン最高圧(ポジティブ制御信号圧)Pimaxであり、縦軸は油圧ポンプ11の各吐出ポート14a,14bの吐出流量Qsである。リモコン最高圧Pimaxが上記第1モコン圧Paの7barに達するまでは吐出流量Qsは最少吐出流量の30リットル/minで一定であり(第4象現の区間Iに対応)、リモコン最高圧Pimaxが第1リモコン圧Paの7barから17bar(以下、適宜第2リモコン圧Pbという)までの間はリモコン最高圧Pimaxの上昇に応じてポンプ吐出流量Qsが増大し、当該第2リモコン圧Pbの17barになるとポンプ吐出流量Qsが最大吐出流量の80リットル/minに達し(第4象現の区間IIに対応)、以後Qs=80リットル/minで一定である(第4象現の区間IIIに対応)。
【0047】
図3に差圧比例絞り弁21−1,21−2の動作特性を示す。差圧比例絞り弁21−1側では、図3の横軸は信号油路24−1に検出されるリモコン最高圧Pimaxが方向制御弁群4側のリモコン最高圧(以下、上記Pi2が検出されるとしPi2で代用する)である場合のリモコン最高圧Pimaxであり、縦軸は差圧比例絞り弁21−1の絞り開口面積ATCであり、更に方向制御弁群4側のリモコン最高圧Pi2に対する方向制御弁群3側のリモコン最高圧(以下、上記Pi1が検出されるとしPi1で代用する)の差圧ΔPi(=Pi2−Pi1)を第3のパラメータにとっている。一方、差圧比例絞り弁21−2側では、図3の横軸は信号油路24−2に検出されるリモコン最高圧Pimaxが方向制御弁群3側のリモコン最高圧Pi1である場合のリモコン最高圧Pimaxであり、縦軸は差圧比例絞り弁21−1の絞り開口面積ATCであり、更に方向制御弁群3側のリモコン最高圧Pi1に対する方向制御弁群4側のリモコン最高圧Pi2の差圧ΔPi(=Pi1−Pi2)を第3のパラメータにとっている。
【0048】
差圧比例絞り弁21−1側では、Pi2>Pi1のとき、つまりPimax=Pi2のとき、Pimax≦7bar(第1リモコン圧Pa)の範囲(図2の第4象現の区間I)では、ピストン50−1又は50−2及びばね51−1又は51−2の初期力の作用で差圧比例絞り弁21−17の絞り開口は全閉状態(ATC=0)に保たれる。
【0049】
リモコン最高圧Pimaxが上昇し、7bar(第1リモコン圧Pa)<Pimax<17bar(第2リモコン圧Pb)の範囲(図2の第4象現の区間II)では、Pimaxの上昇に応じて開口面積ATCが増大し、Pimax=17bar(第2リモコン圧Pb)でそのときの差圧ΔPiに応じた最大開口面積に達する。
【0050】
リモコン最高圧Pimaxが17bar(第2リモコン圧Pb)に達した後は(図2の第4象現の区間III)、減圧弁23−1又は23−2の減圧作用で17bar時の最大開口面積に保たれ一定となる。
【0051】
また、自身に係わるリモコン最高圧(方向制御弁群3側のリモコン最高圧)Pi1が第1リモコン圧Paに達するまでの間の差圧ΔPiでは、つまりΔPi≧Pi2−Paでは、ピストン50−1又は50−2及びばね51−1又は51−2の初期力の作用でそのときのPimaxに応じた一定の最大開口面積となり、自身に係わるリモコン最高圧Pi1が更に上昇し、差圧ΔPiが小さくなるに従って開口面積ATCは減少し、ΔPi=0でATC=0、つまり差圧比例絞り弁21−1の絞り開口は全閉状態となる。
【0052】
差圧比例絞り弁21−2側も同様である。
【0053】
差圧比例絞り弁21−1と圧力補償弁22−1の具体的な弁構造の一例を図4を用いて説明する。この例は、圧力補償弁22−1を差圧比例絞り弁21−1に内蔵させ一体化構造とした場合のものである。差圧比例絞り弁21−2と圧力補償弁22−2側も同様である。
【0054】
図4において、差圧比例絞り弁21−1はスプール弁61を有し、圧力補償弁22−1はスプール弁62を有し、スプール弁61はケーシング63のスプール孔64に摺動自在に内挿され、スプール弁62はスプール弁61に摺動自在に内挿されている。スプール孔64の周囲には環状のブリードポート65、タンクポート66,67、信号ポート68,69が設けられ、ブリードポート65は分岐油路31に接続され、タンクポート66,67はタンク9に接続され、信号ポート68は信号油路25に接続され、信号ポート69は減圧弁23−1の出力側に接続されている。
【0055】
差圧比例絞り弁21−1のスプール弁61はブリードポート65に連通する入口開口70とタンクポート66に連通可能な絞り開口71を有し、絞り開口71とタンクポート66との間で差圧比例絞り弁21−1の可変絞りが形成される。スプール弁61の両端には受圧室21a,21bが位置し、上記の如く受圧室21aには全方向制御弁のリモコン最高圧Pimaxが導かれ、受圧室21bには自身に係わる方向制御弁群3側のリモコン最高圧Pi1が導かれている。受圧室21b内には弁ばね72が挿入され、スプール弁61は受圧室21a,21bに導かれる圧力の差圧ΔPi=Pimax−Pi1と弁ばね72の付勢力とのバランスで変位し、この変位に伴いスプール弁61の絞り開口71のタンクポート66に対する開口量を変化させる。
【0056】
圧力補償弁22−1のスプール弁62は、スプール弁61の入口開口70に連通可能な絞り開口73を有し、絞り開口73と入口開口70との間で圧力補償弁22−1の可変絞りが構成される。スプール弁61内においてスプール弁62の図示右側にはキャップ74で閉塞されるばね室75が設けられており、ばね室75内にスプール弁62を絞り開口73の入口開口70に対する開口量を増やす側(開け方向)に付勢する弁ばね76が挿入されている。また、絞り開口73の出側はスプール弁62の内腔77を介して絞り開口71に連通し、絞り開口71の入口圧がスプール弁62の絞り孔73の閉じ方向に働くと共に、ばね室75は孔78を介してタンクポート67に連通し、絞り開口71の出口圧と同じタンク9の圧力がスプール弁62の絞り孔開口3の開け方向に働く構造となっており、これによりスプール弁62は絞り開口71の前後差圧と弁ばね75の付勢力とのバランスで変位し、この変位に伴いスプール弁52の絞り開口73の開口量を変化させ、圧力補償機能を発揮する。
【0057】
差圧比例絞り弁21−1のスプール弁61の図示左側には前述したピストン50−1とばね51−1が配置され、ピストン50−1の反ばね51−1側の端部は受圧室21bに面し、この端部にスプール弁61に係合するロッド80が設けられている。ばね51−1は上記のようにポジティブ制御ピストン部16の流量制御特性に合わせて全方向制御弁のリモコン最高圧の7barの第1リモコン圧Paに対応するよう設定されており、受圧部21bに伝達される信号圧(方向制御弁群3側のリモコン最高圧)が第1リモコン圧Paよりも低いときは、ロッド80がスプール弁61に当接し、受圧部21bによる油圧力をキャンセルしつつばね51−1の付勢力を初期力として絞り開口71の閉じ方向に与え、信号圧が第1リモコン圧Paよりも高くなると、ロッド80をスプール弁61から離し、受圧部21bの油圧力のみをスプール弁61に作用させることでピストン50−1とばね51−1の働きを解除する。
【0058】
本実施形態の動作原理を図5〜図7により説明する。
【0059】
図5は図11に示す従来の2フローウェー形の油圧ポンプを用いた油圧回路装置のポンプ容量制御に単純にポジティブ制御を採用した場合の油圧回路図である。図中、図1及び図11に示した部分と同等のものには同じ符号を付し、説明を省略する。この図5に示す油圧回路装置では、油圧ポンプ11は2個の独立した油圧ポンプの機能は有するが、吐出ポート14a,14bの吐出流量を個別に制御できず、吐出ポート14a,14bからは方向制御弁群103,104の操作状況に係わらず同一の流量が吐出されるため、次のような問題を生じる。
【0060】
図6は図5に示した油圧回路装置でのブリードオフ制御の様子を示すものである。図6の横軸はリモートコントロール弁105又は106の出力圧Pi(Pi1又はPi2)であり、縦軸は方向制御弁群3又は4のセンターバイパス絞り、メータイン絞り、メータアウト絞りの開口面積AT,AA,ABと、油圧ポンプ11の吐出流量Qs及びアクチュエータに供給される負荷流量Qaである。QsとQaの差(図7の斜線Qb部分)がセンターバイパス絞り及びセンターバイパス通路110又は111を介してタンク109に還流されるブリード流量になる。
【0061】
図6に示す状態を明らかにするためのモデルを図7に示す。図7はPL=100barの負荷を駆動する場合をモデル化したものであり、AT,AA,ABは図6に示したセンターバイパス絞り、メータイン絞り、メータアウト絞りの開口面積である。油圧ポンプの吐出圧Psが負荷圧PL以下の場合は油圧ポンプの吐出油は全て開口面積ATのセンターバイパス絞りを通り、タンクヘ還流される。PTはセンターバイパス絞りの出側圧力、即ちタンク圧である。
【0062】
図6では、図2で述べたのと同様、リモコン圧Pi=7bar(第1リモコン圧Pa)までは油圧ポンプの吐出流量をQs=30リットル/minの最少吐出流量とし、Pi=17bar(第2リモコン圧Pb)でQs=80リットル/minの最大吐出流量に制御する場合が示されている。この場合、油圧ポンプの吐出圧Psが負荷圧PL以下でタンクに還流されるセンターバイパスのブリード流量はQb=30リットル/minである。
【0063】
図6の特性でPi=7barから油圧ポンプの吐出流量を増加させるのはこのリモコン圧付近から負荷側へ流量を流したい意図があるためである。このためには、Pi=7barの時にセンターバイパス絞りの開口面積ATは次の関係を満足する必要がある。
【0064】
Qs=c・AT・√(2g/γ)・√(Ps−PT)
から
AT=Qs/{c・√(2g/γ)・√(Ps−PT)}
を求めと
AT=30×(1000/60)/{0.65×√(2×980/0.87×10-3)・√(100−0)}
=0.0513(cm2
となる(図6のAT0点)。つまり、この面積までセンターバイパス絞りの開口面積ATを絞ると油圧ポンプの吐出圧をPs=100barまで高められ、圧油をアクチュエータに供給できる。
【0065】
リモコン圧Piが7barから更に大きくなるに従いセンターバイパス絞りの開口面積ATは図示の如く徐々に絞られ、センターバイパスのブリード流量はQb=30リットル/minから徐々に減少し、図6に示す負荷流量Qaが得られる。
【0066】
ところで、図5の油圧回路装置で左側の方向制御群104の信号油路8から出されたリモコン最高圧Pi2が信号油路20に最大吐出流量を要求するリモコン最高圧Pimaxとして検出され、右側の方向制御弁群103の信号油路7からは何等の信号圧が出されていない場合を想定してみる。図10に示した2ポンプシステムの場合は左側の油圧ポンプは最大、右側の油圧ポンプは最小の傾転を維持することで対処できる。しかし、図5の油圧回路装置では油圧ポンプ11の右側の吐出ポート14aの吐出流量も最大のQs=80リットル/minとなる。図6中、このポンプ吐出流量を点線Qsxで示す。方向制御弁103−1,103−2のセンターバイパス絞りの開口面積ATは、上記のようにPi=7barでポンプ吐出流量がQs=30リットル/minの時Ps=100barのポンプ吐出圧が得られるよう、AT=0.0513(cm2)に設定されている。しかし、ポンプ吐出流量がQs=80リットル/minに増大すると、図6に斜線Qcで示す部分が余剰流量となり、吐出ポート14a側の吐出圧は相当高圧となる。例えば、Pi=7barの点における油圧ポンプ11の吐出ポート14aの吐出圧は先の計算式を参照すると、次のようになる。
【0067】
Ps−PT={80×(1000/60)/0.65×1500×0.0513}2=710.6(bar)
この710.6barの圧力では、当然リリーフ弁(図示せず)が動作する。
【0068】
このように図11の油圧回路装置に図10のポンプ制御システムを適用しようとすると、制御されるポンプ吐出流量とセンターバイパス絞りの開口面積の間にずれが生じ、Pi=7barでのポンプ吐出圧、つまりスタンバイ圧力が高圧となるため、ファインコントロール性が悪化する。
【0069】
ポンプ吐出流量が80リットル/minで100barの吐出圧力に押さえるには、センターバイパス絞りの開口面積ATは、
0.0513×(80/30)=0.1368(cm2
必要になる。図6中、AT1点がその開口面積である。Qs=80リットル/minの最大流量が流れ、Pi=7barで0.1368(cm2)の開口面積ATを得る場合のセンターバイパス絞りの開口面積特性は点線ATxのようになる。つまり、図6中、斜線Axで示すATの開口面積とATxの開口面積との差が、Pi=7barで100barの吐出圧力を得るための必要追加開口面積となる。
【0070】
本実施形態の差圧比例絞り弁21−1,21−2はその必要追加開口面積Axを提供するものである。以下、本実施形態の動作を図2及び図3を用いて説明する。
【0071】
左側の方向制御弁群4のリモートコントロール弁6の出力圧Pi2が図2中の「イ」の点にあり、右側の方向制御弁群3のリモートコントロール弁5の操作ストロークSが図2中の第4象現の区間Iにあり、リモコン圧Pi1が図2中の「ロ」の点のリモコン圧、つまり第1リモコン圧Pa以下であるとする。この場合、方向制御弁群3側の吐出ポート14aからの吐出流量の余剰流量は「イ」の制御された実際の吐出流量Qsから所望最小吐出流量Qst(=30リットル/min)を差し引いた値となる。この状態はリモコン圧Pi1が「ロ」の点になるまで続く。
【0072】
リモコン圧Pi2が図2中の「イ」の点にあるとき、差圧比例絞り弁21−1はそのリモコン圧Pi2に対応して図3の点線「イ」で示すように差圧ΔPiに応じて開口面積ATCを変化させる。このとき、リモコン圧Pi1が図2の「ロ」の点までのPi1≧Pa(7bar)ではΔPi=Pi2−Paであるので、これに対応して差圧比例絞り弁21−1の開口面積ATCはピストン50−1及びバネ51−1の初期力の作用で”a1”点とに保たれるよう制御される。この”a1”点の開口面積ATCはリモコン圧Pi2が「イ」の点にある場合の必要追加開口面積であり、Pi1=7barで100barの吐出圧力となるよう余剰流量がタンクに還流される。
【0073】
右側の方向制御弁群3に対するリモートコントロール弁5の操作が始まって区間IIに入り、リモコン圧Pi1が7bar以上になると、図2の「イ」の制御された吐出流量Qsから例えば「ハ」の所望吐出流量を差し引いた値が吐出ポート14a側の余剰流量になる。
【0074】
このようにリモコン圧Pi1が上昇すると、差圧ΔPiが減少するため、差圧比例絞り弁21−1は図3の点線「イ」上で”a1”,”a2”,…,”an-1”のように開口面積ATCを減らし、図2の「ハ」の所望吐出流量を実現するよう余剰流量をタンクに還流する。
【0075】
リモコン圧Pi1がリモコン圧Pi2に等しくなると吐出ポート14a側の実際の吐出流量Qsは所望吐出流量に一致し、ΔPi=0となるため、差圧比例絞り弁21−1は図3の”an”点の開口面積(=0)となり、全閉する。
【0076】
リモコン圧Pi2が図2中の「ニ」の点、即ち17barの第2リモコン圧Pbにあるときは、差圧比例絞り弁21−1はそのリモコン圧Pi2に対応して図3の点線「ニ」で示すように差圧ΔPiに応じて開口面積ATCを変化させ、リモコン圧Pi1の上昇による差圧ΔPiの減少に応じて”b1”,”b2”,…,”bn-1”,”bn”のように開口面積を減らし、余剰流量をタンクに還流する。なお、この点線「ニ」で示した開口面積ATCは図6の斜線Axで示した必要追加開口面積に対応するものである。
【0077】
図2の区間IIIの操作ストロークSは、油圧ポンプ11の吐出流量を制御するのに用いる信号圧以上のリモコン圧が立つ場合であり、この区間の信号圧はリモコン圧Pi2(Pimax)を減圧弁23−1が図2の「ニ」点の信号圧(17bar)に減圧することで区間IIの延長として制御される。図3の点線「ニ」の図示右側がこの制御部分である。これによりポンプ吐出流量が最大に達した後は、差圧比例絞り弁21−1の開口面積は増加せず、適切なスタンバイ圧力を維持できる。
【0078】
以上のように構成した本実施形態によれば、次の効果が得られる。
【0079】
(1)2つの吐出ポートから同一流量の圧油を吐出する可変容量形のポンプ装置(2フローウェー形の油圧ポンプ11)の容量制御にポジティブ制御を採用するため、全方向制御弁の中立時等、制御流量が少ないことが望ましい時のタンク9へのブリード量が少なくなり、エネルギー消費を低減できる。
【0080】
(2)方向制御弁群3,4の片側のみが操作されている場合でも、方向制御弁群が操作されていない側の差圧比例絞り弁21−1又は21−2より余剰流量がタンク9に還流されるため、吐出ポート14a又は14bの吐出圧力が適正化され、ファインコントロールが可能となる。
【0081】
(3)差圧比例絞り弁21−1,21−2の受圧部21aに減圧弁23−1又は23−2を介して信号油路20の全方向制御弁のリモコン最高圧を導くため、当該リモコン最高圧が上記18barの第2リモコン圧Pb以上になったとき、差圧比例絞り弁21−1又は21−2の開口面積の増加は制限されることとなり、ポンプ吐出流量が最大に達した後にタンクに還流する流量が増加することが防止され、適切なスタンバイ圧力を確保できる。
【0082】
(4)差圧比例絞り弁21−1,21−2の絞り開口を閉じる側にピストン50−1とばね51−1を設け、一定の初期力を付与するようにしたので、自身に係わるリモコン圧が上記第1リモコン圧Paに達するまでの間は当該一定の初期力が与えられるため、その間、アクチュエータに供給可能な流量を最少に保つよう流量特性を設定でき、より良好なファインコントロールが可能となる。
【0083】
(5)分岐油路31,32に差圧比例絞り弁21−1,21−2と直列に圧力補償弁22−1,22−2をそれぞれ設けたので、ポンプ吐出圧が変動しても差圧比例絞り弁21−1,21−2の開口面積に応じた流量をタンクに還流でき、正確なブリードオフ制御が行える。
【0084】
(6)差圧比例絞り弁21−1,21−2及び圧力補償弁22−1,22−2をそれぞれスプール弁61,62とし、圧力補償弁22−1,22−2のスプール弁62を差圧比例絞り弁21−1,21−2のスプール弁61に内蔵させたので、弁構造をコンパクトにできる。
【0085】
(7)2つの吐出ポートから同一流量の圧油を吐出する可変容量形のポンプ装置として2フローウェー形の油圧ポンプ11を用いたので、1個のポンプ構造及び寸法で2個のポンプ機能が得られ、取り付けスペースに制約が多いミニシヨベルに好適な回路構造となる。
【0086】
本発明の他の実施形態を図8及び図9により説明する。図中、図1に示した部材と同等のものには同じ符号を付している。
【0087】
図8は図1に示す第1の実施形態において減圧弁23−1,23−2及びピストン50−1,50−2とばね51−1,51−2を省略したものである。本実施形態によっても、上記(1),(2),(5)〜(7)の効果が得られる。また、本実施形態によれば、第1の実施形態よりも差圧比例絞り弁21−1,21−2回りの弁構造が簡素化する効果がある。
【0088】
図9は図1に示す第1の実施形態において更に圧力補償弁22−1,22−2も省略したものである。本実施形態によっても、上記(1),(2),(7)の効果が得られる。また、本実施形態によれば、図8に示した実施形態よりも差圧比例絞り弁21−1,21−2回りの弁構造が更に簡素化する効果がある。
【0089】
なお、以上の実施形態では、2つの吐出ポートから同一流量の圧油を吐出する可変容量形のポンプ装置として1個の可変容量形ポンプ機構を有する2フローウェー形の油圧ポンプを用いたが、別々の可変容量形ポンプ機構を有する2個のポンプでその可変容量形ポンプ機構を同時傾転制御するものを用いてもよく、この場合でも第1の実施形態で述べた(1)〜(6)の効果が得られる。
【0090】
また、上記実施形態では、差圧比例絞り弁21−1,21−2の開口面積特性を差圧ΔPiに応じて連続的に変化するものとしたが、非連続的、例えばステップ状に変化するものとしてもある程度のブリードオフ制御は行え、本発明の基本的な効果は得られる。
【0091】
更に、上記実施形態では、差圧比例絞り弁21−1,21−2をリモコン圧を直接用い油圧的に制御する構成としたが、差圧比例絞り弁を電磁駆動式とし、リモコン圧を電気的に検出してコントローラで制御量を演算し、差圧比例絞り弁に電気信号を出力して制御するようにしても良い。
【0092】
【発明の効果】
本発明によれば、次の効果が得られる。
【0093】
(1)2つの吐出ポートから同一流量の圧油を吐出する可変容量形のポンプ装置の容量制御にポジティブ制御を採用するので、全方向制御弁の中立時等、制御流量が少ないことが望ましい時のタンクへのブリード量が少なくなり、エネルギー消費を低減できる。
【0094】
(2)第1及び第2方向制御弁群の片側のみが操作されている場合でも、方向制御弁群が操作されていない側の可変絞り弁より余剰流量がタンクに還流されるため、吐出圧力が適正化され、ファインコントロールが可能となる。
【0095】
(3)第3制御信号の最大値を規制する信号制限手段を設け、第1及び第2可変絞り弁の動作を制御するので、第3制御信号となる操作信号がポンプ装置の吐出流量を最大とする値以上に大きく出力された場合でも、それに合わせて第3制御信号の最大値を規制し第1及び第2可変絞り弁の開口面積を制限することで、タンクに還流する流量が多くなり過ぎることが防止され、適切なスタンバイ圧力を確保できる。
【0096】
(4)第1及び第2可変絞り弁の開口面積を閉じる側に一定の初期力を付与する構成としたので、自身に係わるリモコン圧の立ち上がり時にアクチュエータに供給可能な流量を最少に保つよう流量特性を設定でき、より良好なファインコントロールが可能となる。
【0097】
(5)第1及び第2分岐油路に第1及び第2可変絞り弁と直列に第1及び第2圧力補償弁をそれぞれ設けたので、ポンプ吐出圧が変動しても第1及び第2可変絞り弁の開口面積に応じた流量をタンクに還流でき、正確なブリードオフ制御が行える。
【0098】
(6)第1及び第2圧力補償弁のスプールを第1及び第2可変絞り弁のスプールに内蔵させたので、弁構造をコンパクトにできる。
【0099】
(7)2つの吐出ポートから同一流量の圧油を吐出する可変容量形のポンプ装置として2フローウェー形の油圧ポンプを用いたので、1個のポンプ構造及び寸法で2個のポンプ機能が得られ、取り付けスペースに制約が多いミニシヨベルに好適な回路構造となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による油圧駆動装置を示す回路図である。
【図2】第4象現にリモートコントロール弁の出力特性を示す、第1象現にポジティブ制御ピストン部のポンプ流量制御特性を示す図である。
【図3】差圧比例絞り弁の動作特性を示す図である。
【図4】差圧比例絞り弁とその圧力補償弁の具体的な弁構造の一例を示す図である。
【図5】従来の2フローウェー形の油圧ポンプを用いた油圧回路装置のポンプ容量制御に単純にポジティブ制御を採用した場合の油圧回路図である。
【図6】図5に示した油圧回路装置でのブリードオフ制御の様子を示す図である。
【図7】図6に示す状態を明らかにするためのモデルを示す回路図である。
【図8】本発明の第2の実施形態による油圧駆動装置を示す回路図である。
【図9】本発明の第3の実施形態による油圧駆動装置を示す回路図である。
【図10】従来の2ポンプシステムの一例を示す回路図である。
【図11】2フローウェー形の油圧ポンプを用いて構成した従来の油圧回路装置の一例を示す回路図である。
【符号の説明】
3 方向制御弁群
3−1,3−2 方向制御弁
4 方向制御弁
4−1,4−2 方向制御弁
5,6 リモートコントロール弁
7 信号油路
7a,7b,7c シャトル弁
8 信号油路
8a,8b,8c シャトル弁
9 タンク
11 2フローウェー形の油圧ポンプ
12 可変容量機構
13 吸入ポート
14a,14b 吐出ポート
15 馬力制御ピストン部
16 ポジティブ制御ピストン部
17,18 センターバイパス通路
19 シャトル弁
20 信号油路
21−1,21−2 差圧比例絞り弁(可変絞り弁)
21a,21b 受圧部
22−1,22−2 圧力補償弁
22a ばね
23−1,23−2 減圧弁(信号制限手段)
24−1,24−2 信号油路
25,26 信号油路
30,32 圧油供給油路
31,33 分岐油路
50−1,50−2 ピストン
51−1,51−2 ばね
61 スプール弁(差圧比例絞り弁)
62 スプール弁(圧力補償弁)
71 絞り開口(差圧比例絞り弁)
73 絞り開口(圧力補償弁)

Claims (8)

  1. 2つの吐出ポートを有し、この2つの吐出ポートから同一流量の圧油を吐出する可変容量形のポンプ装置と、このポンプ装置からの圧油により駆動される複数のアクチュエータと、前記ポンプ装置の2つの吐出ポートにそれぞれ接続された第1及び第2圧油供給油路と、この第1及び第2圧油供給油路にそれぞれ接続され、前記複数のアクチュエータに供給される圧油の流れを制御するオープンセンター形の複数の方向制御弁をそれぞれ有する第1及び第2方向制御弁群とを備える油圧回路装置において、
    前記第1方向制御弁群に含まれる方向制御弁の操作信号により第1制御信号を生成する第1信号生成手段と、
    前記第2方向制御弁群に含まれる方向制御弁の操作信号により第2制御信号を生成する第2信号生成手段と、
    前記第1及び第2方向制御弁群に含まれる全ての方向制御弁の操作信号により第3制御信号を生成する第3信号生成手段と、
    前記第3制御信号に応じて前記ポンプ装置の容量を制御するポンプ制御手段と、
    前記第1及び第2圧油供給油路からそれぞれ分岐しタンクに接続される第1及び第2分岐油路と、
    この第1及び第2分岐油路にそれぞれ設けられ、前記第3制御信号が前記第1制御信号と第2制御信号のうちの自身が係わる制御信号より大きいとき、両制御信号との差に応じて動作して、前記第1及び第2圧油供給油路のうち自身が係わる圧油供給油路の余剰流量をタンクに還流する第1及び第2可変絞り弁とを備えることを特徴とする油圧回路装置。
  2. 請求項1記載の油圧回路装置において、前記第3制御信号の最大値を規制する信号制限手段を更に備え、前記第1及び第2可変絞り弁は、前記信号制限手段の出力信号と前記自身が係わる制御信号との差に応じて動作することを特徴とする油圧回路装置。
  3. 請求項2記載の油圧回路装置において、前記信号制限手段は減圧弁であることを特徴とする油圧回路装置。
  4. 請求項1記載の油圧回路装置において、前記第1及び第2可変絞り弁は、前記自身に係わる制御信号が中立から増大するとき、ある値に達するまでの間、開口面積を閉じる側に一定の初期力を付与する第1及び第2初期力付与手段をそれぞれ有することを特徴とする油圧回路装置。
  5. 請求項4記載の油圧回路装置において、前記第1及び第2初期力付与手段は、前記自身に係わる制御信号がある値に達するまで、前記第1及び第2可変絞り弁と当接し、その後当接を解除するピストンとばねの組み合わせであることを特徴とする油圧回路装置。
  6. 請求項1記載の油圧回路装置において、前記第1及び第2分岐油路に前記第1及び第2可変絞り弁と直列にそれぞれ設けられ、第1及び第2可変絞り弁の前後差圧を一定に保つ第1及び第2圧力補償弁を更に備えることを特徴とする油圧回路装置。
  7. 請求項6記載の油圧回路装置において、前記第1及び第2圧力補償弁及び前記第1及び第2可変絞り弁はそれぞれスプールを備えたスプール弁であり、前記第1及び第2圧力補償弁のスプールを前記第1及び第2可変絞り弁のスプールに内蔵させたことを特徴とする油圧回路装置。
  8. 請求項1記載の油圧回路装置において、前記ポンプ装置は、1つの容量制御機構により2つの吐出ポートから同一流量を吐出する2フローウェー形の油圧ポンプであることを特徴とする油圧回路装置。
JP25538899A 1999-09-09 1999-09-09 油圧回路装置 Expired - Fee Related JP3805575B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25538899A JP3805575B2 (ja) 1999-09-09 1999-09-09 油圧回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25538899A JP3805575B2 (ja) 1999-09-09 1999-09-09 油圧回路装置

Publications (2)

Publication Number Publication Date
JP2001082410A JP2001082410A (ja) 2001-03-27
JP3805575B2 true JP3805575B2 (ja) 2006-08-02

Family

ID=17278078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25538899A Expired - Fee Related JP3805575B2 (ja) 1999-09-09 1999-09-09 油圧回路装置

Country Status (1)

Country Link
JP (1) JP3805575B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244478A (zh) * 2013-05-20 2013-08-14 无锡市钻通工程机械有限公司 非开挖铺管钻机的助力转换液压控制系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159609B (zh) * 2019-05-24 2021-06-04 山东临工工程机械有限公司 主控阀及液压系统
JP7053731B2 (ja) * 2020-07-15 2022-04-12 日立建機株式会社 作業機械
CN114263822B (zh) * 2021-12-23 2023-04-25 中国电子科技集团公司第三十八研究所 一种雷达举升机构的防解锁冲击液压系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244478A (zh) * 2013-05-20 2013-08-14 无锡市钻通工程机械有限公司 非开挖铺管钻机的助力转换液压控制系统
CN103244478B (zh) * 2013-05-20 2015-07-15 无锡市钻通工程机械有限公司 非开挖铺管钻机的助力转换液压控制系统

Also Published As

Publication number Publication date
JP2001082410A (ja) 2001-03-27

Similar Documents

Publication Publication Date Title
JP2744846B2 (ja) 油圧駆動装置及び方向切換弁
JP2002031104A (ja) 油圧駆動機械のアクチュエータ制御装置
US11231053B2 (en) Hydraulic valve arrangement
JP2003004003A (ja) 油圧ショベルの油圧制御回路
WO1991010833A1 (en) Valve device and hydraulic driving device
JP2014501363A (ja) 流量制限器を備える独立絞り弁
JP3805575B2 (ja) 油圧回路装置
EP2956676B1 (en) Variable load sense open center hybrid system
US20100043418A1 (en) Hydraulic system and method for control
JP2004019873A (ja) 油圧制御装置および該油圧制御装置を備えた産業車両
JP3692009B2 (ja) 作業機械の制御装置
JP2000230501A (ja) 油圧回路、優先弁ブロック及び操作弁ブロック集合体
JP3511504B2 (ja) 建設機械の油圧回路
JP2758335B2 (ja) 建機の油圧回路構造
JP4155967B2 (ja) 流体圧回路の制御装置、その制御方法および作業機械
JP2022516145A (ja) 可変容量形油圧ポンプセット及びショベル
KR102503136B1 (ko) 유체압 제어 장치
JP2592502B2 (ja) 油圧駆動装置及び油圧建設機械
JP2758334B2 (ja) 建機の油圧回路構造
JP3053987B2 (ja) 作業機の油圧回路構造
JP3523518B2 (ja) 建設機械の油圧回路
JP2843729B2 (ja) 油圧回路構造
JP2816024B2 (ja) 弁装置及び油圧駆動装置
JP2000073409A (ja) 建設機械の油圧回路
JPH02484Y2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees