JP3803611B2 - 半導体基板、半導体素子、および半導体素子の製造方法 - Google Patents

半導体基板、半導体素子、および半導体素子の製造方法 Download PDF

Info

Publication number
JP3803611B2
JP3803611B2 JP2002141842A JP2002141842A JP3803611B2 JP 3803611 B2 JP3803611 B2 JP 3803611B2 JP 2002141842 A JP2002141842 A JP 2002141842A JP 2002141842 A JP2002141842 A JP 2002141842A JP 3803611 B2 JP3803611 B2 JP 3803611B2
Authority
JP
Japan
Prior art keywords
silicon carbide
epitaxial layer
carbide substrate
semiconductor element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002141842A
Other languages
English (en)
Other versions
JP2003332563A5 (ja
JP2003332563A (ja
Inventor
正雄 内田
真 北畠
良子 宮永
邦方 高橋
修 楠本
賢哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002141842A priority Critical patent/JP3803611B2/ja
Publication of JP2003332563A publication Critical patent/JP2003332563A/ja
Publication of JP2003332563A5 publication Critical patent/JP2003332563A5/ja
Application granted granted Critical
Publication of JP3803611B2 publication Critical patent/JP3803611B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭化珪素(SiC)を用いた高耐圧の炭化珪素半導体基板、炭化珪素半導体素子、および炭化珪素半導体素子の製造方法に関するものである。
【0002】
【従来の技術】
従来から、パワー素子として、シリコン(以下ではSiと示す)を用いた整流素子やスイッチング素子が多く用いられている。しかしながら、近年になって、Siの物性限界を超える新しい素子が要望されるようになってきている。
【0003】
例えば、ある程度以上の耐圧が必要な整流素子としては、Siからなるpnダイオードが用いられている。このpnダイオードはスイッチング損失が大きいので、よりスイッチング損失の小さいショットキーダイオードを整流素子として使用することが期待される。しかしながら、Siをショットキーダイオードに用いた場合には、Siの物性的限界のために所望の耐圧が得ることが困難である。そこで、高い耐圧性を有し,スイッチング損失が小さいスイッチング素子を形成する材料として、炭化珪素(シリコンカーバイド、SiC)が注目を集めている。
【0004】
SiCは、Siに比べて高硬度でワイドバンドギャップを有する半導体材料であり、パワー素子や耐環境素子、高温動作素子、高周波素子等への応用が期待されている材料である。以下に、従来の炭化珪素を用いた半導体素子の一例について、図5(a),(b)を参照しながら説明する。図5(a),(b)は、従来の炭化珪素を用いたショットキーダイオードを示す断面図および平面図である。
【0005】
図5(a)に示すように、従来のショットキーダイオード50は、n型の4H−SiCからなる炭化珪素基板51と、炭化珪素基板51の上面上に設けられた,n型の4H−SiCからなる炭化珪素層52と、炭化珪素層52の上部に設けられた,ボロン(B)が注入されている不純物注入層53と、炭化珪素層52の上面上に接して設けられた、ニッケル(Ni)からなるショットキー電極54と、ショットキー電極54の上に形成された,チタン(Ti)と金(Au)の積層電極である上部電極56と、炭化珪素基板51の下面上に設けられた,ニッケル(Ni)からなるオーミック電極55と、オーミック電極55の下面上に設けられた,チタン(Ti)と金(Au)からなる下部電極57とを備えている。
【0006】
なお、本明細書中では、説明のために、炭化珪素基板51からみてショットキー電極54が形成されている方向を上方向として、オーミック電極55が形成されている方向を下方向として規定する。
【0007】
ここで、上部電極56や下部電極57は、素子の上部電極(アノード電極)等をアルミニウム(Al)の配線と電気的に接続させたり、ハンダを用いてリードフレームに素子を固定するために必要であるが、整流素子の基本動作のために必須のものではない。このような整流素子では、炭化珪素の適切な膜厚や不純物濃度を選択することにより、順方向電流で数アンペア以上、逆方向耐圧で600V以上、場合によっては1000V以上の耐性を得ることができる。
【0008】
【発明が解決しようとする課題】
しかしながら、SiC層内には結晶欠陥が数多く存在し、それらのなかでも、特に転位やマイクロパイプと呼ばれる結晶欠陥が素子特性を大きく劣化させる。
【0009】
従来では、図5(a),(b)に示すように、マイクロパイプ58が含まれている炭化珪素基板51の上に炭化珪素層52をエピタキシャル成長させると、炭化珪素層52にも貫通欠陥59が形成される。このような貫通欠陥59が炭化珪素層52のうちショットキー電極54の下部に形成された場合には、ダイオードの逆方向特性が大きく劣化するという不具合が生じてしまう。具体的にいうと、逆方向で非常に大きな漏れ電流が観測され、もはや整流素子としての機能をなさなくなるおそれが生じるのである。
【0010】
もちろん、ショットキーダイオード以外の素子形態においても、転位やマイクロパイプのために素子特性は大きく劣化してしまう。ここで、一般的な炭化珪素基板のマイクロパイプ密度は15〜100個/cm2 程度であるので、大電流を得るために素子サイズまたは電極サイズを大きくすると、ほとんどの素子が電極下にマイクロパイプを含んでしまい、素子歩留まりが低くなってしまう。
【0011】
本発明は、転位やマイクロパイプ等を含んでいても動作可能な炭化珪素半導体素子を提供し、もって素子歩留まり低下を抑制することを目的とする。
【0012】
【課題を解決するための手段】
本発明の半導体基板は、炭化珪素基板と、上記炭化珪素基板の上に設けられた炭化珪素からなるエピタキシャル層とを有する半導体基板において、上記炭化珪素基板中に生じている結晶欠陥のうちの少なくとも1つは、少なくとも前記結晶欠陥の上部が上記エピタキシャル層の原料によって埋められていることを特徴とする。
また、本発明の半導体素子は、炭化珪素基板と、上記炭化珪素基板の上に設けられた炭化珪素からなるエピタキシャル層と、上記エピタキシャル層の上方に設けられた電極とを有する半導体素子において、上記炭化珪素基板中のうち上記電極の下方に位置する領域中の結晶欠陥のうちの少なくとも1つは、少なくとも上部が上記エピタキシャル層の原料によって埋められていることを特徴とする。
【0013】
これにより、炭化珪素基板内に結晶欠陥が存在していても、エピタキシャル層の原料によって埋められているために、素子の動作が可能となり素子歩留まり低下を抑制することができる。
【0014】
上記結晶欠陥のうちの少なくとも1つはマイクロパイプまたは転位であり、上記マイクロパイプまたは転位は上記エピタキシャル層の原料により埋められていることにより、素子の動作不良の最大の原因となるマイクロパイプや転位を覆うことができるので、大きな効果を得ることができる。
【0015】
上記結晶欠陥の大きさは、直径1nmから50μmの範囲内であることが好ましい。
【0016】
上記炭化珪素基板の不純物濃度が1x1018cm-3以上であることが好ましい。
【0017】
上記炭化珪素基板の面のうち上記エピタキシャル層と接する面が( 0 0 0 1 )シリコン面,( 0 0 0 -1 )カーボン面,またはそれらの面のいずれか1つから10度以内に傾いた面であることが好ましい。
【0018】
上記エピタキシャル層の厚さが5〜9μmであることにより、より確実に結晶欠陥を埋めることができる。
【0019】
上記半導体素子は、整流作用またはスイッチング作用を有する半導体素子であって、電流を遮断する状態における漏れ電流密度が、絶対値200Vの電圧印加時において、1x10-3A/cm2以下であることが好ましい。
【0020】
上記結晶欠陥は、上記炭化珪素基板から上記炭化珪素エピタキシャル層に延びており、上記エピタキシャル層において埋められていてもよい。
【0021】
上記結晶欠陥は、上記炭化珪素基板において埋められていてもよい。
【0022】
本発明の半導体素子の製造方法は、結晶欠陥を有する炭化珪素基板と、上記炭化珪素基板の上に設けられた炭化珪素からなるエピタキシャル層と、上記エピタキシャル層の上方に設けられた電極とを有する半導体素子の製造方法であって、第1温度から、上記第1温度より高温であり,上記エピタキシャル層の成長温度である第2温度までの範囲内のうち少なくとも一部の温度において、上記炭化珪素基板の上に上記エピタキシャル層の原料ガスを供給する工程(a)と、上記第2温度において、上記炭化珪素基板の上に原料を供給することにより上記エピタキシャル層を成長させる工程(b)と、上記エピタキシャル層の上に、上記電極を形成する工程(c)とを備え、上記工程(a)または工程(b)の少なくとも一方の工程において、上記結晶欠陥のうちの少なくとも1つは、少なくとも上部が上記エピタキシャル層の原料によって埋められる。
【0023】
これにより、エピタキシャル層の原料によって結晶欠陥を埋めた上にエピタキシャル層を形成することができるので、炭化珪素基板中に結晶欠陥が含まれていても動作可能な半導体素子を形成することができる。
【0024】
上記工程(a)では、上記第1温度と上記第2温度との差は100℃以上であることが好ましい。また、上記工程(b)では、エピタキシャル層を5〜9μm形成することが好ましい。
【0025】
【発明の実施の形態】
以下に、本発明の実施形態における炭化珪素半導体基板、炭化珪素半導体素子、およびこの製造方法について、図1(a)〜図4を参照しながら説明する。ここでは、炭化珪素(SiC)エピタキシャル層を有するショットキーダイオードを例として説明する。
【0026】
図1(a),(b)は、本実施形態におけるショットキーダイオードの構造を示す断面図および平面図である。なお、ここで示すショットキーダイオード(素子)はチップの状態になっており、チップは、複数の素子を有するウェハの状態の炭化珪素基板を分離することにより得られる。
【0027】
図1(a)に示すように、本実施形態のショットキーダイオード10は、n型で低抵抗の4H−SiCからなる炭化珪素基板11と、炭化珪素基板11の上面上に設けられた,n型の4H−SiCからなるエピタキシャル層12と、エピタキシャル層12の上部のうち動作領域20の側方を囲む部分に設けられた不純物注入領域13と、エピタキシャル層12の動作領域の上から不純物注入領域13の上の一部に亘って設けられた,ニッケル(Ni)からなるショットキー電極14と、ショットキー電極14の上に設けられた,チタン(Ti)と金(Au)の積層電極である上部電極16と、炭化珪素基板11のうちエピタキシャル層12と接する面と対向する面(下面)上に設けられた,ニッケル(Ni)からなるオーミック電極15と、オーミック電極15の下面上に設けられた,チタン(Ti)と金(Au)との積層電極である下部電極17とから構成されている。
【0028】
なお、ショットキー電極14の外周部は、エピタキシャル層12の不純物注入領域13とオーバーラップしており、この部分が、ガードリング領域として機能する。
【0029】
ここで、炭化珪素基板11にはマイクロパイプ18が存在しており、これについて以下に説明する。
【0030】
通常、炭化珪素基板11は、炭化珪素に特有の結晶欠陥であるマイクロパイプを多く含んでいる。炭化珪素基板11の主面が( 0 0 0 1 )シリコン面あるいは( 0 0 0 -1 )カーボン面に近い場合には、マイクロパイプ18は基板面に対してほぼ垂直の方向で存在している。
【0031】
従来では、このような炭化珪素基板の上に炭化珪素層を成長させると、炭化珪素基板内に存在するマイクロパイプが引き継がれて、炭化珪素層内を貫通するマイクロパイプが形成されてしまう。
【0032】
それに対し、本実施形態では、炭化珪素基板11の上に炭化珪素のエピタキシャル層12を形成するときに成長条件を選択することにより、炭化珪素基板11内に存在するマイクロパイプ18の上部を埋めることができる。マイクロパイプ18の形状や選択される成長条件などによっては、マイクロパイプ18が炭化珪素基板11内で埋められずに、エピタキシャル層12においてマイクロパイプ18を引き継ぐ欠陥19が成長することもあるが、その場合でも、欠陥19は成長途中で埋められてエピタキシャル層12の上方への進展を抑制することができる。
【0033】
このように、ショットキー電極14の下方にマイクロパイプ18や欠陥19が存在していても、エピタキシャル層12の上面に到達せず、逆方向バイアス時にショットキー電極下に発生する空乏層が到達しないものであれば、ショットキーダイオードの逆方向特性を大きく劣化させることはない。
【0034】
次に、本実施形態におけるショットキーダイオードの製造方法について、図2(a)〜(d)を参照しながら説明する。図2(a)〜(d)は、本実施形態のショットキーダイオードの製造方法を示す断面図である。ただし、説明を簡単にするためにマスクあわせのためのアライメントキー形成については省略している。
【0035】
まず、図2(a)に示す工程で、炭化珪素基板11の上に、カーボンの原料ガスであるプロパンと,シリコンの原料ガスであるシランと,キャリアガスである水素とを供給することにより、炭化珪素基板11の上に、n形の4H−SiCからなる,厚さ9μm程度のエピタキシャル層12を成長させる。
【0036】
なお、炭化珪素基板11は、( 0 0 0 1 )面(Si面)から〔 1 1 -2 0 〕方向に8度程度オフした面(いわゆる( 0 0 0 1 )オフ面)を主面とする基板であり、その抵抗率の値は約0.02Ω・cmである。エピタキシャル層12では、n形不純物である窒素(N)が1×1016cm-3の濃度で含まれるようにドーピングされている。そして、エピタキシャル層12のエピタキシャル成長が終了してから、基板上を水素雰囲気に保つことによりエピタキシャル層12の表面処理を行なう。
【0037】
ここで、エピタキシャル層12の成長のために基板温度を昇温するときに、成長温度である第2温度よりも200℃程度低い第1温度から原料ガスを供給することにより、炭化珪素基板11のマイクロパイプ18を埋めることができる。つまり、エピタキシャル層12の成長温度である第2温度まで昇温する時に、第1温度の時点から第2温度に達するまでの数分間にわたって、原料ガスであるシランおよびプロパンを供給することにより、直径50μm以下のマイクロパイプを埋めることができるのである。そして、基板温度が第2温度に達してからも継続して原料ガスを供給し続けると、マイクロパイプ18を埋めた後にエピタキシャル層12を形成することができる。なお、第2温度は1000〜1900℃の範囲内にあることが好ましい。
【0038】
ここで、温度昇温時にマイクロパイプ18が完全に埋まらずに、エピタキシャル層12の成長時にマイクロパイプ18を引き継ぐ欠陥19が成長することもある。この場合でも、温度昇温時にマイクロパイプ18の上面はある程度埋まっているので、エピタキシャル層12の成長に伴って、徐々に欠陥19は埋まっていく。
【0039】
次に、図2(b)に示す工程で、成長が終了したエピタキシャル層12の上に、酸化シリコン(SiO2 )からなる,厚さ800nm程度の絶縁膜(図示せず)を堆積する。そして、フォトレジストによるパターン(図示せず)を形成し、バッファードフッ酸を用いて絶縁膜のエッチングを行う。これにより、エピタキシャル層12の動作領域20の上に、酸化シリコン(SiO2 )膜からなる0.6mm角のダミーマスク21を形成する。ただし、その角は半径0.15mmの円弧を描くように丸められている。
【0040】
その後、エピタキシャル層12上に、ダミーマスク21をマスクとしてp形不純物であるボロン(B)をイオン注入することにより、エピタキシャル層12のうちダミーマスク21に覆われていない部分に、深さ150nm程度の不純物注入領域13を形成する。このとき、注入角度0度,注入温度500℃,注入エネルギー30keV,注入量1×1015個/cm2 の条件でイオン注入を行う。
【0041】
続いて、加熱炉を用いて、窒素雰囲気下,1100℃,90分間の条件で基板に熱処理を行うことにより、エピタキシャル層12に含まれる不純物を活性化する。
【0042】
次に、図2(c)に示す工程で、炭化珪素基板11の下面上に厚さ400nm程度のニッケル(Ni)層を形成する。その後、基板に、窒素雰囲気下,1000℃,5分間の条件で熱処理を行うことにより、ニッケル(Ni)からなるオーミック電極15を形成する。
【0043】
次に、バッファードフッ酸を用いたエッチングにより、ダミーマスク21を除去してエピタキシャル層12の上面を露出させる。そして、エピタキシャル層12上に厚さ200nm程度のニッケル(Ni)層を形成した後、フォトレジストのパターン(図示せず)を形成してウェットエッチングを行う。これにより、エピタキシャル層12のうち動作領域20の上から動作領域20の側方を囲む不純物注入領域13の上に亘って、ニッケル(Ni)からなる0.63mm角のショットキー電極14を形成する。その後、基板に、窒素雰囲気下,400℃,5分間の条件で熱処理を行なう。
【0044】
次に、図2(d)に示す工程で、ショットキー電極14の上からエピタキシャル層12の上に亘って、チタン(Ti)および金(Au)の薄膜を堆積した後、ショットキー電極14の上部を開口するフォトレジスト(図示せず)を形成する。そして、メッキ処理を施した後にフォトレジストを除去し、不要な部分のTiとAuをエッチング処理することにより、チタン(Ti)と金(Au)が交互に積層された上部電極16を形成する。ここでは、ショットキー電極14のニッケル(Ni)には、チタン(Ti)が接している。
【0045】
その後、オーミック電極15の下面上に、チタン(Ti)と金(Au)が交互に積層された下部電極17を形成する。ここでは、オーミック電極15のニッケル(Ni)には、チタン(Ti)が接している。
【0046】
最後に、複数のショットキーダイオードが形成されているウェハを、例えば1mm角のチップに分離することにより、本実施形態のショットキーダイオード10を得ることができる。
【0047】
以下に、本実施形態のショットキーダイオードの具体的な素子特性について、図3を参照しながら述べる。図3は、本実施形態のショットキーダイオードを上方から見た写真図である。
【0048】
図3に示すショットキーダイオードは、マイクロパイプの状況を目視するために上部電極16を形成する前の状態で撮影しており、エピタキシャル層12の上にショットキー電極14が形成された状態にある。ショットキー電極14は、一辺の長さが0.63mmの正方形状に形成されており,その正方形の角は半径0.165mmの円弧を描くように丸められている。
【0049】
このショットキーダイオードにおいては、領域22,領域23および領域24にそれぞれ特徴的な表面状態が見られた。これらの領域で見られる凹部は、マイクロパイプのうちの一部がエピタキシャル層12によって埋められて生じたと考えることができる。したがって、観測される凹部の下にはマイクロパイプが存在していると推測することができる。つまり、領域22,領域23,領域24には、順に1個,2個,1個の凹部が観測されたので、各領域にはその数だけマイクロパイプが存在しているといえる。
【0050】
以下に、本実施形態のショットキーダイオードの整流性について、従来の場合と比較しながら説明する。
【0051】
図4は、ショットキーダイオードの逆方向電流−電圧特性の例を示すグラフ図である。ここで、ProAは本発明のショットキーダイオードの特性を、ProBは従来のショットキーダイオーの特性を示している。
【0052】
従来例として示すショットキーダイオードでは、ショットキー電極の下に直径10μm程度のマイクロパイプを1個含んでおり、顕微鏡で観察すると、そのマイクロパイプはエピタキシャル層を貫通していた。この場合には、ProBのように、極めて顕著な逆方向漏れ電流が観測された。
【0053】
それに対して、本実施形態の例として用いたショットキーダイオードでは、図3に示すようにショットキー電極の下に4個のマイクロパイプを含んでいた。それにもかかわらず、ProAのように、−600Vの印加電圧においても逆方向漏れ電流はほとんど観測されず、極めて良好な整流特性を実現することができた。
【0054】
ここで、−600Vにおける逆方向漏れ電流は、観測限界以下(測定レンジは最小1μA)であることから、絶対値600Vの電圧を印加したときには、電流を遮断する状態における漏れ電流密度は2.9x10-4A/cm2 以下であることが明らかとなった。もちろん、絶対値200Vの電圧を印加したときには、漏れ電流密度はその値以下となる。
【0055】
これまでに述べたように、本実施形態のショットキーダイオードでは、素子動作領域にマイクロパイプ等の結晶欠陥を含んでいながら、結晶欠陥を含まない場合と同様の良好な整流特性を実現することができた。
【0056】
炭化珪素(SiC)の結晶性は珪素(Si)よりも劣り、炭化珪素(SiC)内では、これまでに述べてきた転位やマイクロパイプといった結晶欠陥以外にも、マイクロパイプとは定義されておらず例えばらせん転位の中心部が数原子分抜けたような結晶欠陥が混在している。
【0057】
従来では、このような結晶欠陥は炭化珪素半導体素子の素子動作を劣化させるものとして、可能な限り排除することが賢明であると認識されていた。このため、転位やマイクロパイプの密度が小さい炭化珪素基板を選定して、かつ、その炭化珪素基板のなかで転位やマイクロパイプを含まない領域に形成した素子を動作させることにより素子特性を実現していた。
【0058】
しかし、転位やマイクロパイプは、低抵抗(すなわち高ドーパント濃度)の炭化珪素基板にとっては重要である。それは、低抵抗の炭化珪素基板では、濃度1x1018cm-3以上のドーピングが行われているため結晶歪みが生じやすく、その歪みを緩和するために転位やマイクロパイプ等の結晶欠陥が混在しているからである。
【0059】
そのため、転位やマイクロパイプを含まない領域に形成された素子を長時間動作させた場合には問題が生じやすい。具体的には、このような素子に大電流が流れると、炭化珪素基板内では局所的にエネルギーの高い状態になり、新たに歪みなどが生じてしまう。この歪みに起因して積層欠陥等の新たな結晶欠陥が発生すると、通電状態における高抵抗化、場合によっては逆方向漏れ電流の誘発や素子破壊が起こりうる。
【0060】
以上のことから、炭化珪素半導体素子において高い濃度の不純物を有する炭化珪素基板を用いる場合には、本実施形態のように適度に転位やマイクロパイプを存在させておくことで、基板歪みを抑制でき、上記のような問題点の緩和が可能になる。
【0061】
なお、本実施形態の方法によると、直径1nm〜50μmの範囲内の大きさの結晶欠陥であることが好ましい。あるいは、結晶欠陥が多角形で近似可能な場合には、頂点と頂点、頂点と辺、辺と辺を結ぶ距離のうち最長の距離が1nm〜50μmの範囲内であることが好ましい。また、結晶欠陥が楕円形で近似可能な場合には、長径が1nmから50μmの範囲内にあることが好ましい。これらの場合には、結晶欠陥をエピタキシャル層によって埋めることができる。
【0062】
特に、直径1μm〜20μmの範囲内の大きさの結晶欠陥が炭化珪素基板内に存在する場合には、結晶歪みも大きく緩和されるため、新たな結晶欠陥の発生等を抑制することができる。
【0063】
また、本実施形態で示した炭化珪素半導体素子においては、炭化珪素半導体として4H−SiCを堆積した4H−SiC基板を例にして説明したが、6H−SiCを堆積した6H−SiC基板を用いてもよいし、3C−SiCを堆積した4H−SiC基板や6H−SiC基板を用いてもよい。また、炭化珪素の他の結晶形態であっても、基板が転位やマイクロパイプを含むものであればよい。
【0064】
また、炭化珪素基板の主面は( 0 0 0 1 )面(シリコン面)のオフカット面以外に、( 0 0 0 -1 )面、つまりカーボン面のオフカット面であっても効果を得ることができる。ここで、上記実施形態では、炭化珪素基板11が( 0 0 0 1 )面(Si面)から8度程度オフカットされている場合について述べたが、本発明では、10度以内の他の角度にオフカットされていてもよい。
【0065】
また、本実施形態においては、炭化珪素のエピタキシャル層の厚さを9μmとしたが、エピタキシャル層の厚さを5μm以上とすることにより、転位やマイクロパイプを埋めることが可能となる。
【0066】
また、上記実施形態においては、基板温度をエピタキシャル層の成長温度である第2温度まで昇温するときに、第1温度から第2温度に達するまで継続して原料ガスを供給する場合について述べた。しかし、本発明においては、必ずしも成長温度に達するまで継続して原料ガスを供給する必要はない。例えば、第1温度から第2温度の範囲内の一定温度に保持して原料ガスを供給した後、さらに第2温度まで昇温してもよい。また、上記実施形態においては、第1温度と第2温度との差が200℃程度であると示したが、本発明では、第2温度の方が第1温度よりも高ければ効果を得ることができる。
【0067】
また、本実施形態では、炭化珪素半導体素子の例としてショットキーダイオードを用いて説明したが、MISトランジスタ、pnダイオード、MESトランジスタ、その他にも考えられる素子であっても、整流作用、またはスイッチング作用を有する素子であれば、本発明を適応することができる。例えば、MISトランジスタは、マイクロパイプを埋めるエピタキシャル層上に、絶縁層(例えば珪素酸化膜)を挟んで電極を形成することにより得られる。
【0068】
また、整流作用またはスイッチング作用を有する炭化珪素半導体素子であって、絶対値200Vの電圧印加において電流を遮断する状態における漏れ電流密度が1x10-3A/cm2 以下であれば、転位やマイクロパイプの影響を直接受けることなく、十分な素子動作を実現することができる。
【0069】
また、炭化珪素半導体素子の電極材料や素子個々の形状、構成等は、上記のものに限定されない。
【0070】
【発明の効果】
本発明においては、炭化珪素基板上に結晶欠陥を埋める炭化珪素エピタキシャル層が形成されていることにより、動作領域に結晶欠陥が含まれていても素子動作が可能となり、素子歩留まり低下を抑制することができる。
【図面の簡単な説明】
【図1】(a),(b)は、実施形態におけるショットキーダイオードの構造を示す断面図および平面図である
【図2】(a)〜(d)は、実施形態のショットキーダイオードの製造方法を示す断面図である。
【図3】実施形態のショットキーダイオードを上方から見た写真図である。
【図4】実施形態のショットキーダイオードの逆方向電流−電圧特性の例を示すグラフ図である。
【図5】(a),(b)は、従来の炭化珪素を用いたショットキーダイオードを示す断面図および平面図である。
【符号の説明】
10 ショットキーダイオード
11 炭化珪素基板
12 エピタキシャル層
13 不純物注入領域
14 ショットキー電極
15 オーミック電極
16 上部電極
17 下部電極
18 マイクロパイプ
19 結晶欠陥
20 動作領域
21 ダミーマスク
22 領域
23 領域
24 領域

Claims (10)

  1. 炭化珪素基板と、
    上記炭化珪素基板の上に設けられた炭化珪素からなるエピタキシャル層と、
    上記エピタキシャル層の上方に設けられた電極とを有する半導体素子において、
    上記炭化珪素基板中のうち上記電極の下方に位置する領域中の結晶欠陥のうちの少なくとも1つは、少なくとも上部が上記エピタキシャル層の原料によって埋められており、かつ、上記エピタキシャル層の厚みは5〜9μmであり、
    上記半導体素子は、整流作用またはスイッチング作用を有する半導体素子であって、電流を遮断する状態における漏れ電流密度が、絶対値200Vの電圧印加時において、1×10-3A/cm2以下であることを特徴とする半導体素子。
  2. 請求項1に記載の半導体素子であって、
    上記結晶欠陥のうちの少なくとも1つはマイクロパイプまたは転位であり、上記マイクロパイプまたは転位は上記エピタキシャル層の原料により埋められていることを特徴とする半導体素子。
  3. 請求項1または2に記載の半導体素子であって、
    上記結晶欠陥の大きさは、直径1nmから50μmの範囲内であることを特徴とする半導体素子。
  4. 請求項1〜3のうちいずれか1つに記載の半導体素子であって、
    上記炭化珪素基板の不純物濃度が1×1018cm-3以上であることを特徴とする半導体素子。
  5. 請求項1〜4のうちいずれか1つに記載の半導体素子であって、
    上記炭化珪素基板の面のうち上記エピタキシャル層と接する面が( 0 0 0 1 )シリコン面,( 0 0 0 -1 )カーボン面、またはそれらの面のいずれか1つから10度以内に傾いた面であることを特徴とする半導体素子。
  6. 請求項1〜5のうちいずれか1つに記載の半導体素子であって、
    上記結晶欠陥は、上記炭化珪素基板から上記炭化珪素エピタキシャル層に延びており、上記エピタキシャル層において埋められていることを特徴とする半導体素子。
  7. 請求項1〜5のうちいずれか1つに記載の半導体素子であって、
    上記結晶欠陥は、上記炭化珪素基板において埋められていることを特徴とする半導体素子。
  8. 結晶欠陥を有する炭化珪素基板と、上記炭化珪素基板の上に設けられた炭化珪素からなるエピタキシャル層と、上記エピタキシャル層の上方に設けられた電極とを有する半導体素子の製造方法であって、
    第1温度から、上記第1温度より高温であり,上記エピタキシャル層の成長温度である第2温度までの範囲内のうち少なくとも一部の温度において上記炭化珪素基板の上に上記エピタキシャル層の原料ガスを供給する工程(a)と、
    上記第2温度において、上記炭化珪素基板の上に原料ガスを供給することにより上記エピタキシャル層を成長させる工程(b)と、
    上記エピタキシャル層の上に、上記電極を形成する工程(c)と
    を備え
    上記工程(a)または工程(b)の少なくとも一方の工程において、上記結晶欠陥のうちの少なくとも1つは、少なくとも上部が上記エピタキシャル層の原料によって埋められる半導体素子の製造方法。
  9. 請求項8に記載の半導体素子の製造方法であって、
    上記工程(a)では、上記第1温度と上記第2温度との差は100℃以上であることを特徴とする半導体素子の製造方法。
  10. 請求項8に記載の半導体素子の製造方法であって、
    上記工程(b)では、エピタキシャル層を5〜9μm形成することを特徴とする半導体素子の製造方法。
JP2002141842A 2002-05-16 2002-05-16 半導体基板、半導体素子、および半導体素子の製造方法 Expired - Fee Related JP3803611B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141842A JP3803611B2 (ja) 2002-05-16 2002-05-16 半導体基板、半導体素子、および半導体素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141842A JP3803611B2 (ja) 2002-05-16 2002-05-16 半導体基板、半導体素子、および半導体素子の製造方法

Publications (3)

Publication Number Publication Date
JP2003332563A JP2003332563A (ja) 2003-11-21
JP2003332563A5 JP2003332563A5 (ja) 2006-01-19
JP3803611B2 true JP3803611B2 (ja) 2006-08-02

Family

ID=29702314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141842A Expired - Fee Related JP3803611B2 (ja) 2002-05-16 2002-05-16 半導体基板、半導体素子、および半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP3803611B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064913A1 (ja) 2015-10-13 2017-04-20 住友電気工業株式会社 半導体積層体
TW202147455A (zh) * 2020-01-27 2021-12-16 日商Flosfia股份有限公司 半導體裝置及半導體裝置的製造方法

Also Published As

Publication number Publication date
JP2003332563A (ja) 2003-11-21

Similar Documents

Publication Publication Date Title
US20210359087A1 (en) Method for Forming a Semiconductor Device and a Semiconductor Device
KR100937276B1 (ko) 반도체 디바이스 및 그 제조 방법
CN100555659C (zh) 外延基底和半导体元件
KR101339815B1 (ko) 탄화 규소 반도체장치의 제조방법
TWI229421B (en) Minimizing degradation of SiC bipolar semiconductor devices
US8698286B2 (en) High voltage switching devices and process for forming same
US7977210B2 (en) Semiconductor substrate and semiconductor device
JP4872158B2 (ja) ショットキーダイオード、pn接合ダイオード、pin接合ダイオード、および製造方法
KR20120023710A (ko) 반도체 장치
JP5411422B2 (ja) バイポーラ型半導体装置、その製造方法およびツェナー電圧の制御方法
JP2000319099A (ja) SiCウエハ、SiC半導体デバイス、および、SiCウエハの製造方法
JP2004022878A (ja) 半導体装置およびその製造方法
US20150311325A1 (en) Igbt structure on sic for high performance
JP4026312B2 (ja) 炭化珪素半導体ショットキーダイオードおよびその製造方法
JP2004063860A (ja) 半導体装置およびその製造方法
JP5115735B2 (ja) 炭化珪素半導体基板とその製造方法
JP4613682B2 (ja) 炭化珪素半導体装置およびその製造方法
JP3817915B2 (ja) ショットキーダイオード及びその製造方法
JP3803611B2 (ja) 半導体基板、半導体素子、および半導体素子の製造方法
JP2004022796A (ja) 炭化珪素半導体素子およびその形成方法
JP2005026408A (ja) 半導体素子およびその製造方法
JP2008235767A (ja) 半導体素子及びその製造方法
JP5540296B2 (ja) ダイヤモンド電子素子及びその製造方法
JP2006128492A (ja) エピタキシャル基板、および半導体素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051129

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3803611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees