JP3798659B2 - メモリ集積回路 - Google Patents

メモリ集積回路 Download PDF

Info

Publication number
JP3798659B2
JP3798659B2 JP2001201280A JP2001201280A JP3798659B2 JP 3798659 B2 JP3798659 B2 JP 3798659B2 JP 2001201280 A JP2001201280 A JP 2001201280A JP 2001201280 A JP2001201280 A JP 2001201280A JP 3798659 B2 JP3798659 B2 JP 3798659B2
Authority
JP
Japan
Prior art keywords
region
channel region
drain
gate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001201280A
Other languages
English (en)
Other versions
JP2003017691A (ja
JP2003017691A5 (ja
Inventor
健 梶山
一正 須之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001201280A priority Critical patent/JP3798659B2/ja
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to EP02009262A priority patent/EP1253634A3/en
Priority to US10/132,520 priority patent/US6632723B2/en
Priority to TW091108721A priority patent/TW544911B/zh
Priority to KR10-2002-0023055A priority patent/KR100525331B1/ko
Priority to CNB021410828A priority patent/CN1230905C/zh
Publication of JP2003017691A publication Critical patent/JP2003017691A/ja
Publication of JP2003017691A5 publication Critical patent/JP2003017691A5/ja
Application granted granted Critical
Publication of JP3798659B2 publication Critical patent/JP3798659B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置に係り、特にMOSトランジスタの擬似ダブルゲート構造に関するもので、例えばダイナミック型メモリ集積回路などに使用されるものである。
【0002】
【従来の技術】
近年、MOSトランジスタのショートチャネル効果抑制(サブスレッショールド特性改善)、消費電力低減、駆動力の増加、過渡応答の低減など、高性能化を目的として、ダブルゲート(double gate) 型トランジスタ、サラウンドゲート(surround gate) 型トランジスタ等、いくつかの構造が提案されている。
【0003】
図23は、IEDM 97 427-430 に開示されているダブルゲート構造のMOSトランジスタの従来例1を示す。
【0004】
図中、211は基板中のドレイン(drain) 領域、212は基板中のソース(source)領域、213および214は基板中の上下にそれぞれ水平方向に設けられたトップゲート(top gate)およびボトムゲート(bottom gate) 、215は前記各ゲートに挟まれた基板中のチャネル(Channel) 領域、216は各ゲートを前記ドレイン領域、ソース領域、チャネル領域に対して絶縁するゲート絶縁膜である。
【0005】
このMOSトランジスタは、トップゲート213およびボトムゲート214が基板中の上下にそれぞれ水平方向に設けられ、この2枚のゲートに挟まれたチャネル領域215がダブルゲート構造になっている。
【0006】
このダブルゲート構造では、MOSトランジスタのトップゲート213の真下にボトムゲート214がバックゲート(Back Gate) として存在することによって、チャネル領域215を空乏化する等、従来検証されているダブルゲート構造トランジスタの特性の高性能化(ショートチャネル効果の低減、ドライバビィリティ(Drivability) の向上等)が期待できる。
【0007】
しかし、この場合、バックゲート214およびその表面のゲート絶縁膜216を形成した後、トランジスタの素子領域(body)となる単結晶層を形成しなければならず、加工が難しく、デバイスの信頼性向上が困難である。
【0008】
図24は、ダブルゲート構造のMOSトランジスタの従来例2を示す。
【0009】
図中、221は基板中のドレイン(D) 領域、222は基板中のソース(S) 領域、223および224は基板中の上下にそれぞれ垂直方向に設けられたトップゲート(Top Gate)およびボトムゲート(Bottom Gate) 、225は前記各ゲートに挟まれた基板中のチャネル領域であり、各ゲートを前記ドレイン領域、ソース領域、チャネル領域に対して絶縁するゲート絶縁膜(図示せず)が形成されている。
【0010】
このMOSトランジスタは、トップゲート223およびボトムゲート224が基板中の左右にそれぞれ垂直方向に設けられ、この2枚のゲートに挟まれたチャネル領域225がダブルゲート構造になっている。
【0011】
しかし、このダブルゲート構造は、段差上のゲート加工、縦型の不純物導入などを必要とし、加工が困難である。
【0012】
上記したように従来例1、従来例2のいずれのダブルゲート構造も、加工の困難性より実現には至っていない。そのため、比較的容易な加工法で実現可能であって、ダブルゲート構造のMOSトランジスタと同様の効果を期待できるMOSトランジスタの構造が要望されている。
【0013】
【発明が解決しようとする課題】
上記したように従来の半導体装置に形成されるダブルゲート構造のMOSトランジスタは、加工が難しく、デバイスの信頼性向上が困難であるという問題があった。
【0014】
本発明は上記の問題点を解決すべくなされたもので、ダブルゲート構造のMOSトランジスタと同様の効果を期待可能な擬似ダブルゲート構造のMOSトランジスタを比較的容易な加工法で実現し得るメモリ集積回路を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明のメモリ集積回路は、支持基板上に形成された絶縁膜上にシリコン層が形成された半導体基板と、前記シリコン層に形成されたメモリセルトランジスタのドレイン・ソース領域と、前記半導体基板の前記ドレイン・ソース領域間のチャネル領域の表面上にゲート絶縁膜を介して形成されたゲート電極と、前記ドレイン・ソース領域間のチャネル領域を両側から挟むように前記半導体基板の表層部に前記絶縁膜に達するように形成され、前記絶縁膜と共に前記チャネル領域を三方から囲むことにより前記チャネル領域を分離する素子分離領域と、前記チャネル領域と絶縁されて前記素子分離領域の内部に埋め込まれ、所定の電圧が印加されることによって前記セルトランジスタのチャネル領域下を空乏化するバックゲート電極用の導電体とを具備することを特徴とする
【0019】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0020】
<第1の実施形態>
図1は、本発明の半導体装置の第1の実施形態に係るMOSトランジスタの平面レイアウトの一例を示している。
【0021】
図2は、図1中のA−A´線に沿うチャネル長方向(Gate垂直方向)の断面構造の一例を示している。図3は、図1中のB−B´線に沿うチャネル幅方向(Gate平行方向)の断面構造の一例を示している。
【0022】
図1乃至図3において、10は半導体基板、11および12は半導体基板の表層部に選択的に形成されたMOSトランジスタのドレイン(Drain) 領域およびソース(source)領域、13は半導体基板10の表面に形成されたゲート絶縁膜、14は前記ドレイン領域・ソース領域間のチャネル領域、15は前記チャネル領域14上に前記ゲート絶縁膜13を介して形成されたゲート電極、16は前記ゲート電極15を覆う様に形成された例えば窒化シリコン膜からなるゲート保護膜、17は半導体基板10上に形成された層間絶縁膜、18はドレイン領域11にコンタクトするドレイン配線、18aはドレインコンタクト部、19はソース領域12にコンタクトするソース配線、19aはソースコンタクト部である。
【0023】
そして、20はMOSトランジスタのチャネル領域14をチャネル幅方向の両側から挟む位置に設けられている浅い溝による素子分離領域(Sallow trench isolation;STI) であり、その溝の内部には薄い絶縁膜21を介して導電体(例えば多結晶シリコン)22が埋め込まれており、この導電体22は例えば上部配線(図示せず)から所定の電位が与えられるように接続されている。なお、22aは、導電体22と上部配線とのコンタクト部であり、半導体基板10のバイアス電位は、印加してもしなくてもどちらでもよい。
【0024】
上記第1の実施形態のMOSトランジスタは、従来のMOSトランジスタと比べて、基本構造(ドレイン・ソース領域、チャネル領域、ゲート絶縁膜、ゲート電極)は変わらない。しかし、MOSトランジスタのチャネル領域14をチャネル幅方向の両側から挟む位置に設けられているSTI 20の溝の内部は、従来は全てに絶縁膜(酸化膜)が埋め込まれているのに対して、第1の実施形態では、薄い絶縁膜21に囲まれた導電体22が埋め込まれており、この導電体22に所定の電位が与えられるように接続されている。
【0025】
図4は、図3中のSTI 20の内部の多結晶シリコン22を引き出して電位を与えるためのコンタクトをとる構造の一例を概略的に示す断面図である。
【0026】
ここでは、基板10上に形成された電極引き出し用の上部配線(例えば多結晶シリコン)41によりSTI 20の内部の多結晶シリコン22を周辺領域へ引き出して上方のバックゲート電極42との間で導電プラグ43によりコンタクトをとっている。
【0027】
即ち、図2および図3に示したMOSトランジスタが規則的に配列されたトランジスタアレイ領域に形成されているSTI 20の内部の多結晶シリコン22を覆う酸化膜21は、前記多結晶シリコン22の上面部の一部に対応して開口されている。そして、各STI 20上でそれぞれ内部の多結晶シリコン22に連なるように電極引き出し用の多結晶シリコン41が形成されており、トランジスタアレイ領域の周辺領域で前記電極引き出し用の多結晶シリコン41に上方からバックゲート電極42がコンタクトするように形成されている。なお、18はトランジスタアレイ領域のMOSトランジスタのドレイン電極、44はゲート配線、45はトランジスタアレイ領域の周辺領域で上記ゲート配線44にコンタクトしているゲート電極である。46はトランジスタアレイ領域の周辺領域に形成されているSTI であり、その内部は絶縁膜が埋め込まれている。
【0028】
なお、前記ゲート配線44は不純物が高濃度にドープされた多結晶シリコンからなり、前記STI 20の内部に埋め込まれている多結晶シリコン22およびそれを引き出すための多結晶シリコン41も、空乏化しないように、前記ゲート配線44と同様に不純物が高濃度にドープされている。
【0029】
上述したように第1の実施形態におけるMOSトランジスタは、その活性領域をチャネル幅方向の両側から挟む位置に設けられているSTI 20の内部に埋め込まれている多結晶シリコン22が、MOSトランジスタの疑似バックゲート電極として機能している。つまり、次世代の高性能MOSトランジスタとして検討されている従来例で説明したダブルゲート構造と類似の擬似ダブルゲート構造を有する。
【0030】
このような擬似ダブルゲート構造によれば、比較的容易な加工法により、MOSトランジスタのチャネル領域の空乏化、MOSトランジスタの基板領域のフローティングボディ(Floating Body) 化を実現可能であり、前記したようなMOSトランジスタの特性の向上を期待することができる。
【0031】
<第1の実施形態の変形例>
第1の実施形態では、MOSトランジスタのチャネル幅方向の両側に設けられているSTI 20の内部に酸化膜21を介してバックゲート電極用の多結晶シリコン22が埋め込まれていたが、これに限らないで、図5に示すように構造を変更してもよい。
【0032】
図5は、第1の実施形態の変形例に係るMOSトランジスタのチャネル幅方向(Gate平行方向)の断面構造の一例を示しており、図3中と同一部分には同一符号を付している。
【0033】
即ち、MOSトランジスタのチャネル幅方向の両側から挟む位置に設けられているSTI 20のうちの一方のSTI の溝の内壁には酸化膜21が形成され、その溝の内部にバックゲート電極用の多結晶シリコン22が埋め込まれているが、他方のSTI の溝の内部に全てには酸化膜21が埋め込まれている。
【0034】
MOSトランジスタのチャネル領域を空乏化するという点では、第1の実施形態のようにチャネル幅方向の両側に設けられているSTI 20のそれぞれにバックゲート電極用の多結晶シリコン22が埋め込まれている構造が優れているが、回路設計および加工上、上記変形例のようにチャネル幅方向の両側に設けられているSTI 20の一方のみバックゲート電極用の多結晶シリコン22を埋め込みたい場合に有効である。
【0035】
なお、上記第1の実施形態およびその変形例のMOSトランジスタにおいて、空乏層が発生し難いディプレーションレイヤー(depletion layer) 幅は、次式
Y=[2ε(Vg +Vbi/qND )]1/2
で表わされる。したがって、MOSトランジスタのチャネル幅Wは、チャネル幅方向の両側に設けられているSTI 20の一方のみバックゲート電極用の多結晶シリコン22が埋め込まれている場合には上記Yより小さく、チャネル幅方向の両側に設けられているSTI 20のそれぞれにバックゲート電極用の多結晶シリコン22が埋め込まれている場合には2Yより小さいことが必要である。
【0036】
また、STI 20の内壁に形成されている酸化膜21の深さは、MOSトランジスタのドレイン領域11・ソース領域12の深さよりも深く、STI 20の内部に埋め込まれているバックゲート電極用の多結晶シリコン22の深さは、MOSトランジスタのチャネル領域14の深さよりも十分に深い、あるいはSTI の深さとほぼ同等であることが必要である。
【0037】
また、MOSトランジスタの特性向上のためにゲート絶縁膜13の厚さは十分に薄く形成されており、STI 20の溝を掘った時にエッチングダメージにより溝の壁面は凹凸が多くなり、耐圧に注意する必要がある。そこで、STI 20の溝の内壁に形成されている酸化膜21を前記ゲート絶縁膜13よりも十分に厚く形成したり、STI 20の溝の内壁の絶縁膜として、前記酸化膜21に代えてSiN膜など他の材料を用いるようにしてもよい。
【0038】
<第2の実施形態>
図6は、第2の実施形態に係るMOSトランジスタのチャネル長方向の断面構造の一例を示している。図7は、第2の実施形態に係るMOSトランジスタのチャネル幅方向の断面構造の一例を示している。
【0039】
第2の実施形態のMOSトランジスタは、第1の実施形態のMOSトランジスタと比べて、基本構造は変わらないが、半導体基板としてSOI 基板60が用いられている点が異なり、その他は同じであるので図2および図3中と同一符号を付している。
【0040】
SOI 基板(Wafer) 60は、支持基板61上に形成された絶縁膜(例えばBox 酸化膜)62上にシリコン層63が形成されてなり、シリコン層63の表層部にMOSトランジスタのドレイン(Drain) 領域11およびソース(source)領域12が選択的に形成されている。そして、MOSトランジスタのチャネル領域14をチャネル幅方向の両側から挟む位置に設けられているSTI 20は、その溝が前記Box 酸化膜62内に達する深さに形成されている。
【0041】
図8は、図7中のSTI 20の内部に埋め込まれている多結晶シリコン22を引き出してコンタクトをとる構造の一例を示す断面図であり、図4中と同一部分には同一符号を付している。
【0042】
即ち、図8に示すように、トランジスタアレイ領域に形成されているSTI 20の内部の多結晶シリコン22を覆う酸化膜21のうちで多結晶シリコン22の上面部の一部が開口されている。そして、各STI 20上でそれぞれ内部の多結晶シリコン22に連なるように電極引き出し用の多結晶シリコン41が形成されており、トランジスタアレイ領域の周辺領域で電極引き出し用の多結晶シリコン41に上方からバックゲート電極42が導電プラグ43を介してコンタクトするように形成されている。
【0043】
このようにSOI 基板60を使用することにより、性能面では、高速化、低消費電力化、基板バイアス効果フリー、ラッチアップフリーなどの一般的な効果を期待することができ、プロセス面では、ウエル領域の不要化による工程の簡略化、チップ面積の縮小化などの一般的な効果を期待することができる。しかも、MOSトランジスタの基板領域を完全にフローティングボディ化することができるので、ショートチャネル効果の低減、Sファクター(S-Factor)の低減、ドライバビィリティ(Drivability) の向上、過渡応答の向上などを期待することができ、ダブルゲート構造のMOSトランジスタと同様に特性の改善がより加速される。
【0044】
<第2の実施形態の変形例>
第2の実施形態では、MOSトランジスタのチャネル幅方向の両側に設けられているSTI 20の内部に酸化膜21を介してバックゲート電極用の多結晶シリコン22が埋め込まれていたが、これに限らないで、図9に示すように構造を変更してもよい。
【0045】
図9は、第2の実施形態の変形例に係るMOSトランジスタのチャネル幅方向(Gate平行方向)の断面構造の一例を示しており、図7中と同一部分には同一符号を付している。
【0046】
即ち、MOSトランジスタのチャネル幅方向の両側に設けられているSTI 20のうちの一方のSTI の溝の内壁には酸化膜21が形成され、その溝の内部にバックゲート電極用の多結晶シリコン22が埋め込まれているが、他方のSTI の溝の内部に全てには酸化膜21が埋め込まれている。
【0047】
<第3の実施形態>
図10は、第3の実施形態に係るMOSトランジスタのチャネル幅方向の断面構造の一例を示している。
【0048】
第3の実施形態のMOSトランジスタは、第2の実施形態のMOSトランジスタと比べて、(1)図11に示すように、支持基板61の表層部にウエル(Well)領域64が形成されている点、(2)前記STI 20に埋め込まれているバックゲート電極用の多結晶シリコン22がSOI 基板60のBox 酸化膜62下のウエル領域64にコンタクトしている点が異なり、その他は同じである。
【0049】
図11は、図10中のSTI 20の内部に埋め込まれている多結晶シリコン22を引き出してコンタクトをとる構造の一例を示す断面図であり、図8中と同一部分には同一符号を付している。
【0050】
即ち、トランジスタアレイ領域に形成されている各STI 20の内壁に形成されている酸化膜21のうち、内部に埋め込まれているバックゲート電極用の多結晶シリコン22の下端部に対向する部分が開口されており、この多結晶シリコン22の下端部が前記ウエル領域64に連なるように形成されている。そして、トランジスタアレイ領域の周辺領域で、ウエル領域64の上方からバックゲート電極42が導電プラグ43およびSTI 内の多結晶シリコン22を介してウエル領域64にコンタクトするように形成されており、各バックゲート電極用の多結晶シリコン22に共通にバックゲート電位を与えることが可能となる。
【0051】
上記構造によれば、各バックゲート電極用の多結晶シリコン22に一定のバックゲート電位を与えるだけでも差し支えがなければ、配線の引き回し、抵抗等を比較的気にせずに形成できるので有用である。
【0052】
<第3の実施形態の変形例>
第3の実施形態では、MOSトランジスタのチャネル幅方向の両側に設けられているSTI 20の内部に酸化膜21を介してバックゲート電極用の多結晶シリコン22が埋め込まれていたが、図9に示したように、MOSトランジスタのチャネル幅方向の両側に設けられているSTI 20のうちの一方のSTI の溝の内部には酸化膜21を介してバックゲート電極用の多結晶シリコン22を埋め込み、他方のSTI の内部の全てに酸化膜21を埋め込むように構造を変更してもよい。
【0053】
<第4の実施形態>
ダイナミック型メモリにおいて、従来の1トランジスタ・1キャパシタからなるメモリセルのパターンサイズを縮小するために、例えばIEEE Trans. Electron Devices. ED-29,No.4,April 1982 に開示されているようなMOSトランジスタ1個分のパターンサイズからなるTI Cell が提案されている。このTI Cell は、例えば図25(a) 、(b) 、図26(a) 、(b) に示すような断面構造、基板領域平面内の電位分布、基板領域深さ方向の電位分布および不純物濃度分布を有する。即ち、縦方向PNP-トランジスタの構造を有しており、ゲート(Gate)電極下のp型不純物領域にホール(Hole)を保持してMOSトランジスタの閾値を変化させることにより、ON,OFFデータの読み書きが可能になっている。
【0054】
図27は、従来の1トランジスタ・1キャパシタからなるメモリセルでアレイが構成されたダイナミック型メモリ(1-T DRAM)と、図25(a) 、(b) 、図26(a) 、(b) に示したTI-Cell でアレイが構成されたダイナミック型メモリ(TI DRAM) について、カレントパス(Current path)を比較して示す回路図である。
【0055】
TI DRAM において、WLは同一行のTI-Cell の各ゲートに共通に接続されたワード線、GLは同一行のTI-Cell の各ドレインに共通に接続されたゲート方向線、BLは同一列のTI-Cell の各ソースに共通に接続されたビット線である。
【0056】
TI-Cell は、ゲート電極251、例えばポリシリコンゲート(POLY Gate) 電極下のp型不純物領域およびn型不純物領域が素子分離領域(例えばSiO2 )252に接した部分で不純物プロファイル(Profile) 不整合部分が生じ、誤動作する可能性がある。例えばPNP トランジスタのn型不純物領域の濃度が薄くなり、短絡(Short) するといった場合が想定される。
【0057】
そこで、本発明をTI-Cell に適用した第4の実施形態は、TI-Cell の素子分離領域として形成したSTI の内部に疑似バックゲート電極を形成して電位を印加することにより、PNP トランジスタはオンせずに正常動作を持続するようになり、デバイス的に有利となる。
【0058】
また、TI-Cell では、ゲート電極251下のp型不純物領域にHoleをホール(Hole)を保持するが、STI の横に電荷保持のための容量が存在する場合には、この電荷の保持にも有効である。
【0059】
図12は、第4の実施形態におけるTI-Cell が規則的(例えば行列)に配列されたアレイの平面レイアウトの一例を示しており、bit 線平行方向に隣り合うTI-Cell はSTI 20により分離されている。
【0060】
図13は、図12中のA−A´線に沿うTI-Cell のチャネル長方向(bit 線平行方向)の断面構造の一例を示している。
【0061】
図14は、図12中のB−B´線に沿うTI-Cell のチャネル幅方向(Gate 平行方向)の断面構造の一例を示している。
【0062】
図12乃至図14において、10は半導体基板、11および12は半導体基板の表層部に選択的に形成されたTI-Cell のドレイン(Drain) 領域およびソース(source)領域、13は半導体基板の表面に形成されたゲート絶縁膜である。
【0063】
14は前記ドレイン領域・ソース領域間のチャネル領域、15はチャネル領域上に前記ゲート絶縁膜13を介して形成された例えば多結晶シリコンからなるゲート電極(ワード線の一部)、16は前記ゲート電極15を覆う様に形成された例えば窒化シリコン膜からなるゲート電極保護膜、17は半導体基板上に形成された層間絶縁膜である。
【0064】
GLは前記ドレイン領域にコンタクトするゲート方向線、GCはゲート方向線のコンタクト部、BLは前記ソース領域にコンタクトするビット線、CBはビット線のコンタクト部である。
【0065】
20はbit 線平行方向に配列された複数のTI-Cell を取り囲む位置に設けられているSTI であり、その溝の内部には導電体(例えば多結晶シリコン)22が埋め込まれており、この多結晶シリコン22はバックゲート(back gate)線に連なり、所定の電位が与えられるように接続されている。
【0066】
<第4の実施形態の変形例>
図15は、第4の実施形態の変形例におけるTI-Cell が規則的に配列されたアレイの平面レイアウトの一例を示している。
【0067】
この平面レイアウトは、bit 線平行方向に隣り合うTI-Cell でドレイン領域11およびそれにコンタクトするゲート方向線GLを共有しており、bit 線平行方向に隣り合うTI-Cell が上記共有ドレイン領域11により分離されることにより、bit 線平行方向のサイズが縮小されたものである。
【0068】
図16は、図15中のC−C´線に沿うTI-Cell のチャネル長方向(bit 線平行方向)の断面構造の一例を示している。ここでは、例えばp型半導体基板10の表層部に選択的にn型不純物拡散層からなるドレイン領域11およびソース領域12が形成されており、第4の実施形態で説明したTI-Cell のチャネル長方向(bit 線平行方向)の断面構造を示す図13中と同一部分には同一符号を付している。
【0069】
図12乃至図16に示した第4の実施形態およびその変形例において、STI の内部に埋め込まれているバックゲート電極用の多結晶シリコン22は、例えば第1の実施形態と同様に、図4に示したように引き出されて上方からコンタクトがとられ、電位が与えられるように加工されている。
【0070】
<第5の実施形態>
現在、SOI 基板は、高性能、低消費電力が可能となり、ロジック(Logic)LSIでは有望視されている。第5の実施形態では、図12を参照して前述した第4の実施形態と同様のTI-Cell を用いたダイナミック型メモリセルのアレイおよびその周辺回路部をSOI 基板上に混載したものであり、周辺回路部に高性能、低消費電力のMOSトランジスタを配置したダイナミック型メモリLSI の実現が可能となる。
【0071】
図17は、第5の実施形態に係るTI-Cell のチャネル長方向の断面構造の一例を示している。図18は、第5の実施形態に係るTI-Cell のチャネル幅方向の断面構造の一例を示している。図19は、図18中のSTI の内部に埋め込まれている多結晶シリコンを引き出してコンタクトをとる構造の一例を示す断面図である。
【0072】
図17および図18は、第4の実施形態の説明で参照した図13および図14と比べて、半導体基板としてSOI 基板60が用いられている点が異なり、その他は同じであるので図13中および図14中と同一符号を付している。
【0073】
なお、図19において、TI-Cell アレイ領域に形成されているSTI 20の内部の多結晶シリコン22連なる電極引き出し用の多結晶シリコン41に対して、TI-Cell アレイ領域の周辺領域で上方からバックゲート電極42が導電プラグ43を介してコンタクトするように形成されている。
【0074】
<第5の実施形態の変形例>
図20は、第5の実施形態の変形例に係るTI-Cell のチャネル幅方向の断面構造の一例を示している。図21は、図20中のSTI の内部に埋め込まれている多結晶シリコンを引き出してコンタクトをとる構造の一例を示す断面図である。
【0075】
図20および図21は、第5の実施形態の説明で参照した図18および図19と比べて、(1)図21に示すように、支持基板61の表層部にウエル領域64が形成されている点、(2)図20に示すように、STI 20に埋め込まれているバックゲート電極用の多結晶シリコン22の下端部がSOI 基板のBox 酸化膜62下のウエル領域64に達している点が異なり、その他は同じであるので図18中および図19中と同一符号を付している。
【0076】
なお、図21において、TI-Cell アレイ領域に形成されている各STI 20の内壁に形成されている酸化膜21のうち、内部に埋め込まれているバックゲート電極用の多結晶シリコン22の下端部が開口されている。そして、この多結晶シリコン22の下端部がウエル領域64に連なるように形成されており、TI-Cell アレイ領域の周辺領域でウエル領域64に上方からバックゲート電極42が導電プラグ43およびSTI 内の多結晶シリコン62を介してコンタクトするように形成されており、各バックゲート電極用の多結晶シリコン22に共通のバックゲート電位を与えることが可能となる。
【0077】
<第6の実施形態>
第6の実施形態では、図15を参照して前述した第4の実施形態の変形例と同様にTI-Cell が規則的に配列されたアレイを有し、半導体基板としてSOI 基板が用いられている。
【0078】
図22は、第6の実施形態におけるTI-Cell のチャネル長方向(bit 線平行方向)の断面構造の一例を示しており、第4の実施形態の変形例の説明で参照した図16と比べて、半導体基板としてSOI 基板60が用いられている点が異なり、その他は同じであるので図16中と同一符号を付している。
【0079】
【発明の効果】
上述したように本発明の半導体装置によれば、STI 内部に導電体を埋め込むことにより、STI 素子分離の素子分離耐性を保ちつつ、疑似ダブルゲート構造のMOSトランジスタを実現できる。また、MOSトランジスタの基板部分に容量を設定したい場合、もしくは基板近くに配線層を増やしたい場合に効果がある。
【図面の簡単な説明】
【図1】本発明の半導体装置の第1の実施形態に係るMOSトランジスタの平面レイアウトの一例を示す図。
【図2】図1中のA−A´線に沿うチャネル長方向(Gate垂直方向)の断面図。
【図3】図1中のB−B´線に沿うチャネル幅方向(Gate平行方向)の断面図。
【図4】図3中のSTI の内部に埋め込まれている多結晶シリコンを引き出してコンタクトをとる構造の一例を示す断面図。
【図5】第1の実施形態の変形例に係るMOSトランジスタのチャネル幅方向(Gate平行方向)を示す断面図。
【図6】第2の実施形態に係るMOSトランジスタのチャネル長方向を示す断面図。
【図7】第2の実施形態に係るMOSトランジスタのチャネル幅方向に沿う一例を示す断面図。
【図8】図7中のSTI の内部に埋め込まれている多結晶シリコンを引き出してコンタクトをとる構造の一例を示す断面図。
【図9】第2の実施形態の変形例に係るMOSトランジスタのチャネル幅方向(Gate平行方向)を示す断面図。
【図10】第3の実施形態に係るMOSトランジスタのチャネル幅方向を示す断面図。
【図11】図10中のSTI の内部に埋め込まれている多結晶シリコンを引き出してコンタクトをとる構造の一例を示す断面図。
【図12】第4の実施形態に係るTI-Cell のアレイの平面レイアウトの一例を示す図。
【図13】図12中のA−A´線に沿うTI-Cell のチャネル長方向(bit 線平行方向)の断面図。
【図14】図12中のB−B´線に沿うTI-Cell のチャネル幅方向(Gate 平行方向)の断面図。
【図15】第4の実施形態の変形例におけるTI-Cell のアレイの平面レイアウトの一例を示す図。
【図16】図15中のC−C´線に沿うTI-Cell のチャネル長方向(bit 線平行方向)の断面図。
【図17】第5の実施形態におけるTI-Cell のチャネル長方向に沿う断面図。
【図18】第5の実施形態におけるTI-Cell のチャネル幅方向に沿う断面図。
【図19】図18中のSTI の内部に埋め込まれている多結晶シリコンを引き出してコンタクトをとる構造の一例を示す断面図。
【図20】第5の実施形態の変形例におけるTI-Cell のチャネル幅方向に沿う断面図。
【図21】図20中のSTI の内部に埋め込まれている多結晶シリコンを引き出してコンタクトをとる構造の一例を示す断面図。
【図22】第6の実施形態におけるTI-Cell のチャネル長方向(bit 線平行方向)の断面図。
【図23】ダブルゲートデバイス構造の従来例を示す断面図。
【図24】ダブルゲートデバイス構造の他の従来例を示す断面図。
【図25】公知のTI Cell の断面構造および基板領域平面内の電位分布を示す図。
【図26】図25に示したTI Cell の基板領域深さ方向の電位分布および不純物濃度分布を示す図。
【図27】従来の1トランジスタ・1キャパシタからなるメモリセルでアレイが構成されたダイナミック型メモリ(1-T DRAM)と図25および図26に示したTI-Cell でアレイが構成されたダイナミック型メモリ(TI DRAM) について、カレントパスを比較して示す回路図。
【符号の説明】
10…半導体基板、
11…ドレイン(Drain) 領域、
12…ソース(source)領域、
13…ゲート絶縁膜、
14…チャネル領域、
15…ゲート電極、
16…ゲート保護膜、
17…層間絶縁膜、
18…ドレイン配線、
18a…ドレインコンタクト部、
19…ソース配線、
19a…ソースコンタクト部、
20…素子分離領域(STI) 、
21…酸化膜、
22…導電体、
22a…導電体コンタクト部。

Claims (5)

  1. 支持基板上に形成された絶縁膜上にシリコン層が形成された半導体基板と、
    前記シリコン層に形成されたメモリセルトランジスタのドレイン・ソース領域と、
    前記半導体基板の前記ドレイン・ソース領域間のチャネル領域の表面上にゲート絶縁膜を介して形成されたゲート電極と、
    前記ドレイン・ソース領域間のチャネル領域を両側から挟むように前記半導体基板の表層部に前記絶縁膜に達するように形成され、前記絶縁膜と共に前記チャネル領域を三方から囲むことにより前記チャネル領域を分離する素子分離領域と、
    前記チャネル領域と絶縁されて前記素子分離領域の内部に埋め込まれ、所定の電圧が印加されることによって前記セルトランジスタのチャネル領域下を空乏化するバックゲート電極用の導電体と
    を具備することを特徴とするメモリ集積回路
  2. 前記シリコン層には複数のメモリセルトランジスタのドレイン・ソース領域が行列状に配列されており、
    前記ゲート電極はビット線平行方向と交差する方向に延長して形成されており、
    前記素子分離領域はビット線平行方向に延長して形成されていることを特徴とする請求項1記載のメモリ集積回路
  3. 前記導電体に連なるバックゲート線をさらに具備することを特徴とする請求項1または2記載のメモリ集積回路
  4. 前記チャネル領域と前記導電体との間の前記素子分離領域は、前記ゲート絶縁膜より厚いことを特徴とする請求項1ないし3のいずれか1項記載のメモリ集積回路
  5. 半導体基板と、
    前記基板上に行列状に配列された複数のメモリセルトランジスタのドレイン・ソース領域と、
    ビット線平行方向と交差する方向に延長して配列され、前記各メモリセルトランジスタのドレイン・ソース領域間のチャネル領域の表面上にゲート絶縁膜を介して形成された複数のゲート電極と、
    前記ビット線平行方向に延長して配列され、前記複数のメモリセルトランジスタのドレイン・ソース領域間のチャネル領域を両側から挟むように前記半導体基板の表層部に形成された素子分離領域と、
    前記各チャネル領域と絶縁されて前記素子分離領域の内部に埋め込まれ、所定の電圧が印加されることによって前記複数の各セルトランジスタのチャネル領域下を空乏化するバックゲート電極用の導電体と
    を具備することを特徴とするメモリ集積回路
JP2001201280A 2001-04-26 2001-07-02 メモリ集積回路 Expired - Fee Related JP3798659B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001201280A JP3798659B2 (ja) 2001-07-02 2001-07-02 メモリ集積回路
US10/132,520 US6632723B2 (en) 2001-04-26 2002-04-26 Semiconductor device
TW091108721A TW544911B (en) 2001-04-26 2002-04-26 Semiconductor device
KR10-2002-0023055A KR100525331B1 (ko) 2001-04-26 2002-04-26 반도체 장치
EP02009262A EP1253634A3 (en) 2001-04-26 2002-04-26 Semiconductor device
CNB021410828A CN1230905C (zh) 2001-04-26 2002-04-26 半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201280A JP3798659B2 (ja) 2001-07-02 2001-07-02 メモリ集積回路

Publications (3)

Publication Number Publication Date
JP2003017691A JP2003017691A (ja) 2003-01-17
JP2003017691A5 JP2003017691A5 (ja) 2005-07-28
JP3798659B2 true JP3798659B2 (ja) 2006-07-19

Family

ID=19038276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201280A Expired - Fee Related JP3798659B2 (ja) 2001-04-26 2001-07-02 メモリ集積回路

Country Status (1)

Country Link
JP (1) JP3798659B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044510B2 (ja) * 2003-10-30 2008-02-06 株式会社東芝 半導体集積回路装置
JP4058403B2 (ja) 2003-11-21 2008-03-12 株式会社東芝 半導体装置
KR100618698B1 (ko) * 2004-06-21 2006-09-08 주식회사 하이닉스반도체 반도체 소자 및 그의 제조방법
KR100702014B1 (ko) * 2005-05-03 2007-03-30 삼성전자주식회사 수직 채널 트랜지스터 구조를 갖는 단일 트랜지스터 플로팅바디 디램 소자들 및 그 제조방법들
JP4660324B2 (ja) * 2005-09-06 2011-03-30 株式会社東芝 Fbcメモリ装置
JP2007194259A (ja) 2006-01-17 2007-08-02 Toshiba Corp 半導体装置及びその製造方法
KR100900232B1 (ko) 2007-05-22 2009-05-29 주식회사 하이닉스반도체 반도체 소자 및 그의 제조방법
JP2009117518A (ja) 2007-11-05 2009-05-28 Toshiba Corp 半導体記憶装置およびその製造方法

Also Published As

Publication number Publication date
JP2003017691A (ja) 2003-01-17

Similar Documents

Publication Publication Date Title
US11705458B2 (en) Integrated circuit devices and fabrication techniques
US6632723B2 (en) Semiconductor device
US7952162B2 (en) Semiconductor device and method for manufacturing the same
JP4031329B2 (ja) 半導体装置及びその製造方法
US6906384B2 (en) Semiconductor device having one of patterned SOI and SON structure
US7611931B2 (en) Semiconductor structures with body contacts and fabrication methods thereof
US8378429B2 (en) Selective floating body SRAM cell
US7432560B2 (en) Body-tied-to-source MOSFETs with asymmetrical source and drain regions and methods of fabricating the same
JP5296768B2 (ja) チャネルが埋込み誘電体層を通り抜けているメモリセル
US5008723A (en) MOS thin film transistor
US11527493B2 (en) Method for preparing semiconductor device structure with air gap structure
KR19990006452A (ko) 반도체 장치 및 반도체 디바이스 형성 방법
JPH10326878A (ja) 半導体メモリデバイス及びその製造方法
EP1366524A1 (en) Open bit line dram with vertical ultra-thin body transistors
US8669603B2 (en) Semiconductor constructions
US8587062B2 (en) Silicon on insulator (SOI) field effect transistors (FETs) with adjacent body contacts
JP2000228504A (ja) 半導体ボディ、ダイナミックランダムアクセスメモリならびに電気的アイソレ―ションおよびメモリセルの形成方法
US7132751B2 (en) Memory cell using silicon carbide
JP3798659B2 (ja) メモリ集積回路
US7365396B2 (en) SOI SRAM products with reduced floating body effect
US20050133843A1 (en) Semiconductor device and method of manufacturing a semiconductor device
US7320912B2 (en) Trench capacitors with buried isolation layer formed by an oxidation process and methods for manufacturing the same
KR20050024099A (ko) 에스램 소자의 제조방법 및 그에 의해 제조된 에스램 소자
JPH10163450A (ja) 集積回路とその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees