JP3793154B2 - 対向した表面間の距離を表す信号を生成するための無接触測定方法および装置 - Google Patents

対向した表面間の距離を表す信号を生成するための無接触測定方法および装置 Download PDF

Info

Publication number
JP3793154B2
JP3793154B2 JP2002542818A JP2002542818A JP3793154B2 JP 3793154 B2 JP3793154 B2 JP 3793154B2 JP 2002542818 A JP2002542818 A JP 2002542818A JP 2002542818 A JP2002542818 A JP 2002542818A JP 3793154 B2 JP3793154 B2 JP 3793154B2
Authority
JP
Japan
Prior art keywords
sensor
component
conductive plate
input
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002542818A
Other languages
English (en)
Other versions
JP2004513377A (ja
Inventor
ミスー、ジル
ラロンド、フランソワ
ブルジョワ、ジャン−マール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Publication of JP2004513377A publication Critical patent/JP2004513377A/ja
Application granted granted Critical
Publication of JP3793154B2 publication Critical patent/JP3793154B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • G01B7/144Measuring play on bearings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般に、対向した表面間の距離を表す信号、とくに電気回転機の回転子と固定子との間の空隙を表す信号を生成するための無接触測定方法および測定装置に関する。
【0002】
【従来の技術】
米国特許第4,675,670号明細書(LALONDE氏他による)には、電気回転機の空隙を測定するための装置および方法が記載されている。LALONDE氏らによる特許明細書によると、センサは、電気回転機の固定子上に位置されることが好ましい。高周波信号がセンサを駆動し、電流検出器が回転子と固定子との間の距離に反比例する電流信号を測定する。
【0003】
【発明が解決しようとする課題】
この設計の1つの欠点は、電流信号を線形化するために処理手段を設ける必要があることである。当業者は、このような線形化手段が測定の精度を低下させるので望ましくないことを認識するであろう。この設計の別の欠点は、電流検出器において変成器が使用されなければならず、それが著しい量のエネルギを消費することである。その装置のさらに別の欠点は、その寸法が回転子上にそれを永続的に設置するには不十分なことである。この装置のさらに別の欠点は、動作周波数を容易に選択することができないことである。さらに、このような設計では、固定子中における放電を測定することができない。
【0004】
MCM ENTERPRISE社製の商標名HydroScanもまた技術的に知られている。このHydroScan(商標名)は、回転子と固定子との間の距離を測定すると共に局部的な部分的放電を検出するために電気回転機の周囲全体に配置された一連のセンサを使用する。HydroScan(商標名)の設計は、局部的な部分的放電の位置を決定するために専門家により解析されなければならない読取りを行う高価で複雑な装置を必要とするために望ましくない。
【0005】
本発明の目的は、電気回転機の回転子および固定子のような第1および第2の部品の対向した表面間の距離を表す信号を、さらに正確には従来技術の回路より廉価でエネルギ消費量の少ない回路により生成する無接触測定方法および装置を提供することである。
【0006】
【課題を解決するための手段】
本発明によると、近接して間隔を隔てられ、第2の部品が接地されている第1および第2の部品の対向した表面間の距離を表す信号を生成する無接触測定方法が提供され、この方法は、
(a)互いに絶縁されている重なった第1および第2の平行な導電性プレートを含むセンサを第1の部品の表面上に配置し、それらのプレートは第1の部品の表面に平行であり、そこから絶縁されており、第2のプレートは、第1のプレートと第1の部品の表面との間に配置されており、
(b)センサの第1のプレートに抵抗を通って高周波信号を供給し、
(c)高インピーダンスで低入力容量の利得が1の電圧増幅器の入力に抵抗を通って高周波信号を供給し、
(d)その増幅器の出力信号を第2のプレートに供給し、この増幅器の出力信号が2つの表面間の距離を表すステップを含んでいる。
【0007】
ステップ(b)は、センサの第1のプレートが同軸ケーブルの内部導体を通って給電されることを特徴とし、ステップ(d)は、第2のプレートが同軸ケーブルの外部導体を通って給電されることを特徴とすることが好ましい。
【0008】
無接触測定方法は、増幅器の出力信号を復調回路に供給するステップをさらに含んでおり、その復調回路の出力信号は2つの表面間の距離を表す直流電圧信号であることが好ましい。
【0009】
無接触測定方法は、高周波信号および増幅器の出力信号の両方を同期検出器に供給するステップをさらに含んでおり、同期検出器の出力信号は2つの表面間の距離を表す直流電圧信号であることが好ましい。
【0010】
ステップ(b)および(c)は、抵抗が電気的に制御された可変抵抗であることを特徴とし、この方法はさらに、
比較装置の入力に復調回路の出力信号を供給し、
その比較装置の別の入力に基準信号を供給し、
カウンタのアップダウン入力に比較装置の出力信号を供給し、
カウンタのクロック入力に高周波信号を供給し、
電気的に制御された可変抵抗のデジタル制御入力に、2つの表面間の距離を表すカウンタのデジタル出力信号を供給するステップを含んでいることが好ましい。
【0011】
ステップ(b)および(c)は、高周波信号が周波数制御された発生器によって発生されることを特徴とし、この方法はさらに、
比較装置の入力に復調回路の出力信号を供給し、
その比較装置の別の入力に基準信号を供給し、
周波数制御装置の入力に比較装置の出力信号を供給し、
周波数制御された発生器のデジタル制御入力に、2つの表面間の距離を表す周波数制御装置のデジタル出力信号を供給するステップを含んでいることが好ましい。
【0012】
第1および第2の部品はそれぞれ電気回転機の回転子および固定子であり、第1のプレートが保護リングを含んでいることが好ましく、この方法はさらに、
回転子が固定子に関して回転しているときにハイパスフィルタの入力に増幅器の出力信号を供給し、
増幅器および検出器の入力にハイパスフィルタの出力信号を供給し、その増幅器および検出器が固定子の内部素子間に生じた放電を表す直流電圧信号を供給するステップを含んでいることが好ましい。
【0013】
無接触測定方法は、回転子が固定子に関して回転したときに増幅器および検出器の直流電圧信号を記憶して、固定子の付近で生じた放電の振幅および位置を識別するステップをさらに含んでいることが好ましい。
【0014】
第1および第2の部品はそれぞれ電気回転機の回転子および固定子であり、第1のプレートが保護リングを含み、この方法はさらに、回転子が固定子に関して回転しているあいだに増幅器の出力信号を記憶して、固定子の付近の空隙の振幅および位置を識別するステップをさらに含んでいることが好ましい。
【0015】
無接触測定方法は、ステップ(b)および(c)において使用される高周波信号は100kHz乃至500kHzの周波数を有し、
ステップ(b)および(c)において使用される抵抗は実質的に500kオームであることを特徴とすることが好ましい。
【0016】
本発明によると、近接して間隔を隔てられ、第2の部品が接地されている第1および第2の部品の対向した表面間の距離を表す信号を生成する無接触測定装置が提供され、この装置は、
第1の部品の表面上に取付けられるように構成され、互いに絶縁されている重なった第1および第2の平行な導電性プレートを含み、それらのプレートが第1の部品の表面に平行であり、そこから絶縁されており、第2のプレートが第1のプレートと第1の部品の表面との間に配置されているセンサと、
高周波信号を発生する出力を有する高周波信号発生器と、
高周波信号発生器の出力と直列に接続された抵抗と、
抵抗およびセンサの第1のプレートの両方に接続された入力と、センサの第2のプレートに接続された出力とを有しており、その出力が2つの表面間の距離を表す出力信号を供給する高インピーダンスで低入力容量の利得が1の電圧増幅器とを備えている。
【0017】
【発明の実施の形態】
本発明およびその多数の利点は、以下の好ましい実施形態の非制限的な説明および添付図面を参照とすることによりさらによく理解されるであろう。
図1、2および3を参照すると、近接して間隔を隔てられた第1および第2の部品3,5の対向した表面の間の距離を表す信号を生成する本発明による無接触測定装置が示されている。示されているように、第2の部品5は接地されている。第1の部品3は、たとえば、電気回転機の回転子の磁極片であってよく、一方第2の部品5の表面は固定子のボアの表面であってもよい。しかしながら、本発明は、回転機の回転子と固定子との間の距離の測定に限定されないことを認識すべきである。この装置はまた、たとえば線形発電機において使用されることができる。それはまた、航空電子工学あるいは正確な無接触距離測定が要求される製紙工業のような分野では、現在機械的用途において使用されている渦電流センサに都合よく取って代わることができる。
【0018】
この装置は、第1の部品3の表面上に取付けられるように構成されたセンサ7を含んでいる。センサ7は、平行で重複し、互いに絶縁された第1および第2の導電性プレート9,11を含んでいる。プレート9,11は第1の部品3の表面に平行であり、そこから絶縁されている。第2のプレート11は第1のプレート9と第1の部品3の表面との間の中に配置されている。この装置はまた、高周波信号を発生するための出力を有する高周波信号発生器17と、この高周波信号発生器17の出力と直列に接続された抵抗19と、高インピーダンスで低入力容量の利得が1の電圧増幅器27とを含んでいる。この増幅器27は、抵抗19およびセンサ7の第1のプレート9の両者に接続された入力と、センサ7の第2のプレート11に接続された出力31とを有している。増幅器27の出力31は、2つの表面3,5間の距離を表す出力信号を供給する。
【0019】
2つの表面間の距離を表す信号が、上述の装置により、さらに正確には従来技術の回路より廉価でエネルギ消費量の少ない回路により生成される。
【0020】
平行で重複した第1および第2の導電性プレート9,11は、適切な絶縁材料13によって互いに絶縁されている。センサ7は、2つのプレート9,11が第1の部品3の表面に平行であり、そこから絶縁されるように、この表面上に位置するように設計されている。この絶縁は、プレート9,11を電気的に絶縁するためにすでに使用されている絶縁材料13により行われる。
【0021】
当然ながら、回転子と固定子を隔てている距離が決定される場合には、それらのどちらの上にセンサ7が配置されてもよいことを認識しなければならない。しかしながら、以下さらに説明するように、固定子内の距離および電気放電の両者が測定される場合には、センサ7は回転子上に位置される。
【0022】
センサを第1の部品3のまさにその表面上に配置することは、それを単に接着することより、あるいは任意の他の適切な手段により行われることができる。センサ7を発電機上に取付けて、その空隙を測定しようとする場合には、渦電流をできるだけ減少させるために導電性プレート9,11の表面に溝を付けることが有効である。
【0023】
寄生電圧を可能な限り減少させるために、プレート9,11の表面の一方を他方に関して増加させることによりその寸法を変えてもよいし、あるいはそれらを隔てる距離が短ければ、それだけいっそう寄生電圧が小さくなることが認識されているので、この距離を変えてもよい。
【0024】
図1を再び参照とすると、増幅器27の出力信号を処理するために復調回路33がさらに設けられることができる。復調回路33は、その出力34が2つの表面3,5間の距離を表す直流電圧信号を供給している期間中は増幅器27の出力31に接続される入力を有している。
【0025】
回転子が固定子に関して回転している期間中における増幅器27の出力信号を記憶して、その固定子の周囲の空隙の振幅および位置を識別するコンピュータのような手段が設けられることができることが好ましい。
【0026】
寄生電圧をさらに減少させるために、保護リング29がセンサ7内に含まれていることが好ましい。保護リング29は、図2および3に最もよく示されているように第2のプレート11に接続され、第1のプレート9の周囲全体にわたって部分的にそれを覆った状態で延在している。
【0027】
高周波信号発生器17は、高周波信号を発生する出力を有している。たとえば、周波数信号は正弦波であることができ、あるいは方形波でもよい。一例として、高周波信号発生器17の電圧信号は以下の式によって与えられる:
E=V0 cos(2πFt) (1)
ここで、V0 は電圧信号の振幅であり、Fは動作周波数であり、tはその時間である。
【0028】
理論上、センサ7 はローパスRCフィルタ回路内のキャパシタンスとして動作し、ここでRは抵抗19の抵抗値である。センサのキャパシタンスの値は以下の式によって与えられる:
C=ε0 S/e (2)
ここで、ε0 は空気の誘電率、Sはセンサ7 の第1のプレート9 の表面面積、eは第1のプレート9 と第2の部品5 との間の距離であり、このeの値はセンサの静電容量に反比例する。
【0029】
さらに、電圧増幅器27はセンサの第1のプレートに接続されており、その入力信号はセンサのキャパシタンス(第1のプレートと第2の部品との表面とで形成されるキャパシタンス)の両端の電圧Vs に対応する。この電圧増幅器27は高インピーダンス、低入力容量の増幅器であるからその接続によってセンサのキャパシタンスに影響はない。それ故、電圧増幅器27の入力信号は理論上は、電圧増幅器27以下の式により与えられるセンサキャパシタンスの電圧Vs に対応する:
s =V0 /(1+j2πFRC) (3)
この式において、2πFRCが1よりはるかに大きい場合には、センサキャパシタンスの電圧は近似的に次の式(4):
s =V0 /j2πFRC (4)
によって与えられる。この式(4)のCを式(2)で規定されているCを表す式で置換することによって近似的に次の式(5)が得られる:
s =V0 e/j2πFRε0 S (5)
増幅器27は前述のように利得が1の増幅器であり、したがって、増幅器27の出力信号は式(5)で表される入力信号と同じであり、2πFRCが1に比較して十分に大きく選択されている場合には、増幅器27の出力信号は理論的にセンサ7 の第1のプレート9 の表面と第2の部品5 の表面との間の距離に正比例することになる。
【0030】
実際には、信号発生器17の高周波信号は、100kHz乃至500kHzに含まれる周波数範囲を有することができ、一方抵抗19は約500kオームの値をとることができる。周波数信号がこの範囲より低い場合、出力電圧信号のダイナミックレンジは小さ過ぎて容易に測定できず、したがって減少した周波数帯域幅のために、距離eを決定することが不可能となる。さらに、特定の発生器の場合において、低過ぎる周波数が雑音を生じさせる可能性がある。他方において、周波数が高過ぎて、上述した範囲を超える場合、測定問題が生じる可能性があり、高周波で信号を処理することを可能にする増幅器がいっそう複雑になる。さらに、高過ぎる周波数は接地インピーダンス問題を発生させる可能性がある。しかしながら、本発明によると、オペレータは100kHz乃至500kHzの所定の範囲内の動作周波数を選択することができる。
【0031】
本発明によると、対向した表面間の距離を表す信号を生成する無接触測定方法もまた提供される。この方法は、(a)センサ7を第1の部品3の表面上に配置し、(b)センサ7の第1のプレート9に抵抗19を通って高周波信号を供給し、(c)高インピーダンスで低入力容量の利得が1の電圧増幅器27に抵抗を通って高周波信号を供給し、(d)その増幅器27の出力信号を第2のプレート11に供給するステップを含んでいる。この増幅器27の出力信号が2つの表面間の距離を表す。
【0032】
図4を参照とすると、寄生電圧をさらに減少させるために、この装置内において同軸ケーブル21が使用されることが好ましい。このような場合、増幅器27の入力は同軸ケーブル21の内部導体23を通ってセンサの第1のプレート9に接続され、一方増幅器27の出力31は同軸ケーブル21の外部導体25を通って第2のプレート11に接続される。同期検出器35が復調回路として使用されることが好ましい。この同期検出器35は、高周波信号発生器17の出力および増幅器27の出力にそれぞれ接続された1対の入力を有している。動作において、同期検出器35の出力36は2つの表面3,5間の距離を表す直流電圧信号を供給する。
【0033】
復調回路は、同期検出器35でなくてもよいことを認識することが重要である。事実、マイクロプロセッサにより制御されたダイオードおよびフィルタ回路、または高速アナログデジタル変換器も同様に動作することができる。
【0034】
図5を参照とすると、回転子と固定子とを隔てている距離eに対する電圧出力曲線が異なった周波数値について示されている。図6を参照とすると、動作の周波数に対するシステム利得曲線が異なったe値について示されている。したがって、特定の設計に対して、センサの線形化の曲線を決定して出力電圧信号の値の関数として測定される距離の値を正確に決定することができる。
【0035】
図7を参照とすると、本発明の別の実施形態による無接触測定装置のブロック図が示されている。この実施形態によると、図1に示されている抵抗19の代わりに、電気的に制御された可変抵抗37が使用される。この装置はさらに、復調回路33の出力34に接続された第1の入力を有する比較装置39を含んでいる。この比較装置39はまた、基準信号レベルを受取る第2の入力41を有している。装置はまた、比較装置39の出力45に接続されたアップ/ダウン入力44を有するカウンタ43を含んでいる。カウンタ43はまた、高周波信号発生器17の出力に接続されたクロック入力47を有している。
【0036】
電気的に制御された可変抵抗37は、カウンタ43のデジタル出力51に接続されたデジタル制御入力49を有している。動作において、このデジタル出力51は、2つの表面3,5 の間の距離を表す出力信号を供給する。
【0037】
図8を参照とすると、本発明のさらに別の実施形態による無接触測定装置のブロック図が示されている。この実施形態によると、図1に示されている高周波信号発生器17は周波数制御された発生器53により置換される。
【0038】
この装置は、復調回路33の出力34に接続された第1の入力および基準信号レベルを受取る第2の入力41を有する比較装置39を含んでいる。
【0039】
この装置はまた、比較装置39の出力45に接続された入力を有する周波数制御装置55を含んでいる。周波数制御された発生器53は、周波数制御装置55のデジタル出力56に接続されたデジタル制御入力54を有している。動作において、周波数制御装置55のデジタル出力56は、2つの表面3,5の間の距離を表す出力信号を供給する。
【0040】
図9を参照とすると、本発明のさらに別の実施形態による無接触測定装置のブロック図が示されている。この特定の実施形態では、距離を測定すると共に固定子内における放電を決定することができる。
【0041】
上述したように、この場合、センサ7は回転子上に位置される。したがって、この装置においては、第1および第2の部品はそれぞれ電気回転機の回転子および固定子であり、第1のプレートは保護リング29を含んでいる。この装置はまた、回転子が固定子に関して回転しているときに増幅器27の出力31に接続された入力を有するハイパスフィルタ57を含んでいる。この装置はまた、ハイパスフィルタ57の出力59に接続された入力を有する増幅器および検出器61を含んでいる。動作において、増幅器および検出器61は固定子の内部素子間で生じた放電を表す直流電圧信号を供給する。
【0042】
とくに、センサ7は、固定子中の部分的な放電に関連した無線周波数信号を測定する。これらの放電の性質は異なっている可能性があり、固定子バー、固定子凹部および固定子巻線から発生する可能性が高い。これらの部分的な放電は非常に高い周波数スペクトルを有しており、それは信号発生器17の動作周波数Fよりはるかに高い。
【0043】
したがって、ハイパスフィルタ57の目的は、増幅器および検出器61がこれらの無線周波数信号の振幅を供給しているときに、信号発生器17に関連した周波数を除去することである。ハイパスフィルタの動作周波数は10MHz乃至250MHzの間で変化することができる。
【0044】
この実施形態は、回転子が固定子に関して回転しているときに増幅器および検出器61の直流電圧信号を記憶してその固定子の周囲で生じた放電の振幅および位置を識別するコンピュータのような手段を設けることが可能であることが好ましい。
【0045】
この最後の実施形態は、追加の費用を最小にするために固定子付近の全ての放電をさらに測定するように装置を修正することができるので有効である。
【0046】
センサ7は、回転子内に1個だけ設置されればよく、一方それは動作において固定子ボア全体を系統的に走査し、全ての固定子バーを含み、それによって従来のシステムより正確な放電位置情報を提供する。
【0047】
本発明の装置は、従来技術の装置に較べて廉価に製造される。その消費電力は減少し、必要とされるケーブルも少なくなり、一方それは固定子の状態の詳細な地図を実時間で提供する。さらに、設計では電子装置がセンサ7上に直接集積されることができる。
【0048】
以上、本発明の好ましい実施形態を詳細に説明し、添付図面において図示してきたが、本発明はこれらの実施形態に制限されず、種々の変更および修正が本発明の技術的範囲を逸脱することなく行われることが可能なことが認識されるであろう。
【図面の簡単な説明】
【図1】 本発明による無接触測定装置のブロック図。
【図2】 図1に示されている無接触測定装置のセンサの上面図。
【図3】 図2に示されているセンサのライン4−4における側断面図。
【図4】 本発明の別の実施形態による無接触測定装置のブロック図。
【図5】 周波数の異なった値に対するeに関する図4に示されている増幅器の絶対電圧出力を示すグラフ。
【図6】 eの異なった値に対する動作の周波数に関するシステム利得を示すグラフ。
【図7】 本発明の別の実施形態による無接触測定装置のブロック図。
【図8】 本発明の別の実施形態による無接触測定装置のブロック図。
【図9】 本発明の別の実施形態による放電を測定するための無接触測定装置のブロック図。

Claims (4)

  1. 近接して間隔を隔てて配置された第1の部品と第2の部品の対向した表面間の距離を表す信号を生成する無接触測定方法において、
    前記第2の部品は接地され、
    互いに絶縁されて重なって形成されている第1および第2の平行な導電性プレートを具備しているセンサを第1の部品と第2の部品との間の空間に配置し、前記センサの第1および第2の導電性プレート第1の部品の表面に平行であり、第2の導電性プレート第1の導電性プレートと第1の部品の表面との間に位置され、第1および第2の導電性プレートが第1の部品および第2の部品の表面から絶縁されているように第1の部品の表面上に前記センサを設置し
    前記センサの第1の導電性プレートに抵抗を通って高周波信号を供給し、
    高インピーダンスで低入力容量であり利得が1である電圧増幅器の入力部が前記センサの第1の導電性プレートに接続され、この電圧増幅器の入力部に前記抵抗を通って高周波信号供給され、
    前記電圧増幅器の出力信号を前記センサの第2の導電性プレートに供給し、
    さらに、前記電圧増幅器の出力信号を復調回路に供給し、
    前記復調回路の出力信号を比較装置の入力部に供給し、その比較装置の別の入力部に基準信号を供給し、
    前記比較装置の出力信号をカウンタのアップダウン入力部に供給し、このカウンタのクロック入力部に高周波信号を供給してセンサの第1の導電性プレートと第2の部品の対向した表面間の距離を表すデジタル出力信号をカウンタから出力させ、
    前記センサの第1の導電性プレートに接続されている抵抗は電気的に制御される可変抵抗であり、この可変抵抗の抵抗値を制御するデジタル制御入力部に前記カウンタのデジタル出力信号を供給するステップを含んでいる無接触測定方法。
  2. 近接して間隔を隔てて配置された第1の部品と第2の部品の対向した表面間の距離を表す信号を生成する無接触測定方法において、
    前記第2の部品は接地され、
    互いに絶縁されて重なって形成されている第1および第2の平行な導電性プレートを具備しているセンサを第1の部品と第2の部品との間の空間に配置し、前記センサの第1および第2の導電性プレートが第1の部品の表面に平行であり、第2の導電性プレートが第1の導電性プレートと第1の部品の表面との間に位置され、第1および第2の導電性プレートが第1の部品および第2の部品の表面から絶縁されているように第1の部品の表面上に前記センサを設置し、
    前記センサの第1の導電性プレートに抵抗を通って高周波信号を供給し、
    高インピーダンスで低入力容量であり利得が1である電圧増幅器の入力部が前記センサの第1の導電性プレートに接続され、この電圧増幅器の入力部に前記抵抗を通って高周波信号が供給され、
    前記電圧増幅器の出力信号を前記センサの第2の導電性プレートに供給し、
    さらに、前記電圧増幅器の出力信号を復調回路に供給し、
    前記復調回路の出力信号を比較装置の入力部に供給し、その比較装置の別の入力部に基準信号を供給し、
    周波数制御装置の入力部に前記比較装置の出力信号を供給してセンサの第1の導電性プレートと第2の部品の対向した表面間の距離を表すデジタル出力信号をカウンタから出力させ
    前記高周波信号は周波数制御された発生器によって発生され、その周波数制御された発生器のデジタル制御入力前記周波数制御装置のデジタル出力信号を供給するステップを含んでいる無接触測定方法。
  3. 気回転機の回転子と固定子である近接して間隔を隔てて配置された第1の部品と第2の部品の対向した表面間の距離を表す信号を生成する無接触測定方法において、
    前記第2の部品は接地され、
    互いに絶縁されて重なって形成されている第1および第2の平行な導電性プレートを具備しているセンサを第1の部品と第2の部品との間の空間に配置し、前記センサの第1および第2の導電性プレートが第1の部品の表面に平行であり、第2の導電性プレートが第1の導電性プレートと第1の部品の表面との間に位置され、第1および第2の導電性プレートが第1の部品および第2の部品の表面から絶縁されているように第1の部品の表面上に前記センサを設置し、前記センサの第1の導電性プレート保護リングを具備し、
    前記センサの第1の導電性プレートに抵抗を通って高周波信号を供給し、
    高インピーダンスで低入力容量であり利得が1である電圧増幅器の入力部が前記センサの第1の導電性プレートに接続され、この電圧増幅器の入力部に前記抵抗を通って高周波信号が供給されてこの電圧増幅器の出力部からセンサの第1の導電性プレートと第2の部品の表面との間の距離を表す出力信号を出力し、
    前記電圧増幅器の出力信号を前記センサの第2の導電性プレートに供給し、
    さらに、回転子が固定子に関して回転しているときに前記電圧増幅器の出力信号を記憶して固定子の付近で生じた放電の振幅および位置を識別するステップを含んでいる無接触測定方法。
  4. 電気回転機の回転子と固定子である近接して間隔を隔てて配置された第1の部品と第2の部品の対向した表面間の距離を表す信号を生成する無接触測定方法において、
    前記第2の部品は接地され、
    互いに絶縁されて重なって形成されている第1および第2の平行な導電性プレートを具備しているセンサを第1の部品と第2の部品との間の空間に配置し、前記センサの第1および第2の導電性プレートが第1の部品の表面に平行であり、第2の導電性プレートが第1の導電性プレートと第1の部品の表面との間に位置され、第1および第2の導電性プレートが第1の部品および第2の部品の表面から絶縁されているように第1の部品の表面上に前記センサを設置し、前記センサの第1の導電性プレートは保護リングを具備し、
    前記センサの第1の導電性プレートに抵抗を通って高周波信号を供給し、
    高インピーダンスで低入力容量であり利得が1である電圧増幅器の入力部が前記センサの第1の導電性プレートに接続され、この電圧増幅器の入力部に前記抵抗を通って高周波信号が供給されてこの電圧増幅器の出力部からセンサの第1の導電性プレートと第2の部品の表面との間の距離を表す出力信号を出力し、
    前記電圧増幅器の出力信号を前記センサの第2の導電性プレートに供給し、
    さらに、回転子が固定子に関して回転しているときに前記電圧増幅器の出力信号をハイパスフィルタの入力に供給し、
    前記ハイパスフィルタの出力信号を増幅および検出器に供給し、
    前記増幅および検出器から出力される固定子の付近で生じた放電を表す直流電圧信号を記憶して、固定子の付近で生じた放電の振幅および位置を識別するステップをさらに含んでいる無接触測定方法。
JP2002542818A 2000-11-16 2001-11-07 対向した表面間の距離を表す信号を生成するための無接触測定方法および装置 Expired - Fee Related JP3793154B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/713,005 US6552667B1 (en) 2000-11-16 2000-11-16 Non-contact measuring method and apparatus for producing a signal representative of a distance between facing surfaces
PCT/CA2001/001571 WO2002040935A2 (en) 2000-11-16 2001-11-07 Non-contact measuring method and apparatus for producing a signal representative of a distance between facing surfaces

Publications (2)

Publication Number Publication Date
JP2004513377A JP2004513377A (ja) 2004-04-30
JP3793154B2 true JP3793154B2 (ja) 2006-07-05

Family

ID=24864386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002542818A Expired - Fee Related JP3793154B2 (ja) 2000-11-16 2001-11-07 対向した表面間の距離を表す信号を生成するための無接触測定方法および装置

Country Status (12)

Country Link
US (1) US6552667B1 (ja)
EP (1) EP1334328B1 (ja)
JP (1) JP3793154B2 (ja)
AR (1) AR031323A1 (ja)
AT (1) ATE277338T1 (ja)
AU (1) AU2002223318A1 (ja)
CA (1) CA2429164C (ja)
DE (1) DE60105839T2 (ja)
DK (1) DK1334328T3 (ja)
ES (1) ES2227323T3 (ja)
PT (1) PT1334328E (ja)
WO (1) WO2002040935A2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256588B2 (en) * 2004-04-16 2007-08-14 General Electric Company Capacitive sensor and method for non-contacting gap and dielectric medium measurement
US6989679B2 (en) * 2004-06-03 2006-01-24 General Electric Company Non-contact capacitive sensor and cable with dual layer active shield
JP4536602B2 (ja) * 2005-06-09 2010-09-01 三菱電機株式会社 ギャップ検出装置
DE102005039455B4 (de) 2005-08-18 2007-06-06 Forschungszentrum Jülich GmbH Implantat zum Einführen in Hohlkörper, Cochleaimplantat, Anordnung aus einem Implantat und Verfahren zur Herstellung
US7671607B2 (en) * 2007-09-06 2010-03-02 Honeywell International Inc. System and method for measuring air bearing gap distance
WO2010050607A1 (ja) * 2008-10-31 2010-05-06 株式会社フジクラ 静電容量型センサ
DE102009028228A1 (de) * 2009-08-04 2011-02-17 Ball Packaging Europe Gmbh Vorrichtung und Verfahren zur Oberflächenbearbeitung mit einer Prüfstation
TWI472757B (zh) * 2011-12-29 2015-02-11 Ind Tech Res Inst 具有可調範圍的非接觸式量測裝置
WO2014101943A1 (en) * 2012-12-27 2014-07-03 Mc-Monitoring S.A. Driver circuit for capacitive gap sensor
US9279655B2 (en) * 2013-02-26 2016-03-08 The United States Of America As Represented By The Secretary Of The Navy Non-contact electrical machine air gap measurement tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1191261A (fr) 1983-12-14 1985-07-30 Francois Lalonde Appareil de mesure dynamique et sans contact de faibles distances
EP0277421A1 (en) * 1986-12-05 1988-08-10 The University Of Western Australia Capacitance sensor arrangement
US5070302A (en) * 1989-09-05 1991-12-03 Eastman Kodak Company Capacitance probe for measuring a width of a clearance between parts
CA2041231C (fr) * 1991-04-25 1999-02-16 Marius Cloutier Mesure dynamique et sans contact de deplacement ou de permittivite a l'aide d'un capteur capacitif
US6114862A (en) * 1996-02-14 2000-09-05 Stmicroelectronics, Inc. Capacitive distance sensor
US6307385B1 (en) * 1997-12-30 2001-10-23 Vibrosystm, Inc. Capacitance measuring circuit for a capacitive sensor

Also Published As

Publication number Publication date
EP1334328A2 (en) 2003-08-13
EP1334328B1 (en) 2004-09-22
AU2002223318A1 (en) 2002-05-27
PT1334328E (pt) 2005-02-28
ES2227323T3 (es) 2005-04-01
JP2004513377A (ja) 2004-04-30
DE60105839T2 (de) 2005-10-06
CA2429164A1 (fr) 2002-05-23
CA2429164C (fr) 2007-01-09
WO2002040935A3 (en) 2003-01-03
DK1334328T3 (da) 2005-01-24
AR031323A1 (es) 2003-09-17
DE60105839D1 (de) 2004-10-28
ATE277338T1 (de) 2004-10-15
WO2002040935A2 (en) 2002-05-23
US6552667B1 (en) 2003-04-22

Similar Documents

Publication Publication Date Title
KR0166981B1 (ko) 용량성 센서를 사용하여 변위 혹은 유전율의 동적 및 비접촉 측정을 하는 방법
US6035265A (en) System to provide low cost excitation to stator winding to generate impedance spectrum for use in stator diagnostics
TWI691380B (zh) 膜厚測定值之補正方法、膜厚補正器、及渦電流檢測器
CN100460804C (zh) 用于非接触间隙和电介质测量的容性传感器和方法
JP3793154B2 (ja) 対向した表面間の距離を表す信号を生成するための無接触測定方法および装置
US7705623B2 (en) Method and device for detecting interlaminar short circuits
US5489888A (en) Sensor system for contactless distance measuring
US4675670A (en) Apparatus for the dynamic and non-contact measurement of small distances
WO2006074560A2 (en) Eddy-current sensor and magnetic bearing device
KR101789577B1 (ko) 고전압 회전기 3상 고정자 권선의 활선 부분 방전 위치 측정장치
US3628136A (en) Means for measuring clearances in a gas turbine including a coaxial cable capacitor
US20150042343A1 (en) Object finder
KR950703740A (ko) 대형 전기 기기에서 고주파 전자기장으로 부터 고주파 에러신호의 디커플링(decoupling of a high-frequency error signal from a high-frequency electromagnetic fielo in a large electric machine)
US20210273427A1 (en) Device for detecting contact with an electrical conductor, method for identifying contact with an electrical conductor, insulation stripping machine comprising a device of this kind
KR100539390B1 (ko) 비전도성 캐리어에서 전기전도성 재료들을 노출시키기위한 노출 장치 및 상기 노출 장치의 제어 방법
JP7302703B2 (ja) オンライン部分放電測定装置に使用される結合コンデンサ
JP7225941B2 (ja) オンライン部分放電測定装置及びこれに使用される結合コンデンサ
JP2020187948A (ja) プラズマ処理装置、プラズマ処理装置を用いた検査方法、および、プラズマ処理装置を用いた半導体装置の製造方法
US4008433A (en) Capacitance displacement type measuring probe
JP7107752B2 (ja) 部分放電校正装置、部分放電校正方法および部分放電測定方法
JP2023030379A (ja) 部分放電検出装置
JPH06160006A (ja) 変位検出装置
JPH04299050A (ja) 回転電機
JPH0278976A (ja) 電気機器の巻線の部分放電検出方法
JPH04299052A (ja) 回転電機

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees