JP3792801B2 - Vacuum insulation - Google Patents

Vacuum insulation Download PDF

Info

Publication number
JP3792801B2
JP3792801B2 JP26586896A JP26586896A JP3792801B2 JP 3792801 B2 JP3792801 B2 JP 3792801B2 JP 26586896 A JP26586896 A JP 26586896A JP 26586896 A JP26586896 A JP 26586896A JP 3792801 B2 JP3792801 B2 JP 3792801B2
Authority
JP
Japan
Prior art keywords
vacuum
heat
inner bag
heat insulating
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26586896A
Other languages
Japanese (ja)
Other versions
JPH10110887A (en
Inventor
康明 谷本
法幸 宮地
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP26586896A priority Critical patent/JP3792801B2/en
Publication of JPH10110887A publication Critical patent/JPH10110887A/en
Application granted granted Critical
Publication of JP3792801B2 publication Critical patent/JP3792801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫などの断熱材として使用可能な真空断熱体に関するものである。
【0002】
【従来の技術】
近年、地球環境保護の観点から、冷蔵庫断熱材の発泡剤として使用されているCFC11によるオゾン層破壊が世界的規模で注目されている。
【0003】
この様な背景から新規発泡剤を用いた断熱材の研究が行われており、代替フロンとしてはHCFC141b、非フロン系ではシクロペンタンなどが候補として選ばれつつある。
【0004】
しかしながら、これらの新規発泡剤はいづれもCFC11より気体熱伝導率が大きく、冷蔵庫の断熱性能低下は避けられない状況下にある。一方、状来のエネルギー規制などに対し、冷蔵庫の省エネ化は避けられない問題であり断熱性能向上が達成すべき大きな課題である。
【0005】
以上の様に、フロン対応による断熱性能の低下と省エネ化達成のための断熱性能向上という相反する課題を現状の冷蔵庫は抱えている。
【0006】
この様な相反する課題を解決する一手段として無機粉末を用いた真空断熱体が考案され、その内容が特開昭57−173689号公報に記載されている。その内容は、フィルム状プラスチック容器に単粒子径が1μm以下の粉末を充填し内部を減圧後密閉することにより真空断熱体を得るというものである。
【0007】
効果としては工業化が容易な0.1〜1mmHgの真空度で製造する事ができ、シリカ粒子が微粉末であるため、同じ真空度の場合、真空断熱体の断熱性能がより向上する事を見出したものである。
【0008】
【発明が解決しようとする課題】
真空断熱体の断熱原理は、熱を伝える空気を排除することである。しかしながら、工業的レベルで高真空にすることは困難であり、実用的に達成可能な真空度は0.1〜10mmHgである。
【0009】
したがって、この真空度で目的とする断熱性能が得られなければならない。
空気が介在して熱伝導が行われる場合の断熱性能に影響をおよぼす物性といて平均自由行程がある。平均自由行程とは、空気を構成する分子の一つが別の分子と衝突するまでに進む距離のことで、平均自由行程よりも形成されている空隙が大きい場合は空隙内において分子同士が衝突し、空気による熱伝導が生じるため真空断熱体の熱伝導率は大きくなる。逆に平均自由行程よりも空隙が小さい場合は真空断熱体の熱伝導は小さくなる。これは、空気の衝突による熱伝導がほとんどなくなるためである。
【0010】
したがって、シリカ粉末などの微細な粒径を有する粉末を用いれば空隙が細かくなり、空気の衝突による熱伝導がほとんどなくなる。この結果、真空断熱体の断熱性能が向上する。しかし、従来の構成では衝撃などによって外被材が破袋し、リークが生じると真空断熱体全体の熱伝導率が悪化してしまう欠点がある。
【0011】
また、シリカ粉末を使用しているため真空断熱体の重量が重くなり、かつ、コストが高くなる欠点がある。
【0012】
一方、地球環境問題における新たな課題として廃棄物問題がある。冷蔵庫などの家電製品においても廃棄物処理問題は例外でなく、いかにしてリサイクルするかが大きな課題である。特に冷蔵庫の断熱材に使用されている硬質ウレタンフォームは、その材料特性からリサイクルが困難とされていた。
【0013】
本発明は上記内容を鑑み、真空断熱体の課題であった外的衝撃などによってリークした場合においても熱伝導率の悪化を抑制し、かつ、軽量化と低コスト化および高性能化を図るとともに、ウレタンフォームのリサイクルを図ろうとするものである。
【0014】
【課題を解決するための手段】
上記課題を解決するため本発明の真空断熱体は、粉末材料からなる芯材が不連続に充填された通気性を有する中袋と、前記中袋を外包する外被材とからなり、前記中袋と前記外被材の熱溶着層との融点の差が10 deg 以下であり、前記中袋が前記芯材の不連続部分で熱溶着され、且つ、前記中袋と前記外被材とが前記芯材の不連続部分で熱溶着されることにより、複数個の独立した真空部を有する真空断熱体である。
【0015】
したがって外的衝撃などによって外被材が破袋しリークした場合などにおいても真空断熱体全体の熱伝導率の悪化を抑制した真空断熱体を得ることができる。また、芯材に用いる材料を粉末材料に限定しているので、真空度が悪化した場合においても熱伝導率の変化が小さい。したがって、衝撃などによって外被材が破袋しリークした場合、リーク箇所に隣接した真空部もガスの透過などによって真空度が悪化しやすくなるが、これに起因した熱伝導率の悪化は小さくできる。また、中袋と外被材の熱溶着部との融点の差が10 deg 以下であるので中袋と外被材との熱溶着によって独立した真空部を形成するのが容易であり、かつ、熱溶着部の材料融点が近いため、どちらかの材料が熱劣化するといった問題が解決される。
【0016】
また、本発明の真空断熱体は、上記構成に加えて、外被材が蒸着層を有するラミネートフィルムどうし、もしくは蒸着層を有するラミネートフィルムと金属箔を有するラミネートフィルムを熱溶着によって袋状にされている真空断熱体である。
【0017】
外被材が蒸着層を有しているため、外被材を通しての熱リークも問題がない。
【0018】
また、本発明の真空断熱体は、上記構成に加えて、外被材の熱溶着層と中袋が、高密度ポリエチレン樹脂からなる真空断熱体である。
【0019】
外被材の熱溶着層を高密度ポリエチレンにしているため耐ストレス性が向上し、熱溶着部の劣化などが抑制できる。
【0020】
また、本発明の真空断熱体は、上記構成に加えて、芯材が硬質ウレタンフォーム粉末を含む真空断熱体である。
【0021】
したがって、芯材として硬質ウレタンフォーム粉末を用いていることから、樹脂熱伝導率が低く、真空断熱体に適用した場合において熱伝導率の低減が図れる。また、冷蔵庫などに使用されているウレタンフォームのリサイクルも可能となる。
【0022】
本発明の断熱パネルは、上記本発明の真空断熱体と硬質ウレタンフォームとを複層した断熱パネルである。
【0023】
したがって、通常の住宅断熱などに使用されるウレタン断熱パネルよりも断熱性能に優れる。また、硬質ウレタンフォームと複層されている真空断熱体が複数個の独立した真空部を有しており、かつ、芯材に粉末材料を用いているため、施工時などに真空断熱体に衝撃が加わりリークした場合、真空断熱体全体の真空度が悪化することが無く、断熱パネルとしての熱伝導率の悪化を抑制できる。
【0024】
また、本発明の断熱箱体は、外箱と、内箱と、前記外箱と内箱とによって形成される空間に発泡断熱材を充填した断熱箱体において、前記外箱もしくは内箱の内面に、上記本発明の真空断熱体を設けた断熱箱体である。
【0025】
したがって、真空断熱体がリークした場合においても全体の熱伝導率の悪化が小さいため、冷蔵庫に適用した場合、長きに亘って使用しても真空断熱体の急激な熱伝導率の悪化がない。
【0026】
この結果、真空断熱体の急激な熱伝導率悪化に起因して、コンプレッサーの運転率が過剰となり、冷蔵庫の信頼性が低下すると言った問題が解決される。
【0027】
【発明の実施の形態】
本発明の請求項1に記載の発明は、芯材と、前記芯材を外包する外被材とを備え、前記外被材が蒸着層を有するラミネートフィルムどうし、もしくは蒸着層を有するラミネートフィルムと金属箔を有するラミネートフィルムを熱溶着によって袋状にされており、かつ、前記外被材の熱溶着層が高密度ポリエチレン樹脂で形成され、前記外被材に前記芯材が複数個充填されており、前記芯材間の部分で前記外被材が熱溶着され、独立した真空部を有する真空断熱体である。
【0028】
一般に、真空断熱体は外的衝撃などによって外被材が破れたりした場合真空度が著しく悪化し、場合によっては大気圧にまでなってしまう。この結果、空気などの気体分子の衝突による気体熱伝導が増大するため断熱性能が悪化してしまう。
【0029】
本発明では、それぞれ独立した真空部を形成しているため、一部分の外被材が破袋しても他の真空部には影響を与えない。この結果、真空断熱体全体としての熱伝導率の悪化は小さくなる。
【0030】
また、外被材が蒸着層を有しているため、外被材を通しての熱リークも問題がない。また、外被材の熱溶着層を高密度ポリエチレンにしているため耐ストレス性が向上し、熱溶着部の劣化などが抑制できる。
【0031】
本発明の請求項2に記載の発明は、通気性を有する中袋と、前記中袋に充填された粉末材料からなる芯材と、前記中袋と芯材とを外包する外被材とを備え、前記中袋が高密ポリエチレン樹脂を有しており、前記外被材が蒸着層を有するラミネートフィルムどうし、もしくは蒸着層を有するラミネートフィルムと金属箔を有するラミネートフィルムとを熱溶着によって袋状にされており、かつ、前記外被材の熱溶着層が高密度ポリエチレン樹脂で形成され、前記外被材に前記芯材が複数個充填され、前記芯材間の部分で前記外被材の高密度ポリエチレン樹脂と前記中袋の高密度ポリエチレン樹脂とが熱溶着され、独立した真空部を有する真空断熱体である。
【0032】
したがって、芯材が有する空間が非常に小さいため気体熱伝導による影響が少なく、真空度が悪化した場合においても熱伝導率の悪化が小さい。
【0033】
本発明の請求項3に記載の発明は、通気性を有する中袋と、前記中袋に充填された粉末材料からなる芯材と、前記中袋と芯材とを外包する外被材とを備え、前記中袋と前記外被材の熱溶着層との融点の差が10deg以下であり、前記中袋と前記外被材とを前記芯材間の部分で熱溶着することによって複数個の独立した真空部を有する真空断熱体である。
【0034】
独立した真空部を形成するためには、中袋と外被材の熱溶着部と外被材の熱溶着部との融点の差が問題となる。融点が同じであれば問題ないが、材料選定が限定されてりまう。また、融点の差が大きすぎると熱溶着が適切に行えず、独立した真空部を形成することが出来ない。
【0035】
本発明では、中袋と外被材の熱溶着部の融点の差を10deg以下に限定しており、中袋と外被材との熱溶着によって独立した真空部を形成するのが容易であり、かつ、熱溶着部の材料融点が近いため、どちらかの材料が熱劣化するといった問題が解決される。
【0036】
また、本発明の請求項4に記載の発明は、通気性を有する中袋と、前記中袋に充填された粉末材料からなる複数個の芯材と、前記中袋と芯材とを外包する外被材とからなり、前記中袋と前記外被材の熱溶着層との融点の差が10deg以下であり、前記中袋と前記外被材とを前記芯材間の部分で熱溶着することによって複数個の独立した真空部を有しており、かつ、前記芯材が硬質ウレタンフォーム粉末を含む真空断熱体である。
【0037】
したがって、冷蔵庫の断熱材として使用されていた硬質ウレタンフォームのリサイクルが可能となり、廃棄物問題を解決することができる。また、粉末が硬質ウレタンフォームであることから粉末の樹脂熱伝導率が低く、真空断熱体に適用した場合において熱伝導率の低減が図れる。
【0038】
これは、ウレタン結合が二重結合を有しているため熱振動エネルギーが高く、その結果、固体熱伝導率が低減するためである。
【0039】
また、本発明の請求項5に記載の発明は、通気性を有する中袋と、前記中袋に充填された粉末材料からなる複数個の芯材と、前記中袋と芯材とを外包する外被材とからなり、前記中袋と前記外被材の熱溶着層との融点の差が10deg以下であり、前記中袋と前記外被材とを前記芯材間の部分で熱溶着することによって複数個の独立した真空部を有する真空断熱体と硬質ウレタンフォームとを複層した断熱パネルである。
【0040】
したがって、通常の住宅断熱などに使用されるウレタン断熱パネルよりも断熱性能に優れる。
【0041】
また、硬質ウレタンフォームと複層されている真空熱体が複数個の独立した真空部を有しており、かつ、芯材に粉末材料を用いているため、施工時などに真空断熱体に衝撃が加わりリークした場合、真空断熱体全体の真空度が悪化することが無く、断熱パネルとしての熱伝導率の悪化を抑制できる。
【0042】
一方、本発明の請求項6に記載の断熱箱体は、外箱と、内箱と、前記外箱と内箱とによって形成される空間に発泡断熱材を充填した断熱箱体において、前記外箱もしくは内箱の内面に、通気性を有する中袋と、前記中袋に充填された粉末材料からなる複数個の芯材と、前記中袋と芯材とを外包する外被材とからなり、前記中袋と前記外被材の熱溶着層との融点の差が10deg以下であり、前記中袋と前記外被材とを前記芯材間の部分で熱溶着することによって複数個の独立した真空部を有しており、かつ、前記芯材が硬質ウレタンフォーム粉末を含む真空断熱体を設けた断熱箱体である。
【0043】
したがって真空断熱体がリークした場合においても全体の熱伝導率の変化が小さいため、冷蔵庫に適用した場合、長きに亘って使用しても真空断熱体の急激な熱伝導率の悪化がない。
【0044】
この結果、真空断熱体の急激な熱伝導率悪化に起因して、コンプレッサーの運転率が過剰となり、冷蔵庫の信頼性が低下すると言った問題が解決される。
【0045】
以下、本発明の実施形態について、図1、図2を用いて説明する。
(実施の形態1)
図において1は真空断熱体であり、5cm角の寸法に切断したセル径150μmの水発泡連通フォームからなる芯材2を120℃で4時間乾燥し、予め減圧方向と平行に5cm間隔で4ヵ所熱溶着した外被材3に芯材2を不連続に複数個充填後、内部が0.1mmHgの真空度となるよう減圧密閉。その後、独立した真空部4が形成出来るよう、芯材2の不連続部分で外被材3を熱溶着して得たものである。
【0046】
このようにして得られた真空断熱体1は、それぞれ独立した真空部4を形成しているため、外被材3の一部分が破袋しても他の真空部には影響を与えない。この結果、真空断熱体全体としての熱伝導率の悪化は小さくなる。
【0047】
(実施の形態2)
図において5は真空断熱体であり、シリカ粉末からなる芯材6を高密度ポリエチレン樹脂を用いて作製した不織布製の中袋7に不連続に充填し、120℃で2時間乾燥し吸着水分を十分除去する。
【0048】
尚、それぞれ独立した真空部8を形成するため、予め中袋7を減圧方向と平行に一定間隔で熱溶着しておき、その後芯材6を前記処理によって形成された中袋7の空間部に不連続に所定量充填し、その後、芯材6の不連続部分にて中袋7を熱溶着する。以上の操作を繰り返し、中袋7への芯材6の充填が終了する。その後、外被材9に前記中袋7に充填した芯材6を充填し、内部が0.1mmHgの真空度となるよう減圧密閉する。
【0049】
このようにして得られた真空断熱体5は、芯材が有する空間が非常に小さいため気体熱伝導による影響が少なく、真空度が悪化した場合においても熱伝導率の悪化が小さい。
【0050】
(実施の形態3)
中袋7は高密度ポリエチレン樹脂を用いて作製した通気製を有する不織布であり、外被材9は熱溶着層に50μmの厚みからなる高密度ポリエチレン樹脂、中間層にアルミ蒸着層を有するガスバリヤ性の高い12μmの厚みからなるポリエチレンービニルアルコール共重合体樹脂、最外層に12μmの厚みからなるポリエチレンテレフタレート樹脂である。
【0051】
このような構成からなる真空断熱体5は、中袋7と外被材9の熱溶着層との温度差が10deg以下であるので中袋と外被材との熱溶着によって独立した真空部を形成するのが容易であり、かつ、熱溶着部の材料融点が近いため、どちらかの材料が熱劣化するといった問題が解決される。
【0052】
(実施の形態4)
芯材6として硬質ウレタンフォームを粉砕して得た平均粒径120μmのウレタン粉末を用い、不織布製の中袋7に充填し、120℃で2時間乾燥し吸着水分を十分除去する。尚、それぞれ独立した真空部を形成するため、予め中袋7を減圧方向と平行に一定間隔で熱溶着しておき、その後芯材6を前記処理によって形成された中袋7の空間部に所定量充填し、その後減圧方向と垂直方向に中袋7を熱溶着する。以上の操作を繰り返し、中袋7への芯材6の充填が終了する。その後、外被材9に前記中袋7に充填した芯材6を充填し、内部が0.1mmHgの真空度となるよう減圧密閉する。
【0053】
したがって、冷蔵庫の断熱材として使用されていた硬質ウレタンフォームのリサイクルが可能となり、廃棄物問題を解決することができる。また、粉末が硬質ウレタンフォームであることから粉末の樹脂熱伝導率が低く、真空断熱体に適用した場合において熱伝導率の低減が図れる。
【0054】
これは、ウレタン結合が二重結合を有しているため熱振動エネルギーが高く、その結果、固体熱伝導率が低減するためである。
【0055】
(実施の形態5)
図において10は断熱パネルであり、真空断熱体4と硬質ウレタンフォーム11を複層して形成されている。硬質ウレタンフォームの厚みは、施工時の釘打ちなどを考慮し30mm程度が望ましい。また、断熱パネル10の周縁部を木砕などで覆うと施工性を一段と向上することができる。
【0056】
このようにして得られた断熱パネル10は、真空断熱体4と硬質ウレタンフォーム11との複層であるので、通常の住宅断熱などに使用されるウレタン断熱パネルよりも断熱性能に優れる。
【0057】
また、硬質ウレタンフォームと複層されている真空断熱体が複数個の独立した真空部を有しており、かつ、芯材に粉末材料を用いているため、施工時などに真空断熱体に衝撃が加わりリークした場合、真空断熱体全体の真空度が悪化することが無く、断熱パネルとしての熱伝導率の悪化を抑制できる。
【0058】
(実施の形態6)
図において12は、真空断熱体4と硬質発泡ウレタンフォームからなる発泡断熱材11と外箱13と内箱14によって構成される断熱箱体である。真空断熱体4は外箱13の内面に取り付けられているが、内箱14の内面であっても良い。また、真空断熱体4のサイズは0.5m×0.5m×0.02mである。
【0059】
以上のような構成からなる断熱箱体は、真空断熱体がリークした場合においても全体の熱伝導率の変化が小さいため、冷蔵庫に適用した場合、長きに亘って使用しても真空断熱体の急激な熱伝導率の悪化がない。
【0060】
この結果、真空断熱体の急激な熱伝導率悪化に起因して、コンプレッサーの運転率が過剰となり、冷蔵庫の信頼性が低下すると言った問題が解決される。
【0061】
【実施例】
(実施例1)
図5は25cm×25cmのサイズで5cm毎に熱溶着によって独立した真空部を形成した真空断熱体について、直径1mmの穴を開けた場合の熱伝導率の時間的変化を示したものである。
【0062】
尚、芯材としてはセル径150μmの水発泡連通フォームを用い、比較例として従来行われていた独立した真空部を有しない真空断熱体を用いた。
【0063】
【図5】
図5から、本発明による仕様では熱伝導率の時間的変化が比較例に比べて著しく小さいのが判る。これは、本発明による仕様では独立した真空部を形成しているため、外被材の一部分が破袋しても他の真空部には影響を与えず、この結果、真空度の悪化によって気体による熱伝導が増大するのは外被材の破れた部分の空間だけとなり、真空断熱体全体としての熱伝導率の悪化は小さくなる。
【0064】
(実施例2)
図6は、25cm×25cmのサイズで5cm毎に熱溶着によって独立した真空部を形成した真空断熱体について、直径1mmの穴を開けた場合の熱伝導率の時間的変化を示したものである。
【0065】
尚、芯材としては実施例では平均粒径10μmのシリカ粉末を用い、比較例としては芯材にセル径150μmの水発泡連通フォームを独立した真空部を有しない真空断熱体を用いた。
【0066】
【図6】
図6から、初期から3日までは大差がないが、その後比較例は徐々に熱伝導率が悪化していく。
【0067】
一方、本実施例では3日以降も熱伝導率の大きな悪化は認められない。
これは、それぞれ独立した真空部を形成しているため、短期間では外被材の一部分が破れたとしても他の真空部には影響を与えない。このため、3日までは熱伝導率の悪化は認められなかったが、その後は、ガスの透過によって徐々に他の部分の真空度も悪化してくる。
【0068】
したがって、比較例で用いた様な空隙間距離の大きい発泡体では気体分子の衝突が頻繁になるため、熱伝導率が悪化したのである。
【0069】
本発明では、空隙間距離が非常に短くなる特性を有する粉末材料を芯材に用いているため、真空度が悪化しても気体分子同士の衝突が起こらず、経時的にも熱伝導の悪化を小さくなる。
【0070】
(実施例3)
図7は中袋の融点と外被材の熱溶着層との融点の差を変えた場合について、25cm×25cmのサイズで5cm毎に熱溶着によって独立した真空部を形成した真空断熱体を用い、直径1mmの穴を開けた場合の熱伝導率の時間的変化を示したものである。
【0071】
【図7】
図7から融点の差が0degから10degまでは、熱伝導率は緩やかに悪化していくが、融点の差が10degよりも大きくなると熱伝導率の悪化が激しいことが判る。
【0072】
これは、中袋と外被材熱溶着層との融点の差が10deg以下であれば良好な溶着状態を形成し、熱溶着部を通してのガス透過が抑制されるためである。しかし、融点の差が10degよりも大きくなると融点の高い材料が十分な溶融状態に到達していないため、熱溶着不良が生じてしまい溶着部からのガスの透過が起こる。
【0073】
このため、十分に独立した真空部を形成することができず、外被材に穴などができると経時的な熱伝導率の悪化が激しくなるのである。
【0074】
本発明では、この点を鑑み、中袋と外被材の熱溶着層との融点の差を10deg以下に限定することにより熱溶着部を良好な状態にでき、外被材が破袋した場合においても熱伝導率の悪化を抑制することが可能となる。
【0075】
(実施例4)
図8は、芯材として硬質ウレタンフォームを粉砕して得た平均粒径120μmのウレタン粉末と平均粒径20μmのシリカ粉末を、それぞれ芯材として用いた場合における熱伝導率の比較を示したものである。なお、真空度における影響を無視するため、真空度は0.1mmHgで行った。
【0076】
【図8】
図8の結果から、本発明の実施例であるウレタン粉末を用いたものが低い熱伝導率を示しているのが判る。ウレタン結合は2重結合を有し熱振動エネルギーが高い。その結果、固体熱伝導率の低減が図れるため真空断熱体の熱伝導率が低くなるのである。
【0077】
したがって、芯材に用いる粉末は無作為に選定できるものではなく、特定の材料に限定する必要がある。
【0078】
本発明では上記実施内容を鑑み、粉末をウレタン粉末に限定しているので、特に低い熱伝導率を有する真空断熱体を得ることができる。
【0079】
また、具備する効果として、冷蔵庫などに断熱材として使用しているウレタンフォームの利用が可能になることから、冷蔵庫におけるリサイクル問題の解決にも役立つ。
【0080】
(実施例5)
断熱パネル8は、真空断熱体4と硬質ウレタンフォーム9との複層であるので、通常の住宅断熱などに使用されるウレタン断熱パネルよりも断熱性能に優れる。
【0081】
図9は、一般的な住宅断熱用ウレタンボードと本発明における断熱パネルとの熱伝導率を比較したものである。
【0082】
【図9】
図9から、本発明の断熱パネルの方が熱伝導率で約3倍優れる事が判る。このような、断熱性能に優れた断熱パネルを用いることにより、住宅の省エネに寄与するばかりでなく、住宅壁厚の低減による工期短縮などが可能となる。
【0083】
また、断熱パネル8は独立した真空部を形成しているため、施工時などにおいて真空断熱体4の一部分が破袋しても全体への影響が小さい。
【0084】
(実施例6)
次に断熱箱体であるが、適用する真空断熱体4は独立した真空部を形成しており、かつ、適用する芯材が粉末であるため、真空断熱体がリークした場合においても全体の熱伝導率の変化が小さい。この結果、冷蔵庫に適用した場合、長きに亘って使用しても真空断熱体の急激な熱伝導率の悪化がない。
【0085】
この結果、真空断熱体の急激な熱伝導率悪化に起因して、コンプレッサーの運転率が過剰となり、冷蔵庫の信頼性が低下すると言った問題が解決される。
【0086】
【発明の効果】
以上のように、本発明の真空断熱体は、粉末材料からなる芯材が不連続に充填された通気性を有する中袋と、前記中袋を外包する外被材とからなり、前記中袋と前記外被材の熱溶着層との融点の差が10 deg 以下であり、前記中袋が前記芯材の不連続部分で熱溶着され、且つ、前記中袋と前記外被材とが前記芯材の不連続部分で熱溶着されることにより、複数個の独立した真空部を有する真空断熱体である。
【0087】
したがって外的衝撃などによって外被材が破袋しリークした場合などにおいても真空断熱体全体の熱伝導率の悪化を抑制した真空断熱体を得ることができる。また、芯材に用いる材料を粉末材料に限定しているので、真空度が悪化した場合においても熱伝導率の変化が小さい。したがって、衝撃などによって外被材が破袋しリークした場合、リーク箇所に隣接した真空部もガスの透過などによって真空度が悪化しやすくなるが、これに起因した熱伝導率の悪化は小さくできる。また、中袋と外被材の熱溶着部との融点の差が10 deg 以下であるので中袋と外被材との熱溶着によって独立した真空部を形成するのが容易であり、かつ、熱溶着部の材料融点が近いため、どちらかの材料が熱劣化するといった問題が解決される。
【0088】
また、本発明の真空断熱体は、上記構成に加えて、外被材が蒸着層を有するラミネートフィルムどうし、もしくは蒸着層を有するラミネートフィルムと金属箔を有するラミネートフィルムを熱溶着によって袋状にされている真空断熱体である。
【0089】
外被材が蒸着層を有しているため、外被材を通しての熱リークも問題がない。
【0090】
また、本発明の真空断熱体は、上記構成に加えて、外被材の熱溶着層と中袋が、高密度ポリエチレン樹脂からなる真空断熱体である。
【0091】
外被材の熱溶着層を高密度ポリエチレンにしているため耐ストレス性が向上し、熱溶着部の劣化などが抑制できる。
【0092】
また、本発明の真空断熱体は、上記構成に加えて、芯材が硬質ウレタンフォーム粉末を含む真空断熱体である。
【0093】
したがって、芯材として硬質ウレタンフォーム粉末を用いていることから、樹脂熱伝導率が低く、真空断熱体に適用した場合において熱伝導率の低減が図れる。また、冷蔵庫などに使用されているウレタンフォームのリサイクルも可能となる。
【0094】
本発明の断熱パネルは、上記本発明の真空断熱体と硬質ウレタンフォームとを複層した断熱パネルである。
【0095】
したがって、通常の住宅断熱などに使用されるウレタン断熱パネルよりも断熱性能に優れる。
【0096】
また、硬質ウレタンフォームと複層されている真空断熱体が複数個の独立した真空部を有しており、かつ、芯材に粉末材料を用いているため、施工時などに真空断熱体に衝撃が加わりリークした場合、真空断熱体全体の真空度が悪化することが無く、断熱パネルとしての熱伝導率の悪化を抑制できる。
【0097】
また、本発明の断熱箱体は、外箱と、内箱と、前記外箱と内箱とによって形成される空間に発泡断熱材を充填した断熱箱体において、前記外箱もしくは内箱の内面に、上記本発明の真空断熱体を設けた断熱箱体である。
【0098】
したがって、真空断熱体がリークした場合においても全体の熱伝導率の悪化が小さいため、冷蔵庫に適用した場合、長きに亘って使用しても真空断熱体の急激な熱伝導率の悪化がない。
【0099】
この結果、真空断熱体の急激な熱伝導率悪化に起因して、コンプレッサーの運転率が過剰となり、冷蔵庫の信頼性が低下すると言った問題が解決される。
【図面の簡単な説明】
【図1】本発明の一実形態による真空断熱体の断面図
【図2】本発明の一実施形態による真空断熱体の断面図
【図3】本発明の一実施形態による断熱パネルの断面図
【図4】本発明の一実施形態による断熱箱体の断面図
【図5】真空断熱体の熱伝導率における経時的変化を示す特性図
【図6】真空断熱体の熱伝導率における経時的変化を示す特性図
【図7】真空断熱体の熱伝導率における経時的変化を示す特性図
【図8】芯材の違いによる真空断熱体の熱伝導率を示す特性図
【図9】断熱パネルの性能特性図
【符号の説明】
1 真空断熱体
2 芯材
3 外被材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum heat insulator that can be used as a heat insulating material for a refrigerator or the like.
[0002]
[Prior art]
In recent years, from the viewpoint of global environmental protection, ozone layer destruction by CFC11 used as a foaming agent for refrigerator heat insulating materials has attracted attention on a global scale.
[0003]
From such a background, research on a heat insulating material using a new foaming agent has been conducted, and HCFC141b is being selected as a substitute for chlorofluorocarbons, and cyclopentane is being selected as a candidate for non-fluorocarbons.
[0004]
However, any of these new blowing agents has a higher gas thermal conductivity than CFC11, and the heat insulation performance of the refrigerator is inevitably lowered. On the other hand, energy saving of refrigerators is an unavoidable problem for the current energy regulations, and it is a major issue that should be achieved to improve heat insulation performance.
[0005]
As described above, current refrigerators have conflicting problems such as a decrease in heat insulation performance due to compliance with CFCs and an improvement in heat insulation performance to achieve energy saving.
[0006]
As one means for solving such conflicting problems, a vacuum heat insulator using an inorganic powder has been devised, and the contents thereof are described in JP-A-57-17389. The content is that a vacuum heat insulator is obtained by filling a film-like plastic container with a powder having a single particle diameter of 1 μm or less and sealing the inside after reducing the pressure.
[0007]
As an effect, it can be produced at a vacuum degree of 0.1 to 1 mmHg, which is easy to industrialize, and since the silica particles are fine powder, the heat insulation performance of the vacuum insulator is further improved when the vacuum degree is the same. It is a thing.
[0008]
[Problems to be solved by the invention]
The heat insulation principle of vacuum insulation is to eliminate air that conducts heat. However, it is difficult to achieve a high vacuum at an industrial level, and the degree of vacuum that can be achieved practically is 0.1 to 10 mmHg.
[0009]
Therefore, the desired heat insulation performance must be obtained at this degree of vacuum.
There is a mean free path as a physical property that affects the heat insulation performance when heat conduction is performed through the presence of air. The mean free path is the distance traveled until one of the molecules that make up the air collides with another molecule. If the void formed is larger than the mean free path, the molecules collide with each other in the gap. Since heat conduction by air occurs, the heat conductivity of the vacuum heat insulator increases. On the contrary, when the gap is smaller than the mean free path, the heat conduction of the vacuum heat insulator becomes small. This is because there is almost no heat conduction due to air collision.
[0010]
Therefore, if a powder having a fine particle size such as silica powder is used, the voids become fine, and heat conduction due to air collision is almost eliminated. As a result, the heat insulation performance of the vacuum heat insulator is improved. However, the conventional configuration has a drawback that the thermal conductivity of the whole vacuum heat insulating body is deteriorated when the jacket material is broken by an impact or the like and a leak occurs.
[0011]
Further, since silica powder is used, there are disadvantages that the weight of the vacuum heat insulator is increased and the cost is increased.
[0012]
On the other hand, there is a waste problem as a new problem in the global environmental problem. Even in household appliances such as refrigerators, the waste disposal problem is no exception, and how to recycle is a major issue. In particular, rigid urethane foam used as a heat insulating material for refrigerators has been difficult to recycle due to its material characteristics.
[0013]
In view of the above contents, the present invention suppresses deterioration of thermal conductivity even when leaked due to an external impact or the like, which has been a problem of a vacuum insulator, and achieves weight reduction, cost reduction, and high performance. It is intended to recycle urethane foam.
[0014]
[Means for Solving the Problems]
  In order to solve the above problems, the vacuum insulator of the present invention isIt consists of an air-permeable inner bag in which a core material made of a powder material is filled discontinuously, and an outer jacket material that encloses the inner bag. The difference is 10 deg The inner bag is thermally welded at the discontinuous portion of the core material, and the inner bag and the jacket material are heat welded at the discontinuous portion of the core material, so that a plurality ofIt is a vacuum heat insulator having an independent vacuum part.
[0015]
  Therefore, even when the jacket material is broken and leaks due to an external impact or the like, a vacuum heat insulating body in which deterioration of the thermal conductivity of the entire vacuum heat insulating body is suppressed can be obtained. Also,Since the material used for the core material is limited to the powder material, even when the degree of vacuum deteriorates, the change in thermal conductivity is small. Therefore, when the jacket material breaks and leaks due to an impact or the like, the vacuum degree adjacent to the leaked portion is likely to deteriorate due to gas permeation or the like, but the deterioration of the thermal conductivity caused by this can be reduced. . Further, the difference in melting point between the inner bag and the heat-welded portion of the jacket material is 10 deg Since it is the following, it is easy to form an independent vacuum part by thermal welding between the inner bag and the jacket material, and the material melting point of the thermal welding part is close, so that either material is thermally deteriorated Is resolved.
[0016]
  Moreover, the vacuum insulator of the present invention isIn addition to the above configuration, the envelope material is formed into a bag shape by heat welding between laminated films having a vapor-deposited layer, or a laminate film having a vapor-deposited layer and a laminate film having a metal foil.It is a vacuum insulator.
[0017]
  Since the jacket material has a vapor deposition layer, there is no problem with heat leakage through the jacket material.
[0018]
  Moreover, the vacuum insulator of the present invention isIn addition to the above configuration, the heat-welded layer and the inner bag of the jacket material are made of high-density polyethylene resin.It is a vacuum insulator.
[0019]
  Since the heat-welded layer of the jacket material is made of high-density polyethylene, the stress resistance is improved, and deterioration of the heat-welded portion can be suppressed.
[0020]
  Moreover, the vacuum insulator of the present invention isIn addition to the above configuration,It is a vacuum heat insulator whose core material contains hard urethane foam powder.
[0021]
Therefore, since the hard urethane foam powder is used as the core material, the resin thermal conductivity is low, and the thermal conductivity can be reduced when applied to a vacuum heat insulator. In addition, urethane foam used in refrigerators can be recycled.
[0022]
  The heat insulation panel of the present invention isOf the present inventionIt is a heat insulation panel in which a vacuum heat insulator and a hard urethane foam are multilayered.
[0023]
Therefore, the heat insulation performance is superior to that of a urethane heat insulation panel used for ordinary house heat insulation. In addition, the vacuum insulation body, which is multilayered with rigid urethane foam, has multiple independent vacuum parts and uses a powder material for the core material. Is added and leaks, the vacuum degree of the entire vacuum heat insulating body is not deteriorated, and the deterioration of the thermal conductivity as the heat insulating panel can be suppressed.
[0024]
  Further, the heat insulating box of the present invention is an outer box, an inner box, and a heat insulating box filled with a foam heat insulating material in a space formed by the outer box and the inner box, and the inner surface of the outer box or the inner box. In addition,Of the present inventionIt is the heat insulation box which provided the vacuum heat insulating body.
[0025]
Therefore, even when the vacuum heat insulator leaks, the deterioration of the overall thermal conductivity is small. Therefore, when applied to a refrigerator, there is no rapid deterioration of the heat conductivity of the vacuum heat insulator even when used for a long time.
[0026]
As a result, the problem that the operation rate of the compressor becomes excessive and the reliability of the refrigerator is lowered due to the rapid deterioration of the thermal conductivity of the vacuum heat insulating body is solved.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 of the present invention includes a core material and a jacket material that encloses the core material, and the laminate material includes a vapor deposition layer or a laminate film having a vapor deposition layer. A laminate film having a metal foil is formed into a bag shape by thermal welding, and a thermal welding layer of the jacket material is formed of a high-density polyethylene resin, and a plurality of the core materials are filled in the jacket material. And the outer jacket material is thermally welded between the core members, and is a vacuum heat insulator having an independent vacuum portion.
[0028]
In general, when the jacket material is torn due to an external impact or the like, the vacuum degree is remarkably deteriorated, and in some cases, it reaches atmospheric pressure. As a result, the heat insulation performance deteriorates because gas heat conduction due to collision of gas molecules such as air increases.
[0029]
In the present invention, since independent vacuum parts are formed, even if a part of the jacket material breaks, other vacuum parts are not affected. As a result, the deterioration of the thermal conductivity of the vacuum insulator as a whole is reduced.
[0030]
Moreover, since the jacket material has a vapor deposition layer, there is no problem with heat leakage through the jacket material. Moreover, since the heat-welding layer of the jacket material is made of high-density polyethylene, the stress resistance is improved, and deterioration of the heat-welded portion can be suppressed.
[0031]
According to a second aspect of the present invention, there is provided an air-permeable inner bag, a core material made of a powder material filled in the inner bag, and a jacket material that encloses the inner bag and the core material. The inner bag has a high-density polyethylene resin, and the outer jacket material is a laminated film having a vapor-deposited layer, or a laminate film having a vapor-deposited layer and a laminate film having a metal foil are formed into a bag shape by heat welding. The outer cover material is formed of a high-density polyethylene resin, the core material is filled with a plurality of the core materials, and the height of the outer cover material is increased between the core materials. It is a vacuum heat insulating body having an independent vacuum part in which a density polyethylene resin and a high-density polyethylene resin in the inner bag are heat-welded.
[0032]
Therefore, since the space which the core material has is very small, there is little influence by gas heat conduction, and even when the degree of vacuum deteriorates, the deterioration of heat conductivity is small.
[0033]
According to a third aspect of the present invention, there is provided an air-permeable inner bag, a core material made of a powder material filled in the inner bag, and a jacket material that encloses the inner bag and the core material. A difference in melting point between the inner bag and the heat-welding layer of the outer jacket material is 10 deg or less, and a plurality of the inner bag and the outer jacket material are heat-welded at a portion between the core members. It is a vacuum heat insulator having an independent vacuum part.
[0034]
In order to form an independent vacuum portion, a difference in melting point between the inner bag, the heat-welded portion of the jacket material, and the heat-welded portion of the jacket material becomes a problem. If the melting points are the same, there is no problem, but material selection will be limited. On the other hand, if the difference between the melting points is too large, heat welding cannot be performed properly, and an independent vacuum portion cannot be formed.
[0035]
In the present invention, the difference in melting point between the inner bag and the outer jacket material is limited to 10 deg or less, and it is easy to form an independent vacuum portion by the thermal welding between the inner bag and the outer jacket material. And since the material melting | fusing point of a heat welding part is near, the problem that either material heat-deteriorates is solved.
[0036]
The invention according to claim 4 of the present invention encloses an air-permeable inner bag, a plurality of core materials made of a powder material filled in the inner bag, and the inner bag and the core material. The inner bag and the outer cover material have a melting point difference of 10 deg or less, and the inner bag and the outer cover material are thermally welded at a portion between the core members. Thus, the vacuum heat insulator has a plurality of independent vacuum parts, and the core material includes hard urethane foam powder.
[0037]
Therefore, it is possible to recycle the rigid urethane foam that has been used as a heat insulating material for the refrigerator, and solve the waste problem. In addition, since the powder is a rigid urethane foam, the resin has a low resin thermal conductivity, and when applied to a vacuum insulator, the thermal conductivity can be reduced.
[0038]
This is because the thermal bond energy is high because the urethane bond has a double bond, and as a result, the solid thermal conductivity is reduced.
[0039]
The invention according to claim 5 of the present invention encloses an air-permeable inner bag, a plurality of core materials made of a powder material filled in the inner bag, and the inner bag and the core material. The inner bag and the outer cover material have a melting point difference of 10 deg or less, and the inner bag and the outer cover material are thermally welded at a portion between the core members. By this, it is the heat insulation panel which laminated | stacked the vacuum heat insulating body which has several independent vacuum parts, and hard urethane foam.
[0040]
Therefore, the heat insulation performance is superior to that of a urethane heat insulation panel used for ordinary house heat insulation.
[0041]
In addition, the vacuum heat element that is layered with rigid urethane foam has multiple independent vacuum parts and uses a powder material for the core material. Is added and leaks, the vacuum degree of the entire vacuum heat insulating body is not deteriorated, and the deterioration of the thermal conductivity as the heat insulating panel can be suppressed.
[0042]
On the other hand, the heat insulation box according to claim 6 of the present invention is the heat insulation box in which a space formed by the outer box, the inner box, and the outer box and the inner box is filled with a foam heat insulating material. The inner surface of the box or inner box comprises a breathable inner bag, a plurality of core materials made of a powder material filled in the inner bag, and a jacket material that encloses the inner bag and the core material. A difference in melting point between the inner bag and the heat-welded layer of the jacket material is 10 deg or less, and a plurality of independent cases are obtained by heat-welding the inner bag and the jacket material at a portion between the core materials. And a heat insulating box provided with a vacuum heat insulating material in which the core material includes hard urethane foam powder.
[0043]
Therefore, since the change in the overall thermal conductivity is small even when the vacuum insulator leaks, when applied to a refrigerator, there is no sudden deterioration in the thermal conductivity of the vacuum insulator even when used for a long time.
[0044]
As a result, the problem that the operation rate of the compressor becomes excessive and the reliability of the refrigerator is lowered due to the rapid deterioration of the thermal conductivity of the vacuum heat insulating body is solved.
[0045]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
(Embodiment 1)
In the figure, reference numeral 1 denotes a vacuum heat insulating body, and a core material 2 made of a water foam continuous foam having a cell diameter of 150 μm cut to a size of 5 cm square is dried at 120 ° C. for 4 hours, and is preliminarily set at 4 locations at intervals of 5 cm in parallel with the decompression direction After a plurality of the core materials 2 are discontinuously filled in the heat-welded jacket material 3, the inside is vacuum-sealed so that the inside has a vacuum degree of 0.1 mmHg. Thereafter, the jacket material 3 is obtained by heat welding at the discontinuous portion of the core material 2 so that an independent vacuum part 4 can be formed.
[0046]
Since the vacuum insulator 1 obtained in this way forms the independent vacuum part 4, even if a part of the jacket material 3 breaks, it does not affect other vacuum parts. As a result, the deterioration of the thermal conductivity of the vacuum insulator as a whole is reduced.
[0047]
(Embodiment 2)
In the figure, reference numeral 5 denotes a vacuum heat insulator, in which a core material 6 made of silica powder is discontinuously filled in a non-woven medium bag 7 made of high-density polyethylene resin, and dried at 120 ° C. for 2 hours to absorb adsorbed moisture. Remove enough.
[0048]
In order to form independent vacuum portions 8, the inner bag 7 is preliminarily heat-welded at a predetermined interval parallel to the decompression direction, and then the core material 6 is placed in the space portion of the inner bag 7 formed by the above processing. A predetermined amount is filled discontinuously, and then the inner bag 7 is thermally welded at the discontinuous portion of the core material 6. The above operation is repeated, and the filling of the core material 6 into the inner bag 7 is completed. Thereafter, the core material 6 filled in the inner bag 7 is filled in the jacket material 9 and sealed under reduced pressure so that the inside has a vacuum degree of 0.1 mmHg.
[0049]
The vacuum heat insulating body 5 thus obtained has a very small space in the core material, so that there is little influence of gas heat conduction, and even when the degree of vacuum is deteriorated, the deterioration of thermal conductivity is small.
[0050]
(Embodiment 3)
The inner bag 7 is a breathable non-woven fabric produced using a high-density polyethylene resin, the outer cover material 9 is a high-density polyethylene resin having a thickness of 50 μm in the heat-welded layer, and a gas barrier property having an aluminum vapor-deposited layer in the intermediate layer. A polyethylene-vinyl alcohol copolymer resin having a thickness of 12 μm and a polyethylene terephthalate resin having a thickness of 12 μm in the outermost layer.
[0051]
Since the temperature difference between the inner bag 7 and the heat-welding layer of the jacket material 9 is 10 deg or less, the vacuum heat insulating body 5 having such a structure has an independent vacuum portion by heat welding between the inner bag and the jacket material. Since it is easy to form and the material melting point of the heat welded part is close, the problem that one of the materials is thermally deteriorated is solved.
[0052]
(Embodiment 4)
A urethane powder having an average particle diameter of 120 μm obtained by pulverizing rigid urethane foam is used as the core material 6 and filled in a non-woven medium bag 7 and dried at 120 ° C. for 2 hours to sufficiently remove adsorbed moisture. In order to form independent vacuum parts, the inner bag 7 is preliminarily heat-welded at a predetermined interval parallel to the decompression direction, and then the core 6 is placed in the space part of the inner bag 7 formed by the above processing. After the fixed amount filling, the inner bag 7 is heat-welded in the direction perpendicular to the decompression direction. The above operation is repeated, and the filling of the core material 6 into the inner bag 7 is completed. Thereafter, the core material 6 filled in the inner bag 7 is filled in the jacket material 9 and sealed under reduced pressure so that the inside has a vacuum degree of 0.1 mmHg.
[0053]
Therefore, it is possible to recycle the rigid urethane foam that has been used as a heat insulating material for the refrigerator, and solve the waste problem. In addition, since the powder is a rigid urethane foam, the resin has a low resin thermal conductivity, and when applied to a vacuum insulator, the thermal conductivity can be reduced.
[0054]
This is because the thermal bond energy is high because the urethane bond has a double bond, and as a result, the solid thermal conductivity is reduced.
[0055]
(Embodiment 5)
In the figure, reference numeral 10 denotes a heat insulating panel, which is formed by multilayering the vacuum heat insulating body 4 and the rigid urethane foam 11. The thickness of the rigid urethane foam is preferably about 30 mm in consideration of nailing during construction. Moreover, workability | operativity can be improved further when the peripheral part of the heat insulation panel 10 is covered with crushed wood.
[0056]
Since the heat insulation panel 10 obtained in this way is a multilayer of the vacuum heat insulator 4 and the rigid urethane foam 11, the heat insulation performance is superior to a urethane heat insulation panel used for ordinary house heat insulation.
[0057]
In addition, the vacuum insulation body, which is multilayered with rigid urethane foam, has multiple independent vacuum parts and uses a powder material for the core material. Is added and leaks, the vacuum degree of the entire vacuum heat insulating body is not deteriorated, and the deterioration of the thermal conductivity as the heat insulating panel can be suppressed.
[0058]
(Embodiment 6)
In the figure, reference numeral 12 denotes a heat insulating box composed of a vacuum heat insulating material 4, a foam heat insulating material 11 made of rigid foamed urethane foam, an outer box 13 and an inner box 14. The vacuum insulator 4 is attached to the inner surface of the outer box 13, but may be the inner surface of the inner box 14. Moreover, the size of the vacuum heat insulating body 4 is 0.5 m x 0.5 m x 0.02 m.
[0059]
The heat insulation box having the above-described configuration has a small change in the overall thermal conductivity even when the vacuum heat insulator leaks. There is no sudden deterioration in thermal conductivity.
[0060]
As a result, the problem that the operation rate of the compressor becomes excessive and the reliability of the refrigerator is lowered due to the rapid deterioration of the thermal conductivity of the vacuum heat insulating body is solved.
[0061]
【Example】
(Example 1)
FIG. 5 shows a temporal change in thermal conductivity when a hole having a diameter of 1 mm is formed in a vacuum heat insulating body having a size of 25 cm × 25 cm and an independent vacuum part formed by thermal welding every 5 cm.
[0062]
As the core material, a water foam continuous foam having a cell diameter of 150 μm was used, and a vacuum heat insulator having no independent vacuum part, which was conventionally performed, was used as a comparative example.
[0063]
[Figure 5]
From FIG. 5, it can be seen that in the specification according to the present invention, the temporal change of the thermal conductivity is remarkably smaller than that of the comparative example. This is because in the specification according to the present invention, an independent vacuum part is formed, so even if a part of the jacket material breaks, other vacuum parts are not affected. The heat conduction due to is increased only in the space of the torn part of the jacket material, and the deterioration of the thermal conductivity of the vacuum insulator as a whole is reduced.
[0064]
(Example 2)
FIG. 6 shows a temporal change in thermal conductivity when a hole with a diameter of 1 mm is made in a vacuum heat insulating body having a size of 25 cm × 25 cm and an independent vacuum part formed by thermal welding every 5 cm. .
[0065]
In the examples, silica powder having an average particle diameter of 10 μm was used as the core material, and as a comparative example, a vacuum heat insulating body having a water foam continuous foam having a cell diameter of 150 μm was not used as the core material.
[0066]
[Fig. 6]
From FIG. 6, there is no significant difference from the initial stage to the third day, but thereafter the thermal conductivity gradually deteriorates in the comparative example.
[0067]
On the other hand, in this example, no significant deterioration in thermal conductivity is observed after 3 days.
Since this forms an independent vacuum part, even if a part of the jacket material is broken in a short period of time, it does not affect other vacuum parts. For this reason, although the deterioration of thermal conductivity was not recognized until the 3rd, after that, the degree of vacuum of other portions gradually deteriorated due to the permeation of gas.
[0068]
Therefore, in the foam having a large air gap distance as used in the comparative example, the collision of gas molecules is frequent, so that the thermal conductivity is deteriorated.
[0069]
In the present invention, since the powder material having the characteristic that the air gap distance becomes very short is used for the core material, collision of gas molecules does not occur even if the degree of vacuum deteriorates, and heat conduction deteriorates over time. The smaller.
[0070]
(Example 3)
FIG. 7 shows a case where a difference in melting point between the melting point of the inner bag and the heat-welding layer of the jacket material is changed, and a vacuum heat insulating body having a size of 25 cm × 25 cm and having an independent vacuum part formed by heat welding every 5 cm. The time change of the thermal conductivity when a hole having a diameter of 1 mm is formed is shown.
[0071]
[Fig. 7]
From FIG. 7, it can be seen that the thermal conductivity gradually deteriorates when the difference in melting point is from 0 deg to 10 deg, but the thermal conductivity is severely deteriorated when the difference in melting point is larger than 10 deg.
[0072]
This is because if the difference in melting point between the inner bag and the jacket material heat-welded layer is 10 deg or less, a good welded state is formed and gas permeation through the heat-welded portion is suppressed. However, if the difference between the melting points is larger than 10 deg, the material having a high melting point has not reached a sufficient molten state, so that poor heat welding occurs and gas permeation from the welded portion occurs.
[0073]
For this reason, it is not possible to form a sufficiently independent vacuum part, and if the outer cover material has a hole or the like, the deterioration of the thermal conductivity over time becomes severe.
[0074]
In the present invention, in view of this point, when the difference in melting point between the inner bag and the heat-welded layer of the jacket material is limited to 10 deg or less, the heat-welded portion can be in a good state, and the jacket material is broken. It is possible to suppress the deterioration of the thermal conductivity.
[0075]
(Example 4)
FIG. 8 shows a comparison of thermal conductivity when urethane powder having an average particle size of 120 μm and silica powder having an average particle size of 20 μm obtained by pulverizing rigid urethane foam as a core material are used as the core material, respectively. It is. In order to ignore the influence on the degree of vacuum, the degree of vacuum was 0.1 mmHg.
[0076]
[Fig. 8]
From the results of FIG. 8, it can be seen that the example using the urethane powder according to the present invention shows low thermal conductivity. Urethane bonds have double bonds and high thermal vibration energy. As a result, since the solid thermal conductivity can be reduced, the thermal conductivity of the vacuum heat insulator is lowered.
[0077]
Therefore, the powder used for the core material cannot be selected at random, and needs to be limited to a specific material.
[0078]
In the present invention, in view of the above implementation, the powder is limited to urethane powder, so that a vacuum heat insulator having a particularly low thermal conductivity can be obtained.
[0079]
Moreover, since the utilization of the urethane foam currently used as a heat insulating material for refrigerators etc. is attained as an effect to comprise, it is useful also for the solution of the recycling problem in a refrigerator.
[0080]
(Example 5)
Since the heat insulating panel 8 is a multilayer of the vacuum heat insulating body 4 and the hard urethane foam 9, it is superior in heat insulating performance to a urethane heat insulating panel used for ordinary house heat insulation.
[0081]
FIG. 9 compares the thermal conductivity of a general residential heat insulation urethane board and the heat insulation panel of the present invention.
[0082]
FIG. 9
From FIG. 9, it can be seen that the heat insulation panel of the present invention is about three times better in thermal conductivity. By using such a heat insulation panel having excellent heat insulation performance, not only contributes to energy saving of the house, but also shortens the construction period by reducing the wall thickness of the house.
[0083]
Moreover, since the heat insulation panel 8 forms the independent vacuum part, even if a part of the vacuum heat insulating body 4 breaks a bag at the time of construction etc., the influence on the whole is small.
[0084]
(Example 6)
Next, although it is a heat insulation box, since the vacuum insulator 4 to be applied forms an independent vacuum part and the core material to be applied is a powder, the entire heat even when the vacuum insulator leaks. Small change in conductivity. As a result, when applied to a refrigerator, even if it is used for a long time, there is no sudden deterioration of the thermal conductivity of the vacuum insulator.
[0085]
As a result, the problem that the operation rate of the compressor becomes excessive and the reliability of the refrigerator is lowered due to the rapid deterioration of the thermal conductivity of the vacuum heat insulating body is solved.
[0086]
【The invention's effect】
  As described above, the vacuum insulator of the present invention isIt consists of an air-permeable inner bag in which a core material made of a powder material is filled discontinuously, and an outer jacket material that encloses the inner bag. The difference is 10 deg The inner bag is thermally welded at the discontinuous portion of the core material, and the inner bag and the jacket material are heat welded at the discontinuous portion of the core material, so that a plurality ofIt is a vacuum heat insulator having an independent vacuum part.
[0087]
  Therefore, even when the jacket material is broken and leaks due to an external impact or the like, a vacuum heat insulating body in which deterioration of the thermal conductivity of the entire vacuum heat insulating body is suppressed can be obtained. Also,Since the material used for the core material is limited to the powder material, even when the degree of vacuum deteriorates, the change in thermal conductivity is small. Therefore, when the jacket material breaks and leaks due to an impact or the like, the vacuum degree adjacent to the leaked portion is likely to deteriorate due to gas permeation or the like, but the deterioration of the thermal conductivity caused by this can be reduced. . Further, the difference in melting point between the inner bag and the heat-welded portion of the jacket material is 10 deg Since it is the following, it is easy to form an independent vacuum part by thermal welding between the inner bag and the jacket material, and the material melting point of the thermal welding part is close, so that either material is thermally deteriorated Is resolved.
[0088]
  Moreover, the vacuum insulator of the present invention isIn addition to the above configuration, the envelope material is formed into a bag shape by heat welding between laminated films having a vapor-deposited layer, or a laminate film having a vapor-deposited layer and a laminate film having a metal foil.It is a vacuum insulator.
[0089]
  Since the jacket material has a vapor deposition layer, there is no problem with heat leakage through the jacket material.
[0090]
  Moreover, the vacuum insulator of the present invention isIn addition to the above configuration, the heat-welded layer and the inner bag of the jacket material are made of high-density polyethylene resin.It is a vacuum insulator.
[0091]
  Since the heat-welded layer of the jacket material is made of high-density polyethylene, the stress resistance is improved, and deterioration of the heat-welded portion can be suppressed.
[0092]
  Moreover, the vacuum insulator of the present invention isIn addition to the above configuration,It is a vacuum heat insulator whose core material contains hard urethane foam powder.
[0093]
Therefore, since the hard urethane foam powder is used as the core material, the resin thermal conductivity is low, and the thermal conductivity can be reduced when applied to a vacuum heat insulator. In addition, urethane foam used in refrigerators can be recycled.
[0094]
  The heat insulation panel of the present invention isOf the present inventionIt is a heat insulation panel in which a vacuum heat insulator and a hard urethane foam are multilayered.
[0095]
Therefore, the heat insulation performance is superior to that of a urethane heat insulation panel used for ordinary house heat insulation.
[0096]
In addition, the vacuum insulation body, which is multilayered with rigid urethane foam, has multiple independent vacuum parts and uses a powder material for the core material. Is added and leaks, the vacuum degree of the entire vacuum heat insulating body is not deteriorated, and the deterioration of the thermal conductivity as the heat insulating panel can be suppressed.
[0097]
  Further, the heat insulating box of the present invention is an outer box, an inner box, and a heat insulating box filled with a foam heat insulating material in a space formed by the outer box and the inner box, and the inner surface of the outer box or the inner box. In addition,Of the present inventionIt is the heat insulation box which provided the vacuum heat insulating body.
[0098]
Therefore, even when the vacuum heat insulator leaks, the deterioration of the overall thermal conductivity is small. Therefore, when applied to a refrigerator, there is no rapid deterioration of the heat conductivity of the vacuum heat insulator even when used for a long time.
[0099]
As a result, the problem that the operation rate of the compressor becomes excessive and the reliability of the refrigerator is lowered due to the rapid deterioration of the thermal conductivity of the vacuum heat insulating body is solved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a vacuum insulator according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a vacuum insulator according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a heat insulation panel according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a heat insulating box according to an embodiment of the present invention.
FIG. 5 is a characteristic diagram showing the change over time in the thermal conductivity of a vacuum insulator.
FIG. 6 is a characteristic diagram showing the change over time in the thermal conductivity of the vacuum insulator.
FIG. 7 is a characteristic diagram showing the change over time in the thermal conductivity of a vacuum insulator.
FIG. 8 is a characteristic diagram showing the thermal conductivity of the vacuum heat insulator due to the difference in the core material.
[Figure 9] Performance characteristics of insulation panel
[Explanation of symbols]
1 Vacuum insulator
2 Core material
3 Jacket material

Claims (6)

粉末材料からなる芯材が不連続に充填された通気性を有する中袋と、前記中袋を外包する外被材とからなり、前記中袋と前記外被材の熱溶着層との融点の差が10 deg 以下であり、前記中袋が前記芯材の不連続部分で熱溶着され、且つ、前記中袋と前記外被材とが前記芯材の不連続部分で熱溶着されることにより、複数個の独立した真空部を有する真空断熱体。 It consists of an air-permeable inner bag in which a core material made of a powder material is filled discontinuously, and an outer jacket material that encloses the inner bag, and has a melting point between the inner bag and the heat-welded layer of the outer jacket material. The difference is 10 deg or less, the inner bag is heat-welded at the discontinuous portion of the core material, and the inner bag and the jacket material are heat-welded at the discontinuous portion of the core material. A vacuum insulator having a plurality of independent vacuum parts. 被材が蒸着層を有するラミネートフィルムどうし、もしくは蒸着層を有するラミネートフィルムと金属箔を有するラミネートフィルムを熱溶着によって袋状にされている請求項1に記載の真空断熱体。Laminate film each other envelope material has a vapor deposition layer, or vacuum thermal insulator according laminate film in claim 1 which is in a bag shape by heat welding with a laminate film and a metal foil having a vapor deposition layer. 外被材の熱溶着層と中袋が、高密度ポリエチレン樹脂からなる請求項1または2に記載の真空断熱体。 The vacuum heat insulating body according to claim 1 or 2, wherein the heat-welded layer and the inner bag of the jacket material are made of high-density polyethylene resin . 材が硬質ウレタンフォム粉末を含む請求項1から3のいずれか一項に記載の真空断熱体。 The vacuum heat insulating body as described in any one of Claim 1 to 3 with which a core material contains hard urethane foam powder. 請求項1から4のいずれか一項に記載の真空断熱体と硬質ウレタンフォームとを複層した断熱パネル。 The heat insulation panel which laminated | stacked the vacuum heat insulating body as described in any one of Claim 1 to 4, and hard urethane foam. 外箱と、内箱と、前記外箱と内箱とによって形成される空間に発泡断熱材を充填した断熱箱体において、前記外箱もしくは内箱の内面に、請求項1から4のいずれか一項に記載の真空断熱体を設けた断熱箱体。In the heat insulation box body which filled the space formed by the outer box, the inner box, and the outer box and the inner box with the foam heat insulating material, the inner surface of the outer box or the inner box is any one of claims 1 to 4. A heat insulating box provided with the vacuum heat insulating body according to one item .
JP26586896A 1996-10-07 1996-10-07 Vacuum insulation Expired - Fee Related JP3792801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26586896A JP3792801B2 (en) 1996-10-07 1996-10-07 Vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26586896A JP3792801B2 (en) 1996-10-07 1996-10-07 Vacuum insulation

Publications (2)

Publication Number Publication Date
JPH10110887A JPH10110887A (en) 1998-04-28
JP3792801B2 true JP3792801B2 (en) 2006-07-05

Family

ID=17423216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26586896A Expired - Fee Related JP3792801B2 (en) 1996-10-07 1996-10-07 Vacuum insulation

Country Status (1)

Country Link
JP (1) JP3792801B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559035B2 (en) 2002-12-05 2004-08-25 松下冷機株式会社 Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material
JP2007056614A (en) * 2005-08-26 2007-03-08 Matsushita Electric Ind Co Ltd Floor structure and its construction method
JP4708308B2 (en) * 2006-10-30 2011-06-22 シャープ株式会社 Recycling method of refrigerator
JP5691143B2 (en) * 2009-07-30 2015-04-01 株式会社寺岡精工 Heat seal packaging substrate and seal packaging method using the substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233917B2 (en) * 1981-04-16 1990-07-31 Matsushita Electric Ind Co Ltd DANNETSUBAN
JPS60165484A (en) * 1984-02-09 1985-08-28 松下冷機株式会社 Manufacture of heat-insulator pack
JP3461524B2 (en) * 1993-04-08 2003-10-27 松下冷機株式会社 Vacuum insulation pack
JPH0798090A (en) * 1993-09-30 1995-04-11 Toshiba Corp Vacuum heat insulation panel and manufacture for heat insulation box body in which vacuum heat insulation panel is used
JPH07139690A (en) * 1993-11-22 1995-05-30 Asahi Chem Ind Co Ltd Vacuum heat insulation material
JPH0882474A (en) * 1994-09-12 1996-03-26 Toshiba Corp Vacuum heat insulating material
JPH08152258A (en) * 1994-09-29 1996-06-11 Mitsubishi Chem Corp Vacuum heat insulator
KR100223546B1 (en) * 1995-03-07 1999-10-15 구보다 다다시 Vacuum thermal insulating material and thermally insulating case using the same

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9874394B2 (en) 2012-04-02 2018-01-23 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9885516B2 (en) 2012-04-02 2018-02-06 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Also Published As

Publication number Publication date
JPH10110887A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP3792801B2 (en) Vacuum insulation
KR100507783B1 (en) Heat insulation box, and vacuum heat insulation material used therefor
EP1484563B1 (en) Refrigerator
JP3478771B2 (en) refrigerator
US6164030A (en) Fixed vacuum insulation panel
JP3482408B2 (en) Vacuum insulation and refrigerators using vacuum insulation
JP2001336691A (en) Vacuum insulation material and refrigerator using vacuum insulation material
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
JP2005147591A (en) Refrigerator
JP2004011705A (en) Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
JP3792802B2 (en) Vacuum insulation
JP4207476B2 (en) Vacuum insulation material and equipment using vacuum insulation material
JP2011153721A (en) Refrigerator
JP3204817B2 (en) Refrigerator-freezer and its heat-insulating structure
JP3255689B2 (en) Manufacturing method of heat insulation box
JPH08303685A (en) Vacuum heat insulating body
JP2003314786A (en) Vacuum heat insulating material as well as refrigerating equipment and cooling equipment using vacuum heat insulating material
JP3136713B2 (en) Refrigerator manufacturing method
JP2003156192A (en) Heat insulating body and refrigerator
JP3874046B2 (en) Heat insulation box
JPH07148752A (en) Heat insulating box body
JP2001295984A (en) Vacuum heat insulator and heat insulating box
JPH10160092A (en) Vacuum heat insulating material
JP2003156193A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JP2006029448A (en) Vacuum heat insulating panel, and refrigerator using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees