JP3791209B2 - アクティブマトリクス基板及びその製造方法、並びに液晶装置 - Google Patents
アクティブマトリクス基板及びその製造方法、並びに液晶装置 Download PDFInfo
- Publication number
- JP3791209B2 JP3791209B2 JP28021498A JP28021498A JP3791209B2 JP 3791209 B2 JP3791209 B2 JP 3791209B2 JP 28021498 A JP28021498 A JP 28021498A JP 28021498 A JP28021498 A JP 28021498A JP 3791209 B2 JP3791209 B2 JP 3791209B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- region
- semiconductor thin
- impurity
- active matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Description
【発明の属する技術分野】
本発明は、薄膜トランジスタ(以下、TFTという。)を用いたアクティブマトリクス基板、その製造方法、および液晶表示装置に関するものである。さらに詳しくは、基板上に形成した複数のTFT間における素子間分離技術に関するものである。
【0002】
【従来の技術】
液晶パネルを用いた表示装置、あるいはエレクトロルミネッセンスなどといった電流駆動型の発光素子を用いた表示装置では、TFTを用いて駆動回路や画素スイッチング回路などを構成することが多い。たとえば、図14(A)、(B)に示すように、液晶パネルのアクティブマトリクス基板2に形成された画素スイッチング用のN型のTFT10Cでは、下地保護膜101の形成されたガラス基板などといった絶縁基板100の表面に島状のポリシリコン膜からなる多結晶性の半導体薄膜20Cが形成され、この島状の半導体薄膜20Cには、ゲート電極15Cに対してゲート絶縁膜13を介して対峙する真性半導体(不純物の導入されていない半導体薄膜)よりなるチャネル領域17C、およびこのチャネル領域17Cに接続するソース・ドレイン領域12C(不純物の導入された半導体薄膜)が形成されている。ソース・ドレイン領域12Cに対しては、ゲート電極15Cを覆うように形成された層間絶縁膜51のコンタクトホールを介してソース・ドレイン電極801、802が電気的に接続している。
【0003】
ソース・ドレイン領域12Cでは、ゲート電極15Cの端部に対してゲート絶縁膜13を介して対峙する位置からチャネル長方向にずれた位置に高濃度ソース・ドレイン領域122Cが形成され、ゲート電極15Cの端部に対してゲート絶縁膜13を介して対峙する部分には低濃度ソース・ドレイン領域121Cが形成されている。ゲート電極15Cは走査線の一部として形成されている。また、ソース・ドレイン電極802はデータ線として形成され、ソース、ドレイン電極801には、その上層側に形成された層間絶縁膜52のコンタクトホールを介してITO膜(Indium Tin Oxide)からなる透明な画素電極8が電気的に接続している。
【0004】
また、アクティブマトリクス基板2に対してデータ線駆動回路や走査線駆動回路などが形成されている場合には、図4に示すように、アクティブマトリクス基板上には、画素スイッチング用のN型のTFT10Cの他にも、駆動回路用のN型のTFT10A、および駆動回路用のP型のTFT10Bが形成される。従って、このような駆動回路内蔵型のアクティブマトリクス基板2を製造する場合には少なくとも2回の不純物導入工程が必要であり、またTFTのオフ電流の低減、あるいは信頼性の向上といった要請からTFTがLDD(Lightly Doped Drain)構造をとる場合には図15(A)〜(D)を参照して以下に説明する計4回の不純物導入工程を行う。
【0005】
図15(A)〜(D)は、アクティブマトリクス基板2の製造工程のうち、不純物導入工程を行う際の断面(図面に向かって左側)および平面(図面に向かって右側)を示す工程図である。なお、図15(A)〜(D)には、画素スイッチング用のTFT10Cを形成していく様子のみを示してある。
【0006】
まず、図15(A)に示すように、絶縁基板100の全面に形成した真性半導体薄膜から複数の島状の半導体薄膜20Cをパターニング形成した以降、駆動回路用のP型のTFTを形成するための低濃度P型の不純物を導入する工程では、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20C、および駆動回路用のN型のTFTを形成するための半導体薄膜を覆うレジストマスクRM11を用いる。
【0007】
次に、図15(B)に示すように、駆動回路用のP型のTFTを形成するための高濃度P型の不純物を導入する工程では、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20C、および駆動回路用のN型のTFTを形成するための半導体薄膜を覆うとともに、駆動回路用のP型のTFTのゲート電極をやや広めに覆うレジストマスクRM12を用いる。
【0008】
次に、図15(C)に示すように、画素スイッチング用のN型のTFT10C、および駆動回路用のN型のTFTを形成するための低濃度N型の不純物を導入する工程では、駆動回路用のP型のTFTを形成するための半導体薄膜を覆うレジストマスクを用いる。従って、画素スイッチング用のN型のTFT10Cの形成領域、および駆動回路用のN型のTFTの形成領域にはレジストマスクは形成されない。それ故、この不純物導入工程を終えた後には、半導体薄膜20Cには、ゲート電極15Cにセルフアライン的に低濃度ソース・ドレイン領域121Cが形成される。
【0009】
次に、図15(D)に示すように、画素スイッチング用のN型のTFT10C、および駆動回路用のN型のTFTを形成するための高濃度N型の不純物を導入する工程では、画素スイッチング用のN型のTFT10Cのゲート電極15C、および駆動回路用のN型のTFTのゲート電極をやや広めに覆うレジストマスクRM14を用いる。従って、この不純物導入工程を終えた後において、半導体薄膜20Cには、ゲート電極15Cの端部からチャネル長方向にずれた位置に高濃度ソース・ドレイン領域122Cを備えるソース・ドレイン領域12Cが形成される。
【0010】
ここで、不純物導入用のレジストマスクRM11、RM12、RM14はいずれも、絶縁基板100の表面に対して必要最少限の領域に形成されるのが一般的である。すなわち、半導体薄膜20Cが形成されていない領域については、絶縁基板100に形成した下地保護膜101が露出しているだけなので、不純物を導入する際にレジストマスクRM11、RM12、RM14で覆う必要がない。また、レジストマスクRM11、RM12、RM14を不必要な領域にまで形成すると、レジスト等から発生するガスに起因する気泡の発生、あるいはレジストマスクの剥がれなどが発生しやすいので、レジストマスクRM11、RM12、RM14は、必要最少限の領域に形成した方が工程を安定化することができる。それ故、従来は不純物導入工程において、レジストマスクRM11、RM12、RM14は、島状の半導体薄膜20Cが形成されている領域上のみに形成され、半導体薄膜20Cがない領域には形成されない。
【0011】
【発明が解決しようとする課題】
このように、従来のアクティブマトリクス基板2では、島状にパターニングした半導体薄膜20Cに対してTFT10Cを形成することにより隣接するTFT10Cの間の素子間分離を行っているが、絶縁基板100の全面に形成した半導体薄膜から島状の半導体薄膜20Cをパターニング形成した際に、例えばレジストマスク形成時の異常等により、図16および図17に示すように、残すべき領域以外に余分な半導体薄膜20Dが残ってしまうことがあり、このような場合には、隣接するTFT10Cの間で短絡が発生するという問題点がある。すなわち、アクティブマトリクス基板2の製造方法において、不純物を選択的に導入するためのレジストマスクRM11、RM12、RM14は、図17(A)、(B)、(D)に示すように、半導体薄膜20Cが形成されている領域上のみに形成され、この領域以外に余分な半導体薄膜20Dが残っていることは全く想定されていない。従って、余分な半導体薄膜20Dが残っているにもかかわらず、半導体薄膜20Cが形成された領域のみにレジストマスクRM11、RM12、RM14を形成する方法では、図17(A)、(B)、(C)、(D)に示すいずれの不純物導入工程においても、余分な半導体薄膜20Dに対して不純物が導入され、この半導体薄膜20Dが10-3〜10-1Ωcm程度に低抵抗化する。そして、N型領域として導電化した半導体薄膜20Dが、隣接するTFT10Cの間で、同じくN型のソース・ドレイン領域121C同士を繋げると、隣接するTFT10C同士が短絡するのである。なお、余分な半導体薄膜20Dに対しては、N型の不純物およびP型の不純物の双方が導入されるため、各不純物のドーズ量のバランスによりN型もしくはP型の半導体のいずれかとして振る舞う。ドーズ量の条件によっては半導体薄膜20Dが真性半導体に近くなり、導電性が低下するため短絡を防止できるが、そこまでの制御は事実上、不可能である。
【0012】
このような短絡の発生したトランジスタは正常に機能しないため、駆動回路の動作不良やいわゆる線欠陥・点欠陥といった表示不良の原因となり、製造歩留まりを低下させる。
【0013】
以上の問題点に鑑みて、本発明の課題は、工程数を増やすことなく、基板上に形成したTFTの間で短絡が発生しないアクティブマトリクス基板、その製造方法、および液晶表示装置を提供することにある。
【0014】
【課題を解決するための手段】
上記課題を解決するため、本発明では、不純物が導入されていない半導体薄膜よりなる半導体領域、および不純物が導入された半導体薄膜よりなるソース・ドレイン領域を備える複数の薄膜トランジスタが基板上に形成されてなるアクティブマトリクス基板において、 少なくとも隣接する前記薄膜トランジスタ間及び該薄膜トランジスタ周辺には、素子間分離領域が形成され、当該素子間分離領域は、前記薄膜トランジスタ形成領域に接する不純物が導入されていない半導体薄膜領域と、不純物が導入された半導体薄膜間に挟まれ、かつ不純物を含まない半導体薄膜を有する領域から構成されていることを特徴とする。本願明細書におけるアクティブマトリクス基板とは、TFTを用いた液晶パネル用、あるいはエレクトロルミネッセンス素子などの電流駆動型の発光素子を用いた表示装置用など、TFTを用いて駆動回路やスイッチング回路などを構成した装置のことを意味する。
【0015】
本発明では、パターニング工程で複数の島状の半導体薄膜を形成した際に、隣接する半導体薄膜同士を繋げるような余分な半導体薄膜が残り、かつ、不純物導入工程において余分な半導体薄膜に不純物が導入されることにより10-3〜10-1Ωcm程度に半導体薄膜の低抵抗化が起こっても、この余分な半導体薄膜に比抵抗103〜105Ωcm程度と高抵抗の半導体領域を確保し、この半導体領域を素子間分離膜として用いている。このため、隣接するTFT間に短絡が発生するということがないので、装置が誤動作することがない。また、余分な半導体薄膜に真性領域(素子間分離膜)を確保するには、いずれの不純物導入工程においても不純物が導入されないような領域を確保すればよい。すなわち、TFTを製造するために行う不純物導入工程で用いる不純物導入用マスクとしては、TFTを形成するための島状の半導体薄膜の上だけでなく、その周辺領域の一部も常に覆うように不純物導入用マスクのパターンを変えるだけでよい。それ故、工程数を増やすことなく、基板上に形成したTFTの間で短絡が発生しないTFT装置を製造することができる。さらに、半導体領域(例えば真性半導体)を有する素子間分離膜を用いれば、本来意図しない余分な半導体薄膜に起因する短絡防止のみならず、例えば静電気破壊防止対策として、あるいは加工精度向上や加工時のダメージによる素子劣化向上のため、積極的にTFT間を半導体薄膜で接続するような製造方法も可能になる。しかも、真性半導体を有する素子間分離膜を用いれば、かならずしもTFT毎に半導体薄膜を島状に分離するように加工する必要がないという利点もある。
【0016】
本発明の別の形態では、不純物が導入されていない半導体薄膜よりなる半導体領域、および不純物が導入された半導体薄膜よりなるソース・ドレイン領域を備える複数の薄膜トランジスタが基板上に形成されてなるアクティブマトリクス基板において、少なくとも隣接する前記薄膜トランジスタの間及び該薄膜トランジスタ周辺には、素子間分離領域が形成され、当該素子間分離領域は、前記薄膜トランジスタ形成領域に接し、かつ当該薄膜トランジスタのソース・ドレイン領域に導入された不純物と反対極性のP型またはN型の不純物が導入された半導体薄膜領域と、PN接合面を形成するP型、N型の不純物が導入された各々の半導体薄膜を有する領域から構成されることを特徴とする。
【0017】
本発明では、複数の島状の半導体薄膜を形成した際に、隣接する半導体薄膜同士を繋げるような余分な半導体薄膜が残り、かつ、この余分な半導体薄膜に不純物が導入されることにより導電化が起こっても、この余分な半導体薄膜には、PN接合部位を形成する。このため、隣接するTFT同士は、PN接合部位によって絶縁分離されているので、短絡が発生しない。また、PN接合を形成するには、不純物導入工程において、隣接する領域に異なる不純物を導入するだけでよい。すなわち、不純物導入工程において用いる不純物導入用マスクとしては、TFTを形成するための島状の半導体薄膜の上だけでなく、その周辺領域において、隣接する領域に対して導電型の異なる不純物を導入することのできるパターンをもつ不純物導入用マスクを用いればよい。それ故、工程数を増やすことなく、基板上に形成したTFTの間で短絡が発生しないTFT装置を製造することができる。さらに、PN接合部位を有する素子間分離膜を用いれば、本来意図しない余分な半導体薄膜に起因する短絡防止のみならず、例えば静電気破壊防止対策として、あるいは加工精度向上や加工時のダメージによる素子劣化向上のため、積極的にTFT間を半導体薄膜で接続するような製造方法も可能になる。しかも、PN接合部位を有する素子間分離膜を用いれば、かならずしもTFT毎に半導体薄膜を島状に分離するように加工する必要がないという利点もある。
【0018】
本発明において、前記素子間分離領域は、隣接するTFTの間に少なくとも2個以上のPN接合面を有していることが好ましい。このように構成すると、TFT間に印加される電圧にかかわらず、十分な絶縁性を確保することができる。
【0019】
本発明において、前記素子間分離領域は、前記TFTの形成領域と接するように形成されていることが好ましい。このように構成すると、1つのTFTに形成されているソース・ドレイン領域間の短絡をも防止できる。
【0020】
本発明において、前記素子間分離領域は、たとえば、アクティブマトリクス基板上に画素スイッチング用として形成されるTFTに対して形成される。
【0021】
本発明では、少なくとも基板上の所定の領域に半導体薄膜を形成する半導体薄膜形成工程と、前記薄膜トランジスタのソース・ドレインを形成する領域に選択的に不純物を導入する不純物導入工程とを有するアクティブマトリクス基板の製造方法において、隣接し合う薄膜トランジスタの間の中央部、及び当該薄膜トランジスタ領域周辺に不純物の導入を行わない所定領域を形成できるように、所定のマスクをかけた後前記不純物導入を行うことを特徴とする。
【0022】
本発明において、前記不純物導入工程を複数回行う場合には、該複数回のいずれの不純物導入工程においても、前記薄膜トラジスタの形成領域の間の同一箇所に不純物の導入を行わない領域を設ける。
【0023】
本発明において、少なくとも基板上の所定の領域に半導体薄膜を形成する半導体薄膜形成工程と、前記半導体薄膜にN型不純物を導入するN型不純物導入工程と、前記半導体薄膜にP型不純物を導入するP型不純物導入工程とを有するアクティブマトリクス基板の製造方法において、形成される薄膜トランジスタ周辺には、当該薄膜トランジスタのソース・ドレイン領域に導入される不純物とは反対極性の不純物を導入する領域を形成するように、また、前記隣接する薄膜トランジスタ間にはN型不純物を導入する領域と、P型不純物を導入する領域とを隣接して設けられるように、前記各工程において所定のマスクをかけた後、低濃度P型不純物、高濃度P型不純物、低濃度N型不純物、そして高濃度N型不純物の順に各不純物を導入することを特徴とする。
【0024】
本発明において、前記の各不純物導入工程において、N型もしくはP型の不純物がそれぞれ導入される領域は、当該TFTの各形成領域の間に少なくとも3個所存在することが好ましい。
【0025】
このような構成のアクティブマトリクス基板の製造方法は、TFTにより各画素を個別にスイッチングする液晶装置用のアクティブマトリクス基板の製造に適用される。
【0026】
【発明の実施の形態】
図面を参照して本発明の実施の形態を説明する。なお、以下の説明では、説明の重複を避けるために、共通する機能を有する部分には同一の符号を付してある。
【0027】
[全体構成]
図1ないし図4を参照して、本発明に係る素子間分離技術を採用した装置として、駆動回路内蔵型液晶パネルのアクティブマトリクス基板に形成した画素スイッチング用のTFT同士の素子間分離に本発明を適用した例を説明する。
【0028】
図1および図2はそれぞれ、本形態に係る液晶表示装置に用いた液晶パネルを対向基板の側からみた平面図、および図1のH−H′線で切断したときの液晶パネルの断面図である。図3は、アクティブマトリクス基板の構成を模式的に示すブロック図である。図4および図5はそれぞれ、アクティブマトリクス基板に形成した画素領域および駆動回路形成領域の一部を取り出して示す断面図および平面図である。
【0029】
図1および図2において、液晶表示装置に用いる液晶パネル1は、画素電極8がマトリクス状に形成されたアクティブマトリクス基板2と、対向電極32が形成された対向基板3と、これらの基板間に封入、挟持されている液晶39とから概略構成されている。アクティブマトリクス基板2と対向基板3とは、対向基板3の外周縁に沿って形成されたギャップ材含有のシール材210によって所定の間隙を介して貼り合わされている。また、アクティブマトリクス基板2と対向基板3との間には、シール材210によって液晶封入領域40が区画形成され、この液晶封入領域40内に液晶39が封入されている。この液晶封入領域40内において、アクティブマトリクス基板2と対向基板3と間にはスペーサ37が介在している。シール材210としては、エポキシ樹脂や各種の紫外線硬化樹脂などを用いることができる。また、シール材210に配合されるギャップ材としては、約2μm〜約10μmの無機あるいは有機質のファイバ若しくは球などが用いられる。
【0030】
例えば、対向基板3はアクティブマトリクス基板2よりも小さく形成されてなり、アクティブマトリクス基板2の周辺部分は、対向基板3の外周縁よりはみ出た状態に貼り合わされる。従って、アクティブマトリクス基板2の駆動回路(走査線駆動回路70やデータ線駆動回路60)や入出力端子45は対向基板3から露出した状態にある。ここで、シール材210は部分的に途切れているので、この途切れ部分によって、液晶注入口241が構成されている。このため、対向基板3とアクティブマトリクス基板2とを貼り合わせた後、シール材210の内側領域を減圧状態にすれば、液晶注入口241から液晶39を減圧注入でき、液晶39を封入した後は液晶注入口241を封止剤242で塞げばよい。なお、対向基板3には、シール材52の内側において画面表示領域7を見切りするための遮光膜402も形成されている。また、対向基板3のコーナー部のいずれにも、アクティブマトリクス基板2と対向基板3との間で電気的導通をとるための上下導通材56が形成されている。また、基板はほぼ同じサイズで形成し、シールとドライバーとが重なるように形成されていても構わない。
【0031】
ここで、走査線に供給される走査信号の遅延が問題にならないのならば、走査線駆動回路70は片側だけでも良いことは言うまでもない。また、データ線駆動回路60を画面表示領域7の辺に沿って両側に配列しても良い。この場合に、例えば奇数列のデータ線は画面表示領域7の一方の辺に沿って配設されたデータ線駆動回路から画像信号を供給し、 偶数列のデータ線は画面表示領域7の反対側の辺に沿って配設されたデータ線駆動回路から画像信号を供給するようにしても良い。このようにデータ線を櫛歯状に駆動するようにすれば、データ線駆動回路60の形成面積を拡張することが出来るため、複雑な回路を構成することが可能となる。また、アクティブマトリクス基板2において、データ線駆動回路60と対向する辺の側では、遮光膜402の下などを利用して、プリチャージ回路や検査回路が設けられることもある。また、対向基板3およびアクティブマトリクス基板2の光入射側の面あるいは光出射側には、使用する液晶39の種類、すなわち、TN(ツイステッドネマティック)モード、STN(スーパーTN)モード等々の動作モードや、ノーマリホワイトモード/ノーマリブラックモードの別に応じて、偏光フィルム、位相差フィルム、偏光板などが所定の向きに配置される。
【0032】
本形態の液晶パネル1を透過型で構成した場合には、たとえば、投射型液晶表示装置(液晶プロジェクタ)において使用される。この場合、3枚の液晶パネル1がRGB用のライトバルブとして各々使用され、各液晶パネル1の各々には、RGB色分解用のダイクロイックミラーを介して分解された各色の光が投射光として各々入射されることになる。従って、本形態の液晶パネル1にはカラーフィルタが形成されていない。但し、対向基板3において各画素電極8に対向する領域にRGBのカラーフィルタをその保護膜とともに形成することにより、投射型液晶表示以外にも、カラー液晶テレビなどといったカラー液晶表示装置を構成することができる。さらにまた、対向基板3に何層もの屈折率の異なる干渉層を積層することにより、光の干渉作用を利用して、RGB色をつくり出すダイクロイックフィルタを形成してもよい。このダイクロイックフィルタ付きの対向基板によれば、より明るいカラー表示を行うことができる。
【0033】
[アクティブマトリクス基板の構成]
図3に示すように、液晶表示装置用のアクティブマトリクス基板2上には、データ線90および走査線91に接続する画素スイッチング用のN型のTFT10Cと、このTFT10Cを介してデータ線90から画像信号が入力される液晶セル94が存在する。なお、液晶セルとは画素電極に対応する液晶層領域をいう。
【0034】
データ線90に対しては、シフトレジスタ84、レベルシフタ85、ビデオライン87、アナログスイッチ86を備えるデータ線駆動回路60が形成されている。走査線91に対しては、シフトレジスタ88およびレベルシフタ89を備える走査線駆動回路70が形成されている。画素領域では、前段の走査線91との間に保持容量40(容量素子)が形成され、この保持容量40は、液晶セル94での電荷の保持特性を高める機能を有しており、走査線91との間に代えて、専用の容量線との間に構成されることもある。
【0035】
このように構成したアクティブマトリクス基板2において、データ線駆動回路60および走査線駆動回路70のシフトレジスタ84、88などは、図4および図5に示すように、画素スイッチング用のN型のTFT10Cと同時形成された駆動回路用のN型のTFT10A、および駆動回路用のP型のTFT10Bによって構成されている。
【0036】
従って、アクティブマトリクス基板2には、用途および導電型が相違する3種類のTFT10A、10B、10Cが形成され、これらのTFT10A、10B、10Cは、いずれもガラス基板などといった絶縁基板100の表面に形成された島状のポリシリコン膜からなる多結晶性の半導体薄膜20A、20B、20Cを用いて形成されている。
【0037】
まず、画素スイッチング用のN型のTFT10Cでは、島状の半導体薄膜20Cに対して、ゲート電極15Cに対してゲート絶縁膜13を介して対峙するチャネル領域17C、およびこのチャネル領域17Cに接続するソース・ドレイン領域12Cが形成されている。これらのソース・ドレイン領域12Cに対しては、ゲート電極15Cの表面側に形成された層間絶縁膜51のコンタクトホールを介してソース・ドレイン電極801、802が電気的に接続している。また、ソース・ドレイン領域12Cでは、ゲート電極15Cの端部に対してゲート絶縁膜13を介して対峙する位置からチャネル長方向にずれた位置に高濃度ソース・ドレイン領域122Cが形成され、ゲート電極15Cの端部に対してゲート絶縁膜13を介して対峙する部分には低濃度ソース・ドレイン領域121Cが形成されている。ここで、ゲート電極15Cは走査線の一部として形成されている。また、ソース・ドレイン電極802はデータ線91として形成され、ソース、ドレイン電極801には、その上層側に形成された層間絶縁膜52のコンタクトホールを介してITO膜からなる透明な画素電極8が電気的に接続している。
【0038】
また、駆動回路用のN型のTFT10A、および駆動回路用のP型のTFT10Bでも、島状の半導体薄膜20A、20Bに対して、ゲート電極15A、15Bに対してゲート絶縁膜13を介して対峙するチャネル領域17A、17B、およびこのチャネル領域17A、17Bに接続するソース・ドレイン領域12A、12Bがそれぞれ形成されている。これらのソース・ドレイン領域12A、12Bに対しては、ゲート電極15A、15Bの表面側に形成された層間絶縁膜51のコンタクトホールを介してソース・ドレイン電極803〜806が電気的に接続している。また、駆動回路用のN型のTFT10A、および駆動回路用のP型のTFT10Bでも、ソース・ドレイン領域12A、12Bでは、ゲート電極15A、15Bの端部に対してゲート絶縁膜13を介して対峙する位置からチャネル長方向にずれた位置に高濃度ソース・ドレイン領域122A、122Bが形成され、ゲート電極15A、15Bの端部に対してゲート絶縁膜13を介して対峙する部分には低濃度ソース・ドレイン領域121A、121Bが形成されている。ここで、ゲート電極15A、15Bは共通のゲート配線として形成されている。また、TFT10A、10Bのソース・ドレイン電極12A、12Bのうち、一方のソース・ドレイン電極804、805は、各TFTのドレインに接続する共通の配線として一体に形成され、他方のソース・ドレイン電極803、806には、グランド電位GNDおよび駆動電位VDDがそれぞれ印加される。
【0039】
[アクティブマトリクス基板の基本的な製造工程]
本発明の各実施の形態を説明する前に、アクティブマトリクス基板2に各TFT10A、10B、10Cを製造する方法の基本的な例を、図6〜図9を参照して説明する。図6〜図9はいずれも、アクティブマトリクス基板2に対して各要素を形成していく際の断面(図面に向かって左側)および平面(図面に向かって右側)を示す工程図である。
【0040】
まず、図6(A)に示すように、ガラス製の透明基板100に対してTEOS(テトラエトキシシラン)や酸素ガスなどを原料ガスとしてプラズマCVD法により厚さが約2100オングストロームのシリコン酸化膜からなる下地保護膜101を形成する。
【0041】
次に、絶縁絶縁基板100の温度を350℃に設定して、下地保護膜101の表面にプラズマCVD法により厚さが約600オングストロームのアモルファスのシリコン膜からなる半導体薄膜200を形成する。次にアモルファスのシリコン膜からなる半導体薄膜210に対して、レーザアニールまたは固相成長法などの結晶化工程を行い、半導体薄膜200をポリシリコン膜にまで結晶化しておく。
【0042】
次に、図6(B)に示すように、ポリシリコン膜となった半導体薄膜200の表面にフォトリソグラフィ技術を用いてレジストマスクRM1を形成した後、このレジストマスクRM1を用いて半導体薄膜200をパターニングし、図6(C)に示すように、島状の半導体薄膜20A、20B、20Cを形成する。半導体薄膜20A、20B、20Cは、それぞれ駆動回路用のN型のTFT10A、駆動回路用のP型のTFT10B、画素用のTFT10Cを形成するための島状の半導体薄膜である。
【0043】
次に、絶縁基板100の全面に対して、TEOS(テトラエトキシシラン)や酸素ガスなどを原料ガスとしてプラズマCVD法により厚さが約1000オングストロームのシリコン酸化膜からなるゲート絶縁膜13を形成する。次に、基板の全面に対して、アルミニウムなどの金属膜からなる導電膜をスパッタ法により形成した後、導電膜をパターニングし、各TFTのゲート電極15A、15B、15Cを形成する。
【0044】
次に、図6(D)に示すように、駆動回路用のN型のTFT10Aを形成するための半導体薄膜20A、および画素用のTFT10Cを形成するための半導体薄膜20CをレジストマスクRM11で覆った後、絶縁基板100の温度が350℃の条件下で、水素ガスで希釈されたジボラン(B2 H6 )などを用いて低濃度のボロンイオン(P型不純物)を約2×1013cm-2のドーズ量で導入する(低濃度P型不純物導入工程)。その結果、半導体薄膜20Bには、ゲート電極15Bに対してセルフアライン的に低濃度ソース・ドレイン領域121Bが形成され、不純物が導入されなかった部分がチャネル領域17Bとなる。
【0045】
次に、図7(A)に示すように、駆動回路用のN型のTFT10Aを形成するための半導体薄膜20A、および画素用のTFT10Cを形成するための半導体薄膜20Cを覆うとともに、駆動回路用のP型のTFT10Bのゲート電極15Bをやや広めに覆うレジストマスクRM12を形成し、この状態で半導体薄膜20Bに対してボロンイオン(P型不純物)を約1×1015cm-2のドーズ量で導入する(高濃度P型不純物導入工程)。その結果、半導体薄膜20Bのうち、ボロンイオンが打ち込まれた領域は高濃度ソース・ドレイン領域122Bとなって、ソース・ドレイン領域12Bが形成される。
【0046】
次に、図7(B)に示すように、駆動回路用のP型のTFT10Bの形成予定領域全体を覆うレジストマスクRM13を形成した後、絶縁基板100の温度が350℃の条件下で、水素ガスで希釈されたホスフィン(PH3 )などを用いて低濃度のリンイオン(N型不純物)を約2×1013cm-2のドーズ量で導入する(低濃度N型不純物導入工程)。その結果、半導体薄膜20A、20Cには、ゲート電極に対してセルフアライン的に低濃度ソース・ドレイン領域121A、121Cが形成され、不純物が導入されなかった部分がチャネル領域17A、17Cとなる。
【0047】
次に、図7(C)に示すように、駆動回路用のP型のTFT10Bの形成予定領域全体を覆うとともに、駆動回路用のN型のTFT10Aおよび画素用のTFT10Cのゲート電極15A、15Cをやや広めに覆うレジストマスクRM14を形成し、この状態で半導体薄膜20A、20Cに対してリンイオン(N型不純物)を約1×1015cm-2のドーズ量で導入する(高濃度N型不純物導入工程)。その結果、半導体薄膜20A、20Cのうちリンイオンが打ち込まれた領域は、高濃度ソース・ドレイン領域122A、122Cとなり、ソース・ドレイン領域12A、12Cが形成される。
【0048】
次に、図8(A)に示すように、TEOS(テトラエトキシシラン)や酸素ガスなどを原料ガスとしてプラズマCVD法により厚さが約5000オングストロームのシリコン酸化膜からなる層間絶縁膜51を形成する。
【0049】
次に、図8(B)に示すように、層間絶縁膜51及びゲート絶縁膜にコンタクトホール191を形成する。続いて、アルミニウムなどの金属膜からなる導電膜をスパッタ法により形成した後、この導電膜をパターニングし、図8(C)に示すように、各ソース・ドレイン電極801〜806を形成する。
【0050】
次に、図9(A)に示すように、TEOS(テトラエトキシシラン)や酸素ガスなどを原料ガスとしてプラズマCVD法により厚さが約5000オングストロームのシリコン酸化膜からなる層間絶縁膜52を形成する。また、層間絶縁膜52を形成するにあたっては、ポリシラザン塗布膜を焼成して得たシリコン酸化膜を用いてもよい。このポリシラザン塗布膜は、ペルヒドロポリシラザンなどをキシレンなどに溶かしたものをスピンコート法やインクジェット法で塗布した膜である。ここで、ペルヒドロポリシラザンとは無機ポリシラザンの一種であり、大気中で焼成することによってシリコン酸化膜に転化する塗布型コーティング材料である。たとえば、東燃(株)製のポリシラザンは、−(SiH2 NH)−を単位とする無機ポリマーであり、キシレンなどの有機溶剤に可溶である。従って、この無機ポリマーの有機溶媒溶液(たとえば、20%キシレン溶液)を塗布液としてスピンコート法(たとえば、2000lrpm、20秒間)で塗布した後、450℃の温度で大気中で焼成すると、水分や酸素と反応し、CVD法で成膜したシリコン酸化膜と同等以上の緻密なアモルファスのシリコン酸化膜を得ることができる。従って、この方法で成膜した層間絶縁膜(シリコン酸化膜)はCVD法で形成した層間絶縁膜と同様の信頼性を有しているとともに、ソース・ドレイン電極801〜806に起因する凹凸などを平坦化してくれる。
【0051】
次に、図9(B)に示すように、層間絶縁膜52にコンタクトホール192を形成した後、ITO膜をスパッタ法により形成し、しかる後にITO膜をパターニングして、図9(C)に示すように、画素電極8を形成する。
【0052】
[実施の形態1]
このようにして同一の基板上に画素スイッチング用のN型のTFT10C、駆動回路用のN型のTFT10A、および駆動回路用のP型のTFT10Bを形成するにあたって、本形態では、以下に説明する構成を採用することによって、図6(A)、(B)を参照して説明した工程において、図10および図11に示すように、例えば半導体薄膜パターニング時のフォトリソグラフィ工程において異物付着によりレジストマスクパターンが正常に形成されず、本来残すべき領域以外に余分な半導体薄膜20Dが残ってしまったとしても、TFT10Cに短絡が発生することを防止する。
【0053】
図10(A)、(B)は、本形態のアクティブマトリクス基板2の表面のうち、隣接する2つの画素の各々に画素スイッチング用のTFT10Cが形成され、かつ、その周辺に余分な半導体薄膜20Dが残っている状態を示す断面図および平面図である。図11(A)〜(D)は、本形態のアクティブマトリクス基板2の製造工程のうち、不純物導入工程を行う際の断面(図面に向かって左側)および平面(図面に向かって右側)を示す工程図であり、これらの図11(A)〜(D)を参照して画素スイッチング用のTFT10Cを形成していく方法を説明する。
【0054】
まず、図10(A)、(B)に示すように、本形態では、画素スイッチング用のTFT10Cの形成領域の周辺に余分な半導体薄膜20Dが残っている。ここで、余分な半導体20Dは、隣接する2つの画素に形成された画素スイッチング用のTFT10Cの半導体薄膜20C同士を繋げるように残っている半導体薄膜20Eと、一つのTFT10Cにおいてソース・ドレイン領域12C同士を繋げるように残っている半導体薄膜20Fとからなる。
【0055】
このような余分な半導体薄膜20D(余分な半導体薄膜20E、20F)が残っていても、本形態では、1つのTFT10C内においてソース・ドレイン領域12Cを繋げるように残っている半導体薄膜20Fは、不純物が一切、導入されてない真性の半導体薄膜であり、103〜105Ωcmと比抵抗が極めて大きい。従って、それ故、一つのTFT10Cにおいて2つのソース・ドレイン領域12C間は、真性の半導体薄膜20Fによって高い抵抗で分離されているので、短絡不良にならない。
【0056】
また、本形態において、隣接する2つの画素スイッチング用のTFT10Cの半導体薄膜20C同士を繋げるように残っている半導体薄膜20Eにおいて、その中間領域は、不純物が一切、導入されてない真性領域20Jになっている。なお、余分な半導体薄膜20Eのうち、真性領域20Jを除く領域は、不純物が導入されて、たとえばN型に導電化しており、10-3〜10-1Ωcm程度の低い比抵抗を示す。それでも、隣接する2つのTFT10Cの半導体薄膜20Cの間には、103〜105Ωcmと高い比抵抗を有する半導体薄膜20Eの真性領域20Jと、略全体が真性領域である半導体薄膜20Fとからなる素子間分離膜20Xが介在しているので、隣接する2つのTFT10C同士の短絡により表示装置が不良化することがない。
【0057】
このような構成のアクティブマトリクス基板2の製造方法では、図11(A)に示すように、駆動回路用のP型のTFTを形成するための低濃度P型の不純物を導入する工程(図6(D)を参照。)において、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20C、および駆動回路用のN型のTFTを形成するための半導体薄膜を覆うレジストマスクRM11を形成する際に、このレジストマスクRM11によって、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20Cの周り、および隣接するTFT10Cの間の所定領域を覆っておく。従って、低濃度P型の不純物を導入した後には、1つのTFT10Cにおいてソース・ドレイン領域12Cを繋げるような余分な半導体薄膜20E、および隣接する2つのTFT10C同士を繋げるような余分な半導体薄膜20Fがあっても、余分な半導体薄膜20Fには不純物が導入されず、かつ、半導体薄膜20Eの所定領域には不純物が導入されない。
【0058】
また、図11(B)に示すように、駆動回路用のP型のTFTを形成するための高濃度P型の不純物を導入する工程(図17(A)を参照。)において、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20C、および駆動回路用のN型のTFTを形成するための半導体薄膜を覆うレジストマスクRM12を形成する際に、このレジストマスクRM12によって、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20Cの周り、および隣接するTFT10Cの間の所定領域を覆っておく。従って、高濃度P型の不純物を導入した後には、1つのTFT10Cにおいてソース・ドレイン領域12Cを繋げるような余分な半導体薄膜20F、および隣接する2つのTFT10C同士を繋げるような余分な半導体薄膜20Eがあっても、余分な半導体薄膜20Fには不純物が導入されず、かつ、半導体薄膜20Eの所定領域には不純物が導入されない。
【0059】
さらに、図11(C)に示すように、駆動回路用のN型のTFT、および画素スイッチング用のN型のTFT10Cを形成するための低濃度N型の不純物を導入する工程(図17(B)を参照。)においては、駆動回路用のP型のTFTを形成するための半導体薄膜を覆うレジストマスクRM13を形成する際に、このレジストマスクRM13によって、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20Cの周り、および隣接するTFT10Cの間の所定領域を覆っておく。従って、低濃度N型の不純物を導入した後には、1つのTFT10Cにおいてソース・ドレイン領域12Cを繋げるような余分な半導体薄膜20F、および隣接する2つのTFT10C同士を繋げるような余分な半導体薄膜20Eがあっても、余分な半導体薄膜20Fには不純物が導入されず、かつ、半導体薄膜20Eの所定領域には不純物が導入されない。
【0060】
さらにまた、図11(D)に示すように、駆動回路用のN型のTFT、および画素スイッチング用のN型のTFT10Cを形成するための高濃度N型の不純物を導入する工程(図17(C)を参照。)においては、駆動回路用のN型のTFTのゲート電極、および画素スイッチング用のN型のTFT10Cのゲート電極15Aをやや広めに覆うレジストマスクRM14を形成する際に、このレジストマスクRM14によって、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20Cの周り、および隣接するTFT10Cの間の所定領域を覆っておく。従って、高濃度N型の不純物を導入した後には、1つのTFT10Cにおいてソース・ドレイン領域12Cを繋げるような余分な半導体薄膜20F、および隣接する2つのTFT10C同士を繋げるような余分な半導体薄膜20Eがあっても、余分な半導体薄膜20Fには不純物が導入されず、かつ、半導体薄膜20Eの所定領域には不純物が導入されない。
【0061】
このようにして不純物導入工程を4回行うとともに、これら4回のいずれの不純物導入工程においても、TFT10Cの周り、およびTFT10Cの形成領域の間の同一箇所を不純物導入用マスクRM11〜RM14によって覆った状態で不純物の導入を行う。その結果、図10を参照して説明したように、一つのTFT10Cにおいて、2つのソース・ドレイン領域12C間は真性の半導体薄膜20Fによって高抵抗で分離され、短絡不良にならない。また、隣接する2つの画素に形成された画素スイッチング用のTFT10Cの半導体薄膜20C同士を繋げるように残っている半導体薄膜20Eにおいて、その中間領域は、不純物が一切、導入されてない真性領域20Jになる。それ故、一つのTFT10Cを構成する2つのソース・ドレイン領域12Cの間、および隣接する2つのTFT10Cの間で短絡することを確実に防止できる。しかも、不純物導入用のレジストマスクRM11、RM12、RM13、RM14のパターンを一部変更するだけでよいので、工程数を増やすことなく短絡を防止でき、液晶パネル1の信頼性を向上することができる。
【0062】
[実施の形態2]
本形態でも、図6(A)、(B)を参照して説明した工程において、図12および図13に示すように、残すべき領域以外に余分な半導体薄膜20Dが残ってしまったとしても、TFT10Cに短絡が発生することを防止する。
【0063】
図12(A)、(B)は、本形態のアクティブマトリクス基板2の表面のうち、隣接する2つの画素の各々に画素スイッチング用のTFT10Cが形成され、かつ、その周辺に余分な半導体薄膜20Dが残っている状態を示す断面図および平面図である。図13(A)〜(D)は、本形態のアクティブマトリクス基板の製造工程のうち、不純物導入工程を行う際の断面(図面に向かって左側)および平面(図面に向かって右側)を示す工程図であり、この図13(A)〜(D)には、画素スイッチング用のTFT10Cを形成していく様子のみを示してある。
【0064】
図12(A)、(B)に示すように、本形態でも、画素スイッチング用のTFT10Cの形成領域の周辺に余分な半導体薄膜20Dが残っている。この余分な半導体20Dは、隣接する2つの画素に形成された画素スイッチング用のTFT10Cの半導体薄膜20Cを繋げるように残っている半導体薄膜20Eと、一つのTFT10Cにおいてソース・ドレイン領域12C同士を繋げるように残っている半導体薄膜20Fとからなる。
【0065】
このような状態に余分な半導体薄膜20D(余分な半導体薄膜20E、20F)が残っていても、本形態では、1つのTFT10C内においてソース・ドレイン領域12Cを繋げるように残っている半導体薄膜20Fは、P型の不純物が導入されたP型領域である。従って、TFT10Cでは、たとえ、ソース・ドレイン領域12Cを繋げるように余分な半導体薄膜20Fが残っているといっても、この余分な半導体薄膜20FはP型領域であるので、2つのソース・ドレイン領域12Cは、半導体薄膜20F(P型)/ソースドレイン領域12(N型)からなるPN接合によって囲まれている。ここで、画素スイッチング用のTFT10CはN型であるのに対して、余分な半導体薄膜20FがP型であるので、ソース・ドレイン領域12Cのうち、画素電極8が電気的に接続するソース・ドレイン領域12C(ドレイン)と半導体薄膜20Fとの界面に構成されるPN接合には逆方向バイアスが印加されることになる。従って、1つのTFT10C内においてソース・ドレイン領域12Cを繋げるように残っている半導体薄膜20FがP型領域として導電化したとしても、一つのTFT10C内においてソース・ドレイン領域12C同士が短絡することがない。
【0066】
また、本形態において、隣接する2つの画素に形成された画素スイッチング用のTFT10Cの半導体薄膜20C同士を繋げるように残っている半導体薄膜20Eには、P型の半導体薄膜20F、N型領域201、P型領域201、N型領域201およびP型の半導体薄膜20Fがこの順に形成されている。このため、画素スイッチング用のTFT10Cの半導体薄膜20C同士を繋げるように残っている半導体薄膜20Eには複数のPN接合が形成されているので、いずれに方向に電場がかかっても、いずれかのPN接合には逆方向バイアスがかかる。それ故、余分な半導体薄膜20Eが形成されたとしても、隣接する2つのTFT10Cの間には素子間分離膜20Yが介在することになるので、隣接する2つのTFT10C同士が短絡することがない。
【0067】
このような構成のアクティブマトリクス基板2の製造方法では、図13(A)に示すように、駆動回路用のP型のTFTを形成するための低濃度P型の不純物を導入する工程(図6(D)を参照。)において、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20C、および駆動回路用のN型のTFTを形成するための半導体薄膜を覆うレジストマスクRM11を形成する際には、このレジストマスクRM11には、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20Cの周りを所定の幅だけ露出させる窓401と、隣接するTFT10Cの間の略中央領域を露出させる窓402とを形成する。従って、低濃度P型の不純物を導入した後には、レジストマスクRM11の窓401、402から余分な半導体薄膜20Dに対して低濃度P型の不純物が導入されるので、余分な半導体薄膜20Dのうち、半導体薄膜20Fは低濃度P型領域となるとともに、半導体薄膜20Eの略中央部分には低濃度のP型領域201が形成される。
【0068】
また、図13(B)に示すように、駆動回路用のP型のTFTを形成するための高濃度P型の不純物を導入する工程(図7(A)を参照。)において、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20C、および駆動回路用のN型のTFTを形成するための半導体薄膜を覆うレジストマスクRM12を形成する際に、このレジストマスクRM12にも、画素スイッチング用のN型のTFT10Cを形成するための半導体薄膜20Cの周りを所定の幅だけ露出させる窓403と、隣接するTFT10Cの間の略中央領域を露出させる窓404とを形成する。従って、高濃度P型の不純物を導入した後には、レジストマスクRM12の窓403、404から余分な半導体薄膜20Dに対して高濃度P型の不純物が導入され、余分な半導体薄膜20Dのうち、半導体薄膜20Fは高濃度P型領域となるとともに、半導体薄膜20Eに形成されていた低濃度のP型領域201は高濃度P型領域となる。
【0069】
さらに、図13(C)に示すように、駆動回路用のN型のTFT、および画素スイッチング用のN型のTFT10Cを形成するための低濃度N型の不純物を導入する工程(図17(B)を参照。)においては、駆動回路用のP型のTFTを形成するための半導体薄膜を覆うレジストマスクRM13を形成する際に、このレジストマスクRM13には、半導体薄膜20Eに形成されている高濃度のP型領域201の間に相当する領域を露出させる窓411を形成する。従って、低濃度N型の不純物を導入した後には、レジストマスクRM13の窓411から余分な半導体薄膜20Dに対して低濃度N型の不純物が導入され、余分な半導体薄膜20Dのうち、半導体薄膜20Eに形成されていた高濃度のP型領域201の間には低濃度のN型領域201Nが形成される。
【0070】
さらにまた、図13(D)に示すように、駆動回路用のN型のTFT、および画素スイッチング用のN型のTFT10Cを形成するための高濃度N型の不純物を導入する工程(図17(C)を参照。)においては、駆動回路用のP型のTFTを形成するための半導体薄膜を覆うレジストマスクRM14を形成する際に、このレジストマスクRM14にも、半導体薄膜20Eに形成されている高濃度のP型領域201の間に相当する領域を露出させる窓412を形成する。従って、高濃度N型の不純物を導入した後には、レジストマスクRM14の窓412から余分な半導体薄膜20Dに対して高濃度N型の不純物が導入され、余分な半導体薄膜20Dのうち、半導体薄膜20Eに形成されていた低濃度のN型領域201Nは、高濃度のN型領域となる
その結果、図12を参照して説明したように、一つのTFT10Cにおいて2つのソース・ドレイン領域12C間は、P型の半導体薄膜20FによってPN接合面が2個所存在するために高抵抗で分離され、短絡することがない。また、隣接する2つの画素スイッチング用のTFT10Cの半導体薄膜20C同士を繋げるように残っている半導体薄膜20Eには、P型の半導体薄膜20F、N型領域201、P型領域201、N型領域201およびP型の半導体薄膜20Fによって複数のPN接合が形成される。それ故、一つのTFT10Cを構成する2つのソース・ドレイン領域12Cの間、および隣接する2つのTFT10Cの間で短絡することを確実に防止できる。しかも、不純物導入用のレジストマスクRM11、RM12、RM13、RM14のパターンを一部変更するだけでよいので、工程数を増やすことなく短絡を防止でき、液晶パネル1の信頼性を向上することができる。
【0071】
[その他の実施の形態]
なお、上記実施の形態1、2はいずれも、画素スイッチング用のTFT10Cに対して素子間分離を行う例であったが、駆動回路用のTFT10A、10Bに対して素子間分離を行う場合にも本発明を適用することができる。
【0072】
また、上記実施形態ではいずれもTFT間の半導体薄膜は除去するように意図した構造としたが、静電気による破壊防止、加工精度の向上、加工時のダメージの低減といった要請があれば、TFT素子間の半導体薄膜の一部を除去しない構造でも素子間分離が行なうことができ、短絡することはない。
【0073】
【発明の効果】
以上説明したように、本発明では、パターニング工程で複数の島状の半導体薄膜を形成した際に、隣接する半導体薄膜同士を繋げるような余分な半導体薄膜が残り、かつ、不純物導入工程において余分な半導体薄膜に不純物が導入されることにより半導体薄膜の導電化が起こっても、この余分な半導体薄膜に真性領域あるいはPN接合を形成することにより、素子間分離を行う。このため、隣接するTFT間に短絡が発生するということがないので、装置が誤動作することがない。また、これらの素子間分離は、余分な半導体薄膜が形成されかた否かに係わらず、不純物導入用マスクのパターンを変更するだけで行えるので、工程数を増やすことなく、基板上に形成したTFTの間での短絡を防止することができる。
【図面の簡単な説明】
【図1】本発明を適用したTFTを用いた液晶表示装置の液晶パネルを対向基板の側からみた平面図である。
【図2】本発明を適用したTFTを用いた液晶表示装置の液晶パネルを図1のH−H′線で切断したときの断面図である。
【図3】図1に示すアクティブマトリクス基板の構成を模式的に示すブロック図である。
【図4】アクティブマトリクス基板に形成した3種類のTFTの断面図である。
【図5】アクティブマトリクス基板に形成した画素領域および駆動回路形成領域の一部を抜き出して示す平面図である。
【図6】(A)〜(D)は、アクティブマトリクス基板上に画素スイッチング用のN型のTFT、駆動回路用のN型のTFT、および駆動回路用のP型のTFTを形成していく際の平面および断面の様子を示す工程図である。
【図7】(A)〜(C)は、アクティブマトリクス基板上に画素スイッチング用のN型のTFT、駆動回路用のN型のTFT、および駆動回路用のP型のTFTを形成するために図6に示す工程に続いて行う各工程の様子を示す工程図である。
【図8】(A)〜(C)は、アクティブマトリクス基板上に画素スイッチング用のN型のTFT、駆動回路用のN型のTFT、および駆動回路用のP型のTFTを形成するために図7に示す工程に続いて行う各工程の様子を示す工程図である。
【図9】(A)〜(C)は、アクティブマトリクス基板上に画素スイッチング用のN型のTFT、駆動回路用のN型のTFT、および駆動回路用のP型のTFTを形成するために図8に示す工程に続いて行う各工程の様子を示す工程図である。
【図10】(A)、(B)はそれぞれ、本発明の実施の形態1に係るアクティブマトリクス基板の素子分離構造を示す断面図および平面図である。
【図11】(A)〜(D)は、図10に示す素子分離構造を有するアクティブマトリクス基板の製造工程のうち、不純物を導入する際の断面および平面の様子を示す工程図である。
【図12】(A)、(B)はそれぞれ、本発明の実施の形態2に係るアクティブマトリクス基板の素子分離構造を示す断面図および平面図である。
【図13】(A)〜(D)は、図12に示す素子分離構造を有するアクティブマトリクス基板の製造工程のうち、不純物を導入する際の断面および平面の様子を示す工程図である。
【図14】(A)、(B)はそれぞれ、従来のアクティブマトリクス基板の断面図および平面図である。
【図15】(A)〜(D)は、図14に示すアクティブマトリクス基板の製造工程のうち、不純物を導入する際の断面および平面の様子を示す工程図である。
【図16】(A)、(B)はそれぞれ、従来のアクティブマトリクス基板において余分な半導体薄膜が形成された状態を示す断面図および平面図である。
【図17】(A)〜(D)は、従来のアクティブマトリクス基板において余分な半導体薄膜が不純物導入工程を経て導電化していく際の断面および平面を示す工程図である。
【符号の説明】
1 液晶パネル
2 アクティブマトリクス基板
3 対向基板
8 画素電極
10A 駆動回路用のN型のTFT
10B 駆動回路用のP型のTFT
10C 画素スイッチング用のN型のTFT
12A、12B、12C ソース・ドレイン領域
13 ゲート絶縁膜
15A、15B、15C ゲート電極
17A、17B、17C チャネル領域
20A 駆動回路用のN型のTFTを形成するための島状の半導体薄膜
20B 駆動回路用のP型のTFTを形成するための島状の半導体薄膜
20C 画素スイッチング用のN型のTFTを形成するための島状の半導体薄膜
20D 余分な半導体薄膜
20E 隣接する2つのTFTの間に形成された余分な半導体薄膜
20F TFTの周りに形成された余分な半導体薄膜
20X 素子間分離膜
20Y 素子間分離膜
51、52 層間絶縁膜
100 絶縁基板
101 下地保護膜
121A、121B、121C 低濃度ソース・ドレイン領域
122A、122B、122C 高濃度ソース・ドレイン領域
801〜806 ソース・ドレイン電極
RM11〜RM14 不純物導入用マスク
Claims (7)
- 不純物が導入されていない半導体薄膜よりなる半導体領域、および不純物が導入された半導体薄膜よりなるソース・ドレイン領域を備える複数の薄膜トランジスタが基板上に形成されてなるアクティブマトリクス基板において、
少なくとも隣接する前記薄膜トランジスタ間及び該薄膜トランジスタ周辺には、素子間分離領域が形成され、
当該素子間分離領域は、前記薄膜トランジスタ形成領域に接する不純物が導入されていない半導体薄膜領域と、
不純物が導入された半導体薄膜間に挟まれ、かつ不純物を含まない半導体薄膜を有する領域から構成されること、
を特徴とするアクティブマトリクス基板。 - 不純物が導入されていない半導体薄膜よりなる半導体領域、および不純物が導入された半導体薄膜よりなるソース・ドレイン領域を備える複数の薄膜トランジスタが基板上に形成されてなるアクティブマトリクス基板において、
少なくとも隣接する前記薄膜トランジスタの間及び該薄膜トランジスタ周辺には、素子間分離領域が形成され、
当該素子間分離領域は、前記薄膜トランジスタ形成領域に接し、かつ当該薄膜トランジスタのソース・ドレイン領域に導入された不純物と反対極性のP型またはN型の不純物が導入された半導体薄膜領域と、
PN接合面を形成するP型、N型の不純物が導入された各々の半導体薄膜を有する領域から構成されること、
を特徴とするアクティブマトリクス基板。 - 請求項2において、前記素子間分離領域は、隣接する薄膜トランジスタの間に少なくとも2個以上のPN接合面を有していることを特徴とするアクティブマトリクス基板。
- 請求項1ないし3のいずれかにおいて、前記素子間分離領域は、画素スイッチング用の前記薄膜トランジスタ間に形成されていることを特徴とするアクティブマトリクス基板。
- 少なくとも基板上の所定の領域に半導体薄膜を形成する半導体薄膜形成工程と、前記薄膜トランジスタのソース・ドレインを形成する領域に選択的に不純物を導入する不純物導入工程とを有するアクティブマトリクス基板の製造方法において、
隣接し合う薄膜トランジスタの間の中央部、及び当該薄膜トランジスタ領域周辺に不純物の導入を行わない所定領域を形成できるように、所定のマスクをかけた後前記不純物導入を行うことを特徴とするアクティブマトリクス基板の製造方法。 - 少なくとも基板上の所定の領域に半導体薄膜を形成する半導体薄膜形成工程と、前記半導体薄膜にN型不純物を導入するN型不純物導入工程と、前記半導体薄膜にP型不純物を導入するP型不純物導入工程とを有するアクティブマトリクス基板の製造方法において、
形成される薄膜トランジスタ周辺には、当該薄膜トランジスタのソース・ドレイン領域に導入される不純物とは反対極性の不純物を導入する領域を形成するように、また、
前記隣接する薄膜トランジスタ間にはN型不純物を導入する領域と、P型不純物を導入する領域とを隣接して設けられるように、前記各工程において所定のマスクをかけた後、低濃度P型不純物、高濃度P型不純物、低濃度N型不純物、そして高濃度N型不純物の順に各不純物を導入することを特徴とするアクティブマトリクス基板の製造方法。 - 請求項1ないし4のいずれかに規定されたアクティブマトリクス基板を用いた液晶装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28021498A JP3791209B2 (ja) | 1998-10-01 | 1998-10-01 | アクティブマトリクス基板及びその製造方法、並びに液晶装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28021498A JP3791209B2 (ja) | 1998-10-01 | 1998-10-01 | アクティブマトリクス基板及びその製造方法、並びに液晶装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000111946A JP2000111946A (ja) | 2000-04-21 |
JP3791209B2 true JP3791209B2 (ja) | 2006-06-28 |
Family
ID=17621911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28021498A Expired - Fee Related JP3791209B2 (ja) | 1998-10-01 | 1998-10-01 | アクティブマトリクス基板及びその製造方法、並びに液晶装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3791209B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5100034B2 (ja) * | 2005-05-26 | 2012-12-19 | 株式会社半導体エネルギー研究所 | 半導体装置及びその作製方法 |
US7829394B2 (en) | 2005-05-26 | 2010-11-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
KR100851758B1 (ko) * | 2007-03-14 | 2008-08-11 | 동부일렉트로닉스 주식회사 | 이미지 센서 및 그의 제조방법 |
-
1998
- 1998-10-01 JP JP28021498A patent/JP3791209B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000111946A (ja) | 2000-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4483235B2 (ja) | トランジスタアレイ基板の製造方法及びトランジスタアレイ基板 | |
KR100421344B1 (ko) | 반도체 장치, 전기 광학 장치용 기판, 액정 장치용 기판및 그 제조 방법, 액정 장치와 이것을 이용한 투사형 액정표시 장치 및 전자기기 | |
US8035779B2 (en) | Thin film transistor display panel, liquid crystal display having the same, and method of manufacturing liquid crystal display | |
JP3684578B2 (ja) | 液晶装置および電子機器 | |
JP3992797B2 (ja) | 液晶表示装置 | |
JP3714243B2 (ja) | 半導体装置、電気光学装置、および電子機器 | |
JP3424234B2 (ja) | 電気光学装置及びその製造方法 | |
US20180120656A1 (en) | Liquid crystal display device | |
KR100449772B1 (ko) | 전기광학장치, 전기광학장치의 제조 방법 및 전자기기 | |
JP2007041096A (ja) | 電気光学装置およびその製造方法、電子機器 | |
KR100714819B1 (ko) | 박막 반도체 장치, 전기 광학 장치 및 전자 기기 | |
JP3687399B2 (ja) | 電気光学装置及びその製造方法 | |
CN113467145B (zh) | 阵列基板及制作方法、显示面板 | |
US8350978B2 (en) | Liquid crystal display | |
JP3633250B2 (ja) | 液晶装置、及びその製造方法 | |
KR200334631Y1 (ko) | 기판 장치, 전기 광학 장치 및 전자 기기 | |
JP3690119B2 (ja) | 液晶装置及び投射型表示装置 | |
JP3791209B2 (ja) | アクティブマトリクス基板及びその製造方法、並びに液晶装置 | |
CN115206995A (zh) | 显示装置 | |
JP2006253173A (ja) | 電気光学装置、その製造方法、及び電子機器 | |
JP3777873B2 (ja) | 薄膜トランジスタ、アクティブマトリクス基板、電気光学装置及び電子機器 | |
JP2006053572A (ja) | 電気光学装置およびそれを用いた表示装置 | |
JPH10253989A (ja) | 表示装置 | |
JP3769389B2 (ja) | 電気光学装置の製造方法及び電気光学装置 | |
JP3767204B2 (ja) | 電気光学装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060327 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |