JP3781985B2 - Hot metal dephosphorization method - Google Patents

Hot metal dephosphorization method Download PDF

Info

Publication number
JP3781985B2
JP3781985B2 JP2001177126A JP2001177126A JP3781985B2 JP 3781985 B2 JP3781985 B2 JP 3781985B2 JP 2001177126 A JP2001177126 A JP 2001177126A JP 2001177126 A JP2001177126 A JP 2001177126A JP 3781985 B2 JP3781985 B2 JP 3781985B2
Authority
JP
Japan
Prior art keywords
dephosphorization
hot metal
cao
ratio
converter slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001177126A
Other languages
Japanese (ja)
Other versions
JP2002363628A (en
Inventor
泰一 上山
毅 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001177126A priority Critical patent/JP3781985B2/en
Publication of JP2002363628A publication Critical patent/JP2002363628A/en
Application granted granted Critical
Publication of JP3781985B2 publication Critical patent/JP3781985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶銑脱りん処理方法に関する技術分野に属し、詳細には、溶銑を脱りん処理するに際し、脱りん剤のCaO源として転炉スラグと生石灰および/又は石灰石を用いる溶銑脱りん処理方法に関する技術分野に属する。
【0002】
【従来の技術】
一般に溶銑の脱りん処理においては、石灰等の造滓剤と酸化鉄等の酸化剤を溶銑中にインジェクションすると共に、酸素を上吹きあるいは溶銑中にインジェクションして脱りん処理を行っている。
【0003】
転炉で予備処理溶銑を吹練したときに発生する転炉スラグは、スラグ中のP濃度が0.2 〜0.8 程度と低く、また、約50%のCaOを含んでいることから、溶銑脱りん剤として使用すれば、再度脱りん能を発揮することが知られている。近年では、転炉で発生する転炉スラグを脱りん処理の際のCaO源として使用し、スラグ処理費用の低減および脱りん処理時の生石灰原単位を低減する方法が報告されている。例えば、特開平06-287615 号公報では転炉スラグを溶銑予備処理中の溶銑上に添加あるいは高炉受銑前に入れ置き、又は、溶銑中にインジェクションし脱りんする方法が提案され報告されている。また、特開平07-268431 号公報、特開平08-003611 号公報では転炉スラグを酸化鉄あるいは造滓剤に配合したものを利用して脱りん処理を行う技術が報告されている。
【0004】
実操業においても、脱りん溶銑の吹練で発生する転炉スラグ(レススラグ吹練滓)を脱りん剤として使用し、りん分配の改善・生石灰代替の効果があることが報告されている(石坂,寺田,山上,長谷川ら,1989 STEEL MAKING CONFEREN-CE PROCEEDINGS, 249 〜255 )。
【0005】
【発明が解決しようとする課題】
脱りん処理の際、脱りん処理の初期では脱りん反応に先立ち溶銑中のSiの酸化が優先的に進行するため、スラグ中の塩基度(CaO/SiO2)が上がりにくく、混銑車や転炉の炉口からスラグがあふれ出すスロッピングという現象が発生しやすい状態となる。更に、転炉スラグを脱りん剤として使用する場合、転炉スラグは一旦転炉で溶融状態を経たプリメルト品であることから滓化速度が速く、このため処理の途中で滓化が過剰になりスロッピングが発生しやすくなるという問題点がある。スロッピングが発生した場合、処理時間の延長、設備不良休止等の支障が生じるため、転炉スラグを脱りん剤として使用する場合、スラグの塩基度・滓化速度をコントロールする必要がある。
【0006】
本発明は、このような事情に着目してなされたものであって、その目的は、脱りん剤のCaO源として転炉スラグを利用して溶銑の脱りん処理をするに際し、スロッピングの発生を抑制することができる溶銑脱りん処理方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る溶銑脱りん処理方法は、請求項1〜6記載の溶銑脱りん処理方法としており、それは次のような構成としたものである。
【0008】
即ち、請求項1記載の溶銑脱りん処理方法は、溶銑を脱りん処理するに際し、脱りん剤のCaO源として転炉スラグと生石灰および/又は石灰石を用いる溶銑脱りん処理方法において、脱りん処理前の溶銑中Si濃度と脱りん処理開始からの供給酸素量によって、供給する脱りん剤のCaO源の中の転炉スラグの量の比率を脱りん処理の途中で増大方向に変更することを特徴とする溶銑脱りん処理方法である(第1発明)。
【0009】
請求項2記載の溶銑脱りん処理方法は、溶銑を脱りん処理するに際し、脱りん剤のCaO源として転炉スラグと生石灰および/又は石灰石を用いる溶銑脱りん処理方法において、脱りん処理での脱珪期の終了時点以降、脱りん期の終了前に、供給する脱りん剤のCaO源の中の転炉スラグの量の比率を増大方向に変更することを特徴とする溶銑脱りん処理方法である(第2発明)。
【0010】
請求項3記載の溶銑脱りん処理方法は、脱りん処理開始からの供給酸素量(Nm3 /溶銑1トン)=7×脱りん処理前の溶銑中Si濃度(質量%)となる時点以降、脱りん期の終了前に、供給する脱りん剤のCaO源の中の転炉スラグの量の比率を増大方向に変更する請求項1又は2記載の溶銑脱りん処理方法である(第3発明)。
【0011】
請求項4記載の溶銑脱りん処理方法は、前記転炉スラグの量の比率を増大方向に変更するまでの期間においては生石灰および/又は石灰石中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 を1/3〜3とし、それ以降の期間においては生石灰および/又は石灰石中のCaO分の供給速度A2 と転炉スラグ中のCaO分の供給速度B2 との比:A2 /B2 を前記比:A1 /B1 よりも小さくする請求項1、2又は3記載の溶銑脱りん処理方法である(第4発明)。
【0012】
請求項5記載の溶銑脱りん処理方法は、前記転炉スラグの量の比率を増大方向に変更するまでの期間においては生石灰および/又は石灰石中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 を1/3〜3とし、それ以降の期間においては生石灰および/又は石灰石中のCaO分の供給速度A2 と転炉スラグ中のCaO分の供給速度B2 との比:A2 /B2 を0以上3未満、より好ましくは0〜2とする請求項1、2、3又は4記載の溶銑脱りん処理方法である(第5発明)。
【0013】
請求項6記載の溶銑脱りん処理方法は、供給する転炉スラグの一部を溶銑の上方から添加する請求項1、2、3、4又は5記載の溶銑脱りん処理方法である(第6発明)。
【0014】
【発明の実施の形態】
本発明は例えば次のような形態で実施する。
脱りん剤のCaO源として転炉スラグと生石灰および/又は石灰石(以下、生石灰等という)を用いて溶銑の脱りん処理をする。即ち、溶銑に対して転炉スラグと生石灰等を添加し、溶銑の脱りん処理をする。
【0015】
このとき、脱りん処理前の溶銑中Si濃度と脱りん処理開始からの供給酸素量によって、添加(供給)する脱りん剤のCaO源の中の転炉スラグの量の比率を脱りん処理の途中で増大方向に変更する。即ち、転炉スラグの供給速度(単位時間当たりの供給量)をb、生石灰等の供給速度をaとすると、b/(a+b)を脱りん処理の途中で増大させる。
【0016】
あるいは、脱りん処理での脱珪期の終了時点以降、脱りん期の終了前に、供給する脱りん剤のCaO源の中の転炉スラグの量の比率〔b/(a+b)〕を増大方向に変更する。
【0017】
上記比率〔b/(a+b)〕を増大方向に変更する時点に関し、より具体的には、例えば、脱りん処理開始からの供給酸素量(Nm3 /溶銑1トン)=7×脱りん処理前の溶銑中Si濃度(質量%)となる時点以降、脱りん期の終了前とする。
【0018】
上記転炉スラグの供給速度b及び生石灰等の供給速度aに関し、より具体的には、比率〔b/(a+b)〕を増大方向に変更する時点までの期間においては、例えば、生石灰等中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 が1/3〜3となるような供給速度b及びaとし、それ以降の期間においては生石灰等中のCaO分の供給速度A2 と転炉スラグ中のCaO分の供給速度B2 との比:A2 /B2 が前記比:A1 /B1 よりも小さくなるような供給速度b及びaとする。
【0019】
このような形態で本発明が実施される。以下、本発明について主にその作用効果を説明する。
【0020】
図1に、溶銑の脱りん処理に使用するCaO源の中の転炉スラグの比率Xと脱りん処理中のスロッピング発生率Yとの関係を示す。この図1からわかる如く、脱珪反応が優先的に進行する脱りん処理の初期段階の脱珪期においては、転炉スラグの比率Xの増加に伴い、スロッピング発生率Yが上昇する。しかし、脱珪期の終了時点以降の脱りん期においては、転炉スラグの比率Xとスロッピング発生率Yの間に相関はなく、全体的にスロッピング発生率Yが低い。従って、脱りん処理の初期段階の脱珪期における転炉スラグの比率Xが低くなるようにすると、スロッピングの発生を抑制することができる。また、脱珪期の終了時点以降においては、スロッピング発生率Yの上昇という支障を来すことなく、転炉スラグの比率Xを高くすることができ、それに伴って生石灰等の供給量を少なくすることができ、CaO源としては転炉スラグだけでもよくなる。これは、脱珪期の終了時点以降においては、スラグの塩基度が上がって処理が安定するようになるからである。
【0021】
脱りん剤のCaO源として転炉スラグと生石灰等を用いる溶銑脱りん処理方法において、従来の溶銑脱りん処理方法では、脱りん処理を通じて転炉スラグと生石灰等の供給比率が同じで、転炉スラグからのCaO分の供給速度と生石灰等からのCaO分の供給速度との比率が常に同じであり、転炉スラグの比率Xは数十%程度である。従って、図1からもわかる如く、脱りん処理の初期段階の脱珪期においてスロッピングが発生しやすい。また、CaO源としては転炉スラグだけでもよくなるような脱珪期の終了時点以降において生石灰等をむだに使用していることになる。
【0022】
本発明の第1発明に係る溶銑脱りん処理方法では、脱りん処理前の溶銑中Si濃度と脱りん処理開始からの供給酸素量によって、供給する脱りん剤のCaO源の中の転炉スラグの量の比率を脱りん処理の途中で増大方向に変更することとしている。即ち、脱りん処理の初期段階において供給するCaO源の中の転炉スラグの量の比率X1 を比較的(後記比率X2 に比較して)小さくし、脱りん処理の途中以降において供給するCaO源の中の転炉スラグの量の比率X2 を前記比率X1 よりも大きくする。また、この比率X1 から比率X2 への変更時点は、脱りん処理前の溶銑中Si濃度と脱りん処理開始からの供給酸素量(累積供給酸素量)によって定める。このSi濃度と累積供給酸素量は脱珪の進捗度の指標となり、これより脱珪期の終了時点を推定することも可能であるので、上記の変更時点を脱珪期の終了時点やその直後とすることも可能である。
【0023】
従って、上記転炉スラグの量の比率X1 をスロッピング発生の抑制が可能な程度に小さくし、この比率X1 から比率X2 への変更時点を脱珪期の終了時点やその後とすることができ、そうすることにより、スロッピングの発生を抑制することができるようになる。また、脱珪期の終了時点以降においては、スロッピング発生率の上昇を来すことなく、転炉スラグの量の比率X2 を大きくし、生石灰等の供給量を少なくすることができ、それにより経済性を向上することも可能となる。
【0024】
また、本発明の第2発明に係る溶銑脱りん処理方法は、脱りん処理での脱珪期の終了時点以降、脱りん期の終了前に、供給する脱りん剤のCaO源の中の転炉スラグの量の比率を増大方向に変更することとしている。即ち、脱りん処理の初期段階において供給するCaO源の中の転炉スラグの量の比率X1 を比較的小さくし、脱りん処理での脱珪期の終了時点以降、脱りん期の終了前に、供給するCaO源の中の転炉スラグの量の比率X2 を前記比率X1 よりも大きくする。従って、上記転炉スラグの量の比率X1 をスロッピング発生の抑制が可能な程度に小さくすることにより、スロッピングの発生を抑制し得るようになる。また、スロッピング発生率の上昇を来すことなく、上記転炉スラグの量の比率X2 を大きくすることができ、それに伴って生石灰等の供給量を少なくすることができるようになる。
【0025】
脱りん処理開始からの供給酸素量(Nm3 /溶銑1トン)=7×脱りん処理前の溶銑中Si濃度(質量%)となる時点は、脱りん処理での脱珪期の終了時点に相当する。従って、前記CaO源の中の転炉スラグの量の比率を増大方向に変更する時点を、脱りん処理開始からの供給酸素量(Nm3 /溶銑1トン)=7×脱りん処理前の溶銑中Si濃度(質量%)となる時点以降、脱りん期の終了前とすると、脱りん処理での脱珪期の終了時点以降、脱りん期の終了前としたことになり、このため、前記第2発明の場合と同様の作用効果を奏することができる(第3発明)。
【0026】
図2に、脱りん処理での脱珪期における生石灰等中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 と、スロッピング発生率Yとの関係を示す。この図2からわかる如く、A1 /B1 が1/3未満の場合には、A1 /B1 が1/3以上の場合と比較してスロッピング発生率Yが高くなる。この点からすると、A1 /B1 を1/3以上とすることが望ましい。
【0027】
しかし、A1 /B1 が大きくなると、滓化しやすい転炉スラグの比率が低下するため、未滓化石灰が生じることになる。図3に、A1 /B1 と脱りん処理後スラグ中の未滓化石灰(F−CaO)との関係を示す。この図3からわかる如く、A1 /B1 が3超になると、F−CaO(未滓化石灰)比率が上昇する。この場合には、パーマネント反応が主体となる脱りん反応において、脱りん効率が低下し、結果として石灰原単位が悪化する。この点からすると、A1 /B1 を3以下とすることが望ましい。
【0028】
このような点から、本発明の第4発明に係る溶銑脱りん処理方法においては、前述の転炉スラグの量の比率を増大方向に変更するまでの期間においては生石灰および/又は石灰石中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 を1/3〜3とし、それ以降の期間においては生石灰および/又は石灰石中のCaO分の供給速度A2 と転炉スラグ中のCaO分の供給速度B2 との比:A2 /B2 を前記比:A1 /B1 よりも小さくすることとした。この溶銑脱りん処理方法によれば、スロッピング発生率をより確実に低くすることができると共に、未滓化石灰(F−CaO)比率を低くし得て脱りん効率を向上させることができ、ひいては石灰原単位の向上がはかれる。
【0029】
ここで、A2 /B2 については、3未満とすることになるが、これが小さい方がCaO源中の転炉スラグの比率が高く、それに伴って生石灰等の供給量を少なくすることができ、経済性を向上することができる。かかる点から、A2 /B2 を2以下とすることが望ましい(第5発明)。このとき、CaO源としては転炉スラグだけでもよく、この場合には最大限に転炉スラグの有効利用がはかれ、最も経済性を向上することができる。
【0030】
脱りん剤のCaO源として転炉スラグを供給するに際し、その添加の方式は特には限定されず、種々の方式を採用することができ、例えば、転炉スラグの一部を溶銑の上方から添加する方式を採用することができる(第6発明)。
【0031】
脱りん処理対象の溶銑のSi濃度(脱りん処理前のSi濃度)が極めて低い場合には、脱りん処理の初期段階の脱珪期が短く、スロッピングが発生しにくくなる。従って、本発明に係る溶銑脱りん処理方法は、脱りん処理対象の溶銑のSi濃度が比較的高い場合に効果が大きくて好適であり、中でも脱りん処理対象の溶銑のSi濃度が0.10質量%以上の場合に特に効果が大きくて好適である。
【0032】
【実施例】
本発明の実施例及び比較例を以下説明する。尚、本発明はこの実施例に限定されるものではない。
【0033】
表1に、実施例及び比較例に用いた転炉スラグの組成を示す。表2に、実施例及び比較例(従来法)に係る溶銑脱りん処理の操業条件を示す。この操業条件にて、Si濃度:0.10質量%以上(0.12〜0.24質量%)の溶銑について脱りん処理を行った。即ち、比較例に係る溶銑脱りん処理では、脱珪期と脱珪期終了時点以降の脱りん期におけるCaO源の転炉スラグ及び生石灰の吹き込み速度(供給速度)を同一とし、脱りん処理の間を通じてCaO源の中の転炉スラグの量の比率を一定とした。これに対し、実施例に係る溶銑脱りん処理では、脱珪期終了時点でCaO源の中の転炉スラグの量の比率を増大方向に変更した。
【0034】
より詳細には、比較例に係る溶銑脱りん処理においては、脱珪期における生石灰中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 も、脱珪期終了時点以降の脱りん期における生石灰中のCaO分の供給速度A2 と転炉スラグ中のCaO分の供給速度B2 との比:A2 /B2 も、いずれも0.28とした。これに対し、実施例に係る溶銑脱りん処理においては、脱珪期における生石灰中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 を1.64とし、脱珪期終了時点以降の脱りん期における生石灰中のCaO分の供給速度A2 と転炉スラグ中のCaO分の供給速度B2 との比:A2 /B2 を0.31とした。なお、脱りん処理開始からの供給酸素量(Nm3 /溶銑1トン)=7×脱りん処理前の溶銑中Si濃度(質量%)となる時点を脱珪期終了時点とした。
【0035】
上記実施例及び比較例(従来法)に係る溶銑脱りん処理の際のスロッピング発生率を、図4に示す。比較例の場合、スロッピング発生率が32%と高いのに対し、本発明の実施例の場合、スロッピング発生率が13%と低くなっている。一方、脱珪期終了時点以降の脱りん期においては、スロッピング発生率が生石灰中のCaO分の供給速度A2 によらず低いことから、この期間においては生石灰中のCaO分の供給速度A2 を転炉スラグ中のCaO分の供給速度B2 の3分の1以下に抑えることが可能であり、CaO分の供給源としては転炉スラグを主体とした脱りん処理操業が可能となる。
【0036】
脱りん処理に使用したトータルCaO分に占める生石灰、転炉スラグの関係を図5に示す。本発明の実施例の場合、比較例の場合に比較し、転炉スラグの割合が大きく、生石灰の割合が小さく、トータルCaO量も小さい。このように、本発明の場合は転炉スラグの割合を大きくすることができるため、脱りん処理に使用するトータルCaO量を低くすることも可能である。
【0037】
なお、上記実施例においてはCaO源中の転炉スラグ量の比率を増大方向に変更する時点を脱珪期終了時点とし、脱珪期におけるA1 /B1 を1.64とし、脱珪期終了時点以降の脱りん期におけるA2 /B2 を0.31としたが、脱珪期におけるA1 /B1 を1/3とした場合も上記実施例の場合と同様にスロッピング発生率が低く、更にA1 /B1 を1/3よりも少し小さくした場合は上記実施例の場合よりも極僅かスロッピング発生率が大きくなるものの、上記実施例の場合とほぼ同程度のスロッピング発生率であった。また、A1 /B1 を3とした場合も上記実施例の場合と同様にスロッピング発生率が低く、更にA1 /B1 を3よりも少し大きくした場合も上記実施例の場合と同様にスロッピング発生率が低かった。
【0038】
CaO源中の転炉スラグ量の比率を増大方向に変更する時点を脱珪期終了時点より後にした場合も上記実施例の場合と同様にスロッピング発生率が低かった。また、この変更時点を脱珪期終了時点より少し前にした場合も上記実施例の場合とほぼ同程度のスロッピング発生率であった。
【0039】
【表1】

Figure 0003781985
【0040】
【表2】
Figure 0003781985
【0041】
【発明の効果】
本発明に係る溶銑脱りん処理方法によれば、脱りん剤のCaO源として転炉スラグを利用して溶銑の脱りん処理をするに際し、スロッピングの発生を抑制することができるようになる。
【図面の簡単な説明】
【図1】 脱りん処理での転炉スラグ配合率とスロッピング発生率との関係を示す図である。
【図2】 脱りん処理での脱珪期における生石灰等中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 と、スロッピング発生率との関係を示す図である。
【図3】 脱りん処理での脱珪期における生石灰等中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 と、脱りん処理後スラグ中F−CaO(未滓化石灰)との関係を示す図である。
【図4】 脱りん処理の時期(脱珪期、脱りん期)とスロッピング発生率との関係を示す図である。
【図5】 脱りん処理方法(従来法、本発明例)と脱りん石灰指数との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a technical field related to a hot metal dephosphorization method, and more particularly, a hot metal dephosphorization method using converter slag and quicklime and / or limestone as a CaO source of a dephosphorizing agent when dephosphorizing hot metal. Belongs to the technical field.
[0002]
[Prior art]
In general, in hot metal dephosphorization treatment, a dephosphorization treatment is performed by injecting a lime-forming agent such as lime and an oxidant such as iron oxide into the hot metal, and blowing oxygen into the hot metal or injecting it into the hot metal.
[0003]
The converter slag generated when the pretreated hot metal is blown in the converter has a low P concentration in the slag of about 0.2 to 0.8 and contains about 50% CaO. It is known that it exhibits dephosphorization ability again. In recent years, a method has been reported in which converter slag generated in a converter is used as a CaO source in the dephosphorization process to reduce the slag treatment cost and the unit of quick lime during the dephosphorization process. For example, Japanese Patent Laid-Open No. 06-287615 proposes and reports a method in which converter slag is added onto hot metal during hot metal pretreatment or placed before receiving blast furnace, or is injected into hot metal and dephosphorized. . Japanese Patent Application Laid-Open No. 07-268431 and Japanese Patent Application Laid-Open No. 08-003611 report a technique for performing a dephosphorization process by using a converter slag blended with iron oxide or a faux former.
[0004]
In actual operation, it has been reported that converter slag (less slag blown lees) generated by dephosphorizing hot metal blowing is used as a dephosphorizing agent, improving phosphorus distribution and replacing quick lime (Ishizaka). , Terada, Yamagami, Hasegawa et al., 1989 STEEL MAKING CONFEREN-CE PROCEEDINGS, 249-255).
[0005]
[Problems to be solved by the invention]
During the dephosphorization process, the oxidation of Si in the hot metal proceeds preferentially prior to the dephosphorization process at the initial stage of the dephosphorization process, so that the basicity (CaO / SiO 2 ) in the slag is difficult to increase, so A phenomenon called slopping, in which slag overflows from the furnace port, is likely to occur. Furthermore, when converter slag is used as a dephosphorization agent, converter slag is a pre-melt product once melted in the converter, so the hatching speed is high, and this causes excessive hatching during the process. There is a problem that slipping is likely to occur. When slopping occurs, troubles such as extension of processing time and equipment failure stoppage occur. Therefore, when converter slag is used as a dephosphorizing agent, it is necessary to control the basicity and hatching rate of slag.
[0006]
The present invention has been made paying attention to such circumstances, and its purpose is to generate slopping when dephosphorizing hot metal using a converter slag as a CaO source of a dephosphorizing agent. It is an object of the present invention to provide a hot metal dephosphorization method that can suppress heat.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the hot metal dephosphorization processing method according to the present invention is the hot metal dephosphorization processing method according to claims 1 to 6, which has the following configuration.
[0008]
That is, the hot metal dephosphorization method according to claim 1 is a hot metal dephosphorization method using converter slag and quick lime and / or limestone as a source of CaO for the dephosphorizing agent. The ratio of the amount of converter slag in the CaO source of the dephosphorization agent to be supplied is changed in the increasing direction during the dephosphorization process depending on the Si concentration in the hot metal and the amount of oxygen supplied from the start of the dephosphorization process. This is a hot metal dephosphorization method (first invention).
[0009]
The hot metal dephosphorization method according to claim 2 is a hot metal dephosphorization method using converter slag and quicklime and / or limestone as a CaO source of a dephosphorizing agent when degassing the hot metal. After the end of the desiliconization period, before the end of the dephosphorization period, the ratio of the amount of converter slag in the CaO source of the dephosphorization agent to be supplied is changed in the increasing direction. (Second invention).
[0010]
Hot metal dephosphorization treatment method according to claim 3, wherein the supply amount of oxygen from the dephosphorization process start (Nm 3 / hot metal 1 t) = 7 × dephosphorization treatment the hot metal in the Si concentration (wt%) before and made after the time point, 3. The hot metal dephosphorization method according to claim 1 or 2, wherein the ratio of the amount of converter slag in the CaO source of the dephosphorization agent to be supplied is changed in an increasing direction before the end of the dephosphorization period (third invention). ).
[0011]
Hot metal dephosphorization treatment method according to claim 4, wherein, the converter in the period until the change ratio of the amount of slag in the increasing direction quicklime and / or feed rate A 1 and the rolling furnace slag CaO content in limestone Ratio of CaO content to feed rate B 1 : A 1 / B 1 is 1/3 to 3, and during the subsequent period, CaO content feed rate A 2 in quicklime and / or limestone and converter slag the ratio of the feed rate B 2 of the CaO content: a 2 / B 2 the ratio: a 1 / B is claim 1, 2 or 3 hot metal dephosphorization treatment method according to less than 1 (fourth aspect of the invention ).
[0012]
Hot metal dephosphorization treatment method according to claim 5, wherein, the converter in the period until the change ratio of the amount of slag in the increasing direction quicklime and / or feed rate A 1 and the rolling furnace slag CaO content in limestone Ratio of CaO content to feed rate B 1 : A 1 / B 1 is 1/3 to 3, and during the subsequent period, CaO content feed rate A 2 in quicklime and / or limestone and converter slag the ratio of the feed rate B 2 of the CaO content: a 2 / B 2 less than 0 to 3, more preferably claim 1, 2, 3 or 4 hot metal dephosphorization treatment method according to 0-2 ( (5th invention).
[0013]
The hot metal dephosphorization processing method according to claim 6 is the hot metal dephosphorization processing method according to claim 1, wherein a part of the supplied converter slag is added from above the hot metal (No. 6). invention).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is implemented, for example, in the following form.
The molten iron is dephosphorized by using converter slag and quicklime and / or limestone (hereinafter referred to as quicklime) as a CaO source of the dephosphorization agent. That is, converter slag, quicklime, etc. are added to the hot metal to dephosphorize the hot metal.
[0015]
At this time, the ratio of the amount of converter slag in the CaO source of the dephosphorizing agent to be added (supplied) according to the Si concentration in the hot metal before the dephosphorizing treatment and the amount of oxygen supplied from the start of the dephosphorizing treatment Change in the increasing direction on the way. That is, if the converter slag supply rate (supply amount per unit time) is b and the supply rate of quicklime is a, b / (a + b) is increased during the dephosphorization process.
[0016]
Alternatively, the ratio [b / (a + b)] of the converter slag amount in the CaO source of the dephosphorization agent supplied after the end of the desiliconization period in the dephosphorization process and before the end of the dephosphorization period is increased. Change direction.
[0017]
Relates the time of changing the ratio [b / (a + b)] in the increasing direction, more specifically, for example, the supply amount of oxygen from the dephosphorization process start (Nm 3 / hot metal 1 t) = 7 × dephosphorization pretreatment After the time when the Si concentration (mass%) in the hot metal is reached, before the end of the dephosphorization period.
[0018]
Regarding the supply rate b of the converter slag and the supply rate a of quick lime, more specifically, in the period up to the time when the ratio [b / (a + b)] is changed in the increasing direction, for example in quick lime Ratio of supply rate A 1 for CaO and supply rate B 1 for CaO in converter slag: supply rates b and a such that A 1 / B 1 is 1/3 to 3, and subsequent periods the ratio of the feed rate B 2 of the CaO content in the CaO content supply rate a 2 and BOF slag in quicklime, etc. in: a 2 / B 2 is the ratio: a 1 / a is smaller than B 1 Supply speeds b and a are assumed.
[0019]
The present invention is implemented in such a form. Hereinafter, the effects of the present invention will be mainly described.
[0020]
FIG. 1 shows the relationship between the ratio X of converter slag in the CaO source used for hot metal dephosphorization treatment and the slopping rate Y during dephosphorization treatment. As can be seen from FIG. 1, in the desiliconization period in the initial stage of the dephosphorization process in which the desiliconization reaction preferentially proceeds, the slopping rate Y increases as the converter slag ratio X increases. However, in the dephosphorization period after the end of the desiliconization period, there is no correlation between the converter slag ratio X and the slapping occurrence rate Y, and the slopping occurrence rate Y is low overall. Therefore, if the converter slag ratio X in the desiliconization period in the initial stage of the dephosphorization process is made low, the occurrence of slopping can be suppressed. Further, after the end of the desiliconization period, the ratio X of the converter slag can be increased without causing the hindrance of the increase in the slopping rate Y, and the supply amount of quick lime is reduced accordingly. It is possible to use only converter slag as the CaO source. This is because after the end of the silicon removal period, the basicity of the slag increases and the treatment becomes stable.
[0021]
In the hot metal dephosphorization processing method using converter slag and quick lime as the CaO source of the dephosphorization agent, the conventional hot metal dephosphorization processing method has the same supply ratio of converter slag and quick lime through the dephosphorization process. The ratio of the supply rate of CaO from slag and the supply rate of CaO from quicklime is always the same, and the ratio X of converter slag is about several tens of percent . Accordingly, as can be seen from FIG. 1, slopping is likely to occur during the desiliconization period of the initial stage of the dephosphorization process. Further, as the CaO source, quick lime or the like is wastefully used after the end of the desiliconization period in which only the converter slag is sufficient.
[0022]
In the hot metal dephosphorization processing method according to the first aspect of the present invention, the converter slag in the CaO source of the dephosphorization agent to be supplied depends on the Si concentration in the hot metal before the dephosphorization process and the amount of oxygen supplied from the start of the dephosphorization process. The ratio of the amount is changed in the increasing direction during the dephosphorization process. That is, the ratio X 1 of the converter slag amount in the CaO source supplied in the initial stage of the dephosphorization process is made relatively small (compared to the later-described ratio X 2 ), and is supplied after the dephosphorization process. The ratio X 2 of the converter slag amount in the CaO source is made larger than the ratio X 1 . Further, the time point when the ratio X 1 is changed to the ratio X 2 is determined by the Si concentration in the hot metal before the dephosphorization treatment and the supply oxygen amount (cumulative supply oxygen amount) from the start of the dephosphorization treatment. Since the Si concentration and the accumulated oxygen supply amount are indicators of the progress of desiliconization, it is possible to estimate the end point of the desiliconization period. It is also possible.
[0023]
Therefore, the ratio X 1 of the converter slag amount should be made small enough to suppress the occurrence of slopping, and the change point from the ratio X 1 to the ratio X 2 should be the end point of the desiliconization period or thereafter. By doing so, the occurrence of slopping can be suppressed. In addition, after the end of the desiliconization period, the ratio X 2 of the converter slag amount can be increased and the supply amount of quick lime etc. can be reduced without causing an increase in the slopping rate. It is also possible to improve economy.
[0024]
In addition, the hot metal dephosphorization processing method according to the second invention of the present invention is a method in which the dephosphorization agent supplied in the CaO source is transferred after the desiliconization period in the dephosphorization process and before the dephosphorization period. The ratio of the amount of furnace slag is changed in the increasing direction. That is, the ratio X 1 of the converter slag amount in the CaO source supplied in the initial stage of the dephosphorization process is made relatively small, and after the end of the desiliconization period in the dephosphorization process, before the end of the dephosphorization period. Furthermore, the ratio X 2 of the amount of converter slag in the supplied CaO source is made larger than the ratio X 1 . Therefore, by making the ratio X 1 of the converter slag amount as small as possible to suppress the occurrence of slopping, the occurrence of slopping can be suppressed. Further, the ratio X 2 of the converter slag amount can be increased without causing an increase in the slapping occurrence rate, and accordingly, the supply amount of quick lime and the like can be reduced.
[0025]
Oxygen supplied amount from the dephosphorization process start (Nm 3 / hot metal 1 t) = 7 × dephosphorization pretreatment time of the hot metal in the Si concentration (wt%) of the the end of the de-珪期in dephosphorization process Equivalent to. Thus, the time point of changing the ratio of the amount of converter slag in the CaO source in the increasing direction, the supply amount of oxygen from the dephosphorization process start (Nm 3 / hot metal 1 t) = 7 × dephosphorization pretreatment hot metal After the time when the intermediate Si concentration (mass%) is reached and before the end of the dephosphorization period, the end of the desiliconization period in the dephosphorization process is followed by the time before the end of the dephosphorization period. The same operational effects as in the case of the second invention can be achieved (third invention).
[0026]
FIG. 2 shows the ratio between the supply rate A 1 of CaO in quicklime and the supply rate B 1 of CaO in converter slag during the desiliconization period in the dephosphorization process: A 1 / B 1 and slopping. The relationship with the incidence Y is shown. As can be seen from FIG. 2, when A 1 / B 1 is less than 1/3, the slapping occurrence rate Y is higher than when A 1 / B 1 is 1/3 or more. From this point, it is desirable that A 1 / B 1 is 1/3 or more.
[0027]
However, when A 1 / B 1 is increased, the ratio of converter slag that is easily hatched is reduced, so that unhatched lime is generated. FIG. 3 shows the relationship between A 1 / B 1 and unfoamed lime (F-CaO) in the slag after dephosphorization. As can be seen from FIG. 3, when A 1 / B 1 exceeds 3, the F-CaO (undehydrated lime) ratio increases. In this case, the dephosphorization efficiency is reduced in the dephosphorization reaction mainly composed of the permanent reaction, and as a result, the lime basic unit deteriorates. From this point, it is desirable that A 1 / B 1 is 3 or less.
[0028]
From such a point, in the hot metal dephosphorization processing method according to the fourth aspect of the present invention, in the period until the ratio of the converter slag amount is changed in the increasing direction, CaO in quicklime and / or limestone is obtained. The ratio of the feed rate A 1 of the minute and the feed rate B 1 of the CaO content in the converter slag: A 1 / B 1 is 1/3 to 3, and CaO in the quicklime and / or limestone in the subsequent period the ratio of the feed rate B 2 of the CaO content of the minute feed rate a 2 and BOF slag: the a 2 / B 2 the ratio: it was decided to be smaller than a 1 / B 1. According to this hot metal dephosphorization treatment method, the rate of slopping can be lowered more reliably, and the ratio of unfoamed lime (F-CaO) can be lowered to improve the dephosphorization efficiency. As a result, the lime basic unit can be improved.
[0029]
Here, A 2 / B 2 is set to be less than 3, but the smaller this is, the higher the ratio of converter slag in the CaO source is, and accordingly the supply amount of quick lime and the like can be reduced. , Can improve economy. From this point, it is desirable to set A 2 / B 2 to 2 or less (fifth invention). At this time, only the converter slag may be used as the CaO source. In this case, the converter slag can be effectively used to the maximum extent, and the economy can be improved most.
[0030]
When supplying the converter slag as the CaO source of the dephosphorizing agent, the addition method is not particularly limited, and various methods can be adopted. For example, a part of the converter slag is added from above the hot metal. It is possible to adopt a method to do this (sixth invention).
[0031]
When the Si concentration of the hot metal to be dephosphorized (Si concentration before the dephosphorization process) is extremely low, the desiliconization period in the initial stage of the dephosphorization process is short and slopping hardly occurs. Therefore, the hot metal dephosphorization method according to the present invention is effective and preferable when the Si concentration of the hot metal to be dephosphorized is relatively high, and the Si concentration of the hot metal to be dephosphorized is preferably 0.10. In the case of mass% or more, the effect is particularly large and suitable.
[0032]
【Example】
Examples of the present invention and comparative examples will be described below. In addition, this invention is not limited to this Example.
[0033]
Table 1 shows the composition of the converter slag used in Examples and Comparative Examples. Table 2 shows the operating conditions of the hot metal dephosphorization treatment according to Examples and Comparative Examples (conventional methods). Under these operating conditions, dephosphorization was performed on the hot metal having a Si concentration of 0.10% by mass or more (0.12 to 0.24% by mass). That is, in the hot metal dephosphorization process according to the comparative example, the blowing rate (feed rate) of the converter slag and the quick lime of the CaO source in the dephosphorization period and the dephosphorization period after the end of the desiliconization period are the same. The ratio of the amount of converter slag in the CaO source was constant throughout. In contrast, in the hot metal dephosphorization process according to the example, the ratio of the amount of converter slag in the CaO source was changed in the increasing direction at the end of the desiliconization period.
[0034]
More specifically, in the hot metal dephosphorization treatment according to the comparative example, the ratio between the supply rate A 1 of CaO in quicklime and the supply rate B 1 of CaO in converter slag in the desiliconization period: A 1 / B 1 is also the ratio between the supply rate A 2 of CaO in quicklime and the supply rate B 2 of CaO in converter slag in the dephosphorization period after the end of the desiliconization period: A 2 / B 2 Was also set to 0.28. In contrast, in the hot metal dephosphorization treatment according to the example, the ratio between the supply rate A 1 of CaO in quicklime and the supply rate B 1 of CaO in converter slag in the desiliconization period: A 1 / B 1 is 1.64, and the ratio between the supply rate A 2 of CaO in quicklime and the supply rate B 2 of CaO in converter slag in the dephosphorization period after the end of the desiliconization period: A 2 / B 2 Was 0.31. Incidentally, the supply amount of oxygen (Nm 3 / hot metal 1 t) = 7 × dephosphorization pretreatment Si concentration (wt%) in molten iron and the time de-珪期termination comprising time from dephosphorization process start.
[0035]
FIG. 4 shows the rate of slopping in the hot metal dephosphorization process according to the above examples and comparative examples (conventional method). In the case of the comparative example, the occurrence rate of slipping is as high as 32%, while in the case of the embodiment of the present invention, the occurrence rate of slipping is as low as 13%. On the other hand, in the dephosphorization period after the end of the desiliconization period, the slapping occurrence rate is low regardless of the supply rate A 2 of CaO in quicklime, so during this period the supply rate A of CaO in quicklime is A. 2 can be suppressed to one-third or less of the supply rate B 2 of CaO in the converter slag, and the dephosphorization treatment operation mainly using the converter slag can be performed as the source of CaO. .
[0036]
FIG. 5 shows the relationship between quicklime and converter slag in the total CaO content used for the dephosphorization treatment. In the example of the present invention, the ratio of converter slag is large, the ratio of quicklime is small, and the total CaO amount is small as compared with the comparative example. Thus, in the case of this invention, since the ratio of converter slag can be enlarged, it is also possible to reduce the total amount of CaO used for a dephosphorization process.
[0037]
Incidentally, when to change the ratio of the converter slag content in the CaO source in the increase direction in the above embodiment the de-珪期end, the A 1 / B 1 in de珪期and 1.64, de珪期In the dephosphorization period after the end point, A 2 / B 2 was set to 0.31, but when A 1 / B 1 in the desiliconization period was set to 1/3, the rate of occurrence of slopping was the same as in the above example. When A 1 / B 1 is made slightly smaller than 1/3, the generation rate of sloping is slightly higher than in the case of the above embodiment, but the slopping is almost the same as in the case of the above embodiment. The incidence was. Further, when A 1 / B 1 is set to 3, the rate of occurrence of slapping is low as in the case of the above embodiment, and when A 1 / B 1 is made slightly larger than 3, the case is the same as in the above embodiment. The rate of slopping was low.
[0038]
Even when the time of changing the ratio of the converter slag amount in the CaO source in the increasing direction was after the end of the desiliconization period, the rate of slopping was low as in the case of the above example. In addition, even when this change time was set slightly before the end of the desiliconization period, the rate of occurrence of slopping was almost the same as in the case of the above example.
[0039]
[Table 1]
Figure 0003781985
[0040]
[Table 2]
Figure 0003781985
[0041]
【The invention's effect】
According to the hot metal dephosphorization processing method according to the present invention, when hot metal dephosphorization processing is performed using converter slag as a CaO source of a dephosphorization agent, the occurrence of slopping can be suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a converter slag blending rate and a slopping occurrence rate in a dephosphorization process.
[2] The ratio of the feed rate B 1 of CaO content in CaO fraction supply rate A 1 and BOF slag in lime or the like in de珪期in dephosphorization process: the A 1 / B 1, slopping It is a figure which shows the relationship with incidence.
[Fig. 3] Ratio of the supply rate A 1 of CaO in quicklime and the supply rate B 1 of CaO in converter slag during the desiliconization period in the dephosphorization process: A 1 / B 1 and dephosphorization It is a figure which shows the relationship with F-CaO (undeciduous lime) in the slag after a process.
FIG. 4 is a diagram showing the relationship between the timing of dephosphorization treatment (desiliconization period, dephosphorization period) and the rate of occurrence of slopping.
FIG. 5 is a diagram showing the relationship between a dephosphorization method (conventional method, an example of the present invention) and a dephosphorization lime index.

Claims (6)

溶銑を脱りん処理するに際し、脱りん剤のCaO源として転炉スラグと生石灰および/又は石灰石を用いる溶銑脱りん処理方法において、脱りん処理前の溶銑中Si濃度と脱りん処理開始からの供給酸素量によって、供給する脱りん剤のCaO源の中の転炉スラグの量の比率を脱りん処理の途中で増大方向に変更することを特徴とする溶銑脱りん処理方法。In hot metal dephosphorization method using converter slag and quicklime and / or limestone as CaO source of dephosphorizing agent when dephosphorizing hot metal, supply of Si concentration in hot metal before dephosphorization and supply from dephosphorization process A hot metal dephosphorization method characterized in that the ratio of the amount of converter slag in the CaO source of the dephosphorization agent to be supplied is changed in the increasing direction during the dephosphorization process depending on the amount of oxygen. 溶銑を脱りん処理するに際し、脱りん剤のCaO源として転炉スラグと生石灰および/又は石灰石を用いる溶銑脱りん処理方法において、脱りん処理での脱珪期の終了時点以降、脱りん期の終了前に、供給する脱りん剤のCaO源の中の転炉スラグの量の比率を増大方向に変更することを特徴とする溶銑脱りん処理方法。In the hot metal dephosphorization method using converter slag and quick lime and / or limestone as the source of CaO for the dephosphorizing agent, the dephosphorization period after the end of the desiliconization period in the dephosphorization process. The hot metal dephosphorization processing method characterized by changing the ratio of the amount of converter slag in the CaO source of the supplied dephosphorization agent in an increasing direction before the end. 脱りん処理開始からの供給酸素量(Nm3 /溶銑1トン)=7×脱りん処理前の溶銑中Si濃度(質量%)となる時点以降、脱りん期の終了前に、供給する脱りん剤のCaO源の中の転炉スラグの量の比率を増大方向に変更する請求項1又は2記載の溶銑脱りん処理方法。Oxygen supplied amount from the dephosphorization process start (Nm 3 / hot metal 1 t) = 7 × dephosphorization treatment the hot metal in the Si concentration (wt%) before and made after the time point, before the end of the dephosphorization stage, and supplies dephosphorization The hot metal dephosphorization processing method according to claim 1 or 2, wherein the ratio of the amount of converter slag in the CaO source of the agent is changed in an increasing direction. 前記転炉スラグの量の比率を増大方向に変更するまでの期間においては生石灰および/又は石灰石中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 を1/3〜3とし、それ以降の期間においては生石灰および/又は石灰石中のCaO分の供給速度A2 と転炉スラグ中のCaO分の供給速度B2 との比:A2 /B2 を前記比:A1 /B1 よりも小さくする請求項1、2又は3記載の溶銑脱りん処理方法。In the period until the ratio of the converter slag amount is changed in the increasing direction, the ratio between the supply rate A 1 of CaO in quicklime and / or limestone and the supply rate B 1 of CaO in the converter slag: A 1 / B 1 is 1/3 to 3, and the ratio between the supply rate A 2 of CaO in quicklime and / or limestone and the supply rate B 2 of CaO in converter slag in the subsequent period: the a 2 / B 2 the ratio: claim 1, 2 or 3 hot metal dephosphorization treatment method according smaller than a 1 / B 1. 前記転炉スラグの量の比率を増大方向に変更するまでの期間においては生石灰および/又は石灰石中のCaO分の供給速度A1 と転炉スラグ中のCaO分の供給速度B1 との比:A1 /B1 を1/3〜3とし、それ以降の期間においては生石灰および/又は石灰石中のCaO分の供給速度A2 と転炉スラグ中のCaO分の供給速度B2 との比:A2 /B2 を0以上3未満、より好ましくは0〜2とする請求項1、2、3又は4記載の溶銑脱りん処理方法。In the period until the ratio of the converter slag amount is changed in the increasing direction, the ratio between the supply rate A 1 of CaO in quicklime and / or limestone and the supply rate B 1 of CaO in the converter slag: A 1 / B 1 is 1/3 to 3, and the ratio between the supply rate A 2 of CaO in quicklime and / or limestone and the supply rate B 2 of CaO in converter slag in the subsequent period: The hot metal dephosphorization processing method according to claim 1, 2, 3 or 4, wherein A 2 / B 2 is 0 or more and less than 3, more preferably 0-2. 供給する転炉スラグの一部を溶銑の上方から添加する請求項1、2、3、4又は5記載の溶銑脱りん処理方法。6. The hot metal dephosphorization method according to claim 1, wherein a part of the supplied converter slag is added from above the hot metal.
JP2001177126A 2001-06-12 2001-06-12 Hot metal dephosphorization method Expired - Lifetime JP3781985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177126A JP3781985B2 (en) 2001-06-12 2001-06-12 Hot metal dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177126A JP3781985B2 (en) 2001-06-12 2001-06-12 Hot metal dephosphorization method

Publications (2)

Publication Number Publication Date
JP2002363628A JP2002363628A (en) 2002-12-18
JP3781985B2 true JP3781985B2 (en) 2006-06-07

Family

ID=19018019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177126A Expired - Lifetime JP3781985B2 (en) 2001-06-12 2001-06-12 Hot metal dephosphorization method

Country Status (1)

Country Link
JP (1) JP3781985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215360A (en) * 2021-04-07 2021-08-06 邯郸钢铁集团有限责任公司 Deoxidation method of aluminum killed silicon-containing steel

Also Published As

Publication number Publication date
JP2002363628A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP2009167463A (en) METHOD FOR PRODUCING Mn-CONTAINING EXTRA-LOW-CARBON STEEL
JP3781985B2 (en) Hot metal dephosphorization method
JP5360174B2 (en) How to remove hot metal
JP3918568B2 (en) Method for producing ultra-low sulfur steel
JP3606170B2 (en) Method for producing low nitrogen-containing chromium steel
JP2011202200A (en) Slopping prevention method
JP2001115205A (en) Method for dephosphorizing molten iron
JP3460595B2 (en) Melting method for extremely low sulfur steel
JP3786056B2 (en) Hot metal pretreatment method
JP5467794B2 (en) Dephosphorization method for hot metal with low dust generation
JP2653301B2 (en) Reusing method of low P converter slag
JPH0141681B2 (en)
JP6460265B2 (en) Converter blowing method
JP5803837B2 (en) Method of desiliconization and dephosphorization of hot metal
TWI852453B (en) Desulfurizing treating agent of molten pig iron and method for desulfurizing molten pig iron
JP7361458B2 (en) Method of dephosphorizing hot metal
JP4759832B2 (en) Hot phosphorus dephosphorization method
JP4211365B2 (en) Hot metal pretreatment method
JP2017171975A (en) Dephosphorization agent for molten pig iron and dephosphorization method
JP3684953B2 (en) Pre-silicidation / phosphorization method of hot metal
JP2000212623A (en) Dephosphorization of molten iron low in lime
JPS61201712A (en) Pretreatment of molten pig iron
JP2002275520A (en) Method for refining molten high carbon steel
JP4084527B2 (en) Converter blowing method
JP3697960B2 (en) Hot metal pretreatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Ref document number: 3781985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

EXPY Cancellation because of completion of term