JP3786056B2 - Hot metal pretreatment method - Google Patents

Hot metal pretreatment method Download PDF

Info

Publication number
JP3786056B2
JP3786056B2 JP2002175746A JP2002175746A JP3786056B2 JP 3786056 B2 JP3786056 B2 JP 3786056B2 JP 2002175746 A JP2002175746 A JP 2002175746A JP 2002175746 A JP2002175746 A JP 2002175746A JP 3786056 B2 JP3786056 B2 JP 3786056B2
Authority
JP
Japan
Prior art keywords
hot metal
lance
dephosphorization
immersion
desiliconization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002175746A
Other languages
Japanese (ja)
Other versions
JP2004018942A (en
Inventor
裕史 鶴丸
武 須藤
親夫 鎌田
治志 奥田
弘 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002175746A priority Critical patent/JP3786056B2/en
Publication of JP2004018942A publication Critical patent/JP2004018942A/en
Application granted granted Critical
Publication of JP3786056B2 publication Critical patent/JP3786056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶銑の予備処理方法に係わり、とくに混銑車および溶銑鍋など処理容器内の溶銑を、浸漬ランスからの処理剤の吹込みにより、脱珪・脱燐する溶銑の予備処理方法に関する。
【0002】
【従来の技術】
近年、製鋼工程では、転炉吹錬の負荷軽減、製鋼ト−タルコストのミニマム化を図るため、溶銑が含有する珪素(元素記号Si)、燐(元素記号P)を、転炉での酸素吹錬の前に予め酸化剤を用いて除去する所謂「溶銑予備処理」が行われる。
【0003】
その除去方式は、使用する処理容器(例えば、転炉、溶銑鍋、混銑車等)に応じて様々である。このうち、混銑車あるいは溶銑鍋などの処理容器に保持した溶銑へ浸漬したランスを介して酸化剤(固体酸素源(酸化鉄)、気体酸素源など)や塩基度調整剤(石灰系フラックスなど)を吹き込む混銑車、溶銑鍋の処理容器による除去方式が、転炉を用いるものと比べて酸化剤の反応効率が高く、処理コストが低いという利点があるので多用されている。
【0004】
この混銑車、溶銑鍋などの処理容器による除去方式において、溶銑予備処理効率の向上を指向した技術として以下のようなものが知られている。
(1)脱珪後のSiO2リッチなスラグを除去した後、脱燐処理を行う方法(特開昭56−166315、特開昭56−133413、特開昭59−59815 、特開昭61−33814 の各号公報)。
【0005】
(2)溶銑を脱珪、脱燐、脱硫する際に、処理中にスラグを真空吸引設備等により連続的に強制排除する方法(特開昭63−18011 号公報)。
(3)脱珪後のスラグ排出を混銑車の傾転により行う方法(特開平5−33814 号公報)。
(4)脱珪後のスラグ排出を行わず脱燐処理を行う場合にソーダ灰を使用する方法(特開昭59−104412号公報)。
【0006】
(5) CaO及び酸化剤を溶銑中に吹込む際に、別途溶銑上へ酸化鉄を上添加する方法(特公平6−11885 号公報、特開平4−218609号公報)。
(6)吹込み流を旋回流とする特殊なランスを用いる方法(日本国特許第2856576 号公報)
((5),(6) は、溶銑中に酸化剤を分散させてスラグ- メタル間反応界面積を増大させるもの)
(7)インジェクション・ランスを2本使用し1本から脱燐剤、もう1本から脱硫剤を吹込む方法(特開昭58−218311号公報)。
【0007】
(8)インジェクション・ランスを2本使用し、酸化剤を吹込む脱燐方法(特開2002−69519 号公報、特開2002−146423号公報)。
【0008】
【発明が解決しようとする課題】
しかし、上記従来技術の(1),(2) では、脱珪後のスラグ除去のために、例えば特開昭62−127416号公報や特開昭63−18011 号公報に示されるようなスラグの除去設備が必要であり、設備費がかかることや、脱珪処理から除滓、脱燐処理へと移行するのに時間がかかる問題がある。また、(4) では、処理剤の単価が高くコスト的に不利になる問題がある。さらに、高炉の出銑〔Si〕が高い場合には、処理前に予備脱珪スラグの除去を行わねばならないことや、処理中のスロツピングにより処理が困難になるという問題がある。(3) は、これらの問題を解決しようとしたものである。しかし、脱燐処理段階での反応自体を促進し、スラグ排出を促進する点について考慮されていないため、脱燐速度を向上させるには未だ不十分であるという問題がある。
【0009】
また、(5) では、上添加した酸化鉄がスラグ上に未反応で乗ってしまい、反応に寄与する酸化鉄の割合が減少する。つまり上方より添加する酸化鉄は、トップスラグの酸素ポテンシャルを上昇させるにすぎす、脱燐反応に対して酸素源を効果的に使用しているとは言い難い。さらに、その結果として、スラグの滓化性が悪化する等の問題もある。(6) では、用いるランスの構造が単管ランスに比べて複雑であるため、製造コストが高いという欠点がある。(7) では、脱燐剤と脱硫剤を同時に吹込むため、脱燐反応がむしろ阻害されてしまう。
【0010】
また、(8) では、インジェクション・ランスを2本使用することにより、効率良く酸化剤を吹き込む予備処理方法が開示されているが、この方法を脱珪の初期から適用すると、スラグフォーミングが多発し、フォーミング防止剤の添加あるいは処理中断などスラグ鎮静化処置が必要となり、処理時間の延長が起きることがあること、並びに酸化剤吹込み効率は良いものの、酸化剤の反応効率の低下をきたすことなどの問題がある。
【0011】
このように、上記従来の技術では、脱珪・脱燐速度の充分な向上が得られておらず、溶銑予備処理全体の処理時間を充分短縮できていない問題がある他、処理コストがかさむ問題もあった。
また、脱珪・脱燐効率の阻害因子として、処理容器への凝固滓付着による処理障害の問題があり、特に混銑車では、溶銑通用口口元不良(トピード口元不良)の問題が発生しやすい。これは、混銑車の溶銑通用口の内面側にガラ(凝固滓)が多量に付着して、予備処理のためのランスが入らない、あるいはランスが入ったとしても処理中の溶銑の循環を圧迫し、溶銑が流出するため処理を断念せぎるを得なくなるという問題でもある。上記従来の技術ではこの問題を解決することは困難であった。
【0012】
本発明は、上記従来技術の問題点に鑑み、低コストで脱珪・脱燐速度を充分に向上でき、さらには溶銑通用口口元不良の問題も容易に解消し得る溶銑の予備処理方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、ランスの溶銑内浸漬深さを相互に違えた第一、 第二の2本以上の複数の浸漬ランスを用いて、予備処理中における第一、第二の浸漬ランスの使用時期を適正化し、かつ適正な酸素供給速度で酸化剤、塩基度調整剤の吹込みを行い、さらには、随時第一または第二の浸漬ランスから気体酸素を処理容器内に吹込むことにより、上記の問題を解決したものである。
【0014】
すなわち、本発明(1)は、処理容器内に保持された溶銑中に2本以上の浸漬ランスを介して酸化剤を吹込み脱珪・脱燐を行う溶銑の予備処理方法において、処理開始時は、前記浸漬ランスのうち、最初に浸漬される第一の浸漬ランスから酸化剤を溶銑中に吹込み脱珪・脱燐を進行させ、脱燐末期の段階で、前記第一の浸漬ランスの浸漬深さより浅い部分に第二の浸漬ランスを浸漬して、溶銑の上下方向で互いに離隔した状態で第一、第二の浸漬ランスから酸化剤を吹込むことを特徴とする溶銑の予備処理方法である。
【0015】
これにより、脱燐反応が停滞する脱燐反応末期の段階の反応を促進させることができる。
また、本発明(2)は、前記脱燐末期の段階で、前記浸漬ランスのうち、下方に位置する第一の浸漬ランス側から吹き込む酸化剤の吹込み量を減少させ、第二の浸漬ランスの酸化剤吹込みを行うことを特徴とする、本発明(1)の溶銑の予備処理方法である。
【0016】
これにより、脱燐反応が停滞する脱燐反応末期の段階の酸化剤の反応効率を向上させ、酸化剤使用量の削減を図ることができる。
さらに、本発明(3)は、前記浸漬ランスのうち、上方に位置する第二の浸漬ランスの浸漬深さを、溶銑の浴面下1m以内および第一の浸漬ランスの浸漬深さより0.1 m以上浅くした範囲とすることを特徴する、本発明(1)または(2)の溶銑の予備処理方法である。
【0017】
これにより、スラグ- メタル界面反応を有利に利用するとともに、前記の如く、 脱燐反応が停滞する脱燐反応末期の段階の酸化剤の反応効率を向上させ、酸化剤使用量の削減を図ることができる。
また、本発明(4)は、前記脱燐の終了時、第一、第二の何れかのランスを溶銑浴面上まで上昇させ気体酸素を吹き付けることを特徴とする、本発明(1)〜(3)のいずれかの溶銑の予備処理方法である。
【0018】
これにより、予備処理終了時に発生している処理容器への付着物を除去することができる。
【0019】
【発明の実施の形態】
以下、本発明になる処理容器内の溶銑中に浸漬したランスを介して酸化剤を吹き込む溶銑予備処理方法について説明する。
酸化剤吹き込みは、脱珪・脱燐期に行い、本発明では、ランスの溶銑内浸漬深さを相互に違えた第一、第二の浸漬ランス(以下、単に第一のランス、第二のランスと言う)を用いるとともに、第一のランスは、脱珪・脱燐を通じて酸化物を溶銑中に吹込み、第二のランスは、脱燐期に酸化剤を溶銑中に吹込むことにより、脱燐末期に停滞の生じる脱燐反応を促進させることにより、迅速な溶銑の予備処理を行う。
【0020】
吹き込む酸化剤としては、酸化鉄含有物質などの固体酸素源と気体酸素の2種類を用いる。気体酸素は、酸素濃度99%以上の純酸素でも、あるいは、酸化鉄含有物質の搬送気体に純酸素を加えて供給しても、いずれでもかまわない。要は酸素濃度が高く酸化剤として寄与すればよい(以下、気体酸素は単に気酸ともいう)。あるいは、脱燐期にソーダ灰系フラックスを用いることができる。
【0021】
本発明では、酸化剤とともに、適宜の塩基度調整剤(:石灰系フラックス(石灰、生石灰、必要に応じ蛍石等))を吹き込んでもよい。固体酸素源や塩基度調整剤は粉粒状のものをキャリアガス搬送法により吹き込む。キャリアガスとしては、空気または不活性ガスを用いることができる。酸化剤として固体酸素源と気酸を併用して吹き込む場合は、キャリアガス搬送法により送給されてきた固体酸素源に気酸をランス部分で加えて吹き込みを行えば良い。
【0022】
本発明では、前記したように溶銑中に浸漬する浸漬ランスを2本以上用いるもので、まず、前記浸漬ランスのうち、最初に浸漬される第一のランスを浸漬使用して予備処理を開始する。
前記第一、第二のランスとして各1本づつ計2本のランスを用い、処理容器として混銑車を用いた例で以下説明する。
【0023】
図1(a)に示すように、脱珪・脱燐処理開始に際し、混銑車1内の溶銑2中に第一のランス4を、後述する第二のランス5よりも深く浸漬させて配置する。第一のランス4から酸化剤を吹き込むが、塩基度調整剤と併用するもので、ここでは処理剤Z1(脱珪・脱燐処理時の例:酸化鉄(焼結鉱粉体)+石灰粉(生石灰)+気酸)を吹込み、脱珪・脱燐処理を行う。酸化鉄+気酸の酸化剤(酸素源)により、まず、脱珪が進行し、溶銑2上に浮遊しているスラグ3の脱珪により生成されるSiO2による塩基度の変化は、同時に吹き込まれる塩基度調整剤である石灰粉により調整される。
【0024】
また、本発明では、ランス1本当りの酸素供給速度(記号:Qo2:固体酸素源は気体換算して示す)を0.05Nm3/min/溶銑t以上とする。Qo2が0.05Nm3/min/溶銑tに満たないと、脱珪・脱燐反応が著しく遅延するからである。なお、Qo2を大きくしすぎても脱珪・脱燐速度が飽和して供給した酸素が無駄となるから、Qo2は0.4 Nm3/min/溶銑t以下とするのが好ましい。
【0025】
従って図1(a)で示す脱珪・脱燐処理期間のうち、脱珪期間はスラグ3が脱珪進行につれフォーミングを生じ易くなるので、塩基度調整剤の吹込みと、溶銑通用口1aからスラグ溢流を生ぜぬように、第一のランス4の酸化剤の吹込みは、徐々に酸素供給速度Qo2を増加させる吹き込みパターンが好ましい。脱燐期に達した段階では酸素供給速度Qo2は上限近くまで増加させて脱燐反応を促進させる。
【0026】
また、本発明者らの知見によれば、脱燐処理後半に至ると次式(1) で定義される脱燐酸素効率が顕著に低下するので、とくに脱燐処理の後半段階においては、Qo2を0.15Nm3/min/溶銑t以下とするのが好ましい。また、より好ましくは0.05〜0.13Nm3/min/溶銑tとする。この脱燐処理後半の段階とは、〔P〕≦0.08mass%あるいは脱燐処理終了の10分前を指す。この脱燐処理後半の段階は、使用容器と溶銑量、吹込み酸化剤の量を基に、実験から、あるいは処理パターンから定めることができる。
【0027】
脱燐酸素効率=溶銑中燐の酸化に用いられた酸素量/(溶銑中に吹き込んだ全酸素量−Siの酸化に使用された酸素量)(×100 %) ‥‥(1)
ここに、式(1) 右辺の各酸素量の単位は、Nm3/min/溶銑tである。
この脱燐酸素効率が顕著に低下する理由は、脱燐処理の後半段階、すなわち脱燐末期では、酸化剤吹込みにより局所的に酸素ポテンシャルが増大し、過剰な酸素によって脱炭反応が起き、脱燐に使用される酸素量が減るためであり、この段階で前記第一のランス4の酸化剤吹込みを前記の如く減少させる。
【0028】
しかしながら、この酸化剤の吹込み量の削減によりトータルとして脱燐速度停滞が生じる可能性があるため、本発明では図1(b)に示すように、脱燐処理後半の段階では、さらに第二のランス5を浸漬して、該ランス5から酸化剤(処理剤Z2)の吹込みを行う。そして、この第二のランス5は、第一のランス4とは浸漬深さを異ならしめて、浸漬深さを浅くしているため、同一位置での酸化剤の供給とならず、局所的な酸素ポテンシャル増大を抑止する(局所的酸素ポテンシャル増大領域の上方は徐々に酸素ポテンシャルが低くなっている)。これにより、溶銑中に異なる二箇所から酸素源が供給され、酸素供給速度(:固体酸素源および気酸に含まれる酸素の合計吹込み流量)を局所的に過剰に増加させることなく(脱炭反応生起を抑制しながら)、トータルの酸素供給速度を大きくすることができ、脱燐反応を促進できることになり、予備処理時間短縮と脱燐酸素効率の向上による酸化剤の使用量削減が達成される。
【0029】
この過剰な酸素による脱炭反応生起を有効に防ぐには、図中に記号Dで示す、第一、第二のランス4、5の先端の浸漬深さの差Dを0.1 m以上にとるのが好ましく、より好ましくは、0.3 m以上、最も好ましくは、0.5 m以上である。また、第二のランス5の浸漬深さは、溶銑2の浴面下1m以内とすると、溶銑2上に浮遊するスラグ3が有効に撹拌され、スラグ- メタル間の反応界面積が増加するので好ましい。この第一、第二のランス4、5の浸漬配置は、図1(b)の配置の他、図2、図3の配置とすることもできる。図2の配置の如く、第一、第二のランス4、5からの処理剤吹き込み方向を揃えると、溶銑の対流をより強く付勢できて物質移動が促進され脱珪・脱燐反応がより速く進むようになる。また、図3のように、一方の第一のランス4を斜めに浸漬させ、第二のランス5を、溶銑浴面に対し垂直に浸漬させた配置とすることもできる。
【0030】
なお、本発明では、溶銑中に添加する酸化剤としては、気酸、固体酸素源のいずれも用いることができるが、主として固体酸素源を用いる方が好ましい。固体酸素源には、溶銑中で溶融してスラグとなることによりスラグ- メタル間の反応を促進する作用がある(気酸にはこの滓化作用はない)からである。そのためには、第二のランス5は、酸化剤として固体酸素源を主体に使用する方が好ましい。
【0031】
なお、固体酸素源としては、酸化鉄が最良であるが、代替として高炉原料の焼結鉱や鉄鉱石の粉体、製鉄ダスト、ミルスケール等の酸化鉄含有物質が使用できる。
さらに、本発明では、前記第一のランス4または第二のランス5から気酸のみを吹き出させる時期を設けることが好ましい。この気酸単独吹き出し時期は、脱珪前、脱珪期、脱燐期のいずれかを問わず、現に処理対象となっている溶銑の入った混鉄車の溶銑通用口の内面に大きなガラが付着している状態に遭遇した時期とするのが好ましい。これにより、混銑車1の溶銑通用口1aの内面側に付着したガラ7を溶融除去することができるので、前記したトピード口元不良の問題も、別段の設備追加を伴わずに容易に解決できる。なお、気酸単独吹き出し量は、ガラの付着サイズ等に応じて適宜決定すればよい。また、気酸のうちとくに純酸素を用いると、より迅速にガラを溶融できて好ましい。
【0032】
また、図1(c)に示すように、溶銑予備処理の完了末期に、一方のランスを溶銑上まで上昇させ気酸の溶銑通用口1a内への吹き出しを行うと、予備処理時に生じた溶銑通用口1aの内面のガラ7付着を溶銑予備処理終了段階で除去することができ、次回の溶銑の受銑時および予備処理開始時の溶銑通用口へのガラ付きによる口元不良の問題も予め解消でき特に好ましい。
【0033】
なお、図1(c)では、脱燐期のうちの一部の期間内で第二のランス5を溶銑2の浴面上に引き上げて該ランス5から溶銑2の浴面上に向けて気酸の吹き出しを行っている例を示したが、第一のランス4を用いて気酸の吹き出しを行ってもかまわない。
この気酸の吹き出し処理により、脱珪・脱燐の予備処理を施した混銑車は、終了時には図1(d)に示すように口元1aの付着物を除去したクリーニング状態にすることができる。
【0034】
また、トビード口元1a不良の混銑車の配車到着時に混銑車のガラ7の溶融除去を行うに際しては、最初に、下側に浸漬配置される第一のランス4を用いて、該ランス4を溶銑2に浸漬する前に浴面上に保持し、気酸(好ましくは純酸素)単独吹き出しを行うと、より能率よくガラ7を溶融除去することができて好ましい。
【0035】
さらに、本発明では、酸化剤吹き込み期の少なくとも一部と同期して、図4に示すように、混銑車1を傾転状態とするのが好ましい。この傾転は酸化剤吹き込み前から行っておいても良い。また、この傾転は適宜解除・復元してもよい。傾転角度は、溶銑の溢流が起こらない角度範囲の上限とするのが好ましい。これにより、不要となったスラグ3を、前述のような特段の除滓設備を用いずとも、必要に応じて、混銑車1の溶銑通用口1aから傾転側に設けた流滓ピット6へ溢流させて排出することができる。
【0036】
とくに、脱珪処理段階では、スラグフォーミングによる混銑車1の溶銑通用口1aからのスラグ3の溢流で、脱珪処理の中断を余儀なくされていたが、この傾転操作により、傾転側に溢流させることができるようになり、溢流したスラグ3は、傾転側に設けた流滓ピット6で受けるようにすることにより、脱珪処理を中断させることなく継続実施できる。
【0037】
また、スラグフォーミングを抑制するため塩基度調整剤を多量に使用していた点も、溶銑上のスラグを傾転側へ溢流させ排出を促進させることにより、溶銑上のスラグ量を減少させることができるため、使用量を大幅に削減できる。
さらに、積極的にスラグフオーミングを起こさせ、フォーミングしたスラグ3を混銑車1の傾転操作により傾転方向に排出するようにすると、脱珪処理前の溶銑中〔Si〕が高い場合でも、処理に伴い生成するSiO2が脱珪処理の支障にならず、容易に短時間で脱珪処理を完了でき、遅滞なく脱燐処理に移行することができる。
【0038】
さらに、脱燐処理段階でも、随時適宜の角度に混銑車を傾転させておくことにより、同様に除滓でき、処理時間の短縮、塩基度調整剤など使用量の削減を図ることができる。図4では、脱燐時期の第一のランス4、第二のランス5の配置例も併せて示す。
以上は、混銑車1を例に取ったが、溶銑鍋でも同様であり、処理中、傾転操作により傾転状態としておくことにより同様の効果を得ることができる。
【0039】
以上のように、本発明によれば、前記従来の技術(1) 〜(8) の問題点を全て解決でき、従来到達し得なかったレベルでの、低コストかつ高速の脱珪・脱燐処理が可能となる。なお、図1〜図4では、第一のランス、第二のランスを各1本として図示しているが、各複数本であってもかまわないことはもちろんである。
以下、実施例を説明する。
【0040】
【実施例】
〔実施例1〕
溶銑量280tの混銑車を用いて以下の溶銑予備処理を行った。
▲1▼ 溶銑280t、溶銑成分〔Si〕:0.20mass%、〔P〕:0.17mass%
▲2▼ 脱珪・脱燐処理のための酸化剤、塩基度調整剤の吹込み処理パターンを図5に示す。
【0041】
図1の手順中、図1(a)に示す段階では、第一のランス4を浸漬深さ1.5 mで挿入し、酸化剤として、固体酸素源である焼結鉱粉体を用い150kg/min (気体換算21.6Nm3/min)で吹込みを開始した。なお、予備処理での温度降下を軽減するため、第一のランス4には、気酸10Nm3/minの吹込みを併用した。塩基度調整剤として生石灰を脱珪期間中スラグ塩基度が1.0 にほぼなるように、図5に示すように徐々に吹込み量を増加させつつ吹込み、また、気酸10Nm3/min、焼結鉱粉体150kg/min で吹込み開始後の酸化剤の量については、温度降下を軽減する気酸の量は維持したまま、焼結鉱粉体の量を増加させ、脱珪を促進させた。
【0042】
焼結鉱粉体量を徐々に増加させることにより、異常なスラグフォーミングはみられず、約12分間の処理で〔Si〕:0.01mass%となり、脱燐時期には焼結鉱粉体量を400kg/min (気体換算57.6Nm3/min)とする吹込みを行った。
脱燐終了約10分前の段階では、焼結鉱粉体量を400kg/min から200kg/min まで低下させ、図1(b)に示す、第二のランス5を浸漬して同第二のランス5から200kg/min での焼結鉱の粉体吹込みを開始した。第二のランスの浸漬深さは、0.8 mとした。
【0043】
その結果、280tの溶銑を〔Si〕:0.20mass%、〔P〕:0.17mass%から〔Si〕:0.01mass%、〔P〕:0.050 mass%へと成分調整する処理を約35分間で終了させることができた。
〔実施例2〕
溶銑量280tの混銑車を用いて以下の溶銑予備処理を行った。
【0044】
▲1▼溶銑280t、溶銑成分〔Si〕:0.20mass%、〔P〕:0.19mass%
▲2▼脱珪・脱燐処理のための酸化剤、塩基度調整剤の吹き込み処理パターンを図6に示す。
▲3▼脱珪処理および脱燐処理前半は図5と同様の処理を行った。
▲4▼処理終了15分前から第二のランスを用いて吹込みを開始した。第二のランスのQo2は、0.103 Nm3/min/溶銑tとした。
【0045】
▲5▼脱燐処理終了10分前に第一のランスのQo2を0.206 Nm3/min/溶銑tから、0.103 Nm3/min/溶銑tとした。
▲6▼処理終了5分前に第二のランスを溶銑浴面上0.5 mの高さまで上昇させ、気酸を15Nm3/minで噴射した。
その結果、280tの溶銑を〔Si〕:0.20mass%、〔P〕:0.19mass%から〔Si〕:0.01mass%、〔P〕:0.055 mass%へと成分調整する処理を約30分間で終了させることができた。
【0046】
さらに、処理末期の混銑車内溶銑浴面上への気酸噴出により、予備処理で生じ易い溶銑通用口内面の大きなガラの溶融除去に成功した。
図7に脱燐時の酸素供給速度と、脱燐に使用された酸素の効率を示す。図中●は単一のランスを用いて酸素を供給した際の酸素効率を示したものであり、一方、 本発明になる、第一、第二のランスによる所謂二段吹込みによる酸素効率を○で示した。同じ酸素供給速度において明らかに本発明側の脱燐酸素効率が高くなっており、この結果、脱珪・脱燐処理速度は上昇して高速で脱珪・脱燐処理が可能になった他、脱燐酸素効率が高いため酸化剤使用量の削減が実現できた。
【0047】
【発明の効果】
本発明によれば、混銑車および溶銑鍋など処理容器を用いて行う方式の溶銑予備処理操業において、従来到達しえなかったレベルでの、低コストかつ高速の脱珪・脱燐処理が可能となり、さらには処理容器口元不良の問題も容易に解消しうるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る脱珪・脱燐の各処理を示す側面断面模式図である。
【図2】本発明に係るランス2本の浸漬使用形態の一例を示す側面断面模式図である。
【図3】本発明に係るランス2本の浸漬使用形態の一例を示す側面断面模式図である。
【図4】本発明に係る混銑車傾転による除滓形態の一例を示す正面断面模式図である。
【図5】本発明に係る固体酸化剤、気酸吹込み形態の一例を示す図である。
【図6】本発明に係る固体酸化剤、気酸吹込み形態の一例を示す図である。
【図7】本発明に係る固体酸化剤、気酸吹込み時の脱燐酸素効率を示す図である。
【符号の説明】
1 処理容器(混銑車)
1a 溶銑通用口(口元、トピード口元)
2 溶銑
3 スラグ
4 第一のランス(第一の浸漬ランス)
5 第二のランス(第二の浸漬ランス)
6 流滓ピット
7 ガラ
D 浸漬深さの差
Z1,Z2 処理剤(酸化剤あるいはさらに塩基度調整剤)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot metal pretreatment method, and more particularly to a hot metal pretreatment method for desiliconizing and dephosphorizing hot metal in a processing vessel such as a kneading wheel and a hot metal ladle by blowing a treatment agent from an immersion lance.
[0002]
[Prior art]
In recent years, in the steelmaking process, silicon (element symbol Si) and phosphorus (element symbol P) contained in the hot metal are used to blow oxygen in the converter in order to reduce the load of converter blowing and minimize the total cost of steelmaking. A so-called “hot metal preliminary treatment” in which an oxidant is removed in advance before smelting is performed.
[0003]
There are various removal methods depending on the processing container to be used (for example, a converter, a hot metal ladle, a kneading car, etc.). Of these, oxidizing agents (solid oxygen source (iron oxide), gaseous oxygen sources, etc.) and basicity regulators (lime-based flux, etc.) are provided via a lance immersed in hot metal held in a processing vessel such as a kneading wheel or hot metal ladle. A removal method using a processing vessel of a kneading vehicle or hot metal ladle that blows slag is often used because it has the advantages of higher oxidant reaction efficiency and lower processing costs than those using a converter.
[0004]
In the removal method using a processing container such as a kneading wheel or a hot metal ladle, the following techniques are known as techniques for improving the hot metal pretreatment efficiency.
(1) A method of dephosphorizing after removing SiO 2 rich slag after desiliconization (JP 56-166315, JP 56-133413, JP 59-59815, JP 61- 33814).
[0005]
(2) A method of continuously forcibly removing slag by vacuum suction equipment or the like during treatment when desiliconizing, dephosphorizing or desulfurizing the hot metal (JP-A 63-18011).
(3) A method of discharging slag after desiliconization by tilting a kneading vehicle (Japanese Patent Laid-Open No. 5-33814).
(4) A method in which soda ash is used when dephosphorization is performed without discharging slag after desiliconization (Japanese Patent Laid-Open No. 59-104412).
[0006]
(5) A method of separately adding iron oxide onto hot metal when CaO and an oxidizing agent are blown into the hot metal (Japanese Patent Publication No. 6-11885, Japanese Patent Laid-Open No. 4-218609).
(6) Method using a special lance with swirling flow as blowing flow (Japanese Patent No. 2856576)
((5) and (6) increase the slag-metal reaction interface area by dispersing the oxidant in the hot metal)
(7) A method of using two injection lances and blowing a dephosphorizing agent from one and a desulfurizing agent from the other (Japanese Patent Laid-Open No. 58-218311).
[0007]
(8) A dephosphorization method using two injection lances and blowing an oxidizing agent (JP 2002-69519 A, JP 2002-146423 A).
[0008]
[Problems to be solved by the invention]
However, in the prior arts (1) and (2), in order to remove slag after desiliconization, for example, slag as shown in JP-A-62-127416 and JP-A-63-18011 is used. There is a problem that a removal facility is necessary and equipment costs are required, and it takes time to shift from desiliconization to removal and dephosphorization. Moreover, in (4), there is a problem that the unit price of the treatment agent is high and disadvantageous in terms of cost. Furthermore, when the output of the blast furnace [Si] is high, there is a problem that the pre-desiliconization slag must be removed before the processing, and the processing becomes difficult due to the sloping during the processing. (3) is an attempt to solve these problems. However, since the reaction itself in the dephosphorization treatment stage is promoted and slag discharge is not taken into consideration, there is a problem that it is still insufficient for improving the dephosphorization rate.
[0009]
In addition, in (5), the added iron oxide is unreacted on the slag, and the ratio of iron oxide contributing to the reaction is reduced. In other words, iron oxide added from above only raises the oxygen potential of the top slag, and it is difficult to say that the oxygen source is effectively used for the dephosphorization reaction. Furthermore, as a result, there are problems such as deterioration of hatchability of slag. In (6), since the structure of the lance used is more complicated than that of a single pipe lance, the manufacturing cost is high. In (7), since the dephosphorizing agent and the desulfurizing agent are injected simultaneously, the dephosphorization reaction is rather inhibited.
[0010]
Also, (8) discloses a pretreatment method in which an oxidizing agent is efficiently blown by using two injection lances. However, when this method is applied from the initial stage of desiliconization, slag forming occurs frequently. , Slag soothing treatment such as addition of anti-foaming agent or treatment interruption is required, and the treatment time may be extended, and although the oxidant blowing efficiency is good, the reaction efficiency of the oxidant is lowered. There is a problem.
[0011]
As described above, in the above-described conventional technology, the desiliconization / dephosphorization rate is not sufficiently improved, and there is a problem that the processing time of the hot metal preliminary processing cannot be sufficiently shortened, and the processing cost is increased. There was also.
In addition, as a deterring factor of desiliconization / dephosphorization efficiency, there is a problem of processing failure due to solidified soot adhering to the processing container, and particularly in a kneading vehicle, a problem of defective hot metal mouth (poor torpedo mouth) tends to occur. This is because a large amount of glass (solidified soot) adheres to the inner surface of the hot metal inlet of the kneading car, and no lance for pretreatment enters, or even if a lance is inserted, the hot metal circulation during processing is suppressed. However, since hot metal flows out, it is also a problem that the treatment must be given up. It has been difficult to solve this problem with the conventional techniques described above.
[0012]
The present invention provides a hot metal pretreatment method that can sufficiently improve the desiliconization / dephosphorization rate at a low cost and that can easily solve the problem of the defective mouth opening for hot metal in light of the above-mentioned problems of the prior art. The purpose is to do.
[0013]
[Means for Solving the Problems]
The present invention uses the first and second two or more immersion lances with different immersion depths in the hot metal to determine the use timing of the first and second immersion lances during the pretreatment. The oxidant and the basicity adjuster are blown at an appropriate oxygen supply rate, and further, the gaseous oxygen is blown into the treatment vessel from the first or second immersion lance as needed. It is a solution to the problem.
[0014]
That is, the present invention (1) is a pretreatment method for hot metal in which desiliconization / dephosphorization is performed by blowing an oxidizing agent through two or more immersion lances into hot metal held in a processing vessel. In the immersion lance, the oxidizing agent is blown into the hot metal from the first immersion lance that is first immersed, and the desiliconization and dephosphorization are advanced. A hot metal pretreatment method characterized in that the second immersion lance is immersed in a portion shallower than the immersion depth and the oxidizing agent is blown from the first and second immersion lances in a state of being separated from each other in the vertical direction of the hot metal. It is.
[0015]
Thereby, the reaction at the final stage of the dephosphorization reaction where the dephosphorization reaction is stagnant can be promoted.
Moreover, this invention (2) reduces the blowing amount of the oxidizing agent injected from the 1st immersion lance side located below among the said immersion lances in the stage of the said dephosphorization end stage, and 2nd immersion lances This is a pretreatment method for hot metal according to the present invention (1), characterized in that the oxidizing agent is injected.
[0016]
Thereby, the reaction efficiency of the oxidizing agent at the final stage of the dephosphorization reaction where the dephosphorization reaction is stagnated can be improved, and the amount of the oxidizing agent used can be reduced.
Further, in the present invention (3), the immersion depth of the second immersion lance located above the immersion lance is within 1 m below the bath surface of the hot metal and 0.1 m or more from the immersion depth of the first immersion lance. It is the hot metal pretreatment method of the present invention (1) or (2), characterized in that the range is shallow.
[0017]
As a result, the slag-metal interface reaction is advantageously utilized, and as described above, the reaction efficiency of the oxidant at the final stage of the dephosphorization reaction where the dephosphorization reaction is stagnated is improved, and the amount of oxidant used is reduced. Can do.
In addition, the present invention (4) is characterized in that, at the end of the dephosphorization, the first or second lance is raised to the hot metal bath surface and gaseous oxygen is blown. This is a hot metal pretreatment method according to any one of (3).
[0018]
Thereby, the deposit | attachment to the processing container which has generate | occur | produced at the time of completion | finish of a preliminary | backup process can be removed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a hot metal preliminary treatment method in which an oxidizing agent is blown through a lance immersed in the hot metal in the treatment container according to the present invention will be described.
Oxidant blowing is performed during the desiliconization and dephosphorization periods, and in the present invention, the first and second immersion lances (hereinafter simply referred to as the first lance and the second lance) in which the immersion depth of the lance in the hot metal is different from each other. The first lance blows oxide into the hot metal through desiliconization and dephosphorization, and the second lance blows an oxidant into the hot metal during the dephosphorization period. A rapid hot metal pretreatment is performed by accelerating the dephosphorization reaction in which stagnation occurs at the end of dephosphorization.
[0020]
As the oxidizing agent to be blown in, two types of solid oxygen sources such as iron oxide-containing substances and gaseous oxygen are used. The gaseous oxygen may be pure oxygen having an oxygen concentration of 99% or more, or may be supplied by adding pure oxygen to the carrier gas of the iron oxide-containing substance. In short, it is only necessary that the oxygen concentration is high and contribute as an oxidizing agent (hereinafter, gaseous oxygen is also simply referred to as gaseous acid). Alternatively, a soda ash flux can be used during the dephosphorization period.
[0021]
In the present invention, an appropriate basicity adjusting agent (lime-based flux (lime, quicklime, fluorite if necessary), etc.) may be blown together with the oxidizing agent. A solid oxygen source and a basicity adjusting agent are blown in a powder form by a carrier gas transport method. As the carrier gas, air or an inert gas can be used. When the solid oxygen source and gas acid are used in combination as the oxidant, gas acid may be added to the solid oxygen source fed by the carrier gas transport method at the lance portion and then blown.
[0022]
In the present invention, as described above, two or more immersion lances that are immersed in the hot metal are used. First, of the immersion lances, the first lance that is immersed first is immersed and used for pretreatment. .
An example in which two lances are used for each of the first and second lances and a chaotic vehicle is used as the processing container will be described below.
[0023]
As shown in FIG. 1 (a), at the start of desiliconization / dephosphorization, the first lance 4 is placed in the hot metal 2 in the kneading wheel 1 so as to be immersed deeper than the second lance 5 described later. . Oxidizing agent is blown from the first lance 4 but is used together with a basicity adjusting agent. Here, the treating agent Z1 (example of desiliconization / dephosphorization treatment: iron oxide (sintered ore powder) + lime powder Blowing (quick lime) + gaseous acid), desiliconization and dephosphorization are performed. First, desiliconization proceeds by the oxidizing agent (oxygen source) of iron oxide + gas acid, and the change in basicity due to SiO 2 generated by desiliconization of the slag 3 floating on the hot metal 2 is simultaneously blown. It is adjusted with lime powder which is a basicity adjusting agent.
[0024]
In the present invention, the oxygen supply rate per lance (symbol: Qo 2 : solid oxygen source is shown in terms of gas) is set to 0.05 Nm 3 / min / molten metal t or more. This is because, if Qo 2 is less than 0.05 Nm 3 / min / molten iron t, the desiliconization / dephosphorization reaction is significantly delayed. It should be noted that even if Qo 2 is excessively increased, the desiliconization / dephosphorization rate is saturated and the supplied oxygen is wasted, so that Qo 2 is preferably 0.4 Nm 3 / min / molten metal t or less.
[0025]
Accordingly, in the desiliconization / dephosphorization processing period shown in FIG. 1 (a), during the desiliconization period, the slag 3 is likely to form as the desiliconization progresses. In order to prevent slag overflow, the blowing of the oxidizing agent of the first lance 4 is preferably a blowing pattern in which the oxygen supply rate Qo 2 is gradually increased. When the dephosphorization period is reached, the oxygen supply rate Qo 2 is increased to near the upper limit to promote the dephosphorization reaction.
[0026]
Further, according to the knowledge of the present inventors, since the dephosphorization oxygen efficiency defined by the following formula (1) is remarkably lowered at the latter half of the dephosphorization treatment, particularly in the latter half of the dephosphorization treatment, Qo. 2 is preferably 0.15 Nm 3 / min / mol t or less. Further, more preferably 0.05 to 0.13 Nm 3 / min / molten iron t. The latter stage of the dephosphorization treatment refers to [P] ≦ 0.08 mass% or 10 minutes before the end of the dephosphorization treatment. The latter half of the dephosphorization treatment can be determined from experiments or treatment patterns based on the container used, the amount of molten iron, and the amount of blowing oxidant.
[0027]
Dephosphorization oxygen efficiency = amount of oxygen used for oxidation of phosphorus in hot metal / (total amount of oxygen blown into hot metal-amount of oxygen used for oxidation of Si) (× 100%) (1)
Here, the unit of each oxygen amount on the right side of the equation (1) is Nm 3 / min / molten metal t.
The reason why this dephosphorization oxygen efficiency is remarkably lowered is that in the latter stage of the dephosphorization process, that is, the dephosphorization end stage, the oxygen potential is locally increased by blowing the oxidizing agent, and the decarburization reaction occurs due to excess oxygen, This is because the amount of oxygen used for dephosphorization is reduced. At this stage, the oxidant blowing of the first lance 4 is reduced as described above.
[0028]
However, since there is a possibility that the dephosphorization rate is stagnated as a whole due to the reduction in the blowing amount of the oxidizing agent, in the present invention, as shown in FIG. The lance 5 is immersed, and an oxidizing agent (treatment agent Z2) is blown from the lance 5. The second lance 5 has a different immersion depth from the first lance 4 and has a shallow immersion depth. Therefore, the second lance 5 does not supply oxidant at the same position, and local oxygen. The potential increase is suppressed (the oxygen potential gradually decreases above the local oxygen potential increasing region). As a result, oxygen sources are supplied from two different locations in the hot metal, and the oxygen supply rate (: total oxygen flow rate of solid oxygen source and oxygen contained in the gaseous acid) is not locally increased excessively (decarburization). While suppressing the occurrence of reaction, the total oxygen supply rate can be increased and the dephosphorization reaction can be promoted, and the amount of oxidant used can be reduced by shortening the pretreatment time and improving the dephosphorization oxygen efficiency. The
[0029]
In order to effectively prevent the decarburization reaction from occurring due to excessive oxygen, the difference D in the immersion depth at the tips of the first and second lances 4 and 5 indicated by the symbol D in the figure is set to 0.1 m or more. Is more preferably 0.3 m or more, and most preferably 0.5 m or more. If the immersion depth of the second lance 5 is within 1 m below the bath surface of the hot metal 2, the slag 3 floating on the hot metal 2 is effectively stirred, and the reaction interface area between the slag and metal increases. preferable. The immersion arrangement of the first and second lances 4 and 5 may be the arrangement shown in FIGS. 2 and 3 in addition to the arrangement shown in FIG. As shown in the arrangement of FIG. 2, when the treatment agent blowing directions from the first and second lances 4 and 5 are aligned, the convection of the hot metal can be more strongly urged and the mass transfer is promoted, and the desiliconization / dephosphorization reaction is further enhanced. It goes faster. In addition, as shown in FIG. 3, one first lance 4 may be immersed obliquely, and the second lance 5 may be immersed perpendicularly to the hot metal bath surface.
[0030]
In the present invention, as the oxidizing agent to be added to the hot metal, either a gas acid or a solid oxygen source can be used, but it is mainly preferable to use a solid oxygen source. This is because the solid oxygen source has an action of promoting the reaction between the slag and the metal by melting in the molten iron to form slag (gasic acid does not have this hatching action). For that purpose, it is preferable that the second lance 5 mainly uses a solid oxygen source as an oxidizing agent.
[0031]
As the solid oxygen source, iron oxide is the best, but as an alternative, iron oxide-containing substances such as sintered ore powder of blast furnace raw material, iron ore powder, iron-making dust, and mill scale can be used.
Furthermore, in the present invention, it is preferable to provide a timing for blowing only gas acid from the first lance 4 or the second lance 5. This gas acid alone blow-out time is large on the inner surface of the hot metal inlet of the mixed iron car containing hot metal, which is the target of treatment, regardless of whether it is before desiliconization, desiliconization period or dephosphorization period. It is preferable to set the time when the attached state is encountered. Thereby, since the glass 7 adhering to the inner surface side of the hot metal connection port 1a of the kneading vehicle 1 can be melted and removed, the above-mentioned problem of the torpedo mouth defect can be easily solved without additional equipment addition. In addition, what is necessary is just to determine suitably the amount of gaseous acid single blowing according to the adhesion size etc. of glass. In addition, it is preferable to use pure oxygen among the gas acids because it can melt the glass more quickly.
[0032]
Further, as shown in FIG. 1 (c), at the end of the hot metal pretreatment, when one of the lances is raised to the hot metal and the gas acid is blown out into the hot metal inlet 1a, The adhesion of the glass 7 on the inner surface of the service port 1a can be removed at the end of the hot metal pretreatment process, and the problem of defective mouth due to the presence of glass on the hot metal service port at the time of receiving the next hot metal and at the start of pretreatment is also solved in advance. It is particularly preferable.
[0033]
In FIG. 1 (c), the second lance 5 is lifted onto the bath surface of the hot metal 2 within a part of the dephosphorization period, and the air is directed from the lance 5 toward the bath surface of the hot metal 2. Although an example in which acid is blown out has been shown, gas acid may be blown out using the first lance 4.
By this gas acid blowing-out process, the kneading vehicle which has been subjected to the desiliconization / dephosphorization pretreatment can be in a cleaning state in which the deposits on the mouth 1a are removed as shown in FIG. 1 (d).
[0034]
In addition, when the chaotic wheel gull 7 is melted and removed upon arrival of a chaotic vehicle having a bad Tobyd's mouth 1a, first, the first lance 4 immersed in the lower side is used to melt the lance 4. It is preferable to hold it on the bath surface before dipping in 2 and blow off the gas acid (preferably pure oxygen) alone, because the glass 7 can be melted and removed more efficiently.
[0035]
Furthermore, in the present invention, it is preferable that the chaotic wheel 1 is in a tilted state as shown in FIG. 4 in synchronization with at least a part of the oxidant blowing period. This tilt may be performed before the oxidant is blown. Further, this tilt may be canceled or restored as appropriate. The tilt angle is preferably the upper limit of the angle range in which hot metal does not overflow. As a result, the slag 3 that is no longer necessary can be transferred from the hot metal connection port 1a of the kneading vehicle 1 to the dip pit 6 provided on the tilt side, if necessary, without using the special removal equipment as described above. Overflow can be discharged.
[0036]
In particular, at the desiliconization process stage, the desiliconization process was forced to be interrupted due to the overflow of the slag 3 from the molten metal inlet 1a of the kneading vehicle 1 due to slag forming. By allowing the overflowed slag 3 to be received by the flowing pit 6 provided on the tilt side, the desiliconization process can be continued without interruption.
[0037]
In addition, in order to suppress slag forming, a large amount of basicity adjuster was used, and the amount of slag on the hot metal was reduced by overflowing the slag on the hot metal to the tilt side and promoting discharge. Therefore, the usage can be greatly reduced.
Furthermore, if the slag foaming is positively caused and the formed slag 3 is discharged in the tilt direction by the tilting operation of the kneading vehicle 1, even if the hot metal [Si] before desiliconization is high, The SiO 2 produced by the treatment does not interfere with the desiliconization treatment, and the desiliconization treatment can be easily completed in a short time and can be shifted to the dephosphorization treatment without delay.
[0038]
Further, even at the dephosphorization stage, the chaotic wheel can be tilted at an appropriate angle at any time, so that it can be removed in the same manner, so that the processing time can be shortened and the amount of basicity adjusting agent used can be reduced. FIG. 4 also shows an arrangement example of the first lance 4 and the second lance 5 at the time of dephosphorization.
Although the above has taken the kneading vehicle 1 as an example, the same applies to a hot metal ladle, and the same effect can be obtained by setting the tilted state by a tilting operation during processing.
[0039]
As described above, according to the present invention, all the problems of the conventional techniques (1) to (8) can be solved, and the low-cost and high-speed desiliconization / dephosphorization at a level that could not be achieved conventionally. Processing is possible. 1 to 4, the first lance and the second lance are illustrated as one each, but it is needless to say that there may be a plurality of each.
Examples will be described below.
[0040]
【Example】
[Example 1]
The following hot metal pretreatment was performed using a kneading vehicle with a hot metal amount of 280 t.
(1) Hot metal 280 t, Hot metal component [Si]: 0.20 mass%, [P]: 0.17 mass%
(2) FIG. 5 shows a blowing pattern of an oxidizing agent and a basicity adjusting agent for desiliconization / dephosphorization treatment.
[0041]
In the step shown in FIG. 1 (a) in the procedure of FIG. 1, the first lance 4 is inserted at an immersion depth of 1.5 m, and a sintered ore powder as a solid oxygen source is used as an oxidizing agent at 150 kg / min. Blowing started at (gas equivalent 21.6 Nm 3 / min). In order to reduce the temperature drop during the pretreatment, the first lance 4 was used with 10 Nm 3 / min of gas acid. As de珪期between the slag basicity quicklime as basicity adjusting agent becomes substantially 1.0, while increasing gradually blow amount as shown in FIG. 5 blow, also hexane 10 Nm 3 / min, baked As for the amount of oxidizer after the start of blowing at 150 kg / min ore powder, increase the amount of sintered ore powder and promote desiliconization while maintaining the amount of gas acid to reduce the temperature drop. It was.
[0042]
By gradually increasing the amount of sintered ore powder, no abnormal slag foaming was observed, and after about 12 minutes of treatment, [Si]: 0.01 mass% was obtained. Blowing to 400 kg / min (gas conversion 57.6 Nm 3 / min) was performed.
About 10 minutes before the end of dephosphorization, the amount of sintered ore powder is reduced from 400 kg / min to 200 kg / min, and the second lance 5 shown in FIG. Powder injection of sintered ore was started from lance 5 at 200 kg / min. The immersion depth of the second lance was 0.8 m.
[0043]
As a result, the process of adjusting the composition of the hot metal of 280 t from [Si]: 0.20 mass%, [P]: 0.17 mass% to [Si]: 0.01 mass%, [P]: 0.050 mass% is completed in about 35 minutes. I was able to.
[Example 2]
The following hot metal pretreatment was performed using a kneading vehicle with a hot metal amount of 280 t.
[0044]
(1) Hot metal 280 t, Hot metal component [Si]: 0.20 mass%, [P]: 0.19 mass%
(2) FIG. 6 shows the blowing pattern of the oxidizing agent and basicity adjusting agent for desiliconization / dephosphorization treatment.
(3) The same treatment as in FIG. 5 was performed in the first half of the desiliconization treatment and the dephosphorization treatment.
(4) Blowing started using the second lance 15 minutes before the end of the treatment. The Qo 2 of the second lance was set to 0.103 Nm 3 / min / molten iron t.
[0045]
(5) 10 minutes before the completion of the dephosphorization treatment, Qo 2 of the first lance was changed from 0.206 Nm 3 / min / molten iron t to 0.103 Nm 3 / min / molten iron t.
(6) Five minutes before the end of the treatment, the second lance was raised to a height of 0.5 m above the hot metal bath surface, and gaseous acid was injected at 15 Nm 3 / min.
As a result, the process of adjusting the composition of the hot metal of 280 t from [Si]: 0.20 mass%, [P]: 0.19 mass% to [Si]: 0.01 mass%, [P]: 0.055 mass% was completed in about 30 minutes. I was able to.
[0046]
Furthermore, by blowing out gas acid onto the hot metal bath surface in the chaotic car at the end of the treatment, we succeeded in melting and removing large galley on the inner surface of the hot metal inlet which is likely to occur in the preliminary treatment.
FIG. 7 shows the oxygen supply rate during dephosphorization and the efficiency of oxygen used for dephosphorization. In the figure, ● indicates the oxygen efficiency when oxygen is supplied using a single lance. On the other hand, the oxygen efficiency due to the so-called two-stage blowing by the first and second lances according to the present invention is shown. ○ indicates. The dephosphorization oxygen efficiency of the present invention is clearly increased at the same oxygen supply rate. As a result, the desiliconization / dephosphorization processing rate is increased, and desiliconization / dephosphorization processing can be performed at a high speed. Reduction of the amount of oxidant was realized due to high dephosphorization oxygen efficiency.
[0047]
【The invention's effect】
According to the present invention, it is possible to perform low-cost and high-speed desiliconization and dephosphorization at a level that could not be achieved in a conventional hot metal pretreatment operation using a treatment container such as a kneading car and a hot metal ladle. Furthermore, an excellent effect is obtained that the problem of the processing container mouth failure can be easily solved.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic side cross-sectional view showing each process of desiliconization and dephosphorization according to the present invention.
FIG. 2 is a schematic side cross-sectional view showing an example of an immersion usage pattern of two lances according to the present invention.
FIG. 3 is a schematic side cross-sectional view showing an example of an immersion usage pattern of two lances according to the present invention.
FIG. 4 is a schematic front cross-sectional view showing an example of a removal form by tilting a chaotic wheel according to the present invention.
FIG. 5 is a view showing an example of a solid oxidizer and gas acid blowing form according to the present invention.
FIG. 6 is a diagram showing an example of a solid oxidizer and gas acid blowing form according to the present invention.
FIG. 7 is a graph showing dephosphorization oxygen efficiency when a solid oxidant according to the present invention and gas acid are blown.
[Explanation of symbols]
1 Processing container (chaos car)
1a Hot metal entrance (mouth, toped mouth)
2 Hot metal 3 Slag 4 First lance (first immersion lance)
5 Second lance (second immersion lance)
6 Floating pit 7 Gara D Dipping depth difference Z1, Z2 Treatment agent (oxidizer or further basicity adjuster)

Claims (4)

処理容器内に保持された溶銑中に2本以上の浸漬ランスを介して酸化剤を吹込み脱珪・脱燐を行う溶銑の予備処理方法において、処理開始時は、前記浸漬ランスのうち、最初に浸漬される第一の浸漬ランスから酸化剤を溶銑中に吹込み脱珪・脱燐を進行させ、脱燐末期の段階で、前記第一の浸漬ランスの浸漬深さより浅い部分に第二の浸漬ランスを浸漬して、溶銑の上下方向で互いに離隔した状態で第一、第二の浸漬ランスから酸化剤を吹込むことを特徴とする溶銑の予備処理方法。In the hot metal pretreatment method of performing desiliconization and dephosphorization by blowing an oxidizing agent through two or more immersion lances into the hot metal held in the processing vessel, at the start of the treatment, Oxidizing agent is blown into the hot metal from the first immersion lance immersed in the metal to advance desiliconization and dephosphorization, and at the final stage of dephosphorization, the second immersion lance is immersed in a portion shallower than the immersion depth. A pretreatment method for hot metal, which comprises dipping an immersion lance and blowing an oxidizing agent from the first and second immersion lances in a state of being separated from each other in the vertical direction of the hot metal. 前記脱燐末期の段階で、前記浸漬ランスのうち、下方に位置する第一の浸漬ランス側から吹込む酸化剤の吹込み量を減少させ、第二の浸漬ランスの酸化剤吹込みを行うことを特徴とする請求項1記載の溶銑の予備処理方法。In the stage of the dephosphorization end stage, reducing the amount of oxidizing agent blown from the first soaking lance side located below the soaking lance and performing oxidizing agent blowing of the second soaking lance. The hot metal pretreatment method according to claim 1. 前記浸漬ランスのうち、上方に位置する第二の浸漬ランスの浸漬深さを、溶銑の浴面下1m以内および第一の浸漬ランスの浸漬深さより0.1 m以上浅くした範囲とすることを特徴とする請求項1または2記載の溶銑の予備処理方法。Of the immersion lances, the immersion depth of the second immersion lance located above is set within a range of 1 m below the bath surface of the hot metal and 0.1 m or more shallower than the immersion depth of the first immersion lance. The hot metal pretreatment method according to claim 1 or 2. 前記脱燐の終了時、第一、第二の何れかのランスを溶銑浴面上まで上昇させ気体酸素を吹き付けることを特徴とする請求項1〜3のいずれかに記載の溶銑の予備処理方法。The hot metal pretreatment method according to any one of claims 1 to 3, wherein at the end of the dephosphorization, the first or second lance is raised to the hot metal bath surface and sprayed with gaseous oxygen. .
JP2002175746A 2002-06-17 2002-06-17 Hot metal pretreatment method Expired - Fee Related JP3786056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175746A JP3786056B2 (en) 2002-06-17 2002-06-17 Hot metal pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175746A JP3786056B2 (en) 2002-06-17 2002-06-17 Hot metal pretreatment method

Publications (2)

Publication Number Publication Date
JP2004018942A JP2004018942A (en) 2004-01-22
JP3786056B2 true JP3786056B2 (en) 2006-06-14

Family

ID=31174310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175746A Expired - Fee Related JP3786056B2 (en) 2002-06-17 2002-06-17 Hot metal pretreatment method

Country Status (1)

Country Link
JP (1) JP3786056B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248218A (en) * 2004-03-02 2005-09-15 Jfe Steel Kk Molten iron pretreatment method
JP2005248219A (en) * 2004-03-02 2005-09-15 Jfe Steel Kk Molten iron pretreatment method
JP6289204B2 (en) * 2014-03-27 2018-03-07 株式会社神戸製鋼所 Desiliconization and desulfurization methods in hot metal ladle
JP6289205B2 (en) * 2014-03-27 2018-03-07 株式会社神戸製鋼所 Desiliconization method in hot metal ladle
JP6897274B2 (en) * 2017-04-21 2021-06-30 日本製鉄株式会社 Pretreatment method of hot metal
JP7180430B2 (en) * 2019-02-12 2022-11-30 日本製鉄株式会社 Hot metal pretreatment method

Also Published As

Publication number Publication date
JP2004018942A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3786056B2 (en) Hot metal pretreatment method
JP3747880B2 (en) Hot metal pretreatment method
JP5200380B2 (en) Desulfurization method for molten steel
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP4360270B2 (en) Method for refining molten steel
JP5467794B2 (en) Dephosphorization method for hot metal with low dust generation
JP4211365B2 (en) Hot metal pretreatment method
JP3370349B2 (en) Melting method of high cleanness ultra low carbon steel
JP4981248B2 (en) Hot metal processing method
JP4406142B2 (en) Hot phosphorus dephosphorization method
JP2005248218A (en) Molten iron pretreatment method
JP2005248219A (en) Molten iron pretreatment method
JP3225747B2 (en) Vacuum degassing of molten steel
JP3733013B2 (en) Hot metal dephosphorization method
JP3168437B2 (en) Vacuum refining method
JP4025713B2 (en) Dephosphorization method of hot metal
JP2011058046A (en) Method for dephosphorizing molten iron
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JP3709141B2 (en) Sloping suppression method in hot metal pretreatment
JP2004149876A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP2005139504A (en) Method for pre-treating molten pig iron
JPH0892618A (en) Prerefining method
JP3736068B2 (en) Hot metal pretreatment method
JP3697960B2 (en) Hot metal pretreatment method
JPH0660341B2 (en) Method of dephosphorization and desulfurization of hot metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees