JP4406142B2 - Hot phosphorus dephosphorization method - Google Patents

Hot phosphorus dephosphorization method Download PDF

Info

Publication number
JP4406142B2
JP4406142B2 JP2000047732A JP2000047732A JP4406142B2 JP 4406142 B2 JP4406142 B2 JP 4406142B2 JP 2000047732 A JP2000047732 A JP 2000047732A JP 2000047732 A JP2000047732 A JP 2000047732A JP 4406142 B2 JP4406142 B2 JP 4406142B2
Authority
JP
Japan
Prior art keywords
dephosphorization
hot metal
flux
mass
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000047732A
Other languages
Japanese (ja)
Other versions
JP2001234224A (en
Inventor
健一郎 宮本
敏之 和田
真司 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000047732A priority Critical patent/JP4406142B2/en
Publication of JP2001234224A publication Critical patent/JP2001234224A/en
Application granted granted Critical
Publication of JP4406142B2 publication Critical patent/JP4406142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鍋あるいはトーピードカー等の容器に入れた溶銑の脱燐方法に関する。
【0002】
【従来の技術】
従来、溶鋼は、溶銑を転炉や電気炉等の精錬炉で脱炭し、所定の温度や成分を調整することにより溶製されている。
この溶銑は、珪素や硫黄、燐等の不純物を予め除去する必要があり、鍋やトーピードカーに入れた状態で、酸化剤やフラックスを添加して攪拌したり、酸化剤とフラックスをランスから吹き込むことにより脱珪や脱硫、脱燐するいわゆる予備処理が行われている。
しかし、溶銑の予備処理の内、脱燐処理は、その処理に用いる酸化剤やフラックス量が多くなり、予備処理コストが上昇したり、生成するスラグ量が多く発生する。
この対策として、特開平4−333506号公報に記載されているように、溶銑に酸化鉄と脱燐用のフラックスをキャリアガスにより吹き込み(インゼクション)を行なうと共に転炉等の脱炭滓を溶銑浴面へ上置き添加することにより、スロッピングを抑制しながら脱燐効率を高めることが行われている。
更に、特開平11−140522号公報に記載されているように、溶銑内にランスを浸漬し、酸素と共にCaO系のフラックスをインゼクションし、この処理中に不活性ガスと酸素の混合ガスを吹き付けることにより、復燐を防止して脱燐効率を高めることが行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平4−333506号公報に記載された方法では、酸化鉄とフラックスをキャリアガスにより溶銑中に吹き込んだ際に、混合されたフラックスの融点が高く、溶融するのに時間を要するため、固体と液体(溶銑)の直接反応が低下して脱燐反応の効率が悪くなる。その結果、脱燐反応は、スラグ・メタルの接触反応による脱燐反応に大きく依存することになり、全体の処理時間の延長や到達燐濃度が高くなる。
しかも、脱燐処理時間は長くなると、トーピードカーや鍋等の内張り耐火物コストが高くなり、生産性の低下を招く。
また、特開平11−140522号公報に記載された方法では、CaOと酸化鉄を主体にしたフラックスを用いるため、フラックスの融点が高く、溶融するのに時間を要し、特開平4−333506号公報に記載された方法と同様に、脱燐反応効率の低下や処理時間の延長を招き、トーピードカー等の内張り耐火物コストが高くなる等の問題がある。
【0004】
本発明はかかる事情に鑑みてなされたもので、脱燐フラックスと溶銑の接触による脱燐反応を高めて、脱燐反応を効率良く行い、脱燐処理時間を短縮し、脱燐処理コストを低減することができる溶銑の脱燐方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明に係る溶銑の脱燐方法は、脱珪及び脱硫処理を行った鍋あるいはトーピードカー内の溶銑にランスを浸漬し、脱燐フラックスを吹き込み、上吹きランスにより酸素を上方から前記溶銑に吹き付ける溶銑の脱燐処理を行う方法において、前記脱燐フラックスは、固体酸素源としての酸化剤を30〜75質量%、生石灰を5〜15質量%、凝固脱炭スラグを15〜35質量%、アルミナを5〜20質量%含み、前記上吹きランスから吹き付ける酸素量を前記脱燐処理で供給する全酸素量の20〜70%にし、前記ランスの浸漬深さを前記溶銑の湯面から300mm以上にする
この方法により、混合された脱燐フラックスを低融点にすることができ、脱燐フラックスの吹き込み(インゼクション)を行った際に迅速に表面が溶融して固体と溶体(溶銑)の直接反応が促進され、脱燐反応の効率を向上することができる。
そして、脱燐フラックスの使用原単位の低減や全体の脱燐に要する処理時間の短縮を図ることができ、生産性の向上等が可能になる。
【0006】
酸化剤の量が30質量%より少ないと、溶銑内での固体と溶体の反応であるトランジトリー反応に必要な酸素が不足し、脱燐反応の停滞が生じる。
酸化剤の量が75質量%を超えると、溶銑内での脱炭反応が活発になり、スロッピングが発生する。
更に、生石灰の量が5質量%より少ないと、脱燐反応に必要なCaO源が不足して到達燐濃度が高くなる。一方、生石灰の量が15質量%を超えると、溶銑の表面に浮上したスラグの塩基度の上昇によるスラグの固化が生じ、サンプリング等の作業に支障を招く。
凝固脱炭スラグの量が15質量%より少ないと、脱燐反応に必要なCaOを生石灰により捕捉するため、スラグの塩基度の上昇によるスラグの固化が生じ易くなる。
一方、凝固脱炭スラグの量が35質量%を超えると、インゼクションする脱燐フラックスの絶対量が増加し、所定の時間内でのインゼクションが困難になり、処理時間の延長となる。
アルミナの量が5質量%より少ないと、インゼクションした際の脱燐フラックスの溶融が不十分になり、反応界面が確保できないため、脱燐反応が低下する。アルミナの量が20質量%を超えると、脱燐フラックスが過剰に溶融し、反応が活発になりスロッピングが発生する。
【0007】
ここで、前記上吹きランスから吹き付ける酸素量を前記脱燐処理で供給する全酸素量の20〜70%にすることにより、脱燐処理中の溶銑の温度が低下するのを抑制し、脱燐反応を促進することができる。
上吹きランスから吹き付ける酸素量が全酸素量の20%より少ないと、脱燐処理中の温度降下が大きくなり、その後の処理に支障を招く、一方、吹き付ける酸素量が全酸素量の70%を超えると、脱炭反応が活発になってスロッピングが発生する。
【0008】
更に、前記ランスの浸漬深さを前記溶銑の湯面から300mm以上にすることにより、インゼクションした脱燐フラックスの滞留時間を長くすることができ、溶融した脱燐フラックスによる脱燐反応を促進し、到達燐濃度を低減することができる。
湯面からの浸漬深さが300mmより浅くなると、脱燐フラックスの滞留時間が短くなり、脱燐反応が低下する。
【0009】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は本発明の一実施の形態に係る溶銑の脱燐方法に適用される脱燐装置の全体図である。
図1に示すように、本発明の一実施の形態に係る溶銑の脱燐方法に用いられる脱燐装置10は、溶銑11を入れた容器の一例であるトピードカー12と、溶銑11内に浸漬して脱燐フラックス(以下フラックスという)13を先端の吐出口14から溶銑11に吹き込むランス15と、フラックス13を貯蔵する貯蔵タンク16と、貯蔵タンク16から圧送管18を介して搬送されたフラックス13を貯留し、圧送空気の一例である窒素ガス(空気等でもよい)の供給により、ホース24を介してランス15に圧送する吹き込みタンク19とを有している。
更に、酸素圧源に連通した上吹きランス21をトピードカー12の受銑口の上方に図示しない昇降装置を介して昇降自在に配置している。
【0010】
次に、本実施の形態に係る溶銑の脱燐方法について説明する。
予めフラックス13が貯蔵された貯蔵タンク16の内部を空気や窒素ガス等で加圧しておき、貯蔵タンク16の下方に設けた切り出しバルブ17を開放し、圧送管18内に空気や窒素等の搬送気体を供給しながら所定量のフラックス13を吹き込みタンク19に搬送して貯留しておく。
吹き込みタンク19の上流側に設けた遮断弁23を閉じた後、脱珪及び脱硫処理が行われたトピードカー12内の250トンの溶銑11に、ランス15を吐出口14が湯面から300mm以上の深さに位置するように浸漬し、同時に、吹き込みタンク19に3〜5kg/cm2窒素ガスを供給し、該窒素ガスとフラックス13を混合状態にし下流側の切り出しバルブ20を開にして、ランス15へ圧送し、吐出口14から溶銑11内に吹き込みを行う。
このフラックス13は、固体酸素源として酸化剤を30〜75質量%、生石灰を5〜15質量%、脱炭スラグを15〜35質量%、低融点の化合物を形成し易いアルミナを5〜20質量%混合しており、溶銑11中に吹き込んだ際に、フラックス13の融点が低下して容易に溶融するので、固体と溶銑11中の燐の直接反応であるトランジトリー反応が促進される。
その結果、トランジトリー反応、湯面上のスラグ22とメタルとの反応の両方による相乗作用によって、脱燐効率を大幅に向上することができる。フラックス13に含まれる酸化剤は、鉄鉱石や転炉等の精錬炉の集塵スラジを乾燥した物、製鉄所内の酸化鉄を含有する集塵ダスト、これ等ダストを混ぜた混練ダスト等を用いることができるが、混練ダストを有効利用することにより、脱燐処理コストを低減することができる。
更に、脱炭スラグは、上底吹き転炉や上吹き転炉、電気炉等の脱炭精錬を行った際に生成したものを用いることができ、多量のCaOと酸化鉄を含有しているので、酸化鉄による溶銑11中の燐を酸化し、酸化した燐酸(P25)をCaOに捕捉して効率良く脱燐を行うことができる。
しかも、含有したCaO、SiO2、FeO等が溶融したものを凝固させているので、溶解性が良く脱燐反応を促進することができる。生石灰は、溶銑11中に含まれる燐を捕捉するためのCaO量として、脱炭スラグに含まれるCaO量で不足する量を補充するため、5〜15質量%添加している。
これ等のフラックス原料にアルミナ(Al23)を混合することにより、融点が比較的に高いCaOやFeO、Fe23等の融点を低下させ、混合したフラックス13の滓化性を促進するので、脱燐反応を向上することができる。
【0011】
更に、ランス15の浸漬深さ(吹き込み深さ)は、トピードカー12の形状にもよるが、湯面から300〜1450mm程度の範囲で行う。
ランス15を溶銑11の湯面から300mm以上の深さになるように浸漬してインゼクションするので、溶銑11中におけるフラックス13の滞留時間を長くでき、溶銑中の燐との接触を十分に行い脱燐反応を高め、到達燐濃度(到達P%)の低減やフラックス原単位の低減が可能になる。
また、上吹きランス21から、トランジトリー反応が終了して溶融したフラックス13を主成分にしたスラグ22(湯面上に生成)に、脱燐処理に必要な全酸素量の20〜70質量%に相当する酸素(気酸比)の吹き付けを行う。これにより、スラグ22中の酸素ポテンシャルを高めて、スラグ22による脱燐効率を高くしている。
そして、前記のフラックス13を用いることにより、トランジトリー反応とスラグ22と溶銑界面の反応による脱燐の大幅な向上を図り、フラックス13の使用原単位の低減やスロッピングの抑制、全体の脱燐の処理時間の短縮等を図ることができ生産性の向上が可能になる。
【0012】
【実施例】
次に、溶銑の脱燐方法の実施例について説明する。
トピードカーに250トンの溶銑を入れ、湯面から300mm以上の吹き込み深さに浸漬したランスから、吹き込みタンクに予め所定の配合条件で混合したフラックスを4kg/cm2の圧力を有する窒素ガスと共に、溶銑中に吹き込みを行い、上吹きランスから全酸素量に対する気酸比を20〜70%にして酸素を吹き付けて脱燐処理を行った。
そして、到達P(到達燐濃度)及び溶銑の処理後温度、スロッピングの発生の有無、サンプリング性、生産性、総合評価等を調査した。その結果を表1、表2に示す。
実施例1は、フラックスの組成として、混練ダストを55質量%、生石灰を10質量%、脱炭スラグを25質量%、アルミナを10質量%を混合し、上吹きランスからの酸素の供給を気酸比45%になるようにし、ランスの吹き込み深さを1100mmにして吹き込んだ場合であり、到達Pを0.012質量%、処理後温度を1315℃にでき、スロッピングの発生が無く、サンプリング性も良好で、生産性が良く(○)、総合評価として良い(○)結果が得られた。
実施例2は、フラックスの組成として生石灰を15質量%にし、ランスの吹き込み深さを1250mmにして吹き込んだ場合であり、到達Pを0.010質量%、処理後温度を1305℃にでき、スロッピングの発生が無く、サンプリング性も良好で、生産性が良く(○)、総合評価として良い(○)結果が得られた。
実施例3及び実施例4は、脱炭スラグをそれぞれ35質量%、15質量%にした場合であり、到達Pを0.015質量%、0.015質量%、処理後温度を1300℃、1295℃にでき、いずれもスロッピングの発生が無く、サンプリング性も良好で、生産性が良く(○)、総合評価として良い(○)結果が得られた。
【0013】
実施例5は、生石灰を5質量%、脱炭スラグの配合量を35質量%にし、実施例6は、生石灰を10質量%、脱炭スラグの配合量を15質量%にした場合であり、到達Pがそれぞれ0.012質量%、0.011質量%、処理後温度も1310℃、1290℃にでき、いずれもスロッピングの発生が無く、サンプリング性も良好で、生産性が良く(○)、総合評価として良い(○)結果が得られた。
実施例7は、アルミナの配合量を5質量%にし、実施例8は、アルミナの配合量を20質量%にした場合であり、到達Pがそれぞれ0.012質量%、0.011質量%、処理後温度も1300℃、1315℃にでき、いずれもスロッピングの発生が無く、サンプリング性も良好で、生産性が良く(○)、総合評価として良い(○)結果が得られた。
実施例9は、気酸比を20%にし、実施例10は、気酸比を70%にした場合であり、到達Pがそれぞれ0.014質量%、0.013質量%、処理後温度も1280℃、1320℃にでき、いずれもスロッピングの発生が無く、サンプリング性も良好で、生産性が良く(○)、総合評価として良い(○)結果が得られた。
実施例11は、吹き込み深さを300mmにした場合であり、到達Pがそれぞれ0.014質量%、処理後温度も1310℃にでき、スロッピングの発生が無く、サンプリング性も良好で、生産性が良く(○)、総合評価として良い(○)結果が得られた。
【0014】
【表1】

Figure 0004406142
【0015】
【表2】
Figure 0004406142
【0016】
これに対し、比較例1は、フラックスの組成としてアルミナを30質量%を混合した場合であり、到達Pが0.033質量%と高くなり、後工程での脱燐負荷が大きく、総合評価として悪い(×)結果となった。
比較例2は、フラックスの組成として生石灰を3質量%にした場合であり、到達Pが0.042質量%と高くなり、後工程での脱燐負荷が大きく、総合評価として悪い(×)結果となった。
比較例3は、フラックスの生石灰を25質量%にした場合であり、滓化性不良になってサンプリング等の作業性が悪くなり、総合評価として悪い(×)結果となった。
比較例4は、脱炭スラグを45質量%混合した場合であり、スロッピングの発生は無かったが、その兆候が時折現れて生産性が悪く(×)なり、総合評価として悪い(×)結果となった。
比較例5は、アルミナを2質量%にした場合であり、到達Pが0.038質量%と高くなり、後工程での脱燐負荷が大きく、総合評価として悪い(×)結果となった。
比較例6は、アルミナを27質量%にした場合であり、到達Pを0.013質量%にできたが、スロッピングが発生し、総合評価として悪い(×)結果となった。
比較例7は、気酸比を15%にした場合であり、処理後の溶銑の温度が低下し、生産性が悪く(×)なり、総合評価として悪い(×)結果となった。
比較例8は、気酸比を85%にした場合であり、到達Pを0.017質量%にできたが、スロッピングが発生し、総合評価として悪い(×)結果となった。
【0017】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、生石灰や酸化剤、脱炭滓(脱炭スラグ)、アルミナをそれぞれを別の貯蔵タンクに貯蔵しておき、吹き込みタンク19に気体搬送する際に、各貯蔵タンク所定量を切り出して圧送管18の内部で混合することもできる。
更に、生石灰や酸化剤、脱炭滓(脱炭スラグ)、アルミナを予め溶融したものを冷却して粒状にしたものをフラックスとして用いることもできる。
【0018】
【発明の効果】
請求項1記載の溶銑の脱燐方法は、固体酸素源としての酸化剤を30〜75質量%、生石灰を5〜15質量%、凝固脱炭スラグを15〜35質量%、アルミナを5〜20質量%含む脱燐フラックスを溶銑に吹き込むので、脱燐フラックスと溶銑の接触によるトランジトリー反応による脱燐反応を高め、しかも、スラグと溶銑の脱燐反応との相乗作用により、脱燐反応を効率良く行い、脱燐フラックスの節減や脱燐処理時間の短縮、脱燐処理コストの低減を行うことができる。
【0019】
また、請求項記載の溶銑の脱燐方法は、上吹きランスから吹き付ける酸素量を脱燐に供給する全酸素量の20〜70%にするので、脱燐処理中の溶銑温度の低下やスロッピングの発生を抑制して脱燐反応を促進することができる。
【0020】
更にまた、請求項記載の溶銑の脱燐方法は、ランスの浸漬深さを溶銑の湯面から300mm以上にしているので、インゼクションした脱燐フラックスの滞留時間を長くしてトランジトリーによる脱燐反応を促進して、到達燐濃度を安定して低減することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る溶銑の脱燐方法に適用される脱燐装置の全体図である。
【符号の説明】
10:脱燐装置、11:溶銑、12:トピードカー、13:脱燐フラックス、14:吐出口、15:ランス、16:貯蔵タンク、17:切り出しバルブ、18:圧送管、19:吹き込みタンク、20:切り出しバルブ、21:上吹きランス、22:スラグ、23:遮断弁、24:ホース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for dephosphorizing hot metal in a pot or a container such as a torpedo car.
[0002]
[Prior art]
Conventionally, molten steel is melted by decarburizing hot metal in a refining furnace such as a converter or an electric furnace and adjusting a predetermined temperature and components.
This hot metal needs to remove impurities such as silicon, sulfur, and phosphorus in advance, and in a state where it is put in a pan or torpedo car, it is added with an oxidizer or flux and stirred, or oxidizer and flux are blown from the lance. So-called pretreatment is carried out by desiliconization, desulfurization and dephosphorization.
However, among the hot metal pretreatment, the dephosphorization treatment increases the amount of oxidant and flux used for the treatment, which increases the pretreatment cost and generates a large amount of slag.
As countermeasures, as described in JP-A-4-333506, iron oxide and dephosphorization flux are blown into the hot metal with a carrier gas (injection), and a decarburized hot metal such as a converter is used as a hot metal bath. By adding it over the surface, dephosphorization efficiency is improved while suppressing slopping.
Further, as described in Japanese Patent Laid-Open No. 11-140522, a lance is immersed in hot metal, a CaO-based flux is injected together with oxygen, and a mixed gas of inert gas and oxygen is sprayed during this treatment. Thus, rephosphorization is prevented and dephosphorization efficiency is increased.
[0003]
[Problems to be solved by the invention]
However, in the method described in JP-A-4-333506, when the iron oxide and the flux are blown into the hot metal by the carrier gas, the melting point of the mixed flux is high, and it takes time to melt. The direct reaction between the solid and the liquid (molten metal) is reduced, and the efficiency of the dephosphorization reaction is deteriorated. As a result, the dephosphorization reaction largely depends on the dephosphorization reaction by the slag metal contact reaction, and the overall treatment time is extended and the ultimate phosphorus concentration is increased.
In addition, if the dephosphorization time is increased, the cost of lining refractories such as torpedo cars and pans increases, leading to a decrease in productivity.
In the method described in JP-A-11-140522, a flux mainly composed of CaO and iron oxide is used. Therefore, the melting point of the flux is high, and it takes time to melt, and JP-A-4-333506. Similar to the method described in the publication, there is a problem that the dephosphorization reaction efficiency is lowered and the treatment time is extended, and the cost of the lining refractory such as a torpedo car is increased.
[0004]
The present invention has been made in view of such circumstances, and enhances the dephosphorization reaction due to the contact between the dephosphorization flux and the hot metal, efficiently performs the dephosphorization reaction, shortens the dephosphorization time, and reduces the dephosphorization cost. An object of the present invention is to provide a hot metal dephosphorization method that can be used.
[0005]
[Means for Solving the Problems]
In the hot metal dephosphorization method according to the present invention that meets the above-mentioned purpose, the lance is immersed in hot metal in a pan or torpedo car that has been subjected to desiliconization and desulfurization treatment, blown with a dephosphorization flux, and oxygen is introduced from above by an upper blow lance. In the method for performing dephosphorization of hot metal sprayed on hot metal, the dephosphorization flux comprises an oxidizing agent as a solid oxygen source of 30 to 75 mass %, quick lime of 5 to 15 mass %, and solidified decarburized slag of 15 to 35 mass %. %, alumina unrealized 5-20 wt%, the amount of oxygen blown from the upper blowing lance was 20 to 70% of the total oxygen amount supplied by the dephosphorization, the molten metal surface of the hot metal to immersion depth of the lance To 300 mm or more .
By this method, the mixed dephosphorization flux can have a low melting point, and when the dephosphorization flux is blown (injection), the surface melts rapidly and the direct reaction between solid and solution (molten metal) is promoted. Therefore, the efficiency of the dephosphorization reaction can be improved.
Further, it is possible to reduce the basic unit of use of the dephosphorization flux and shorten the processing time required for the entire dephosphorization, thereby improving the productivity.
[0006]
When the amount of the oxidizing agent is less than 30% by mass, oxygen necessary for the transition reaction, which is a reaction between the solid and the solution in the hot metal, is insufficient, and the dephosphorization reaction is stagnated.
When the amount of the oxidizing agent exceeds 75% by mass , the decarburization reaction in the hot metal becomes active and slopping occurs.
Further, when the amount of quicklime is less than 5% by mass , the CaO source necessary for the dephosphorization reaction is insufficient and the ultimate phosphorus concentration becomes high. On the other hand, if the amount of quicklime exceeds 15% by mass , solidification of the slag occurs due to an increase in the basicity of the slag that has floated on the surface of the hot metal, which hinders sampling and other operations.
When the amount of the solidified decarburized slag is less than 15% by mass , CaO necessary for the dephosphorization reaction is captured by quick lime, so that the slag is easily solidified due to an increase in the basicity of the slag.
On the other hand, if the amount of the solidified decarburized slag exceeds 35% by mass , the absolute amount of dephosphorization flux to be injected increases, making the injection within a predetermined time difficult, and extending the processing time.
If the amount of alumina is less than 5% by mass , melting of the dephosphorization flux at the time of injection becomes insufficient and a reaction interface cannot be secured, so that the dephosphorization reaction is lowered. When the amount of alumina exceeds 20% by mass , the dephosphorization flux is excessively melted, the reaction becomes active, and slopping occurs.
[0007]
Here, more amount of oxygen blown from the upper blowing lance to a child 20 to 70% of the total oxygen amount supplied by the dephosphorization, the temperature of the hot metal in the dephosphorization is inhibited from reduction, The dephosphorization reaction can be promoted.
If the amount of oxygen blown from the top blowing lance is less than 20% of the total amount of oxygen, the temperature drop during the dephosphorization process will increase, causing trouble in the subsequent treatment. On the other hand, the amount of oxygen blown will be 70% of the total amount of oxygen. When it exceeds, decarburization reaction will become active and slopping will occur.
[0008]
Furthermore, more and child than 300mm immersion depth of the lance from the melt surface of the molten iron, it is possible to lengthen the residence time of the dephosphorization fluxes Inzekushon, promote dephosphorization reaction by dephosphorization flux melted In addition, the ultimate phosphorus concentration can be reduced.
When the immersion depth from the molten metal surface is shallower than 300 mm, the residence time of the dephosphorization flux is shortened and the dephosphorization reaction is lowered.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is an overall view of a dephosphorization apparatus applied to a hot metal dephosphorization method according to an embodiment of the present invention.
As shown in FIG. 1, a dephosphorization apparatus 10 used in a hot metal dephosphorization method according to an embodiment of the present invention is immersed in a hot metal 11 and a topped car 12 which is an example of a container containing hot metal 11. A lance 15 that blows a dephosphorization flux (hereinafter referred to as a flux) 13 into the hot metal 11 from the discharge port 14 at the tip, a storage tank 16 that stores the flux 13, and a flux 13 that is conveyed from the storage tank 16 through a pressure feed pipe 18. And a blow-in tank 19 that is pumped to the lance 15 through the hose 24 by supplying nitrogen gas (which may be air or the like) that is an example of pumped air.
Further, an upper blowing lance 21 communicating with the oxygen pressure source is disposed above the receiving port of the topped car 12 so as to be movable up and down via a lifting device (not shown).
[0010]
Next, the hot metal dephosphorization method according to the present embodiment will be described.
The inside of the storage tank 16 in which the flux 13 is stored in advance is pressurized with air, nitrogen gas or the like, the cut-out valve 17 provided below the storage tank 16 is opened, and air or nitrogen is conveyed into the pressure feed pipe 18. While supplying the gas, a predetermined amount of the flux 13 is conveyed to the blowing tank 19 and stored.
After closing the shutoff valve 23 provided on the upstream side of the blowing tank 19, the lance 15 has a discharge port 14 of 300 mm or more from the molten metal surface into the 250 ton hot metal 11 in the topped car 12 that has been subjected to desiliconization and desulfurization treatment. It is immersed so as to be located at the depth, and at the same time, 3 to 5 kg / cm 2 nitrogen gas is supplied to the blowing tank 19, the nitrogen gas and the flux 13 are mixed, the downstream cut-off valve 20 is opened, and the lance 15 is blown into the hot metal 11 from the discharge port 14.
The flux 13, 30 to 75 wt% of the oxidizing agent as a solid oxygen source, quicklime 5-15 wt%, the decarburization slag 15 to 35 wt%, 5 to 20 mass easily alumina to form a low melting point of the compound %, The melting point of the flux 13 lowers and melts easily when blown into the hot metal 11, so that the transition reaction that is a direct reaction between the solid and the phosphorus in the hot metal 11 is promoted.
As a result, the dephosphorization efficiency can be greatly improved by the synergistic action by both the transition reaction and the reaction between the slag 22 on the molten metal and the metal. As the oxidant contained in the flux 13, a material obtained by drying a dust collection sludge of a refining furnace such as iron ore or a converter, dust collection dust containing iron oxide in a steel mill, kneading dust mixed with these dusts, or the like is used. However, by effectively using the kneaded dust, the dephosphorization cost can be reduced.
Furthermore, the decarburization slag can use what was produced | generated when performing decarburization refining, such as an upper bottom blow converter, an upper blow converter, and an electric furnace, and contains a lot of CaO and iron oxide. Therefore, phosphorus in the hot metal 11 can be oxidized by iron oxide, and the oxidized phosphoric acid (P 2 O 5 ) can be captured by CaO for efficient dephosphorization.
In addition, since the melted CaO, SiO 2 , FeO or the like contained is solidified, the solubility is good and the dephosphorization reaction can be promoted. Quick lime is added in an amount of 5 to 15% by mass in order to supplement the amount deficient in the amount of CaO contained in the decarburized slag as the amount of CaO for capturing phosphorus contained in the molten iron 11.
By mixing alumina (Al 2 O 3 ) with these flux materials, the melting points of CaO, FeO, Fe 2 O 3, etc., which have relatively high melting points are lowered, and the hatchability of the mixed flux 13 is promoted. Therefore, the dephosphorization reaction can be improved.
[0011]
Furthermore, the immersion depth (injection depth) of the lance 15 depends on the shape of the topped car 12 but is in the range of about 300 to 1450 mm from the molten metal surface.
Since the lance 15 is immersed and injected so as to have a depth of 300 mm or more from the molten metal surface of the hot metal 11, the residence time of the flux 13 in the hot metal 11 can be increased, and contact with the phosphorus in the hot metal can be sufficiently performed and removed. Phosphorus reaction is enhanced, and it is possible to reduce the ultimate phosphorus concentration (final P%) and the flux intensity.
Further, from the top blowing lance 21 to the slag 22 (generated on the hot water surface) mainly composed of the flux 13 which has been melted after completion of the transition reaction, 20 to 70% by mass of the total oxygen amount necessary for the dephosphorization treatment. The oxygen (gas-acid ratio) corresponding to is sprayed. Thereby, the oxygen potential in the slag 22 is increased, and the dephosphorization efficiency by the slag 22 is increased.
By using the flux 13, the dephosphorization due to the transition reaction and the reaction between the slag 22 and the hot metal interface is greatly improved, the unit consumption of the flux 13 is reduced, the slopping is suppressed, and the entire dephosphorization is performed. The processing time can be shortened, and productivity can be improved.
[0012]
【Example】
Next, examples of the hot metal dephosphorization method will be described.
Put 250 tons of hot metal into a topped car and immerse it in a blowing depth of 300 mm or more from the surface of the molten metal, then mix the flux previously mixed in the blowing tank under the prescribed blending conditions together with nitrogen gas having a pressure of 4 kg / cm 2. The dephosphorization treatment was carried out by blowing oxygen and blowing oxygen from the top blowing lance at a gas-acid ratio of 20 to 70% with respect to the total oxygen amount.
Then, the reached P (attained phosphorus concentration), the temperature after the hot metal treatment, the presence or absence of slopping, sampling performance, productivity, comprehensive evaluation, etc. were investigated. The results are shown in Tables 1 and 2.
In Example 1, 55% by mass of kneaded dust, 10% by mass of quick lime, 25% by mass of decarburized slag, and 10% by mass of alumina were mixed as the flux composition, and the supply of oxygen from the top blowing lance was controlled. In this case, the acid ratio is 45%, the lance is blown at a depth of 1100 mm, the reached P is 0.012% by mass , the post-treatment temperature is 1315 ° C., and no slopping occurs and sampling is performed. The results were good, the productivity was good (◯), and the overall evaluation was good (◯).
Example 2 is a case where quick lime was blown to 15% by mass as the flux composition, the lance was blown at a depth of 1250 mm, reached P was 0.010% by weight , and the post-treatment temperature could be 1305 ° C. There was no occurrence of lapping, good sampling performance, good productivity (◯), and good overall evaluation (◯).
Example 3 and Example 4 are cases where the decarburized slag was 35% by mass and 15% by mass , respectively, and reached P was 0.015% by mass and 0.015% by mass , and the post-treatment temperature was 1300 ° C. and 1295%. The results were obtained with no slipping, good sampling performance, good productivity (◯), and good overall evaluation (◯).
[0013]
Example 5 is a case where quick lime is 5% by mass and the decarburized slag content is 35% by mass. Example 6 is a case where quick lime is 10% by mass and decarburized slag is 15% by mass , 0.012 wt% reaches P, respectively, 0.011 wt%, after processing temperature 1310 ° C., can be a 1290 ° C., both the occurrence of slopping is no sampling resistance is good, and good productivity (○) A good (◯) result was obtained as a comprehensive evaluation.
Example 7, the amount of alumina to 5 mass%, Example 8 is a case where the amount of alumina to 20 wt%, 0.012 wt% reaches P, respectively, 0.011 wt%, The post-treatment temperatures could be 1300 ° C. and 1315 ° C., no slopping occurred, good sampling performance, good productivity (◯), and good overall evaluation (◯).
Example 9, the Kisanhi 20%, Example 10 is a case where the Kisanhi to 70%, 0.014 wt% reaches P, respectively, 0.013 wt%, after processing temperatures 1280 ° C. and 1320 ° C. were obtained, and no slopping occurred, sampling performance was good, productivity was good (◯), and overall evaluation was good (◯).
Example 11 is a case where the blowing depth is set to 300 mm, the arrival P is 0.014% by mass , the post-treatment temperature is 1310 ° C., there is no occurrence of slopping, the sampling property is good, and the productivity Was good (◯), and a good (○) result was obtained as a comprehensive evaluation.
[0014]
[Table 1]
Figure 0004406142
[0015]
[Table 2]
Figure 0004406142
[0016]
On the other hand, Comparative Example 1 is a case where 30% by mass of alumina is mixed as the flux composition, the reached P is as high as 0.033% by mass , the dephosphorization load in the subsequent process is large, and as a comprehensive evaluation The result was bad (×).
Comparative Example 2 is a case where quick lime is 3% by mass as the flux composition, the reached P is as high as 0.042% by mass , the dephosphorization load in the subsequent process is large, and the overall evaluation is bad (×) result. It became.
In Comparative Example 3, the flux of quicklime was 25% by mass , the hatchability was poor, the workability such as sampling was poor, and the overall evaluation was bad (x).
Comparative Example 4 is a case where 45 % by mass of decarburized slag was mixed, and there was no occurrence of slopping, but the signs sometimes appeared and the productivity was poor (x), and the overall evaluation was bad (x). It became.
Comparative Example 5 was a case where alumina was made 2% by mass , the reached P was as high as 0.038% by mass , the dephosphorization load in the subsequent process was large, and the overall evaluation was bad (x).
Comparative Example 6 was a case where the alumina content was 27% by mass , and the reached P could be 0.013% by mass . However, slopping occurred and the overall evaluation was bad (x).
In Comparative Example 7, the gas-acid ratio was 15%, the temperature of the hot metal after the treatment was lowered, the productivity was poor (x), and the overall evaluation was bad (x).
Comparative Example 8 was a case where the gas-acid ratio was 85%, and the reached P could be 0.017% by mass , but slopping occurred and the overall evaluation was bad (x).
[0017]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, quick lime, oxidizer, decarburized slag (decarburized slag), and alumina are stored in separate storage tanks, and when the gas is conveyed to the blowing tank 19, a predetermined amount of each storage tank is cut out and pumped. 18 can also be mixed inside.
Further, quick lime, oxidizer, decarburized soot (decarburized slag), and a pre-melted alumina can be cooled and granulated and used as a flux.
[0018]
【The invention's effect】
Dephosphorization method of molten iron of claim 1 Symbol placement is 5 an oxidizing agent as a solid oxygen source 30 to 75 wt%, quicklime 5-15 wt%, 15-35 wt% of solidification decarburization slag, alumina Since the dephosphorization flux containing 20% by mass is blown into the hot metal, the dephosphorization reaction by the transition reaction by the contact between the dephosphorization flux and the hot metal is enhanced, and the dephosphorization reaction is performed by the synergistic effect of the dephosphorization reaction of the slag and the hot metal. Efficiently, it is possible to reduce the dephosphorization flux, shorten the dephosphorization time, and reduce the dephosphorization cost.
[0019]
Moreover, dephosphorization method of molten iron according to claim 1, since the amount of oxygen blown from the top lance 20 to 70% of the total oxygen amount supplied to the dephosphorization, decrease of molten iron temperature during dephosphorization Yasu The dephosphorization reaction can be promoted by suppressing the occurrence of lapping.
[0020]
Furthermore, in the hot metal dephosphorization method according to claim 1 , since the immersion depth of the lance is set to 300 mm or more from the hot metal surface of the hot metal, the residence time of the injected dephosphorization flux is lengthened and the dephosphorization by the transition is performed. The reaction can be promoted, and the ultimate phosphorus concentration can be stably reduced.
[Brief description of the drawings]
FIG. 1 is an overall view of a dephosphorization apparatus applied to a hot metal dephosphorization method according to an embodiment of the present invention.
[Explanation of symbols]
10: Dephosphorization apparatus, 11: Hot metal, 12: Topped car, 13: Dephosphorization flux, 14: Discharge port, 15: Lance, 16: Storage tank, 17: Cutting valve, 18: Pumping pipe, 19: Blowing tank, 20 : Cutting valve, 21: Top blowing lance, 22: Slag, 23: Shut-off valve, 24: Hose

Claims (1)

脱珪及び脱硫処理を行った鍋あるいはトーピードカー内の溶銑にランスを浸漬し脱燐フラックスを吹き込み、上吹きランスにより酸素を上方から前記溶銑に吹き付ける溶銑の脱燐処理を行う方法において、
前記脱燐フラックスは、固体酸素源としての酸化剤を30〜75質量%、生石灰を5〜15質量%、凝固脱炭スラグを15〜35質量%、アルミナを5〜20質量%含み、
前記上吹きランスから吹き付ける酸素量を前記脱燐処理で供給する全酸素量の20〜70%にし、
前記ランスの浸漬深さを前記溶銑の湯面から300mm以上にすることを特徴とする溶銑の脱燐方法。
In a method of performing dephosphorization of hot metal in which lances are immersed in hot metal in a pan or torpedo car that has been subjected to desiliconization and desulfurization treatment, and dephosphorization flux is blown, and oxygen is blown to the hot metal from above by an upper blowing lance.
The dephosphorization flux, the oxidizing agent as solid oxygen source 30 to 75 wt%, quicklime 5-15 wt%, coagulation decarburization slag 15 to 35 wt%, 5-20 wt% observed including alumina,
The amount of oxygen blown from the upper blowing lance is 20 to 70% of the total amount of oxygen supplied in the dephosphorization process,
The hot metal dephosphorization method , wherein the immersion depth of the lance is set to 300 mm or more from the molten metal surface of the hot metal .
JP2000047732A 2000-02-24 2000-02-24 Hot phosphorus dephosphorization method Expired - Fee Related JP4406142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000047732A JP4406142B2 (en) 2000-02-24 2000-02-24 Hot phosphorus dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000047732A JP4406142B2 (en) 2000-02-24 2000-02-24 Hot phosphorus dephosphorization method

Publications (2)

Publication Number Publication Date
JP2001234224A JP2001234224A (en) 2001-08-28
JP4406142B2 true JP4406142B2 (en) 2010-01-27

Family

ID=18569935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000047732A Expired - Fee Related JP4406142B2 (en) 2000-02-24 2000-02-24 Hot phosphorus dephosphorization method

Country Status (1)

Country Link
JP (1) JP4406142B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248219A (en) * 2004-03-02 2005-09-15 Jfe Steel Kk Molten iron pretreatment method
JP2005248218A (en) * 2004-03-02 2005-09-15 Jfe Steel Kk Molten iron pretreatment method
JP5703686B2 (en) * 2010-10-27 2015-04-22 Jfeスチール株式会社 Hot metal dephosphorization method

Also Published As

Publication number Publication date
JP2001234224A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP6028755B2 (en) Method for melting low-sulfur steel
JP5983492B2 (en) Hot metal pretreatment method
JP2018178260A (en) Converter steelmaking process
JP4977870B2 (en) Steel making method
JP2016199800A (en) Method of dephosphorization of molten iron
JP4406142B2 (en) Hot phosphorus dephosphorization method
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP6540632B2 (en) Dephosphorization method of hot metal
JP2015042780A (en) Dephosphorization treatment method for molten iron in converter
JP2006265623A (en) Method for pre-treating molten iron
JP4695312B2 (en) Hot metal pretreatment method
JPH0141681B2 (en)
JP2001107124A (en) Method for dephosphorizing molten iron
JP4779464B2 (en) Method for producing low phosphorus hot metal
KR101091957B1 (en) Fluorite-less refining Methed In Converter
JP4205818B2 (en) Dephosphorization method for hot metal using decarburized slag
JP4981248B2 (en) Hot metal processing method
JP4598220B2 (en) Hot metal processing method using decarburized iron
JP2011058046A (en) Method for dephosphorizing molten iron
RU2181382C2 (en) Method of desulfurization of liquid cast iron
JP7095668B2 (en) Pretreatment method for hot metal
JP4224197B2 (en) Hot metal dephosphorization method with high reaction efficiency
JP4025713B2 (en) Dephosphorization method of hot metal
JP2004307940A (en) Method for dephosphorizing molten iron using alumina with torpedo car
JPH0892618A (en) Prerefining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees