JP3225747B2 - Vacuum degassing of molten steel - Google Patents

Vacuum degassing of molten steel

Info

Publication number
JP3225747B2
JP3225747B2 JP21454994A JP21454994A JP3225747B2 JP 3225747 B2 JP3225747 B2 JP 3225747B2 JP 21454994 A JP21454994 A JP 21454994A JP 21454994 A JP21454994 A JP 21454994A JP 3225747 B2 JP3225747 B2 JP 3225747B2
Authority
JP
Japan
Prior art keywords
molten steel
vacuum
tank
oxygen gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21454994A
Other languages
Japanese (ja)
Other versions
JPH0873925A (en
Inventor
敬一 真屋
博義 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21454994A priority Critical patent/JP3225747B2/en
Publication of JPH0873925A publication Critical patent/JPH0873925A/en
Application granted granted Critical
Publication of JP3225747B2 publication Critical patent/JP3225747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、RH真空脱ガス装置を
用いる溶鋼の精錬方法において、溶鋼の温度降下を抑制
し、同時に真空槽内の壁に付着した地金を溶解、低減さ
せながら脱ガス脱炭を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining molten steel using an RH vacuum degassing apparatus, which suppresses a temperature drop of molten steel and simultaneously removes and reduces metal ingot adhering to walls in a vacuum chamber. It relates to a method for performing gas decarburization.

【0002】[0002]

【従来の技術】RH真空脱ガス装置により溶鋼の脱ガス
脱炭を行う方法において、精錬用ガスとして酸素ガスを
用いるものとしては、次のような方法が知られている。
2. Description of the Related Art In a method for degassing and decarburizing molten steel by an RH vacuum degassing apparatus, the following method is known as a method using oxygen gas as a refining gas.

【0003】特開昭53−81416 号公報および同59−8970
8 号公報には、真空槽内または取鍋内で脱酸溶鋼にAl、
Siなどの発熱剤を添加した後、酸素ガスを上吹し、溶鋼
の昇温を図る方法が示されている。
JP-A-53-81416 and JP-A-59-8970
No. 8 states that deoxidized molten steel is added to Al in a vacuum chamber or ladle.
A method is disclosed in which a heating agent such as Si is added and then oxygen gas is blown upward to raise the temperature of the molten steel.

【0004】特開平2−77518 号公報には、溶鋼の温度
上昇を目的として未脱酸溶鋼に酸素ガスを上吹きし、排
ガス中のCOを真空槽内で燃焼させ発熱させる方法が示
されている。
Japanese Patent Application Laid-Open No. 2-77518 discloses a method in which oxygen gas is blown upward onto undeoxidized molten steel in order to raise the temperature of molten steel, and CO in exhaust gas is burned in a vacuum chamber to generate heat. I have.

【0005】このような溶鋼温度の上昇方法を採用する
ことにより、RH処理の前工程である転炉において溶鋼
温度を事前に高めておく必要がなくなり、RH処理中の
温度降下をRH真空脱ガス装置で補償することが可能と
なった。このため、転炉における時間的および熱的な過
負荷が解消された。
[0005] By adopting such a method of raising the temperature of molten steel, it is not necessary to raise the temperature of the molten steel in the converter, which is a pre-process of RH processing, and the temperature drop during RH processing can be reduced by RH vacuum degassing. It became possible to compensate by the device. For this reason, temporal and thermal overloads in the converter were eliminated.

【0006】しかし、発熱剤としてAl、Siなどの高価な
原料を使用する場合には、コストアップとなり、酸素ガ
ス供給後に生成するAl2O3 、SiO2が鋼質に悪影響を及ぼ
す懸念がある。
However, when expensive raw materials such as Al and Si are used as the exothermic agent, the cost is increased, and there is a concern that Al 2 O 3 and SiO 2 generated after the supply of oxygen gas adversely affect the steel quality. .

【0007】溶鋼の脱炭を促進させる方法としては、例
えば、鉄と鋼、vol.64(1978)、S635に、未脱酸溶鋼に酸
素ガスを上吹きし、鋼中の酸素を増加させるRH−OB
法が報告されている。
As a method of accelerating the decarburization of molten steel, for example, RH which increases oxygen in steel by blowing oxygen gas over undeoxidized molten steel in iron and steel, vol. 64 (1978), S635 -OB
The law has been reported.

【0008】[0008]

【発明が解決しようとする課題】特開平2−77518 号公
報などに示されるRH脱炭中の酸素ガス上吹き方法の場
合だけでなく、通常のRH脱炭の場合においても、RH
真空脱炭の際には溶鋼表面から脱炭生成ガス(COガ
ス)が真空中へ放出されるために、激しいバブルバース
ト的な微細溶鋼粒が発生し、それが排ガス気流により真
空槽の上方に設けられた真空排気ダクトに向かってラン
ダムに飛散する過程で、真空槽内全体に地金として付着
する。このため、一般には定期的にRH処理を中断また
はRH真空槽を休止、冷却して、火炎バーナーによる真
空槽内の地金切り作業を行う。
In addition to the above method of blowing oxygen gas during RH decarburization as disclosed in Japanese Patent Application Laid-Open No. 2-77518, RH decarburization is not only performed in the case of ordinary RH decarburization.
During vacuum decarburization, the decarburized product gas (CO gas) is released into the vacuum from the surface of the molten steel, so that violent bubble burst-like fine molten steel particles are generated. In the process of randomly scattering toward the provided evacuation duct, it adheres as metal in the entire vacuum chamber. For this reason, generally, the RH treatment is periodically interrupted, or the RH vacuum tank is suspended and cooled, and a metal cutting operation in the vacuum tank using a flame burner is performed.

【0009】上記のような地金付着は、RH真空槽の連
続使用を阻害するものであり、かつ地金切り作業には多
大の工数を要することから、地金付着を低減することが
できる脱ガス脱炭方法の開発が望まれている。
[0009] The adhesion of the bullion as described above hinders the continuous use of the RH vacuum chamber, and requires a great deal of man-hour for the slab cutting operation. Development of a gas decarburization method is desired.

【0010】本発明の目的は、酸素ガス上吹による溶鋼
温度降下の抑制だけでなく、同時に上記の付着地金を槽
内壁の上部から下部に至るまで略々均一に溶解、低減さ
せることが可能なRH真空脱ガス脱炭方法を提供するこ
とにある。
It is an object of the present invention not only to suppress the temperature drop of molten steel due to oxygen gas top blowing, but also to simultaneously dissolve and reduce the deposited metal substantially uniformly from the upper part to the lower part of the inner wall of the tank. RH vacuum degassing and decarburizing method.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、次の溶
鋼の真空脱ガス脱炭方法にある。
The gist of the present invention lies in the following vacuum degassing and decarburizing method for molten steel.

【0012】RH真空脱ガス装置を用いて溶鋼の脱ガス
脱炭を行う際に、真空槽の上部から真空槽内に昇降可能
な上吹きランスを挿入し、このランスから真空槽内の溶
鋼表面に下記式を満たす条件で酸素ガスを吹き込み、
排ガス中のCOガスを槽内で燃焼させることにより、溶
鋼温度の降下を抑制するとともに、同時に真空槽内の壁
に付着した地金を溶解させることを特徴とする溶鋼の真
空脱ガス脱炭方法。
When degassing and decarburizing molten steel using an RH vacuum degassing apparatus, an upper blowing lance that can be moved up and down from the upper part of the vacuum tank into the vacuum tank is inserted, and the molten steel surface in the vacuum tank is inserted from this lance. Oxygen gas is blown under the condition that satisfies the following formula,
A method for vacuum degassing and decarburizing molten steel, characterized in that the CO gas in the exhaust gas is combusted in the tank, thereby suppressing a drop in the temperature of the molten steel and simultaneously dissolving the metal that has adhered to the walls in the vacuum tank. .

【0013】 L=(α・D0.5 ・Q)/〔(dt )0.5・P0.1 ・W〕・・・・ ただし、L:ランス湯面間距離( m ) D:ノズルスロート拡大率(ノズルの出口径/同スロー
ト径) Q:酸素ガス流量(Nm3/min) dt :ノズルスロート径( m ) P:真空槽内真空度( Torr )(1≦P≦100 ) W:溶鋼還流量(Ton/min ) α:比例定数(1.5 ≦α≦3) 上記の「ノズルスロート」とは、いわゆるラバールノズ
ルの場合の絞り部(最小内径部)を指す。多孔ノズルの
場合、上記Dは一つのノズル孔について求めることでよ
い。
L = (α · D 0.5 · Q) / [(d t ) 0.5 · P 0.1 · W] where L: distance between lances (m) D: nozzle throat expansion rate (nozzle Q: Oxygen gas flow rate (Nm 3 / min) dt : Nozzle throat diameter (m) P: Degree of vacuum in the vacuum tank (Torr) (1 ≦ P ≦ 100) W: Molten steel reflux (Ton / min) α: proportionality constant (1.5 ≦ α ≦ 3) The above “nozzle throat” refers to a throttle portion (minimum inner diameter portion) in the case of a so-called Laval nozzle. In the case of a multi-hole nozzle, D may be obtained for one nozzle hole.

【0014】本発明は、次のおよびの特徴を有す
る。
The present invention has the following features.

【0015】上吹き酸素ガスにより、排ガス中のCO
ガスを槽内で二次燃焼させ、発生した熱を溶鋼に与えて
温度降下を抑制する。
[0015] The oxygen in the exhaust gas is increased by the top-blown oxygen gas.
The gas is subjected to secondary combustion in the tank, and the generated heat is given to molten steel to suppress a temperature drop.

【0016】同時に、この発生熱を槽壁耐火物が損傷
されない程度にこの耐火物に与え、槽壁の上部(天井部
を含む)から下部に至るまでの間に付着した地金を略々
均一に溶解、低減する。
At the same time, the generated heat is applied to the refractory to such an extent that the refractory of the tank wall is not damaged, and the metal adhered from the upper part (including the ceiling part) to the lower part of the tank wall is substantially uniform. Dissolves and reduces.

【0017】本発明者らは、操業条件を種々検討して、
上記およびを同時に満たすためには、ランス湯面間
距離を或る適正な範囲に制御する必要があること、さら
にこの適正な距離は、真空槽内の真空度、溶鋼還流量、
酸素ガス流量およびランスノズルの形状などにより決定
されることを見いだした。
The present inventors examined various operating conditions,
In order to satisfy the above and at the same time, it is necessary to control the distance between the lance surfaces to a certain appropriate range, and furthermore, the appropriate distance is the degree of vacuum in the vacuum chamber, the amount of molten steel reflux,
It was found that it was determined by the oxygen gas flow rate and the shape of the lance nozzle.

【0018】[0018]

【作用】本発明方法を適用するRH真空脱ガス脱炭装置
の例を図1により説明する。
FIG. 1 shows an example of an RH vacuum degassing and decarburizing apparatus to which the method of the present invention is applied.

【0019】図1は、上吹きランスを備えたRH真空脱
ガス脱炭装置の縦断面図である。取鍋3内に収容された
溶鋼6内に、真空槽1の下部に設けた2本の浸漬管2
(2aは上昇管、2b は下降管)を浸漬した後、真空槽
1内を排気し、溶鋼6を真空槽1内に導入するととも
に、上昇管2a に接続した還流ガス吹込羽口4からArガ
スを吹き込み、ガスリフト原理に基づいて溶鋼6を上昇
管2a を経て上昇させ、下降管2b を経て再び取鍋3へ
還流させながら、真空脱ガス脱炭を行う。この状態で、
真空槽1の上部(天井部)から上吹ランス5を槽内に下
降させ、酸素ガスを上吹きする。
FIG. 1 is a longitudinal sectional view of an RH vacuum degassing and decarburizing apparatus having an upper blowing lance. In a molten steel 6 accommodated in a ladle 3, two immersion tubes 2 provided at the lower part of the vacuum chamber 1
(2a is an ascending pipe, 2b is a descending pipe), the inside of the vacuum vessel 1 is evacuated, molten steel 6 is introduced into the vacuum vessel 1, and Ar gas is introduced from the reflux gas injection tuyere 4 connected to the ascending pipe 2a. The gas is blown, the molten steel 6 is raised through the riser 2a based on the principle of gas lift, and is vacuum degassed and decarburized while being returned to the ladle 3 again through the descender 2b. In this state,
The upper blowing lance 5 is lowered from the upper part (the ceiling part) of the vacuum tank 1 into the tank, and oxygen gas is blown upward.

【0020】なお、本発明方法では、酸素ガスを上吹き
しない時期においては、上吹ランス5は真空槽1内で溶
鋼スプラッシュの影響を受けない位置まで上昇退避させ
る。
In the method of the present invention, when the oxygen gas is not blown upward, the upper blow lance 5 is raised and retracted in the vacuum chamber 1 to a position which is not affected by the molten steel splash.

【0021】上吹ランス5は水冷構造とするのが望まし
い。
It is desirable that the upper lance 5 has a water-cooled structure.

【0022】図1に示す装置で未脱酸溶鋼を処理する場
合、下記式に従い溶鋼中のCとOとが反応してCOガ
スが発生する。
When undeoxidized molten steel is treated by the apparatus shown in FIG. 1, C and O in the molten steel react with each other in accordance with the following equation to generate CO gas.

【0023】C+O→CO・・・・・・・ このCOを含む真空槽内の排ガスに対して上吹ランス5
から酸素ガスを吹き込むと、下記式によりCOガスが
酸素ガスと反応することによりCO2 ガスが生成し、そ
の際に燃焼熱が発生する。この熱を溶鋼の温度降下抑制
に活用するのである。
C + O → CO ··········· Upper lance 5
When oxygen gas is blown from the CO, the CO gas reacts with the oxygen gas according to the following formula to generate CO 2 gas, and at that time, heat of combustion is generated. This heat is used to control the temperature drop of the molten steel.

【0024】2CO+O2 →2CO2 ・・・ さらに、このとき同時に、真空槽1内の付着地金を槽内
壁の上部から下部にわたって略々均一に溶解、低減する
には、下記式の条件を満たす必要がある。
2CO + O 2 → 2CO 2 ... Further, at the same time, in order to substantially uniformly dissolve and reduce the adhered metal in the vacuum chamber 1 from the upper part to the lower part of the tank inner wall, the following condition is satisfied. There is a need.

【0025】 L=(α・D0.5 ・Q)/〔(dt )0.5・P0.1 ・W〕・・・・ ただし、L:ランス湯面間距離( m ) D:ノズルスロート拡大率(ノズルの出口径/同スロー
ト径) Q:酸素ガス流量(Nm3/min) dt :ノズルスロート径( m ) P:真空槽内真空度( Torr )(1≦P≦100 ) W:溶鋼還流量(Ton/min ) α:比例定数(1.5 ≦α≦3) 必要により、合金鉄投入口7から合金元素などが真空槽
1内の溶鋼に添加される。このような操作を所定時間行
い、溶鋼の脱ガス脱炭処理を行う。
L = (α · D 0.5 · Q) / [(d t ) 0.5 · P 0.1 · W] where L: distance between lance surfaces (m) D: nozzle throat expansion rate (nozzle Q: Oxygen gas flow rate (Nm 3 / min) dt : Nozzle throat diameter (m) P: Degree of vacuum in the vacuum tank (Torr) (1 ≦ P ≦ 100) W: Molten steel reflux (Ton / min) α: proportionality constant (1.5 ≦ α ≦ 3) If necessary, an alloy element or the like is added to molten steel in the vacuum chamber 1 through the ferromagnetic iron inlet 7. Such an operation is performed for a predetermined time to perform degassing and decarburization of molten steel.

【0026】ここで、式中のαは、式により発生し
た燃焼熱を溶鋼および真空槽壁に最適な割合で与えるた
めに決定される比例定数である。すなわち、式は実験
式である。
Here, α in the formula is a proportionality constant determined to give the combustion heat generated by the formula to the molten steel and the vacuum vessel wall at an optimal ratio. That is, the formula is an empirical formula.

【0027】このαが1.5 未満であるかまたは3.0 を超
えると、他の条件が適正であってもランス湯面間距離L
が過少または過大になった場合と同様となり、適切なラ
ンス湯面間距離Lが得られなくなる。
If α is less than 1.5 or more than 3.0, the distance L between the lance surfaces is not affected even if other conditions are appropriate.
Is too small or too large, and an appropriate distance L between the lance surfaces cannot be obtained.

【0028】槽内真空度Pの範囲1〜100Torr は、通
常、溶鋼中のCを処理前 300〜700ppmから、処理後5〜
50ppm にする脱炭処理が、処理時間10〜30min 程度で可
能な真空度の範囲である。
The range of the vacuum degree P in the tank is from 1 to 100 Torr.
The decarburization treatment to 50 ppm is within the range of the degree of vacuum that can be achieved in a treatment time of about 10 to 30 min.

【0029】次に前記式を適用した試験について、図
2および図3を用いて説明する。この試験条件は次のと
おりである。
Next, a test to which the above equation is applied will be described with reference to FIGS. The test conditions are as follows.

【0030】RH装置の溶鋼処理量:160ton 処理前C: 300〜500ppm 処理前溶鋼温度:1650℃ ノズル:単孔(スロート径dt は20mm、スロート拡大率
Dは1.5 ) 槽内真空度P:2〜50Torr 溶鋼還流量W:80 Ton/min 酸素ガス流量Q:25Nm3/min 以上の条件から、式を用いて求められる好適ランス湯
面間距離Lは、 真空度P=2Torrのとき、L=3.0m( α=1.5)〜6.0m(
α=3) 真空度P=50Torrのとき、L=2.2m( α=1.5)〜4.4m(
α=3) となるが、この試験ではランス湯面間距離Lを4m の一
定とした。
Amount of molten steel treated by RH device: 160 tons C before treatment: 300 to 500 ppm Molten steel temperature before treatment: 1650 ° C. Nozzle: Single hole (throat diameter dt is 20 mm, throat expansion rate D is 1.5) Vacuum degree P in the tank: 2 to 50 Torr Molten steel reflux amount W: 80 Ton / min Oxygen gas flow rate Q: 25 Nm 3 / min From the above conditions, the preferred distance L between the lance surfaces is L when the vacuum degree P = 2 Torr. = 3.0m (α = 1.5) 〜6.0m (
α = 3) When the degree of vacuum P = 50 Torr, L = 2.2m (α = 1.5) to 4.4m (
α = 3), but in this test, the distance L between the lance surfaces was fixed at 4 m.

【0031】酸素ガス上吹きなしの条件、および上記の
適正条件での処理を行い、溶鋼温度の降下度を比較し
た。さらにランス湯面間距離Lの適正条件外での処理試
験を行い、三種類の条件において真空槽内の壁に付着す
る地金の状況を比較した。
The treatment was carried out under the condition that oxygen gas was not blown upward and under the above-mentioned appropriate conditions, and the degree of drop in molten steel temperature was compared. Further, a treatment test was performed under an appropriate condition of the distance L between the lances, and the condition of the metal adhering to the wall in the vacuum chamber was compared under three types of conditions.

【0032】図2は、RH脱炭処理の初期10分間に酸素
ガスを25Nm3/min で上吹きした場合において、休止後
連続使用した真空槽の使用回数毎に処理前後の溶鋼の温
度降下度(ΔT)を示す図である。図示するように、本
発明方法で定める適正条件の場合には、酸素ガス上吹き
なしの場合に比べて、約5〜10℃の温度降下抑制効果が
得られた。
FIG. 2 shows the temperature drop of the molten steel before and after the number of times of continuous use of the vacuum tank after the pause when oxygen gas was blown upward at 25 Nm 3 / min during the initial 10 minutes of the RH decarburization treatment. It is a figure showing (ΔT). As shown in the figure, under the proper conditions determined by the method of the present invention, an effect of suppressing the temperature drop of about 5 to 10 ° C. was obtained as compared with the case where the oxygen gas was not blown up.

【0033】図3は、真空槽内の地金付着状況を示す真
空槽の縦断面図である。図3(a) は酸素ガス上吹きな
し、図3(b) は適正条件での酸素ガス上吹き、図3(c)
は適正条件外での酸素ガス上吹き、の場合を示す。
FIG. 3 is a longitudinal sectional view of the vacuum tank showing the state of metal adhesion in the vacuum tank. FIG. 3 (a) shows no oxygen gas blowing, FIG. 3 (b) shows oxygen gas blowing under appropriate conditions, and FIG. 3 (c).
Indicates a case where oxygen gas is blown out of proper conditions.

【0034】図3(a) に示すように、酸素ガス上吹きな
しでは地金8は真空槽内の上部から下部まで厚く付着
し、操業中は低減させることができない。
As shown in FIG. 3A, without blowing oxygen gas upward, the base metal 8 adheres thickly from the upper part to the lower part in the vacuum tank, and cannot be reduced during operation.

【0035】ランス湯面間距離Lを式で決定される値
よりも小さくした場合、溶鋼からのスプラッシュがラン
スに付着し、ランスが溶損するとともに、図3(c) に示
すように真空槽上部に付着した地金8の溶解、低減がで
きず、逆に真空槽下部に熱が過度に与えられ、その付近
の耐火物も溶損する。また、酸素ガスは主に溶鋼中へ供
給され、排ガス中のCOガスの燃焼には有効に利用され
ない。
When the distance L between the lance surfaces is smaller than the value determined by the equation, the splash from the molten steel adheres to the lance, the lance is melted, and as shown in FIG. It is not possible to melt or reduce the metal 8 attached to the surface of the vacuum chamber. On the contrary, heat is excessively applied to the lower portion of the vacuum chamber, and the refractory in the vicinity is also melted. Further, oxygen gas is mainly supplied into molten steel and is not effectively used for combustion of CO gas in exhaust gas.

【0036】一方、ランス湯面間距離Lを式で決定さ
れる値よりも大きくした場合、COガスの燃焼が真空槽
上部で起こり、溶鋼への燃焼熱の着熱効率が低下する上
に、真空槽下部の付着地金が除去できず、逆に真空槽上
部に熱が与えられすぎて、その付近の耐火物も溶損す
る。
On the other hand, when the distance L between the lance surfaces is made larger than the value determined by the equation, the combustion of CO gas occurs in the upper portion of the vacuum chamber, the efficiency of heating the combustion heat to the molten steel decreases, and the vacuum The adhered metal in the lower part of the tank cannot be removed, and conversely, too much heat is applied to the upper part of the vacuum tank, so that the refractory in the vicinity also melts.

【0037】酸素ガス流量Qは、要求される溶鋼温度上
昇の程度により決定されるが、例えば上記実績によれ
ば、約5〜15℃上昇させるために必要な量は概ね10〜30
Nm3/min ( 0.5〜2Nm3/ton )である。
The oxygen gas flow rate Q is determined by the required degree of temperature rise of the molten steel. For example, according to the above-mentioned results, the amount required for raising the temperature by about 5 to 15 ° C. is generally about 10 to 30 ° C.
Nm is a 3 / min (0.5~2Nm 3 / ton ).

【0038】酸素ガス供給時期は、排ガス発生量が多
く、かつ排ガス中のCOガス濃度が高い時期が、上吹き
酸素ガスによる二次燃焼量が多くなるため、有効であ
る。酸素ガス供給時間は具体的には、脱炭初期での溶鋼
中Cが 300〜500ppmの場合、真空処理開始後0〜15分、
望ましくは0〜10分が適当である。
The oxygen gas supply timing is effective when the amount of exhaust gas generated is large and the CO gas concentration in the exhaust gas is high because the amount of secondary combustion by the top-blown oxygen gas increases. Oxygen gas supply time is specifically, when C in the molten steel at the initial stage of decarburization is 300 to 500 ppm, 0 to 15 minutes after the start of the vacuum treatment,
Desirably, 0 to 10 minutes is appropriate.

【0039】排ガスの二次燃焼率〔CO2 /(CO+C
2 )〕×100 %は、酸素ガス上吹きなしの場合、大き
くとも10%程度であったが、本発明で定める条件下で
は、30〜100 %となる。
Secondary combustion rate of exhaust gas [CO 2 / (CO + C)
O 2)] × 100% in the case of no blowing on oxygen gas, but was increased even about 10%, under the conditions stipulated in the present invention, the 30% to 100%.

【0040】ランスノズルについては単孔に限らず、真
空槽の容量に応じて3孔、4孔などの多孔も同様に適用
できる。その際のノズルスロート拡大率(ノズルの出口
径/同スロート径)Dは、一つのノズル孔について求め
ればよい。
The lance nozzle is not limited to a single hole, and three holes, four holes, and the like can be similarly applied according to the capacity of the vacuum chamber. At this time, the nozzle throat enlargement ratio (nozzle outlet diameter / throat diameter) D may be obtained for one nozzle hole.

【0041】[0041]

【実施例】【Example】

〔本発明例〕170tonRH装置を用いて処理前C: 300〜
500ppmの溶鋼を処理する際、真空槽内へ水冷上吹きラン
スを挿入し、表1に示す条件で酸素ガスを吹き込み、溶
鋼の温度上昇と槽内の地金の付着状況を調査した。表示
以外の条件は次のとおりである。
[Example of the present invention] Before treatment using a 170 ton RH apparatus, C: 300 to
When processing 500 ppm of molten steel, a water-cooled top blowing lance was inserted into the vacuum chamber, oxygen gas was blown in under the conditions shown in Table 1, and the temperature rise of the molten steel and the state of adhesion of the metal in the tank were investigated. Conditions other than the display are as follows.

【0042】ノズル:単孔(スロート径dt は20mm、ス
ロート拡大率Dは2.0 ) 比例定数α: 1.5〜3 処理前溶鋼温度:1650℃ 結果を表1に併せて示す。なお、二次燃焼率は50〜80%
の範囲であった。
Nozzle: single hole (throat diameter dt is 20 mm, throat expansion ratio D is 2.0) Proportional constant α: 1.5 to 3 Molten steel temperature before treatment: 1650 ° C. The results are also shown in Table 1. The secondary combustion rate is 50-80%
Was in the range.

【0043】[0043]

【表1】 [Table 1]

【0044】表1に示すように、ランス湯面間距離Lを
式で定められる値の範囲内に制御することによって、
溶鋼温度を約10℃上昇させ、同時に真空槽内の地金付着
を均一状態で低減することができた。
As shown in Table 1, by controlling the distance L between the lance surfaces within a range defined by the formula,
The temperature of the molten steel was raised by about 10 ° C, and at the same time, the adhesion of metal in the vacuum chamber was reduced uniformly.

【0045】溶鋼温度の上昇効果は、ランス湯面間距離
Lを小さくするほど顕著である。地金除去効果は、上記
Lを計算値の下限付近にした場合、槽上部の地金除去が
やや困難であり、逆にLを計算値の上限付近にした場合
には、槽下部の地金除去がやや困難であった。
The effect of increasing the molten steel temperature is more remarkable as the distance L between the lance surfaces becomes smaller. When the above L is set near the lower limit of the calculated value, it is somewhat difficult to remove the metal at the top of the tank. Conversely, when L is set near the upper limit of the calculated value, the metal at the bottom of the tank is reduced. Removal was somewhat difficult.

【0046】〔比較例〕表2に示す条件でランス湯面間
距離Lを式で定められる値の範囲外にして処理を行っ
た。その他の条件は、上記の本発明例と同じとした。結
果を表2に併せて示す。
[Comparative Example] A process was performed under the conditions shown in Table 2 except that the distance L between the lance surfaces was out of the range defined by the formula. Other conditions were the same as those of the above-described example of the present invention. The results are shown in Table 2.

【0047】[0047]

【表2】 [Table 2]

【0048】表2からわかるように、ランス湯面間距離
Lを式で定められる値の範囲外にした場合、溶鋼温度
の上昇効果が少なくなるか、またはランス溶損により操
業継続が困難となった。
As can be seen from Table 2, when the distance L between the lance surfaces is out of the range defined by the equation, the effect of increasing the temperature of the molten steel is reduced or the continuation of the operation becomes difficult due to the lance melting. Was.

【0049】[0049]

【発明の効果】本発明によれば、溶鋼温度降下を抑制
し、同時にRH真空槽内の付着地金を槽内壁の上部から
下部にわたって均一に溶解、低減させながら、溶鋼の脱
ガス脱炭が可能である。
According to the present invention, the degassing and decarburization of molten steel can be performed while suppressing the temperature drop of molten steel and at the same time uniformly dissolving and reducing the deposited metal in the RH vacuum tank from the upper part to the lower part of the inner wall of the tank. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を適用するRH真空脱ガス脱炭装置
の例を示す縦断面図である。
FIG. 1 is a vertical sectional view showing an example of an RH vacuum degassing and decarburizing apparatus to which the method of the present invention is applied.

【図2】本発明方法の溶鋼温度降下の抑制効果の例を示
す図である。
FIG. 2 is a diagram showing an example of the effect of suppressing the temperature drop of molten steel by the method of the present invention.

【図3】実施例における真空槽内の地金付着状況を示す
真空槽の縦断面図である。(a)は酸素ガス上吹きなし、
(b) は適正条件での酸素ガス上吹き、(c) は適正条件外
での酸素ガス上吹き、の場合を示す。
FIG. 3 is a vertical cross-sectional view of the vacuum tank showing a state of metal adhesion in the vacuum tank in the embodiment. (a) shows no oxygen gas blowing,
(b) shows a case where oxygen gas is blown up under appropriate conditions, and (c) shows a case where oxygen gas is blown up outside appropriate conditions.

【符号の説明】[Explanation of symbols]

1:真空槽、2:浸漬管、2a :上昇管、2b :下降
管、3:取鍋、4:還流ガス吹込羽口、 5:水冷上吹
ランス、 6:溶鋼、7:合金鉄投入口、
8:地金
1: vacuum tank, 2: immersion pipe, 2a: ascending pipe, 2b: descending pipe, 3: ladle, 4: reflux gas injection tuyere, 5: water cooling top blowing lance, 6: molten steel, 7: alloy iron inlet ,
8: bullion

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21C 7/10 C21C 7/068 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C21C 7/10 C21C 7/068

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】RH真空脱ガス装置を用いて溶鋼の脱ガス
脱炭を行う際に、真空槽の上部から真空槽内に昇降可能
な上吹きランスを挿入し、このランスから真空槽内の溶
鋼表面に下記式を満たす条件で酸素ガスを吹き込み、
排ガス中のCOガスを槽内で燃焼させることにより、溶
鋼温度の降下を抑制するとともに、同時に真空槽内の壁
に付着した地金を溶解させることを特徴とする溶鋼の真
空脱ガス脱炭方法。 L=(α・D0.5 ・Q)/〔(dt )0.5・P0.1 ・W〕・・・・ ただし、L:ランス湯面間距離( m ) D:ノズルスロート拡大率(ノズルの出口径/同スロー
ト径) Q:酸素ガス流量(Nm3/min) dt :ノズルスロート径( m ) P:真空槽内真空度( Torr ) (1≦P≦100 ) W:溶鋼還流量(Ton/min ) α:比例定数(1.5 ≦α≦3)
1. When degassing and decarburizing molten steel using an RH vacuum degassing device, an upper blowing lance which can be moved up and down from the upper part of the vacuum tank into the vacuum tank is inserted. Oxygen gas is blown into the molten steel surface under the conditions that satisfy the following formula,
A method for vacuum degassing and decarburizing molten steel, characterized in that the CO gas in the exhaust gas is combusted in the tank, thereby suppressing a drop in the temperature of the molten steel and simultaneously dissolving the metal that has adhered to the walls in the vacuum tank. . L = (α · D 0.5 · Q) / [(d t ) 0.5 · P 0.1 · W] where L: distance between lances (m) D: nozzle throat expansion rate (nozzle outlet diameter Q: Oxygen gas flow rate (Nm 3 / min) d t : Nozzle throat diameter (m) P: Degree of vacuum in vacuum chamber (Torr) (1 ≦ P ≦ 100) W: Recirculation amount of molten steel (Ton / min) α: proportionality constant (1.5 ≦ α ≦ 3)
JP21454994A 1994-09-08 1994-09-08 Vacuum degassing of molten steel Expired - Lifetime JP3225747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21454994A JP3225747B2 (en) 1994-09-08 1994-09-08 Vacuum degassing of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21454994A JP3225747B2 (en) 1994-09-08 1994-09-08 Vacuum degassing of molten steel

Publications (2)

Publication Number Publication Date
JPH0873925A JPH0873925A (en) 1996-03-19
JP3225747B2 true JP3225747B2 (en) 2001-11-05

Family

ID=16657583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21454994A Expired - Lifetime JP3225747B2 (en) 1994-09-08 1994-09-08 Vacuum degassing of molten steel

Country Status (1)

Country Link
JP (1) JP3225747B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460525C (en) * 2007-07-12 2009-02-11 上海宝钢工程技术有限公司 Manufacturing method for upper groove chamber of split vacuum groove chamber of vacuum refining device
CN109207676B (en) * 2018-11-01 2020-08-14 北京首钢股份有限公司 Anti-blocking control method for RH hot bent pipe

Also Published As

Publication number Publication date
JPH0873925A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
US5902374A (en) Vacuum refining method for molten steel
JP4207820B2 (en) How to use vacuum degassing equipment
JP3225747B2 (en) Vacuum degassing of molten steel
EP1026266B1 (en) Simplified ladle refining method
JP3752080B2 (en) Vacuum refining method for molten steel with less dust
JP3293023B2 (en) Vacuum blowing method for molten steel
JP4979514B2 (en) Hot metal dephosphorization method
KR20040049621A (en) Method for Heating Inner Portion of RH Degasser
JPS61235506A (en) Heating up method for molten steel in ladle
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JPH0254714A (en) Method for adding oxygen in rh vacuum refining
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel
JP2000096119A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
JP2004149876A (en) Method for desiliconizing and dephosphorizing molten pig iron
JPH10102134A (en) Method for desulfurizing molten steel
JPH07138633A (en) Production of extra-low carbon steel by vacuum degassing
JPH07331315A (en) Refining method for extra-low carbon steel in converter
JP3655512B2 (en) Blowing acid heating method for medium and high carbon steel
JPH0673436A (en) Treatment of molten steel by vacuum-decarburization
JP4016501B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP3297765B2 (en) Desulfurization method of molten steel
JPH0243315A (en) Method and device for reflux type degassing treatment of molten steel
JPH08134529A (en) Smelting of extra low carbon steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term