JP3747880B2 - Hot metal pretreatment method - Google Patents

Hot metal pretreatment method Download PDF

Info

Publication number
JP3747880B2
JP3747880B2 JP2002131135A JP2002131135A JP3747880B2 JP 3747880 B2 JP3747880 B2 JP 3747880B2 JP 2002131135 A JP2002131135 A JP 2002131135A JP 2002131135 A JP2002131135 A JP 2002131135A JP 3747880 B2 JP3747880 B2 JP 3747880B2
Authority
JP
Japan
Prior art keywords
hot metal
lance
oxygen
dephosphorization
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002131135A
Other languages
Japanese (ja)
Other versions
JP2003328026A (en
Inventor
裕史 鶴丸
健 朝比奈
治志 奥田
弘 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002131135A priority Critical patent/JP3747880B2/en
Publication of JP2003328026A publication Critical patent/JP2003328026A/en
Application granted granted Critical
Publication of JP3747880B2 publication Critical patent/JP3747880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶銑予備処理方法に関し、とくに混銑車及び溶銑鍋など処理容器内の溶銑を、浸漬ランスからの処理剤(特に酸化剤)の吹き込みにより、脱珪・脱燐する溶銑予備処理方法に関する。
【0002】
【従来の技術】
近年、製鋼工程では、転炉吹錬の負荷軽減、製鋼トータルコストのミニマム化を図るため、溶銑に含まれる珪素(Si) 、燐(P)を、転炉での酸素吹錬の前に予め酸化剤を用いて除去(脱珪・脱燐)する所謂「溶銑予備処理」が行われている。なお、溶銑予備処理の範疇には、脱珪及び脱燐のほか、脱硫(硫黄(S)の除去)も含まれる。
【0003】
Si、P、Sの除去方式は、使用する処理容器(転炉、溶銑鍋、混銑車など)に応じて様々である。このうち、混銑車あるいは溶銑鍋などの処理容器に保持した溶銑へこれに浸漬したランスを介して酸化剤(:固体酸素源(酸化鉄)、気体酸素源、ソーダ灰系フラックス)や塩基度調整剤(:石灰系フラックス(石灰、蛍石等))を吹き込むという混銑車、溶銑鍋の処理容器による除去方式が、転炉を用いるものと比べて酸化剤の反応効率が高く処理コストが低いという利点があるので多用されている。
【0004】
この混銑車、溶銑鍋の処理容器による除去方式において、溶銑予備処理効率の向上を指向した技術として以下のようなものが知られている。
[1] 脱珪後のSiO2リッチなスラグを除去した後脱燐処理を行う方法(特開昭56−166315、特開昭56−133413、特開昭59−59815 、特開昭61−33814 号公報)
[2] 溶銑を脱珪、脱燐、脱硫する際に、処理中にスラグを真空吸引設備等により連続的に強制排除する方法(特開昭63−18011 号公報)
[3] 脱珪後のスラグ排出を混銑車の傾転により行う方法(特開平5−5114号公報)
[4] 脱珪後のスラグ排出を行わず脱燐処理を行う場合にソーダ灰を使用する方法(特開平59−104412号公報)
[5] CaO 及び酸化剤を溶銑中に吹込む際に、別途溶銑上へ酸化鉄を上添加する方法(特公平6−11885 、特開平4−218609号公報)
[6] 吹込み流を旋回流とする特殊なランスを用いる方法(日本国特許第2856576 号公報)
([5],[6] は溶銑中に酸化剤を分散させてスラグ- メタル間反応界面積を増大させるもの)
[7] インジェクション・ランスを2本使用し、1本から脱燐剤、もう1本から脱硫剤を吹込む方法(特開昭58−218311号公報)
【0005】
【発明が解決しようとする課題】
しかし、上記従来技術の[1],[2] では、脱珪後のスラグ除去のために、例えば特開昭62−127416号公報や特開昭63−18011 号公報に示されるようなスラグの除去設備が必要であり、設備費がかかることや、脱珪処理から除滓、脱燐処理へと移行するのに時間がかかる問題がある。また、[4] では、処理剤の単価が高くコスト的に不利になる問題がある。さらに、高炉の出銑〔Si〕が高い場合には、処理前に予備脱珪スラグの除去を行わねばならないことや、処理中のスロッピングにより処理が困難になるという問題がある。[3] は、これらの問題を解決しようとしたものである。しかし、脱燐処理段階での反応自体を促進し、スラグ排出を促進する点について考慮されていないため、脱燐速度を向上させるには未だ不十分であるという問題がある。
【0006】
また、[5] では、上添加した酸化鉄がスラグ上に未反応で乗ってしまい、反応に寄与する酸化鉄の割合が減少する。つまり上方より添加する酸化鉄は、トップスラグの酸素ポテンシャルを上昇させるにすぎず、脱燐反応に対して酸素源を効果的に使用しているとは言い難い。さらに、その結果として、スラグの滓化性が悪化する等の問題もある。[6] では、用いるランスの構造が単管ランスに比べて複雑であるため、製造コストが高いという欠点がある。[7] では、脱燐剤と脱硫剤を同時に吹込むため、脱燐反応がむしろ阻害されてしまう。
【0007】
このように、上記従来の技術では、コストの割に脱燐速度の充分な向上が得られておらず、溶銑予備処理全体の処理時間を充分短縮できていない。
また、脱燐効率の阻害因子として、トピード口元不良の問題がある。これは、混銑車の溶銑通用口の内面側にガラ(凝固滓)が多量に付着して、ランスが入らない、あるいはランスが入ったとしても処理中の溶銑の循環を圧迫し、溶銑が流出するため処理を断念せざるを得なくなるという問題である。上記従来の技術ではこの問題を解決することは困難であった。
【0008】
本発明は、上記従来技術の問題点に鑑み、低コストで脱珪・脱燐速度を充分に向上でき、さらにはトピード口元不良の問題も容易に解消し得る溶銑予備処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、ランス先端の溶銑内浸漬深さを相互に違えた2本のランスを用いて、適正な酸素供給速度で処理剤(:酸化剤、塩基度調整剤)の吹込みを行い、かつ随時混銑車を傾転させて除滓し、さらには、随時上側または下側のランスから気体酸素を吹込むことにより、上記の問題を解決したものである。
【0010】
すなわち、本発明は、処理容器内の溶銑中に浸漬したランスを介して酸化剤を吹き込む溶銑予備処理方法において、前記ランスとして第1、第2の計2本を用い、第1のランスの浸漬深さを第2のランスよりも深く配置し、ランス1本当りの酸素供給速度を0.05Nm3/min/溶銑t以上とし、かつ、酸化剤吹き込み期の少なくとも一部と同期して前記処理容器の傾転を行うことを特徴とする溶銑予備処理方法である。
【0011】
本発明では、前記第1または第2のランスから気体酸素のみを吹き出させる時期を設けることが好ましい。
【0012】
【発明の実施の形態】
以下、本発明の、処理容器内の溶銑中に浸漬したランスを介して酸化剤を吹き込む溶銑予備処理方法について説明する。酸化剤吹き込みは、脱珪・脱燐期に行う。酸化剤としては、酸化鉄含有物質(例えば焼結鉱)などの固体酸素源と気体酸素の2種類を用いる。気体酸素は、酸素濃度99%以上の純酸素でも、あるいは、酸化鉄含有物質の搬送気体に純酸素を加えて供給しても、いずれでもかまわない。要は酸素濃度が高く酸化剤として寄与すればよい(以下、気体酸素は単に気酸ともいう)。あるいは、ソーダ灰系フラックスを用いることができる。本発明では、酸化剤とともに、適宜の塩基度調整剤(:石灰系フラックス(石灰、蛍石等))を吹き込んでもよい。固体酸素源や塩基度調整剤は粉粒状のものをキャリアガス搬送法により吹き込む。キャリアガスとしては、空気または不活性ガスを用いることができる。酸化剤として固体酸素源と気酸を併用して吹き込む場合は、キャリアガス搬送法により送給されてきた固体酸素源に気酸をランス部分で加えて吹き込みを行えば良い。
【0013】
本発明では、例えば図1に示すように、前記ランスとして第1、第2の計2本を用い、第1のランス41の先端の浸漬深さを第2のランス42よりも深く配置する。第1のランスからは処理剤Z1(脱燐処理時の例:酸化鉄+石灰粉+気酸)が、第2のランスからは処理剤Z2(脱燐処理時の例:酸化鉄+純酸素)が吹き込まれる。これにより、溶銑中に異なる二箇所から酸素源が供給され、酸素供給速度(:固体酸素源および気酸に含まれる酸素の合計吹き込み流量)を局所的に過剰に増加させることなくトータルの酸素供給速度を大きくすることができ、脱珪・脱燐反応を促進できる。両ランスの先端浸漬深さを違えたのは、これを同一深さにするとその深さ位置で局所的に酸素ポテンシャルが増大し、過剰な酸素によって脱炭反応が起き、脱燐に使用される酸素量が減る可能性が高くなるからである。この過剰な酸素による脱炭反応生起を有効に防ぐには、第1、第2のランス41、42の先端の浸漬深さの差を0.1 m以上にとるのが好ましく、より好ましくは0.3 m以上、最も好ましくは0.5 m以上である。また、第2のランスの浸漬深さは、溶銑2の浴面下1m以内とすると、溶銑2上に浮遊するスラグ3が有効に攪拌され、スラグ- メタル間の反応界面積が増加するので好ましい。また、第2のランスの浸漬深さが浅いため溶銑2上に浮遊するスラグ3にフォーミングを生じさせやすく、スラグ3の排除を処理容器の傾転で行う際、排出促進に有利である。さらに、二箇所からの処理剤吹き込み方向を揃えると、溶銑の対流をより強く付勢できて物質移動が促進され脱珪・ 脱燐反応がより速く進むようになるので、第1、第2のランス41、42は、図1のように略同一方向に向けて配置するのが好ましい。また、図2のように、一方の第1のランスを斜めに浸漬させ、第2のランスを垂直に浸漬させた配置とすることもできる。
【0014】
また、本発明では、ランス1本当りの酸素供給速度(記号:Qo2)を0.05Nm3/min/溶銑t以上とする。Qo2が0.05Nm3/min/溶銑tに満たないと、脱珪・脱燐反応が著しく遅延するからである。なお、Qo2を大きくしすぎても脱珪・脱燐速度が飽和して酸素が無駄となるから、Qo2は0.4 Nm3/min/溶銑t以下とするのが好ましい。また、本発明者らの知見によれば、脱燐処理後半は、Qo2≦0.15Nm3/min/溶銑tの範囲に入ると次式(1) で定義される脱燐酸素効率が顕著に上昇するので、とくに脱燐処理の後半段階においては、Qo2を0.05〜0.15Nm3/min/溶銑tとするのが好ましい。また、より好ましくは0.05〜0.13Nm3/min/溶銑tとする。この脱燐処理後半の段階とは、P≦0.08mass%あるいは脱燐処理終了の10分前を指す。
【0015】
脱燐酸素効率=溶銑中燐の酸化に用いられた酸素量/(溶銑中に吹き込んだ全酸素量−Siの酸化に使用された酸素量) (×100 %)‥‥‥(1)
ここに、式(1) 右辺の各酸素量の単位は、Nm3/溶銑tである。
また、本発明では、溶銑中に添加する酸化剤としては、気酸、固体酸素源のいずれも用いうるが、主として固体酸素源を用いる方が好ましい。固体酸素源には、溶銑中で溶融してスラグとなることによりスラグ- メタル間の反応を促進する作用がある(気酸にはこの滓化作用はない)からである。固体酸素源としては、純酸化鉄が最良であるが、代替として高炉原料の焼結鉱や鉄鉱石の粉体、ダスト、ミルスケール等の酸化鉄含有物質を使用しても良い。
【0016】
さらに、本発明では、酸化剤吹き込み期の少なくとも一部と同期して、図3に示すように、混銑車1を傾転状態とする。この傾転は酸化剤吹き込み前から行っておいても良い。また、この傾転は適宜解除・復元してもよい。傾転角度は、溶銑の溢流が起こらない角度範囲の上限とするのが好ましい。これにより、不要となったスラグ3を、前述のような特段の除滓設備を用いずとも、必要に応じて、混銑車1の溶銑通用口から流滓ピット5へと溢流させて排出することができる。
【0017】
とくに、脱珪処理段階では、スラグフォーミングによる混銑車1の溶銑通用口からのスラグ3の溢流で、脱珪処理の中断を余儀なくされていたが、この傾転操作により、傾転側に溢流させることができるようになり、脱珪処理を中断させることなく継続実施できる。
また、スラグフォーミングを抑制するため塩基度調整剤を多量に使用していた点も、溶銑上のスラグ量を傾転側への排出により減少させることができるため、使用量を大幅に削減できる。
【0018】
さらに、積極的にスラグフォーミングを起こさせ、フォーミングしたスラグ3を混銑車1の傾転操作により傾転方向に排出するようにすると、脱珪処理前の溶銑中〔Si〕が高い場合でも、処理に伴い生成するSiO2脱珪処理の支障にならず、容易に短時間で脱珪処理を完了でき、遅滞なく脱燐処理に移行することができる。
【0019】
さらに、脱燐処理段階でも、随時適宜の角度に混銑車を傾転させておくことにより、同様に除滓でき、処理時間の短縮、塩基度調整剤など使用量の削減を図ることができる。
以上は、混銑車1を例に取ったが、溶銑鍋でも同様であり、 処理中、 傾転操作により傾転状態としておくことにより同様の効果を得ることができる。
【0020】
以上のように、本発明によれば、前記従来の技術[1] 〜[7] の問題点を全て解決でき、従来到達し得なかったレベルでの、低コストかつ高速の脱珪・脱燐処理が可能となる。
さらに、本発明では、前記第1または第2のランスから気酸のみを吹き出させる時期を設けることが好ましい。この気酸単独吹き出し時期は、脱珪前、脱珪期、脱燐期のいずれかを問わず、現に処理対象となっている溶銑の入った混銑車の溶銑通用口の内面に大きなガラが付着している状態に遭遇した時期とするのが好ましい。これにより、例えば図4に示すように、第2のランス42から処理剤Z2として気酸のみを吹き出させ、混銑車1の溶銑通用口の内面側に付着したガラ6を溶融除去することができるので、前記したトピード口元不良の問題も、別段の設備追加を伴わずに容易に解決できる。なお、気酸単独吹き出し量は、ガラの付着サイズ等に応じて適宜決定すればよい。また、気酸のうちとくに純酸素を用いると、より迅速にガラを溶融できて好ましい。
【0021】
また、溶銑予備処理の完了末期に、 一方のランスを溶銑上まで上昇させ気酸の溶銑通用口内への吹き出しを行うと、予備処理時に生じた溶銑通用口の内面のガラ付着を溶銑予備処理終了段階で除去することができ、次回の溶銑の受銑時および予備処理開始時の溶銑通用口へのガラ付きによる口元不良の問題も予め解消でき特に好ましい。
【0022】
なお、図4では、脱燐期のうちの一部の期間内で第2のランス42を溶銑2の浴面上に引き上げて該ランスから純酸素単独吹き出しを行っている例を示したが、図1のように第2のランス42を浴中に浸漬したまま気酸(好ましくは純酸素)単独吹き出しを行っても良い。その場合には、浴中を吹き抜けて浴面上空に達した気酸により、ガラ6が溶融除去される。また、トピード口元不良の混銑車の配車到着時に該配車のガラの溶融除去を行うに際しては、下側に浸漬配置される第1のランスを用いて、該ランスを浸漬する前に浴面上に保持し、気酸(好ましくは純酸素)単独吹き出しを行うと、より能率よくガラを溶融除去することができて好ましい。
【0023】
【実施例】
320t混銑車により、次の要領で溶銑予備処理を行った。
▲1▼ 処理開始前に混銑車を5°傾転させた。
▲2▼ 第1および第2のランスを図2の形態で溶銑中に浸漬させ、溶銑予備処理を開始した。ここで、第1のランスの浸漬深さ:2m、第2のランスの浸漬深さ:0.8 mとした。
【0024】
▲3▼ 第1のランスからのQo2を0.25Nm3/min/溶銑t(固体酸素源:気体酸素=9:1(気体換算))、第2のランスからのQo2を0.15Nm3/min/溶銑t(固体酸素源のみ)として脱珪・脱燐処理を行った。
▲4▼ 処理終了10分前に第1のランスのQo2を0.15Nm3/min/溶銑tとした。
▲5▼ 処理終了5分前に第2のランスを溶銑面上0.5 mの高さまで上昇させ、気酸を0.06Nm3/min/溶銑tで噴射した。
【0025】
この結果、処理初期から激しく低塩基度スラグを流出させたことにより塩基度調整剤(石灰)を5kg/ 溶銑t低減できた。さらに、処理末期の混銑車内溶銑面上への気酸噴出により溶銑通用口内面の大きなガラの溶融除去に成功した。
【0026】
【発明の効果】
本発明によれば、混銑車方式の溶銑予備処理操業において、従来到達しえなかったレベルでの、低コストかつ高速の脱珪・脱燐処理が可能となり、さらにはトピード口元不良の問題も容易に解消しうるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係るランス2本の浸漬使用形態の一例を示す側面断面模式図である。
【図2】本発明に係るランス2本の浸漬使用形態の一例を示す側面断面模式図である。
【図3】本発明に係る混銑車傾転による除滓形態の一例を示す正面断面模式図である。
【図4】本発明に係る気酸単独吹き出し形態の一例を示す側面断面模式図である。
【符号の説明】
1 混銑車(処理容器)
2 溶銑
3 スラグ(滓)
5 流滓ピット
6 ガラ(凝固滓)
41 第1のランス
42 第2のランス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot metal pretreatment method, and more particularly to a hot metal pretreatment method for desiliconizing and dephosphorizing hot metal in a processing vessel such as a kneading wheel and a hot metal ladle by blowing a treatment agent (particularly an oxidizing agent) from an immersion lance. .
[0002]
[Prior art]
In recent years, in the steelmaking process, silicon (Si) and phosphorus (P) contained in the hot metal are preliminarily added before oxygen blowing in the converter in order to reduce the load of converter blowing and minimize the total cost of steelmaking. A so-called “hot metal pretreatment” in which removal (desiliconization / dephosphorization) is performed using an oxidizing agent is performed. In addition, the category of the hot metal pretreatment includes desulfurization (removal of sulfur (S)) in addition to desiliconization and dephosphorization.
[0003]
There are various Si, P, and S removal methods depending on the processing vessel used (converter, hot metal ladle, kneading car, etc.). Of these, oxidizing agent (solid oxygen source (iron oxide), gaseous oxygen source, soda ash flux) and basicity adjustment through a lance immersed in hot metal held in a processing vessel such as a kneading car or hot metal ladle The removal method by the processing container of the kneading car and hot metal ladle in which the agent (: lime-based flux (lime, fluorite, etc.) is blown is said that the reaction efficiency of the oxidizing agent is higher and the processing cost is lower than that using the converter Because it has an advantage, it is often used.
[0004]
In the removal method using the processing container of the kneading car and the hot metal ladle, the following techniques are known as techniques aimed at improving the hot metal pretreatment efficiency.
[1] A method of performing dephosphorization after removing SiO 2 rich slag after desiliconization (JP 56-166315, JP 56-133413, JP 59-59815, JP 61-33814) No.)
[2] Method of continuously forcibly removing slag by vacuum suction equipment during treatment when degassing, dephosphorizing, and desulfurizing hot metal (Japanese Patent Laid-Open No. 63-18011)
[3] Method of discharging slag after desiliconization by tilting kneading vehicle (Japanese Patent Laid-Open No. 5-5114)
[4] Method of using soda ash when dephosphorization is performed without discharging slag after desiliconization (Japanese Patent Laid-Open No. 59-104412)
[5] A method in which iron oxide is additionally added onto the hot metal when CaO and an oxidizing agent are blown into the hot metal (Japanese Patent Publication No. 6-11885, Japanese Patent Laid-Open No. 4-218609)
[6] Method using a special lance with swirl flow as blow-in flow (Japanese Patent No. 2856576)
([5] and [6] increase the slag-metal reaction interface area by dispersing the oxidant in the hot metal)
[7] Method of using two injection lances and blowing a dephosphorizing agent from one and a desulfurizing agent from the other (Japanese Patent Laid-Open No. 58-218311)
[0005]
[Problems to be solved by the invention]
However, in the prior art [1] and [2], in order to remove slag after desiliconization, for example, slag as shown in Japanese Patent Laid-Open Nos. 62-127416 and 63-18011 is used. There is a problem that a removal facility is necessary and equipment costs are required, and it takes time to shift from desiliconization to removal and dephosphorization. Moreover, in [4], there is a problem that the unit price of the processing agent is high and disadvantageous in terms of cost. Furthermore, when the output of the blast furnace [Si] is high, there is a problem that the pre-desiliconization slag must be removed before the processing, and the processing becomes difficult due to slopping during the processing. [3] tries to solve these problems. However, since the reaction itself in the dephosphorization treatment stage is promoted and slag discharge is not taken into consideration, there is a problem that it is still insufficient for improving the dephosphorization rate.
[0006]
In addition, in [5], the added iron oxide is unreacted on the slag, and the ratio of iron oxide contributing to the reaction is reduced. That is, the iron oxide added from above only raises the oxygen potential of the top slag, and it cannot be said that the oxygen source is effectively used for the dephosphorization reaction. Furthermore, as a result, there are problems such as deterioration of hatchability of slag. [6] has the disadvantage that the manufacturing cost is high because the structure of the lance used is more complex than that of a single tube lance. In [7], since the dephosphorizing agent and the desulfurizing agent are injected simultaneously, the dephosphorization reaction is rather inhibited.
[0007]
As described above, in the conventional technique, the dephosphorization rate is not sufficiently improved for the cost, and the processing time of the hot metal preliminary processing cannot be sufficiently shortened.
In addition, there is a problem of poor topy mouth as an inhibitor of dephosphorization efficiency. This is because a large amount of glass (solidified soot) adheres to the inner surface of the hot metal port of the kneading car, and the lance does not enter, or even if the lance enters, the hot metal circulation is pressed and the hot metal flows out. Therefore, it is a problem that the process must be abandoned. It has been difficult to solve this problem with the conventional techniques described above.
[0008]
The present invention provides a hot metal pretreatment method that can sufficiently improve the desiliconization / dephosphorization rate at a low cost, and that can easily solve the problem of a torpedo mouth defect, in view of the above-mentioned problems of the prior art. Objective.
[0009]
[Means for Solving the Problems]
The present invention uses two lances having different immersion depths in the hot metal at the tip of the lance to blow the treatment agent (: oxidizing agent, basicity adjusting agent) at an appropriate oxygen supply rate, and The above-mentioned problem is solved by tilting the chaotic wheel at any time and removing the oxygen from the upper or lower lance at any time.
[0010]
That is, the present invention relates to a hot metal preliminary treatment method in which an oxidizing agent is blown through a lance immersed in hot metal in a processing vessel, and the first and second totals are used as the lance, and the first lance is immersed. The depth is set deeper than the second lance, the oxygen supply rate per lance is set to 0.05 Nm 3 / min / molten metal t or more, and the processing vessel is synchronized with at least a part of the oxidizing agent blowing period. This is a hot metal pretreatment method characterized by performing the tilting of the hot metal.
[0011]
In the present invention, it is preferable to provide a timing for blowing out only gaseous oxygen from the first or second lance.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the hot metal preliminary treatment method of blowing the oxidizing agent through the lance immersed in the hot metal in the processing container of the present invention will be described. The oxidizing agent is blown during the desiliconization / phosphorus removal period. As the oxidizing agent, two types of solid oxygen source such as iron oxide-containing substance (for example, sintered ore) and gaseous oxygen are used. The gaseous oxygen may be pure oxygen having an oxygen concentration of 99% or more, or may be supplied by adding pure oxygen to the carrier gas of the iron oxide-containing substance. In short, it is only necessary that the oxygen concentration is high and contribute as an oxidizing agent (hereinafter, gaseous oxygen is also simply referred to as gaseous acid). Alternatively, soda ash flux can be used. In the present invention, an appropriate basicity adjusting agent (: lime-based flux (lime, fluorite, etc.)) may be blown together with the oxidizing agent. A solid oxygen source and a basicity adjusting agent are blown in a powder form by a carrier gas transport method. As the carrier gas, air or an inert gas can be used. When the solid oxygen source and gas acid are used in combination as the oxidant, gas acid may be added to the solid oxygen source fed by the carrier gas transport method at the lance portion and then blown.
[0013]
In the present invention, for example, as shown in FIG. 1, two first and second lances are used as the lance, and the immersion depth of the tip of the first lance 41 is arranged deeper than the second lance 42. From the first lance, the treatment agent Z1 (example during dephosphorization treatment: iron oxide + lime powder + gasic acid), and from the second lance, the treatment agent Z2 (example during dephosphorization treatment: iron oxide + pure oxygen) ) Is blown. As a result, the oxygen source is supplied from two different locations in the hot metal, and the total oxygen supply is achieved without locally increasing the oxygen supply rate (the total flow rate of oxygen contained in the solid oxygen source and the gaseous acid) excessively. The speed can be increased and the desiliconization / phosphorus removal reaction can be promoted. The tip immersion depths of both lances were changed because when the same depth was used, the oxygen potential increased locally at that depth, and a decarburization reaction occurred due to excess oxygen, which was used for dephosphorization. This is because the possibility that the amount of oxygen is reduced is increased. In order to effectively prevent the decarburization reaction from occurring due to excessive oxygen, it is preferable to set the difference in the immersion depth at the tips of the first and second lances 41 and 42 to 0.1 m or more, more preferably 0.3 m or more. Most preferably, it is 0.5 m or more. Further, if the immersion depth of the second lance is within 1 m below the bath surface of the hot metal 2, the slag 3 floating on the hot metal 2 is effectively stirred, and the reaction interface area between the slag and the metal is increased. . Moreover, since the immersion depth of the second lance is shallow, it is easy to form the slag 3 floating on the hot metal 2, which is advantageous for promoting discharge when the slag 3 is removed by tilting the processing container. Furthermore, if the treatment agent blowing directions from the two locations are aligned, the convection of the hot metal can be more strongly energized, mass transfer is promoted, and desiliconization / dephosphorization reactions proceed faster. The lances 41 and 42 are preferably arranged in substantially the same direction as shown in FIG. Moreover, as shown in FIG. 2, it is also possible to arrange so that one first lance is immersed obliquely and the second lance is immersed vertically.
[0014]
In the present invention, the oxygen supply rate (symbol: Qo 2 ) per lance is set to 0.05 Nm 3 / min / molten metal t or more. This is because, if Qo 2 is less than 0.05 Nm 3 / min / molten iron t, the desiliconization / dephosphorization reaction is significantly delayed. Even if Qo 2 is excessively increased, the desiliconization / dephosphorization rate is saturated and oxygen is wasted. Therefore, Qo 2 is preferably set to 0.4 Nm 3 / min / mol t or less. Further, according to the knowledge of the present inventors, the dephosphorization oxygen efficiency defined by the following formula (1) becomes remarkable when the latter half of the dephosphorization treatment enters the range of Qo 2 ≦ 0.15 Nm 3 / min / molten metal t. Therefore, Qo 2 is preferably 0.05 to 0.15 Nm 3 / min / molten iron t, particularly in the latter half of the dephosphorization process. Further, more preferably 0.05~0.13Nm 3 / min / hot metal t. The latter half of the dephosphorization process refers to P ≦ 0.08 mass% or 10 minutes before the end of the dephosphorization process.
[0015]
Dephosphorization oxygen efficiency = amount of oxygen used to oxidize phosphorus in hot metal / (total amount of oxygen blown into hot metal-amount of oxygen used to oxidize Si) (× 100%) (1)
Here, the unit of each oxygen amount on the right side of the formula (1) is Nm 3 / molten metal t.
In the present invention, as the oxidizing agent to be added to the hot metal, either a gas acid or a solid oxygen source can be used, but it is mainly preferable to use a solid oxygen source. This is because the solid oxygen source has an action of promoting the reaction between the slag and the metal by melting in the molten iron to form slag (gasic acid does not have this hatching action). As the solid oxygen source, pure iron oxide is the best, but as an alternative, iron oxide-containing substances such as sintered ore powder of iron blast furnace, iron ore powder, dust, and mill scale may be used.
[0016]
Furthermore, in the present invention, the chaotic wheel 1 is in a tilted state as shown in FIG. 3 in synchronization with at least a part of the oxidant blowing period. This tilt may be performed before the oxidant is blown. Further, this tilt may be canceled or restored as appropriate. The tilt angle is preferably the upper limit of the angle range in which hot metal does not overflow. As a result, the slag 3 that is no longer needed is discharged by overflowing from the hot metal port of the kneading vehicle 1 to the spill pit 5 as required, without using the special removal equipment as described above. be able to.
[0017]
In particular, in the desiliconization stage, the slag 3 overflowed from the molten metal outlet of the kneading vehicle 1 due to slag forming, and the desiliconization process was forced to be interrupted. The desiliconization process can be continued without interruption.
Moreover, since the amount of the basicity adjuster used in order to suppress slag forming can be reduced by discharging the slag on the hot metal to the tilt side, the amount used can be greatly reduced.
[0018]
Furthermore, if the slag forming is positively caused and the formed slag 3 is discharged in the tilting direction by the tilting operation of the kneading vehicle 1, even if the amount of [Si] in the hot metal before desiliconization is high Accordingly, the SiO 2 desiliconization treatment produced is not hindered, the desiliconization treatment can be easily completed in a short time, and the process can be shifted to the dephosphorization treatment without delay.
[0019]
Further, even at the dephosphorization stage, the chaotic wheel can be tilted at an appropriate angle at any time, so that it can be removed in the same manner, so that the processing time can be shortened and the amount of basicity adjusting agent used can be reduced.
The above is an example of the kneading wheel 1, but the same applies to the hot metal ladle, and the same effect can be obtained by setting the tilting state during the processing by the tilting operation.
[0020]
As described above, according to the present invention, all the problems of the conventional techniques [1] to [7] can be solved, and the low-cost and high-speed desiliconization / dephosphorization at a level that could not be achieved in the past. Processing is possible.
Furthermore, in the present invention, it is preferable to provide a timing for blowing only the gaseous acid from the first or second lance. This gas acid alone blow-off time is large before the desiliconization, during the desiliconization period, or during the dephosphorization period, when large galling adheres to the inner surface of the hot metal inlet of the kneading car that contains the hot metal that is currently being treated. It is preferable to set the time when the situation is encountered. As a result, for example, as shown in FIG. 4, only the gaseous acid is blown out from the second lance 42 as the treatment agent Z2, and the glass 6 adhering to the inner surface side of the hot metal connection port of the kneading vehicle 1 can be melted and removed. Therefore, the problem of the above-mentioned torpedo mouth defect can be easily solved without additional equipment addition. In addition, what is necessary is just to determine suitably the amount of gaseous acid single blowing according to the adhesion size etc. of glass. In addition, it is preferable to use pure oxygen among the gas acids because it can melt the glass more quickly.
[0021]
Also, at the end of the hot metal pretreatment, when one lance is raised to the top of the hot metal and the gaseous acid is blown into the hot metal inlet, the hot metal pretreatment is terminated due to the adhesion of the inner surface of the hot metal inlet that occurred during the pretreatment. This is particularly preferable because it can be removed in stages, and the problem of defective mouth due to the galling of the hot metal opening at the time of receiving the next hot metal and at the start of the pretreatment can be solved in advance.
[0022]
FIG. 4 shows an example in which the second lance 42 is lifted onto the bath surface of the hot metal 2 and pure oxygen is blown out from the lance within a part of the dephosphorization period. As shown in FIG. 1, gas acid (preferably pure oxygen) alone may be blown out while the second lance 42 is immersed in the bath. In that case, the glass 6 is melted and removed by the gaseous acid that has blown through the bath and reached the surface of the bath. In addition, when the chaotic vehicle with poor topped mouth arrives at the dispatch of the vehicle, the first lance immersed in the lower side is used to melt and remove the rattle on the bath surface before the lance is immersed. It is preferable that the gas acid (preferably pure oxygen) be blown out alone, because it is possible to melt and remove the glass more efficiently.
[0023]
【Example】
The hot metal preliminary treatment was performed in the following manner using a 320-ton chaotic vehicle.
(1) The chaotic vehicle was tilted 5 ° before starting the treatment.
(2) The first and second lances were immersed in the hot metal in the form shown in FIG. 2, and the hot metal pretreatment was started. Here, the immersion depth of the first lance: 2 m, and the immersion depth of the second lance: 0.8 m.
[0024]
( 3) Qo 2 from the first lance is 0.25 Nm 3 / min / mol t (solid oxygen source: gaseous oxygen = 9: 1 (gas conversion)), Qo 2 from the second lance is 0.15 Nm 3 / min Demineralization and dephosphorization were performed as min / molten iron t (solid oxygen source only).
(4) Qo 2 of the first lance was set to 0.15 Nm 3 / min / molten iron 10 minutes before the end of the treatment.
(5) Five minutes before the end of the treatment, the second lance was raised to a height of 0.5 m above the hot metal surface, and gaseous acid was injected at 0.06 Nm 3 / min / hot metal t.
[0025]
As a result, the basicity adjusting agent (lime) was reduced by 5 kg / molten iron t by vigorously flowing out the low basicity slag from the beginning of the treatment. Furthermore, the large amount of glass on the inner surface of the hot metal inlet was successfully melted and removed by jetting of gas acid onto the hot metal surface in the chaotic car at the end of the treatment.
[0026]
【The invention's effect】
According to the present invention, it is possible to perform low-cost and high-speed desiliconization / dephosphorization processing at a level that could not be achieved in the conventional hot metal pretreatment operation of the chaotic vehicle method, and further, the problem of defective topy mouth is easy. It has an excellent effect that it can be eliminated.
[Brief description of the drawings]
FIG. 1 is a schematic side sectional view showing an example of an immersion usage pattern of two lances according to the present invention.
FIG. 2 is a schematic side cross-sectional view showing an example of an immersion usage pattern of two lances according to the present invention.
FIG. 3 is a schematic front cross-sectional view showing an example of a removal form by tilting the chaotic wheel according to the present invention.
FIG. 4 is a side cross-sectional schematic view showing an example of a form of gas acid alone according to the present invention.
[Explanation of symbols]
1 Chaos vehicle (processing container)
2 Hot metal 3 Slag
5 Floating pit 6 Gara
41 First lance
42 Second lance

Claims (2)

処理容器内の溶銑中に浸漬したランスを介して酸化剤を吹き込む溶銑予備処理方法において、前記ランスとして第1、第2の計2本を用い、第1のランスの浸漬深さを第2のランスよりも深く配置し、ランス1本当りの酸素供給速度を0.05Nm3/min/溶銑t以上とし、かつ、酸化剤吹き込み期の少なくとも一部と同期して前記処理容器の傾転を行うことを特徴とする溶銑予備処理方法。In the hot metal preliminary treatment method in which an oxidizing agent is blown through a lance immersed in the hot metal in the processing vessel, the first lance and the second total are used as the lance, and the immersion depth of the first lance is set to the second lance. Arrange deeper than the lance, set the oxygen supply rate per lance to 0.05 Nm 3 / min / molten metal t or more, and tilt the processing vessel in synchronism with at least part of the oxidant blowing period. A hot metal pretreatment method characterized by the above. 前記第1または第2のランスから気体酸素のみを吹き出させる時期を設けたことを特徴とする請求項1記載の溶銑予備処理方法。The hot metal preliminary treatment method according to claim 1, wherein a timing for blowing only gaseous oxygen from the first or second lance is provided.
JP2002131135A 2002-05-07 2002-05-07 Hot metal pretreatment method Expired - Fee Related JP3747880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131135A JP3747880B2 (en) 2002-05-07 2002-05-07 Hot metal pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131135A JP3747880B2 (en) 2002-05-07 2002-05-07 Hot metal pretreatment method

Publications (2)

Publication Number Publication Date
JP2003328026A JP2003328026A (en) 2003-11-19
JP3747880B2 true JP3747880B2 (en) 2006-02-22

Family

ID=29695849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131135A Expired - Fee Related JP3747880B2 (en) 2002-05-07 2002-05-07 Hot metal pretreatment method

Country Status (1)

Country Link
JP (1) JP3747880B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4981248B2 (en) * 2004-11-15 2012-07-18 Jfeスチール株式会社 Hot metal processing method
JP6416634B2 (en) * 2015-01-19 2018-10-31 株式会社神戸製鋼所 Desiliconization and desulfurization methods in hot metal ladle
JP6540632B2 (en) * 2016-08-29 2019-07-10 Jfeスチール株式会社 Dephosphorization method of hot metal

Also Published As

Publication number Publication date
JP2003328026A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP2004190101A (en) Method for pre-treating molten iron
JP3786056B2 (en) Hot metal pretreatment method
JP3747880B2 (en) Hot metal pretreatment method
JP2006219695A (en) Desulfurizing treatment method for molten iron
JP2008063610A (en) Method for producing molten steel
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP4695312B2 (en) Hot metal pretreatment method
JP4981248B2 (en) Hot metal processing method
JP5467794B2 (en) Dephosphorization method for hot metal with low dust generation
JP4780910B2 (en) How to remove hot metal
JP4211365B2 (en) Hot metal pretreatment method
JP4406142B2 (en) Hot phosphorus dephosphorization method
JP2005248219A (en) Molten iron pretreatment method
JP4025713B2 (en) Dephosphorization method of hot metal
JP2005248218A (en) Molten iron pretreatment method
JP3370349B2 (en) Melting method of high cleanness ultra low carbon steel
JPH0892618A (en) Prerefining method
JP3733013B2 (en) Hot metal dephosphorization method
JPH0660341B2 (en) Method of dephosphorization and desulfurization of hot metal
JP6848780B2 (en) How to operate the converter
JP5282539B2 (en) Hot phosphorus dephosphorization method
JP4772454B2 (en) Hot metal refining method
JP4759832B2 (en) Hot phosphorus dephosphorization method
JP3709141B2 (en) Sloping suppression method in hot metal pretreatment
JP3697960B2 (en) Hot metal pretreatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees