JP4780910B2 - How to remove hot metal - Google Patents

How to remove hot metal Download PDF

Info

Publication number
JP4780910B2
JP4780910B2 JP2003384410A JP2003384410A JP4780910B2 JP 4780910 B2 JP4780910 B2 JP 4780910B2 JP 2003384410 A JP2003384410 A JP 2003384410A JP 2003384410 A JP2003384410 A JP 2003384410A JP 4780910 B2 JP4780910 B2 JP 4780910B2
Authority
JP
Japan
Prior art keywords
hot metal
lance
immersion
dust
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003384410A
Other languages
Japanese (ja)
Other versions
JP2005146335A (en
Inventor
直樹 菊池
良輝 菊地
秀次 竹内
孝憲 田中
稔文 八幡
敦 渡辺
正人 三国
浩志 岡本
祐司 若槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003384410A priority Critical patent/JP4780910B2/en
Publication of JP2005146335A publication Critical patent/JP2005146335A/en
Application granted granted Critical
Publication of JP4780910B2 publication Critical patent/JP4780910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、混銑車内に吹き込む脱りん剤の反応効率を上げるべく改善された溶銑の脱りん方法に関するものである。   The present invention relates to a hot metal dephosphorization method improved to increase the reaction efficiency of a dephosphorizing agent blown into a kneading vehicle.

製鉄所の製銑・製鋼工程においては、転炉での脱炭吹錬の前に溶銑中に含有する珪素、りん、硫黄(Si,P,S)などを予め除去する溶銑予備処理が行われている。この溶銑予備処理における溶銑脱りん処理は酸化精錬であり、脱りん剤としては酸素(酸素ガス、酸化鉄)、塩基性フラックス(CaO系など)などが用いられる。その酸化精錬の方式としては各種の方法があるが、主に転炉型処理,溶銑鍋型処理,混銑車型処理(以下、これを「トピード処理」ともいう)に分類される。このうちトピード処理は転炉を用いた処理方式に比べると、脱りん剤の反応効率が高く、処理コストが安いという利点がある反面、フリーボードが小さいため酸素供給速度が小さく、脱P速度が悪いという課題があった。   In the ironmaking and steelmaking processes at steelworks, hot metal preliminary treatment is performed to remove silicon, phosphorus, sulfur (Si, P, S), etc. contained in the hot metal in advance before decarburization blowing in the converter. ing. The hot metal dephosphorization treatment in the hot metal pretreatment is oxidative refining, and oxygen (oxygen gas, iron oxide), basic flux (CaO system, etc.), etc. are used as the dephosphorizing agent. There are various types of oxidation refining methods, and they are mainly classified into converter type processing, hot metal ladle type processing, and kneading car type processing (hereinafter also referred to as “topped processing”). Among these, the toped process has the advantage that the reaction efficiency of the dephosphorizing agent is high and the processing cost is low compared to the processing method using a converter, but the oxygen supply rate is small and the de-P rate is small because the free board is small. There was a problem of being bad.

また、上記トピード処理では、脱りん剤き吹込みのために浸漬ランスが用いられるが、それの使用方法に関しては、例えば溶銑脱硫に関するものであるが、特許文献1および特許文献2などに開示がある。また、溶銑脱りん方法の例としては特許文献3に提案がある。さらに、前記浸漬ランス挿入位置の自由度を持たせるための提案としては特許文献4、特許文献5、特許文献6が挙げられる。なお、特許文献7には、トピード溶銑処理において、初期の脱Si反応で生成する低塩基度スラグを混銑車(以下、「トピードカー」ともいう)から排出しながら操業する方法も開示されている。
特開昭54−40216号公報 特開昭53−477441号公報 特開20002−69519号公報 特開昭64−7256号公報 特開昭64−7257号公報 特開平05−5144号公報
Moreover, in the above-mentioned topped treatment, a dipping lance is used for blowing a dephosphorizing agent. The method of using it is, for example, related to hot metal desulfurization, but disclosed in Patent Document 1 and Patent Document 2 and the like. is there. Moreover, there is a proposal in Patent Document 3 as an example of the hot metal dephosphorization method. Furthermore, Patent Document 4, Patent Document 5, and Patent Document 6 can be cited as proposals for giving the immersion lance insertion position flexibility. Patent Document 7 also discloses a method of operating while discharging low basicity slag generated in the initial de-Si reaction from a kneading vehicle (hereinafter also referred to as “toped car”) in the topped hot metal treatment.
Japanese Patent Laid-Open No. 54-40216 JP-A-53-477441 JP 20002-69519 A Japanese Unexamined Patent Publication No. 64-7256 JP-A 64-7257 Japanese Patent Laid-Open No. 05-5144

上掲のトピードカーによる溶銑予備の処理において、複数のランスを用いる方法が知られている。この方法は、(1)溶銑中での精錬剤の分散促進作用(特許文献1、特許文献2)、(2)トピードカー内の攪拌力の増大作用、デッドゾーン解消作用(特許文献3)を目的として開発された技術である。ただし、(2)の方法については、トピードカーの容器形状が長円形であることから攪拌が不十分になるという問題があった。
一般に、前記トピードカーによる溶銑脱りん処理において重要なことは、脱りん速度をいかにして向上させるかということである。つまり、フリーボードが小さい従来のトピードカーによる処理において、内部の溶銑の吹き出しを回避しながら、同時に脱りん剤の反応効率を高めるためには、脱りん剤の供給速度を速くして、脱りん速度を上げることが必要である。ところが、従来の複数ランスを用いた吹き込み技術の場合、このような観点から脱りん反応を考えたものではない。また、特許文献7では、脱Si反応により生成した低塩基度スラグを系外に排出し乍ら操業する方法を開示しているが、脱りん剤の吹き込み速度を低下させることなく、予備処理で、スラグのみを合理的に排出する方法までは開示していない。
A method using a plurality of lances is known in the hot metal preliminary processing by the above-mentioned topped car. The purpose of this method is (1) Dispersing promotion action of refining agent in hot metal (Patent Document 1, Patent Document 2), (2) Increase action of stirring force in topped car, Dead zone elimination action (Patent Document 3) As a technology developed as. However, the method (2) has a problem that stirring is insufficient because the shape of the container of the topped car is oval.
In general, what is important in the hot metal dephosphorization treatment by the topped car is how to improve the dephosphorization rate. That is, in order to increase the reaction efficiency of the dephosphorizing agent at the same time while avoiding the blowout of the molten iron in the treatment with the conventional topped car with a small free board, the dephosphorizing agent supply rate is increased and the dephosphorizing rate is increased. It is necessary to raise However, in the case of the conventional blowing technique using a plurality of lances, the dephosphorization reaction is not considered from such a viewpoint. Further, Patent Document 7 discloses a method in which low basicity slag generated by the de-Si reaction is discharged out of the system and operated, but the preliminary treatment can be performed without reducing the blowing rate of the dephosphorizing agent. It does not disclose how to rationally discharge only slag.

そこで、本発明の目的は、混銑車内溶銑の攪拌力が大きくデッドゾーンの解消に有効で、その溶銑中への脱りん剤の分散作用が大きく、かつ高い脱りん効率を得る上で有効な溶銑の脱りん方法を提案することにある。   Accordingly, an object of the present invention is to provide a hot metal mixture that has a large stirring force and is effective in eliminating the dead zone, has a large dispersion action of the dephosphorizing agent in the molten iron, and is effective in obtaining high dephosphorization efficiency. It is to propose a dephosphorization method.

そこで、本発明は、従来技術の抱えている上述した問題点を解決する方法について鋭意研究した結果、2本の浸漬ランスを用いて、溶銑を攪拌する手段を工夫した上で、溶銑バス深さとランス浸漬深さの関係、脱りん剤に対するガス流量比率の制御、ランス先端部の間隔調整について、それぞれ一定の条件にすることが有効であるとの知見を得て、本発明を完成させた。   Therefore, as a result of earnest research on the method for solving the above-mentioned problems of the prior art, the present invention devised a means for stirring hot metal using two immersion lances, The present invention was completed by obtaining the knowledge that it was effective to use constant conditions for the relationship between the lance immersion depth, the control of the gas flow rate ratio relative to the dephosphorization agent, and the distance adjustment of the lance tip.

このような考え方の下に開発した本発明は、混銑車内に充填された溶銑中に、浸漬ランスを介して酸素ガスや、灰分を含んだ焼結鉱、ダストまたは圧延スケールである酸化鉄、CaO系フラックスなどからなる脱りん剤をキャリアガスとともに吹き込むことにより、脱りんする溶銑の脱りん方法において、処理初期にCaO粉を吹き込み、その後は、灰分を含んだ焼結鉱、ダストまたは圧延スケールである酸化鉄粉を吹き込むとともに、混銑車内の長手方向を指向して挿入される2本の上記浸漬ランス先端部を、相する向きにして溶銑中に浸漬し、かつこれらのランスからは下記(1)〜(3)式を満たすような条件で上記脱りん剤の吹込みを行うことを特徴とする溶銑の脱りん方法である。
0.5H<HL<0.9H (1)
50≦Qp/Qg (2)
0.10L≦W≦0.50L (3)
HL:静止湯面からのランス浸漬深さ(m)
H:溶銑バス深さ(m)
Qp:灰分を含んだ焼結鉱、ダストまたは圧延スケールである酸化鉄粉の吹込み速度(kg/min)
Qg:搬送ガス流量(m(標準状態)/min)
W:2本の浸漬ランス先端間距離(m)
L:トピードカー長手方向最大距離(m)
The present invention developed under such a concept, in the hot metal filled in the kneading vehicle, oxygen gas , ash-containing sintered ore, dust or iron oxide powder that is a rolling scale, via an immersion lance, In a hot metal dephosphorization method for dephosphorization by blowing a dephosphorization agent composed of a CaO-based flux or the like together with a carrier gas , CaO powder is blown in the initial stage of processing, and thereafter, sintered ore containing ash, dust or rolling scale with blowing iron oxide powder is, two of the immersion lance tip portion to be inserted directed longitudinal torpedo car was immersed in molten iron in the phase counter to the direction, and below these lances A dephosphorization method for hot metal, which comprises blowing the dephosphorizing agent under conditions satisfying the expressions (1) to (3).
0.5H <HL <0.9H (1)
50 ≦ Qp / Qg (2)
0.10L ≦ W ≦ 0.50L (3)
HL: Lance immersion depth from stationary hot water surface (m)
H: Hot metal bath depth (m)
Qp: Sintering ore containing ash, dust or rolling speed of iron oxide powder as a rolling scale (kg / min)
Qg: carrier gas flow rate (m 3 (standard state) / min)
W: Distance between two immersion lance tips (m)
L: Maximum distance in the longitudinal direction of the topped car (m)

本発明において、前記混銑車は、それの回転軸を中心として3〜10°傾けて、脱Si処理時に発生した低塩基度スラグを流出させながら、灰分を含んだ焼結鉱、ダストまたは圧延スケールである酸化鉄粉の吹き込みを行うことが好ましい。 In the present invention, the kneading wheel is tilted by 3 to 10 degrees about the rotation axis thereof, and the low basicity slag generated at the time of de-Si treatment is discharged, while the ash-containing sintered ore, dust or rolling scale It is preferable to blow in the iron oxide powder .

本発明は、トピード口からの浸漬(挿入)方向が異なる2本の浸漬ランスを用いて、トピードカー内溶銑の脱りんを行う際、上述した吹き込み条件で脱りん剤の吹き込みを行うようにしたので、浸漬ランスを1本で脱りんする従来の方法に比べて高効率かつ高速での処理が可能となった。しかも、本発明の脱りん方法では、処理中の溶銑の温度降下が小さく、コストダウン、処理時間の短縮による処理能力の向上も期待できる。   In the present invention, when the dephosphorization of the hot metal in the topped car is performed using two immersion lances having different immersion (insertion) directions from the toped opening, the dephosphorizing agent is blown in the blowing conditions described above. Compared with the conventional method in which a single immersion lance is dephosphorized, high-efficiency and high-speed processing becomes possible. Moreover, in the dephosphorization method of the present invention, the temperature drop of the hot metal during the treatment is small, and it can be expected that the treatment capacity is improved by reducing the cost and shortening the treatment time.

トピードカーでの溶銑脱りん処哩では、酸素源である酸化鉄やCaOを主とする脱りん剤をキャリアガスと共に浸漬ランスを介してトピードカー内溶銑中に吹き込む処理が必要である。この処理において生じる脱りん反応は、下記(1)式に示すように酸化反応であることから、溶銑中の炭素やマンガン(C、Mn)の酸化反応とも競合することになる。特に、溶銑は炭素が飽和状態であるため、脱りん反応進行中は脱炭反応も進行しやすいという特徴がある。   In the hot metal dephosphorization treatment with a topped car, a treatment is required to blow a dephosphorizing agent mainly composed of oxygen oxide or CaO as an oxygen source into the hot metal in the topped car through an immersion lance together with a carrier gas. Since the dephosphorization reaction that occurs in this treatment is an oxidation reaction as shown in the following formula (1), it also competes with the oxidation reaction of carbon or manganese (C, Mn) in the hot metal. In particular, since hot metal is saturated with carbon, the decarburization reaction easily proceeds during the dephosphorization reaction.

溶銑の脱りん反応は、メタル/スラグ間で下記(1)式のように反応して行われる。
2[P]+5[O]+3(CaO)=3CaO・P2O5 (1)
ここで、[P]:溶銑中のりん、[O]:溶銑中酸素(酸素ガス,あるいは酸化鉄から)(P25)、(CaO):スラグ中のP25、スラグもしくはフラックス中CaO
The hot metal dephosphorization reaction is carried out by reacting the metal / slag as shown in the following formula (1).
2 [P] +5 [O] +3 (CaO) = 3CaO.P2O 5 (1)
Where [P]: phosphorus in hot metal, [O]: oxygen in hot metal (from oxygen gas or iron oxide) (P 2 O 5 ), (CaO): P 2 O 5 in slag, slag or flux Medium CaO

上述したような反応特性を有する溶銑の脱りん処理において、その脱りん速度を上げるためには、脱りん剤の吹込み速度を大きくすることが有効であると考えられる。ただし、この場合、ガス(主にCOガス)が局所的に増加することになることから、トピード口からの溶銑の流出(吹き出し)や溶銑中での脱りん剤の凝集による溶銑−脱りん剤反応界面の低下によって、脱りん酸素効率の低下を招くという問題点がある。   In the dephosphorization treatment of hot metal having the above-described reaction characteristics, it is considered effective to increase the blowing rate of the dephosphorizing agent in order to increase the dephosphorization rate. However, in this case, since the gas (mainly CO gas) will increase locally, the hot metal-dephosphorizing agent due to the outflow (blowing) of hot metal from the toped mouth and the aggregation of the dephosphorizing agent in the hot metal. There is a problem in that dephosphorization oxygen efficiency is lowered due to a decrease in the reaction interface.

一方、トピードカー内溶銑の攪拌力の増大、脱りん剤の反応界面積(脱りん剤分散作用)増加のためには、ランス浸漬深さを大きくすることが有効であると考えられるが、この場合、脱りん剤キャリアガスや脱炭反応により発生するCOガス気泡による浮力が大きくなり、トピード口からの溶銑流出を促進することになる。   On the other hand, it is considered effective to increase the lance immersion depth in order to increase the stirring power of hot metal in the topped car and increase the reaction interfacial area of the dephosphorizing agent (dephosphorizing agent dispersion action). The buoyancy due to the dephosphorization carrier gas and the CO gas bubbles generated by the decarburization reaction is increased, and the molten iron outflow from the toped port is promoted.

他方、脱りん剤と溶銑の反応界面積(=接触面積)を大きくするためには、溶銑中への脱りん剤の侵入を促進することが有効である。一般に、搬送ガスと共に溶銑中に吹込まれた脱りん剤は、ランスの出口近傍で膨張したキャリアガスに包囲され、一部がそのガス気泡を離脱して、溶銑中に浸入していくことが知られている。そこで、本発明では、固体の脱りん剤に対する搬送ガスの比率を大きくすることにより、ガス気泡からの固体脱りん剤の離脱を促進させ、このことによって溶銑中への脱りん剤の侵入を促すことが有効であるとの結論に達した。   On the other hand, in order to increase the reaction interface area (= contact area) between the dephosphorizing agent and the hot metal, it is effective to promote the penetration of the dephosphorizing agent into the hot metal. In general, it is known that the dephosphorizing agent blown into the hot metal together with the carrier gas is surrounded by the carrier gas expanded near the outlet of the lance, and part of the degassing gas leaves and enters the hot metal. It has been. Therefore, in the present invention, by increasing the ratio of the carrier gas to the solid dephosphorizing agent, the release of the solid dephosphorizing agent from the gas bubbles is promoted, thereby promoting the penetration of the dephosphorizing agent into the hot metal. The conclusion is reached that this is effective.

このような考え方の下で、発明者らは、異なる浸漬(挿入)方法をもつ2本の浸漬ランスを用い、脱りん酸素効率と脱りん速度が最大となる最適の脱りん剤吹き込み条件、ランス挿入位置について実験検討した。以下、その検討結果について説明する。
この実験は、400tトピードカーを用い、図1に示す態様で、表1に示す条件(溶銑・脱りん剤)にて、とくに溶銑中に吹込むCaO粉を、処理初期に溶銑(Si)より生成するSiO2に対して重量比で2倍(スラグ塩基度2.0目標)になるまで吹込み、その後は焼結粉のみを吹込んだ。この実験においてはまず、適正な焼結粉の吹込み条件を見出すために、1本の浸漬ランスによる脱りん処理実験を行った。また、この実験水準を表2に示した。いずれの条件においてもCaOの供給速度は一定とした。
Under such a concept, the inventors use two immersion lances having different immersion (insertion) methods, and the optimum dephosphorizing agent blowing conditions, lances that maximize the dephosphorization oxygen efficiency and the dephosphorization rate. Experiments were conducted on the insertion position. Hereinafter, the examination result will be described.
In this experiment, a 400 t topped car was used, and the CaO powder blown into the hot metal was generated from the hot metal (Si) in the initial stage of the treatment in the form shown in Fig. 1 under the conditions shown in Table 1 (hot metal and dephosphorizing agent). Blowing was performed until the weight ratio of SiO 2 was doubled (slag basicity 2.0 target), and then only sintered powder was blown. In this experiment, first, a dephosphorization treatment experiment using a single immersion lance was performed in order to find out appropriate blowing conditions of the sintered powder. The experimental levels are shown in Table 2. In any conditions, the CaO supply rate was constant.

実験水準1では、焼結粉供給速度1.0 kg/min/t一定の条件で、ランス浸漬深さを変更する実験を行った。実験結果として、図2にランス浸漬深さと脱P酸素効率の関係を示した。この図に示すように、ランス浸漬深さを静止状態での溶銑深さHの50%以上とすることにより脱りん酸素効率が高位安定し、とくに、60%以上では脱りん酸素効率は略一定であった。しかし、ランス浸漬深さ(静止湯面からのランス浸漬深さHLm)が前記溶銑深さ(バス深さ)Hの90%超の条件ではトピードカー底部の耐火物溶損が顕著となった。従って、ランス浸漬深さとしてはバス深さHの0.5〜0.9が好適であることがわかった。
即ち、0.5H<HL<0.9Hという上記(1)式の関係が成立する。
In experiment level 1, an experiment was conducted in which the lance immersion depth was changed under the condition that the sintered powder supply rate was constant at 1.0 kg / min / t. As a result of the experiment, FIG. 2 shows the relationship between the lance immersion depth and the de-P oxygen efficiency. As shown in this figure, dephosphorization oxygen efficiency is highly stabilized by setting the lance immersion depth to 50% or more of the hot metal depth H in a stationary state. In particular, dephosphorization oxygen efficiency is substantially constant at 60% or more. Met. However, when the lance immersion depth (lance immersion depth HLm from the stationary hot water surface) exceeds 90% of the hot metal depth (bath depth) H, refractory erosion damage at the bottom of the topped car became prominent. Accordingly, it was found that the bath depth H of 0.5 to 0.9 is preferable as the lance immersion depth.
That is, the relationship of the above equation (1) is established, 0.5H <HL <0.9H.

次に、実験水準2では、ランス浸漬深さをバス深さ60%という条件において、トピード口からの溶銑吹き出しが生じない限界条件である焼結粉=1.25 kg/mim/t一定とし、搬送ガスの減少を図る実験を行った。その結果を図3に示すが、この場合の脱P酸素効率(%)は、固気比(脱りん剤吹込み速度Qp(kg/min)と搬送ガス流量Qg(m3(標準状態)/min)との比率)を50(kg/m3(標準状態))以上とすることにより、高位に安定することがわかった。
即ち、50≦Qp/Qgという上記(2)式の関係が成立する。
ここで、この実験条件である焼結粉の供給速度=1.25 kg/min/tにおいて、粉体輸送が可能な条件としての固気比の上限は120 kg/min/m3(標準状態)程度であった。その固気比は焼結粉の供給速度や粉体輸送配管、圧力など種々の要因により上限値が変化する。しかし、焼結粉供給速度増加による固気比上限の増加は、溶銑中での焼結粉の凝集を促進して、反応界面積が減少するため、1.25 kg/min/t程度が妥当である。
Next, in Experiment Level 2, when the lance immersion depth is 60% in the bath depth, the sintered powder is fixed at 1.25 kg / mim / t, which is a critical condition that does not cause hot metal blow-out from the topped port, and the carrier gas An experiment was conducted to reduce this. The results are shown in FIG. 3. In this case, the deoxygenation oxygen efficiency (%) is expressed as follows: solid-gas ratio (dephosphorization agent blowing rate Qp (kg / min)) and carrier gas flow rate Qg (m 3 (standard state) / It was found that by setting the ratio to min) to 50 (kg / m 3 (standard state)) or more, it was stabilized at a high level.
That is, the relationship of the above equation (2) is established, 50 ≦ Qp / Qg.
Here, the upper limit of the solid-gas ratio is about 120 kg / min / m 3 (standard state) as a condition that enables powder transport at the experimental powder supply rate of 1.25 kg / min / t. Met. The upper limit of the solid-gas ratio varies depending on various factors such as the supply speed of the sintered powder, the powder transport pipe, and the pressure. However, an increase in the upper limit of the solid-gas ratio due to an increase in the supply rate of the sintered powder promotes the aggregation of the sintered powder in the hot metal and reduces the reaction interface area, so about 1.25 kg / min / t is appropriate. .

次に、実験水準3として、図4に示すような設備を用い、異なる浸漬状態とした2本の浸漬ランスを用いて脱りん処理する実験を行った。吹き込み形態を図4に示す。即ち、この実験は、浸漬ランス先端のトピードカーの長手方向における距離の影響を調べるためのものである。その結果を図5に示すように、2本の浸漬ランス先端間距離(m)がトピードカー長手方向の最大距離L(m)が0.1以下の条件ではトピード口からの溶銑吹き出しにより、脱りん剤の吹き込みが困難となった。一方、浸漬ランス先端間距離W>0.5Lの条件では脱りん酸素効率が低下した。これはトピードカーの構造が両端に近づくほど容器内体積が小さくなっており、インジェクション位置が周囲の耐火物の壁に近づくためにエネルギーの損失が顕著になるためと考えられる。従って、0.10L≦W≦0.50Lという上記(3)式に基く関係式が得られた。
なお、図5には、1本ランス(水準3)での実験結果も併せて示した。この図5に示すとおり、浸漬ランスを1本使用するものに比べ、浸漬ランスを2本(水準4)で吹き込むときの方が、ランス先端間距離の如何にかかわらず脱P酸素効率が明らかに良好である。しかも、それは、水準4(2本ランス)で行う限り、ランス先端間距離を≦0.7Lのどの範囲においても同様に効果が得られる。これは細長いトピードカーの形状の混合特性に起因するものと考えられる。
Next, as an experiment level 3, an experiment was carried out using a facility as shown in FIG. 4 and dephosphorizing using two immersion lances in different immersion states. The blowing form is shown in FIG. That is, this experiment is for examining the influence of the distance in the longitudinal direction of the topped car at the tip of the immersion lance. As shown in FIG. 5, when the distance (m) between the two immersion lance tips is 0.1 or less in the maximum distance L (m) in the longitudinal direction of the topped car, the dephosphorizing agent is removed by hot metal blowing from the toped port. Insufflation became difficult. On the other hand, the dephosphorization oxygen efficiency decreased under the condition of the distance between the immersion lance tips W> 0.5L. This is presumably because the volume of the container decreases as the structure of the topped car approaches both ends, and the loss of energy becomes significant because the injection position approaches the wall of the surrounding refractory. Therefore, a relational expression based on the above expression (3), 0.10 L ≦ W ≦ 0.50 L, was obtained.
FIG. 5 also shows the experimental results with one lance (level 3). As shown in FIG. 5, the P oxygen removal efficiency is clearer when two immersion lances are blown (level 4) than when one immersion lance is used regardless of the distance between the lance tips. It is good. Moreover, as long as it is performed at level 4 (two lances), the same effect can be obtained in any range where the distance between the lance tips is ≦ 0.7 L. This is believed to be due to the mixing characteristics of the shape of the elongated topped car.

なお、この場合において2本ランスの浸漬深さは、基本的に同一にするが、互いの浸漬深さを、静止状態での溶銑深さ(バス深さ)Hに対し0〜0.2H程度変化させてもよい。またトピードカーのトピードカーから挿入するランスの挿入角度(θ)は0〜30°の範囲で調整することができる。   In this case, the immersion depths of the two lances are basically the same, but the immersion depths of the two lances vary from 0 to 0.2H with respect to the hot metal depth (bath depth) H in a stationary state. You may let them. The insertion angle (θ) of the lance inserted from the topped car of the topped car can be adjusted in the range of 0 to 30 °.

本発明において用いる脱りん剤、すなわち、溶銑中に添加する酸化鉄の如き酸化成分としては、灰分を含んだ焼結鉱、ダスト、または圧延スケールなどの酸化鉄を主成分とするものなどが使用できる。また、CaO源としては、転炉、鋳造スラグなどのリサイクル品などの使用も可能である。そして、キャリアガスとしては、窒素やアルゴンのような不活性ガスを主とし、これに圧縮空気、酸素ガス、CO2ガスなどの酸化性ガスが混合したものを用いることができる。 As the dephosphorizing agent used in the present invention, that is, as an oxidizing component such as iron oxide to be added to the hot metal, ash-containing sintered ore, dust, or a material mainly composed of iron oxide such as a rolling scale is used. it can. Further, as the CaO source, it is possible to use recycled products such as converters and cast slag. As the carrier gas, an inert gas such as nitrogen or argon, which is mixed with an oxidizing gas such as compressed air, oxygen gas or CO 2 gas can be used.

図6は、トピード容器を傾転させ、脱りん剤吹き込み操業中に、スラグの排出を行う実験の模式図である。この実験は上述した2本ランスを使う水準4の方法で行ったものであり、図7に、そのトピード傾斜角度と脱P酸素効率との関係を示した。この図7から、溶銑の吹き出しがなくスラグの安定した排出を実現し、かつトピード口からの溶銑流出を防ぐためには、トピードカーの傾転角度は3〜10°とするのがよいことがわかる。そもそも、この脱りん処理と同時にスラグを排出する意義は、トピードカーの内部に生成する低塩基度スラグを除去することにある。   FIG. 6 is a schematic diagram of an experiment in which the topped container is tilted and slag is discharged during the operation of blowing the dephosphorizing agent. This experiment was performed by the level 4 method using the above-described two lances, and FIG. 7 shows the relationship between the torpedo inclination angle and the de-P oxygen efficiency. From FIG. 7, it can be seen that the tilt angle of the topped car is preferably 3 to 10 ° in order to realize stable discharge of slag without blowing out of molten iron and to prevent molten iron outflow from the toped opening. In the first place, the significance of discharging the slag simultaneously with the dephosphorization treatment is to remove the low basicity slag generated inside the topped car.

一般に、トピード処理の初期においては、脱りん反応よりも脱Si反応が優先的に進行し、この脱Si反応によりSiO2リッチなスラグを生成すると共に、脱りん処理前に該トピードが内に既に存在している高炉スラグや鋳床脱Siスラグ(これらはいずれもSiO2リッチである)が混合した低塩基度スラグが生成する。ところが、脱りん反応は一般に、高塩基度ほど促進されるため、前記低塩基度スラグは予めトピードカーの外に流出させることが得策である。一方で、このときに溶銑の流出があると、鉄歩留まりが低下するためそれを回避することも必要となる。そのために、本発明では、その両方の要請を満足させるために、上述したトピードカーの傾転角度に着目し、それの好適範囲を上述のように定めた。 In general, in the early stage of the torpedo treatment, the de-Si reaction proceeds preferentially over the dephosphorization reaction, and this de-Si reaction generates SiO 2 -rich slag, and the torpedo is already contained inside before the dephosphorization treatment. Low basicity slag mixed with existing blast furnace slag and cast-bed de-Si slag (both are rich in SiO 2 ) is produced. However, since the dephosphorization reaction is generally promoted as the basicity increases, it is advantageous to cause the low basicity slag to flow out of the topped car in advance. On the other hand, if there is a hot metal outflow at this time, it is necessary to avoid it because the iron yield decreases. Therefore, in the present invention, in order to satisfy both requirements, the above-mentioned preferred range of the tilted angle of the topped car is determined as described above.

この実施例において採用した実施の条件は、処理時間を30分とし、溶銑量および初期溶銑成分は表1に示すとおりとした。
(1)表3は水準A(ランス浸漬深さ)を検証するための実施例である。表中、比較例のランス浸漬深さは、0.4H、0.9Hのもの、参考例のランス浸漬深さは0.5H、0.6Hものを用いた。この実施例の結果を表4に示す。参考法に適合するランス浸漬深さを0.5Hおよび0.6Hの場合において、処理後[%P]の低いものが得られた。
(2)表5は水準B(固気比)を検証するための実施例である。この実施例では、比較例として固気比30kg/m(標準状態)のものを用い、参考例として50kg/m(標準状態)、60kg/m(標準状態)、100kg/m(標準状態)のものを用いた。その結果を表6に示すが、参考法に適合する固気比>50kg/m(標準状態)の場合において、処理後[%P]が低下することがわかった。
(3)表7に水準C(2本ランス)を検証するための実施例を示す。この実施例では、比較例1として、1本ランスで同一の焼結粉吹込み速度で吹込んだ場合、比較例2として2本ランスでランス間距離が0.05Lとした場合、比較例3として2本ランスでランス間距離が0.6Lとした場合とした。一方、本発明例として、2本ランスでランス間距離を0.1L、0.5Lとしたものを用いた。その結果を表8に示すが、2本ランスでランス間距離を0.1L〜0.5Lとした場合に、処理後[%P]が低下することがわかった。
(4)表9に水準D(傾転角度)を検証するための実施例を示す。この実施例では、比較例1は傾転なし、比較例2は傾転12°、一方、本発明法は傾転5°として実施した例である。その結果を表10に示すが、本発明法では脱りん剤吹込み中の溶銑流出がなく、傾転流滓により低塩基度スラグが排出されることによって、処理後のスラグ塩基度が増加した結果、処理後[%P]が低下した。とくに、2本ランスで吹き込み条件を適正にすることにより、焼結粉の供給速度を溶銑吹き出しを生じることなく、かつ高い反応効率の条件で増加でき、処理速度が大きくなった。さらにトピード傾転によるスラグ排出によりスラグの塩基性が高まり、反応を促進することが可能になることもわかった。
The implementation conditions employed in this example were a treatment time of 30 minutes, and the amount of hot metal and the initial hot metal component were as shown in Table 1.
(1) Table 3 is an example for verifying the level A (lance immersion depth). In the table, the lance immersion depths of the comparative examples were 0.4H and 0.9H, and the lance immersion depths of the reference examples were 0.5H and 0.6H. The results of this example are shown in Table 4. When the lance immersion depth conforming to the reference method was 0.5H and 0.6H, a low [% P] was obtained after the treatment.
(2) Table 5 is an example for verifying the level B (solid-gas ratio). In this embodiment, used as the solid-gas ratio 30kg / m 3 as a comparative example (standard state), 50 kg / m 3 as a reference example (standard state), 60 kg / m 3 (standard state), 100 kg / m 3 ( Standard state) was used. The results are shown in Table 6. It was found that [% P] decreased after the treatment when the solid-gas ratio> 50 kg / m 3 (standard state) conforming to the reference method.
(3) Table 7 shows an example for verifying level C (two lances). In this example, as Comparative Example 1, when one lance was blown at the same sintered powder blowing speed, as Comparative Example 2, when the distance between lances was 0.05 L with two lances, Comparative Example 3 Assuming that the distance between the two lances is 0.6L. On the other hand, as an example of the present invention, two lances having a distance between lances of 0.1 L and 0.5 L were used. The results are shown in Table 8. It was found that when the distance between the lances was set to 0.1 L to 0.5 L with two lances, [% P] decreased after the treatment.
(4) Table 9 shows an example for verifying the level D (tilt angle). In this example, Comparative Example 1 is an example in which there is no tilt, Comparative Example 2 is an example in which the tilt is 12 °, while the method of the present invention is performed with a tilt of 5 °. The results are shown in Table 10. According to the method of the present invention, there was no hot metal outflow during blowing of the dephosphorization agent, and low basicity slag was discharged by tilting flow drought, thereby increasing the slag basicity after treatment. As a result, [% P] decreased after the treatment. In particular, by making the blowing conditions appropriate with two lances, the supply speed of the sintered powder can be increased without generating hot metal blowing and with high reaction efficiency, and the processing speed is increased. Furthermore, it was also found that slag discharge due to topped tilting increases the basicity of slag and promotes the reaction.

Figure 0004780910
Figure 0004780910

Figure 0004780910
Figure 0004780910

Figure 0004780910
Figure 0004780910

Figure 0004780910
Figure 0004780910

Figure 0004780910
Figure 0004780910

Figure 0004780910
Figure 0004780910

Figure 0004780910
Figure 0004780910

Figure 0004780910
Figure 0004780910

Figure 0004780910
Figure 0004780910

Figure 0004780910
Figure 0004780910

本発明は、製鉄所における溶鉄製造技術に適用することができる。   The present invention can be applied to molten iron production technology in an ironworks.

1本ランスによる脱りん剤吹き込み装置例を示す断面図である。It is sectional drawing which shows the example of the dephosphorization agent blowing apparatus by one lance. ランス浸漬深さと脱P酸素効率との関係を示すグラフである。It is a graph which shows the relationship between lance immersion depth and de-P oxygen efficiency. 固気比と脱P酸素効率との関係を示すグラフである。It is a graph which shows the relationship between solid-gas ratio and de-P oxygen efficiency. 本発明法に従う脱りん剤吹き込み装置の例を示す断面図である。It is sectional drawing which shows the example of the dephosphorizing agent blowing apparatus according to this invention method. ランス先端間距離と脱P酸素効率との関係を示すグラフである。It is a graph which shows the relationship between the distance between lance front-end | tips, and de-P oxygen efficiency. トピード傾転によるスラグ流出方法を説明する模式図である。It is a schematic diagram explaining the slag outflow method by topped inclination. トピード傾転角度と脱P酸素効率との関係を示すグラフである。It is a graph which shows the relationship between a topped inclination angle and de-P oxygen efficiency.

符号の説明Explanation of symbols

1、1’ 吹き込み用ランス
2 トピードカー
3 溶銑
4 スラグ
5 脱りん剤
6 キャリアガス
1, 1 'lance for blowing 2 topped car 3 hot metal 4 slag 5 dephosphorizing agent 6 carrier gas

Claims (2)

混銑車内に充填された溶銑中に、浸漬ランスを介して酸素ガスや、灰分を含んだ焼結鉱、ダストまたは圧延スケールである酸化鉄、CaO系フラックスなどからなる脱りん剤をキャリアガスとともに吹き込むことにより、脱りんする溶銑の脱りん方法において、処理初期にCaO粉を吹き込み、その後は、灰分を含んだ焼結鉱、ダストまたは圧延スケールである酸化鉄粉を吹き込むとともに、混銑車内の長手方向を指向して挿入される2本の上記浸漬ランス先端部を、相する向きにして溶銑中に浸漬し、かつこれらのランスからは下記(1)〜(3)式を満たすような条件で上記脱りん剤の吹込みを行うことを特徴とする溶銑の脱りん方法。
0.5H<HL<0.9H (1)
50≦Qp/Qg (2)
0.10L≦W≦0.50L (3)
HL:静止湯面からのランス浸漬深さ(m)
H:溶銑バス深さ(m)
Qp:灰分を含んだ焼結鉱、ダストまたは圧延スケールである酸化鉄粉の吹込み速度(kg/min)
Qg:搬送ガス流量(m(標準状態)/min)
W:2本の浸漬ランス先端間距離(m)
L:トピードカー長手方向最大距離(m)
A dephosphorizer consisting of oxygen gas , sintered ore containing ash, dust or rolling scale iron oxide powder , CaO-based flux, etc., together with a carrier gas, in the hot metal filled in the kneading car. In the dephosphorization method of hot metal to be dephosphorized by blowing, CaO powder is blown in the initial stage of treatment, and thereafter, iron oxide powder which is sintered ore containing dust, dust or rolling scale is blown, and the length in the kneading vehicle conditions such as the two said soaking lance tip portion to be inserted directed direction, was immersed in the hot metal in the phase counter to the direction, and satisfies the following (1) to (3) from these lances 3. A method for dephosphorizing hot metal, wherein the dephosphorizing agent is blown in.
0.5H <HL <0.9H (1)
50 ≦ Qp / Qg (2)
0.10L ≦ W ≦ 0.50L (3)
HL: Lance immersion depth from stationary hot water surface (m)
H: Hot metal bath depth (m)
Qp: Sintering ore containing ash, dust or rolling speed of iron oxide powder as a rolling scale (kg / min)
Qg: carrier gas flow rate (m 3 (standard state) / min)
W: Distance between two immersion lance tips (m)
L: Maximum distance in the longitudinal direction of the topped car (m)
前記浸漬ランスによる灰分を含んだ焼結鉱、ダストまたは圧延スケールである酸化鉄粉の吹き込み時に、混銑車を回転軸を中心として3〜10°傾けることにより、脱Si処理時に発生した低塩基度スラグを流出させることを特徴とする請求項1に記載の溶銑の脱りん方法。 Low basicity generated during de-Si treatment by tilting the kneading wheel 3 to 10 degrees around the rotation axis when blowing the iron oxide powder that is ash-containing sintered ore, dust or rolling scale by the immersion lance Datsuri N ways of molten iron according to claim 1, characterized in that to drain slag.
JP2003384410A 2003-11-14 2003-11-14 How to remove hot metal Expired - Fee Related JP4780910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384410A JP4780910B2 (en) 2003-11-14 2003-11-14 How to remove hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384410A JP4780910B2 (en) 2003-11-14 2003-11-14 How to remove hot metal

Publications (2)

Publication Number Publication Date
JP2005146335A JP2005146335A (en) 2005-06-09
JP4780910B2 true JP4780910B2 (en) 2011-09-28

Family

ID=34692809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384410A Expired - Fee Related JP4780910B2 (en) 2003-11-14 2003-11-14 How to remove hot metal

Country Status (1)

Country Link
JP (1) JP4780910B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961787B2 (en) * 2006-03-20 2012-06-27 Jfeスチール株式会社 Hot metal desulfurization method
JP5272378B2 (en) * 2007-11-05 2013-08-28 Jfeスチール株式会社 Hot metal dephosphorization method
CN103114174B (en) * 2013-03-07 2015-02-18 武汉钢铁(集团)公司 Blowing desulfurization method for molten iron of torpedo ladle
CN107723416B (en) * 2017-11-15 2023-04-11 钢铁研究总院 Ladle rotation spray gun dephosphorization device

Also Published As

Publication number Publication date
JP2005146335A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
WO1995001458A1 (en) Steel manufacturing method using converter
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
JP6028755B2 (en) Method for melting low-sulfur steel
JP5983492B2 (en) Hot metal pretreatment method
JP4780910B2 (en) How to remove hot metal
JP5967139B2 (en) Hot metal pretreatment method
JP2006249568A (en) Method for producing molten iron having low phosphorus
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP2617948B2 (en) Ladle refining method for molten steel
JP4979514B2 (en) Hot metal dephosphorization method
JP4419594B2 (en) Hot metal refining method
JP6416634B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP4981248B2 (en) Hot metal processing method
JP4025751B2 (en) Hot metal refining method
JPH0987730A (en) Method for heat-raising and refining molten steel
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP7167704B2 (en) Hot metal desulfurization method
JP4370848B2 (en) Hot phosphorus dephosphorization method
JP4224197B2 (en) Hot metal dephosphorization method with high reaction efficiency
JP5506515B2 (en) Dephosphorization method
JP3825733B2 (en) Hot metal refining method
JP4686873B2 (en) Hot phosphorus dephosphorization method
JP6766796B2 (en) How to sedate slag
JP6289204B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP2005248219A (en) Molten iron pretreatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees