JP4772454B2 - Hot metal refining method - Google Patents

Hot metal refining method Download PDF

Info

Publication number
JP4772454B2
JP4772454B2 JP2005310927A JP2005310927A JP4772454B2 JP 4772454 B2 JP4772454 B2 JP 4772454B2 JP 2005310927 A JP2005310927 A JP 2005310927A JP 2005310927 A JP2005310927 A JP 2005310927A JP 4772454 B2 JP4772454 B2 JP 4772454B2
Authority
JP
Japan
Prior art keywords
converter
hot metal
cao
refining
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005310927A
Other languages
Japanese (ja)
Other versions
JP2007119814A (en
Inventor
逸朗 北川
直人 佐々木
充高 松尾
正則 中野
敏 鷲巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005310927A priority Critical patent/JP4772454B2/en
Publication of JP2007119814A publication Critical patent/JP2007119814A/en
Application granted granted Critical
Publication of JP4772454B2 publication Critical patent/JP4772454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、転炉を使用した溶銑脱燐処理において、高効率な精錬を可能とする方法に関する。   The present invention relates to a method that enables highly efficient refining in hot metal dephosphorization using a converter.

鉄鋼精錬において、脱P反応効率を向上させるため、脱P・脱炭を分割し、脱炭前に脱P処理を行う溶銑予備処理が広く行われている。溶銑予備処理の方式は、トーピードカー、溶銑鍋などの溶銑輸送容器を使用する方式と、転炉を使用する方式に大別されるが、転炉を使用する方式は、転炉の特徴を最大限活用したものであり、
1) 容器の内容積が大きく、フォーミング(=スラグの泡立ち現象)やスロッピング(=スラグや溶鉄が容器から横溢する現象)による操業障害等の問題が少ない、
2) 気体酸素を高速で送酸できるため、高速脱P処理が可能である、
3) 低塩基度での脱P処理が可能であり、精錬用生石灰の削減やスラグの有効利用上問題となるフリーCaOの低減が可能である、
4) 上記理由により、脱P処理前の事前脱珪処理が不要であり、脱珪と脱Pを同時に実施できる、
5) 固体酸素(=酸化鉄等)の使用量が少ないため熱裕度が高く、スクラップ比の向上が可能である、
6) 転炉容器内で前チャージの脱炭スラグを脱P用造滓材として熱間で再使用することが容易である、等の利点がある。
In steel refining, in order to improve the de-P reaction efficiency, hot metal preliminary treatment is widely performed in which de-P / decarburization is divided and de-P treatment is performed before decarburization. Hot metal pretreatment methods are broadly divided into methods that use hot metal transport containers such as torpedo cars and hot metal ladle, and methods that use a converter. The method that uses a converter maximizes the characteristics of the converter. It was used,
1) The volume of the container is large, and there are few problems such as operational failures due to forming (= slag foaming phenomenon) and slopping (= slag and molten iron overflowing from the container).
2) Gaseous oxygen can be sent at high speed, so high-speed de-P treatment is possible.
3) De-P treatment at a low basicity is possible, and free CaO can be reduced, which is a problem in terms of reduction of smelting quicklime and effective use of slag.
4) For the above reasons, pre-silicon removal treatment before de-P treatment is unnecessary, and de-siliconization and de-P can be performed simultaneously.
5) Since the amount of solid oxygen (= iron oxide, etc.) used is small, the heat tolerance is high and the scrap ratio can be improved.
6) There are advantages such that it is easy to reuse hot decarburized slag in the converter vessel as a P-deposition material.

さらに、遊休転炉や現有転炉を活用できる場合は、新たな設備投資額が少なく、省資源、省エネルギーの面からも優位性の高い方式である。   Furthermore, when an idle converter or an existing converter can be used, the amount of new capital investment is small, and this method is highly advantageous in terms of resource saving and energy saving.

転炉を使用した溶銑予備脱P処理方式の中でも、脱P処理後に溶銑を転炉内に残したまま、転炉を傾転させて脱Pスラグのみを排滓し、その後に同一転炉で脱炭吹錬を実施する方式(例えば、特許文献1参照)、2基以上の転炉をそれぞれ、脱P、脱炭の専用炉として用いる方式(例えば、特許文献2参照)等があるが、前者の方式は後者に比べて、
1) 脱P処理後に出銑、再装入する工程がないため、転炉のサイクルタイムが短い、
2) 溶銑の移し替え工程がないため、移し替えによる放熱ロスがない、
3) 脱炭スラグを炉内に残して、脱P用造滓材として使用することが容易である、
などの利点がある。
In the hot metal preliminary de-P treatment method using a converter, after the de-P treatment, while leaving the hot metal in the converter, the converter is tilted to remove only the de-P slag, and then in the same converter There are methods for carrying out decarburization blowing (for example, see Patent Document 1), and methods for using two or more converters as dedicated furnaces for de-P and decarburization (for example, see Patent Document 2). Compared to the latter, the former method
1) Since there is no process of picking up and recharging after de-P treatment, the cycle time of the converter is short.
2) Because there is no hot metal transfer process, there is no heat loss due to transfer.
3) It is easy to leave the decarburized slag in the furnace and use it as a P-making material.
There are advantages such as.

一方で、前者の方式では溶銑を転炉内に残したまま転炉を傾転させて脱Pスラグを排滓するため、溶銑の流出を抑制しつつスラグのみを完全に排出することは困難で、炉内に残留したスラグから脱炭吹錬時に復Pが生じるという問題がある。そこで、効率的な排滓法として、下記のように種々の提案がなされている。   On the other hand, in the former method, since the converter is tilted while leaving the hot metal in the converter and the de-P slag is discharged, it is difficult to completely discharge only the slag while suppressing the outflow of the hot metal. There is a problem that recovery P occurs from the slag remaining in the furnace during decarburization blowing. In view of this, various proposals have been made as follows for efficient exclusion methods.

まず、炉腹および炉底に設けた複数個の羽口からガスを吹き込んでスラグを炉口側に移動させて排滓する方法(例えば、特許文献1参照)、酸化性ガスを吹き込んでスラグフォーミングを促進して排滓する方法(例えば、特許文献3参照)が提案されているが、これらの方法では、炉腹に羽口を設置するため転炉の改造が必要であること、耐火物溶損が進行した転炉では内容積の変化によりスラグ位置が変化し、羽口の位置が最適な位置から外れてくること、吹錬中の羽口閉塞を防止するために常時ガスを吹き込む必要があり、本来不要なガスコストが増大する等の問題がある。   First, a method in which gas is blown from a plurality of tuyere provided on the furnace belly and the bottom of the furnace and slag is moved to the furnace port side to be exhausted (for example, refer to Patent Document 1), and slag forming is blown by oxidizing gas. However, in these methods, it is necessary to modify the converter to install tuyere in the furnace belly, refractory melting In converters where damage has progressed, the slag position changes due to changes in the internal volume, the tuyere position deviates from the optimum position, and it is necessary to constantly blow in gas to prevent tuyere clogging during blowing. There are problems such as an increase in gas cost which is essentially unnecessary.

また、電磁力を利用してスラグのみを選択的に排滓する方法(例えば、特許文献4参照)が提案されているが、設備投資コストがかかること、また、高温かつ振動の激しい劣悪な環境下で整備コストが増大する等の問題がある。   In addition, a method of selectively rejecting only slag using electromagnetic force (for example, see Patent Document 4) has been proposed, but it requires high capital investment costs, and is in a poor environment with high temperature and severe vibration. There are problems such as an increase in maintenance costs.

さらに、溶銑の位置を電気的導通や光ファイバーで検出し、排滓に最適な転炉傾動位置を決定して排滓する方法(例えば、特許文献5、特許文献6参照)が提案されているが、これらの方法では溶銑の位置を検出し、最適な転炉傾動位置を決定することはできるが、排滓を促進するには不十分である。   Furthermore, a method has been proposed in which the position of the hot metal is detected by electrical continuity or an optical fiber, and the converter tilting position optimum for waste is determined and discharged (see, for example, Patent Document 5 and Patent Document 6). These methods can detect the position of the hot metal and determine the optimum converter tilting position, but are not sufficient to promote exhaustion.

その他、トーピードカーや鍋の排滓方法として利用されている排滓板によりスラグを掻き出す方法(例えば、特許文献7参照)等を転炉に適用することも考えられるが、転炉の容量を考えると、設備が大きくなりすぎ現実的とは言えない。   In addition, a method of scraping slag with a waste plate that is used as a method for removing a torpedo car or pan (for example, see Patent Document 7) may be applied to the converter, but considering the capacity of the converter The facilities are too big to be realistic.

特許文献1および特許文献8の方法では、脱炭滓を脱P処理にリサイクルすることで脱P処理時に添加する精錬材の量を削減することが可能であるが、例えば脱炭後の溶鋼中P濃度として0.015質量%以下などの低P鋼を溶製する場合などにおいては、リサイクルした脱炭滓中に含まれるPが原因となってばらつきや低P化の障害となることがある。   In the methods of Patent Literature 1 and Patent Literature 8, it is possible to reduce the amount of refining material added during the de-P treatment by recycling the decarburized soot to the de-P treatment. For example, in the molten steel after decarburization In the case of melting low P steel having a P concentration of 0.015% by mass or less, P contained in the recycled decarburized iron may cause variations and an obstacle to low P. .

一方で、このような障害を避けるために脱炭滓をリサイクルせずに、脱P処理後に溶銑を転炉内に残したまま、転炉を傾転させて脱Pスラグのみを排滓し、その後に同一転炉で脱炭吹錬を実施する場合には、脱P処理時に投入した精錬材の溶解遅れのためにスラグ排滓性が悪く、そのため十分に排滓できないという課題がある。   On the other hand, in order to avoid such obstacles, without recycling the decarburized slag, while leaving the hot metal in the converter after the de-P treatment, the converter is tilted to remove only the de-P slag, Thereafter, when decarburization blowing is carried out in the same converter, there is a problem that the slag removal performance is poor due to a delay in dissolution of the refining material introduced at the time of the de-P treatment, so that it cannot be sufficiently discharged.

特許第2582692号公報Japanese Patent No. 2558292 特許第1761646号公報Japanese Patent No. 1761646 特開平05−279721号公報JP 05-279721 A 特開平05−247514号公報JP 05-247514 A 特開平05−288479号公報JP 05-288479 A 特開平06−235016号公報Japanese Patent Laid-Open No. 06-235016 特開昭59−13009号公報JP 59-13009 A 特開平04−72007号公報Japanese Patent Laid-Open No. 04-72007

転炉にて溶銑の予備脱Pを行い、脱P処理後に溶銑を転炉内に残したまま、転炉を傾転させてスラグを排滓する際に、溶銑の流出を抑制しつつ、残留スラグの量が少ない精錬方法を提供することを目的とする。   Preliminary de-P removal of hot metal in the converter, while the hot metal remains in the converter after the de-P treatment, when the slag is discharged by tilting the converter, The object is to provide a refining method with a small amount of slag.

本発明の要旨は以下の通りである。
(1) 転炉容器内で前チャージの脱炭滓を脱燐用造滓材として熱間で再使用して、転炉にて溶銑の脱燐処理を行い、脱燐処理後に溶銑を転炉内に残したまま、転炉を傾転させてスラグを排滓し、その後、同一転炉で脱炭処理を行う、溶銑の精錬方法において、
前記脱燐処理と引き続く排滓工程において、前チャージの脱炭滓再使用量を7kg/t−溶銑以上、24.9kg/t−溶銑以下とし、2CaO・Fe23 30質量%以上含んだ精錬材を添加し、該添加した精錬材によって添加されるCaO量を溶銑脱燐処理で転炉に装入された全CaO量で割った比で表されるCaO置換率を30質量%以上としてCO気泡の発生によりフォーミングを促進させることを特徴とする溶銑の精錬方法。
(2) 前記2CaO・Fe 2 3 を30質量%以上含んだ精錬材とは、CaOとFe 2 3 の和で全体の70mass%以上を占め、残部はAl、Mn、Mg、P、Siの1種以上の酸化物で構成される精錬剤であることを特徴とする(1)に記載の溶銑の精錬方法。
The gist of the present invention is as follows.
(1) Hot re-use of pre-charged decarburized iron in the converter vessel as a dephosphorization ironmaking material, hot metal dephosphorizing treatment in the converter, and after dephosphorizing treatment, the hot metal is converted into the converter In the refining method of hot metal, in which the slag is exhausted by tilting the converter while leaving it inside, followed by decarburization treatment in the same converter,
In the dephosphorization step subsequent to the dephosphorization treatment, the amount of reuse of the pre-charged decarburized iron is set to 7 kg / t-molten metal or more and 24.9 kg / t-molten metal or less, and contains 2CaO · Fe 2 O 3 in an amount of 30 mass% or more. The refining material is added , and the CaO substitution rate represented by the ratio obtained by dividing the amount of CaO added by the added refining material by the total amount of CaO charged into the converter by hot metal dephosphorization is 30% by mass or more. A hot metal refining method characterized in that forming is promoted by generation of CO bubbles .
(2) wherein A 2CaO · Fe 2 O 3 of 30 wt% or more inclusive refining material, occupy the entire at least 70 mass% in the sum of CaO and Fe 2 O 3, balance Al, Mn, Mg, P, Si The method for refining hot metal as described in (1), wherein the refining agent comprises one or more oxides of the above.

本発明により、転炉にて溶銑の予備脱Pを行い、脱P処理後に溶銑を転炉内に残したまま、転炉を傾転させてスラグを排滓する際に、溶銑の流出を抑制しつつ、残留スラグの量が少ない精錬が可能となり、その結果、脱炭吹錬開始時の炉内総P量を低位安定化することが出来る。これにより脱炭処理における生石灰などの精錬材使用量が削減されるとともに、終点P濃度の安定化が達成できる。   According to the present invention, the hot metal is preliminarily removed in the converter, and the molten iron is prevented from flowing out when the converter is tilted and the slag is discharged while the hot metal remains in the converter after the de-P treatment. However, refining with a small amount of residual slag becomes possible, and as a result, the total P amount in the furnace at the start of decarburization blowing can be stabilized at a low level. As a result, the amount of refining material such as quick lime used in the decarburization process can be reduced and the end point P concentration can be stabilized.

本発明は、以下のような形態で実施することができる。転炉に装入した溶銑に対して、2CaO・Fe23を含んだ精錬材を、CaO、酸化鉄、その他精錬材とともに添加し、溶銑を底吹きガスで攪拌しつつ、上吹きランスから酸素ガスを吹き付けて、溶銑中の不純成分であるPを酸化除去する。しかるのち、溶銑を炉内に残したまま転炉を傾転させて脱Pスラグを排出し、その後に同一転炉で脱炭吹錬を実施する。 The present invention can be implemented in the following forms. To the hot metal charged in the converter, a refining material containing 2CaO · Fe 2 O 3 is added together with CaO, iron oxide, and other refining materials. Oxygen gas is blown to oxidize and remove P which is an impure component in the hot metal. After that, the converter is tilted while leaving the hot metal in the furnace to discharge the de-P slag, and then decarburization blowing is performed in the same converter.

以下、本発明について、その作用効果を説明する。   The effects of the present invention will be described below.

脱P処理後の高い排滓率を実現するためには脱Pスラグが適度なフォーミング状態であることが重要である。フォーミングは、液体スラグ中にガスが懸濁した状態であり、スラグの表面張力、粘度、密度によって影響されるが、未溶解の固相が存在するとフォーミングは著しく抑制される。従って、未溶解の固体が残存した場合、フォーミングが抑制され、その結果排滓性が大幅に悪化する。   In order to realize a high rejection rate after the P removal treatment, it is important that the P removal slag is in an appropriate forming state. Forming is a state in which a gas is suspended in a liquid slag, and is affected by the surface tension, viscosity, and density of the slag. Therefore, when undissolved solid remains, forming is suppressed, and as a result, the evacuation property is greatly deteriorated.

これに対し、本発明者らが行った実験によれば、2CaO・Fe23を含む精錬材(以降、化合物精錬材と称す)を添加して吹錬することで、CaO分および酸化鉄分をそれぞれ別々に添加する場合に比べて、CaOの溶解が促進され、その結果、脱P処理後の到達[P]濃度(メタル中のPの質量濃度を[P]と示す。以下同様。)が低位安定化することに加え、脱P処理後の排滓率が向上することを見出した。 On the other hand, according to experiments conducted by the present inventors, a refining material containing 2CaO.Fe 2 O 3 (hereinafter referred to as a compound refining material) is added and blown, so that the CaO content and the iron oxide content are reduced. As compared with the case where each is added separately, dissolution of CaO is promoted, and as a result, the reached [P] concentration after de-P treatment (the mass concentration of P in the metal is indicated as [P]; the same applies hereinafter). It has been found that in addition to stabilization at a low level, the rejection rate after de-P treatment is improved.

一例として、図1に化合物精錬材中の2CaO・Fe23濃度(質量%)と、排滓率との関係を示す。本例は300T規模の上底吹き転炉を用いて、全CaO原単位10〜20kg/Tー溶銑、化合物精錬材中のCaO分と全CaO分の質量比(=置換率)が30〜80質量%での結果である。なお、排滓率は、脱P吹錬時に完全に酸化除去されるTiのマスバランスから計算した推定値である。この図より、化合物精錬材中の2CaO・Fe23濃度が30%以上で排滓率が改善していることがわかる。 As an example, FIG. 1 shows the relationship between the 2CaO · Fe 2 O 3 concentration (mass%) in the compound refining material and the rejection rate. In this example, using a 300T scale top-bottom blow converter, the total CaO unit 10-20 kg / T-molten iron, the mass ratio of CaO to the total CaO in the compound refining material (= replacement rate) is 30-80. It is the result in mass%. The rejection rate is an estimated value calculated from the mass balance of Ti that is completely oxidized and removed during de-P blowing. From this figure, it can be seen that the rejection rate is improved when the concentration of 2CaO · Fe 2 O 3 in the compound refining material is 30% or more.

これまで、CaO分の滓化促進を目的とした精錬材の適用が検討された例はあるが、本発明者らは、初めて排滓率までもが向上することを明らかにした。排滓率が向上することで、脱炭処理に持ち越すスラグ量が低減できる上、排滓率のばらつきが減少することにより脱炭後の鋼中[P]濃度のばらつきも低減できる。   Up to now, there has been an example in which application of a refining material for the purpose of promoting hatching of the CaO content has been studied, but the present inventors have clarified that the rejection rate is improved for the first time. By improving the rejection rate, the amount of slag carried over to the decarburization process can be reduced, and by reducing the variation in the rejection rate, the variation in [P] concentration in the steel after decarburization can also be reduced.

これより、本発明の第1発明に係わる精錬法は、転炉にて予備脱P処理を行い、脱P処理後に溶銑を転炉内に残したまま、転炉を傾転させてスラグを排滓する方法において、2CaO・Fe23を30質量%以上、好ましくは50質量%以上含んだ精錬材を添加して吹錬することを特徴とする精錬方法とした。 Thus, in the refining method according to the first invention of the present invention, preliminary de-P treatment is performed in the converter, and the slag is discharged by tilting the converter while leaving the hot metal in the converter after the de-P treatment. In the method of dripping, a refining method is characterized in that a refining material containing 30% by mass or more, preferably 50% by mass or more of 2CaO · Fe 2 O 3 is added and blown.

また、精錬材中の2CaO・Fe23の含有量の増加により、脱りん率も単調増加するが、60mass%以上で飽和する。但し、その上限値は特に規定するものではなく、100mass%でも構わない。 Further, the dephosphorization rate increases monotonously with the increase in the content of 2CaO · Fe 2 O 3 in the smelted material, but saturates at 60 mass% or more. However, the upper limit value is not particularly defined, and may be 100 mass%.

さらに、精錬材中のその他の成分については、Al,Siのいずれか一方または双方、CaO・Fe23、CaO等が挙げられる。また、その含有量は、脱P効率を良好にする観点から、以下の範囲が好ましい。 Furthermore, as for other components in the refining material, one or both of Al and Si, CaO.Fe 2 O 3 , CaO and the like can be mentioned. Further, the content is preferably in the following range from the viewpoint of improving the de-P efficiency.

Al,Siは含有されていれば良いため、含有量の下限値は0%超である。また、上限値は特に規定するものではないが、10%以下とすることが例示できる。また、CaO・Fe23含有量は、50mass%以下とすることが好ましく、下限値は特に規定するものではないが、5%以上とすることが推奨される。さらに、CaO含有量は5〜20mass%とすることが好ましい。残部がある場合は、通常はFe23が含有されている。 Since Al and Si need only be contained, the lower limit of the content is over 0%. Moreover, although an upper limit is not specified in particular, it can be exemplified as 10% or less. The CaO · Fe 2 O 3 content is preferably 50 mass% or less, and the lower limit is not particularly specified, but it is recommended to be 5% or more. Furthermore, the CaO content is preferably 5 to 20 mass%. When there is a balance, usually Fe 2 O 3 is contained.

さらに、本発明者らの実験によれば、予備脱P処理で用いるCaO分として、化合物精錬材中のCaOが、処理で用いる全CaO中に占める質量分率として定義されるCaO置換率(λ:(%)、[1式]で計算)が30%以上である場合に、脱Pが促進し、排滓率が安定化することを見出した。CaO分の一部を化合物精錬材で置き換えることで、生石灰の溶解も速やかに進み、その結果、脱P反応が進み、かつ流動性が向上して排滓率が高位安定化する。
λ=WCaO Flux/WCaO Total×100 ・・・[1式]
ここで、WCaO Flux:化合物精錬材中に含まれるCaO分(kg/t−溶銑)、WCaO Total:転炉内に装入された全CaO分 (kg/t−溶銑)である。
Furthermore, according to the experiments by the present inventors, as the CaO content used in the preliminary de-P treatment, the CaO substitution rate defined as the mass fraction occupied by the CaO in the compound refining material in the total CaO used in the treatment (λ : (%), Calculated by [Expression 1]) is 30% or more, it was found that de-P was promoted and the rejection rate was stabilized. By replacing a part of the CaO component with the compound refining material, the quick lime is rapidly dissolved. As a result, the de-P reaction proceeds, the fluidity is improved, and the rejection rate is highly stabilized.
λ = W CaO Flux / W CaO Total × 100 (1 set)
Here, W CaO Flux is the CaO content (kg / t-molten metal) contained in the compound refining material, and W CaO Total is the total CaO content (kg / t-molten metal) charged in the converter.

これより、本発明の第2発明に係わる精錬法は、化合物精錬材中に含まれるCaO分が、用いる全CaOの30質量%以上であることを特徴とする精錬方法とした。ここで、全CaOのうち30質量%以上を化合物精錬材とする場合に溶融促進効果が十分に得られ、その機構から比率を高めることでその効果は増すため、上限は特に定めるものではなく、適宜、設定すれば良い。   Thus, the refining method according to the second invention of the present invention is a refining method characterized in that the CaO content contained in the compound refining material is 30% by mass or more of the total CaO used. Here, in the case where 30% by mass or more of the total CaO is used as a compound refining material, a melting acceleration effect is sufficiently obtained, and since the effect is increased by increasing the ratio from the mechanism, the upper limit is not particularly defined, What is necessary is just to set suitably.

さらに続けて行った実験において、化合物精錬材を添加することによって、脱炭滓をリサイクルした場合と同等以上のCaO溶解促進効果が得られることを見出した。   In further experiments, it was found that by adding a compound refining material, a CaO dissolution accelerating effect equal to or higher than that obtained by recycling decarburized soot was obtained.

従来、排滓性の確保と、脱P用精錬材の削減を目的に、脱炭滓のホットリサイクルが行われてきたが、脱炭滓から持ち込まれるP分のため、低P鋼の製造は困難であるという欠点があった。   Conventionally, hot recycling of decarburized soot has been carried out for the purpose of ensuring the exhaustability and reducing the refining material for de-P, but because of the P component brought in from the decarburized soot, the production of low P steel is There was a drawback that it was difficult.

これが、本発明の化合物精錬材を使用することにより、脱炭滓リサイクルなしで排滓性を確保することができるようになり、例えば従来技術では対応が困難であった脱炭後の溶銑中[P]濃度が0.015質量%以下の低P鋼の溶製も可能となった。すなわち、化合物精錬材を使用することで、脱炭滓リサイクルなしでも高排滓率が維持できる上、脱炭滓持込分のPが低減されるため、脱炭後[P]が低位安定化した。   By using the compound refining material of the present invention, it becomes possible to ensure the exhaustability without recycling the decarburized soot, for example, in the hot metal after decarburization that was difficult to cope with in the prior art [ P] Low P steel having a concentration of 0.015% by mass or less can be melted. In other words, by using compound refining materials, a high exhaust rate can be maintained without recycling decarburized soot, and the amount of decarburized soot brought in is reduced, so [P] is stabilized at a low level after decarburization. did.

従って、本発明の第3発明に係わる精錬法は、溶銑の脱燐処理に際し、脱炭滓をリサイクルさせないことにより、脱炭滓を20kg/t−溶銑以下とする、本発明の第1または第2発明に記載の精錬方法とした。ここで脱炭滓の量は、炉壁付着分などの不可避的に混入する部分として、実機データのマスバランス解析から求められた最大20kg/t−溶銑との結果から、20kg/t−溶銑以下とした。   Therefore, in the refining method according to the third invention of the present invention, in the dephosphorization treatment of the hot metal, the decarburized iron is not recycled, so that the decarburized metal is 20 kg / t-hot metal or less. 2 It was set as the refining method as described in invention. Here, the amount of decarburized iron is 20 kg / t-molten or less from the result of maximum 20 kg / t-molten iron obtained from mass balance analysis of actual machine data as a part inevitably mixed in such as furnace wall adhesion. It was.

フォーミングはガス発生量も支配因子のひとつであるため、フォーミングの促進には脱炭反応によるCO気泡の発生が効果的である。また、攪拌によってCaOの溶解が促進されるという事実もあり、転炉におけるトップスラグの攪拌は上底吹のガスによるところが大きい。   Since the gas generation amount is one of the controlling factors, the formation of CO bubbles due to the decarburization reaction is effective for promoting the forming. In addition, there is a fact that the dissolution of CaO is promoted by agitation, and the agitation of the top slag in the converter largely depends on the gas at the top and bottom.

脱炭反応の程度は、脱珪反応に消費される分の酸素を除いた脱珪外酸素([2式]で定義。単位Nm3/t−溶銑)で整理できる。本発明者らの実験によれば、5Nm3/t−溶銑以上の脱珪外酸素を投入した場合に、より排滓率が向上した。
O2 ex. De-Si=QO2 gas+QO2 sol.−Δ[Si]/28×224 ・・・[2式]
ここで、QO2 ex. De-Si:脱珪外酸素(Nm3/t−投入銑鉄)、QO2 gas:脱P処理中に上底吹の酸素分として供給される気体酸素(Nm3/t−投入銑鉄)、QO2 sol.:脱P処理中に鉄鉱石、ダストあるいは本発明で用いる精錬材中の酸化鉄として供給される酸素(Nm3/t−投入銑鉄)、Δ[Si]:酸素添加前後の鋼中Si濃度の差(mass%)である。
The degree of the decarburization reaction can be arranged by the desiliconized oxygen (defined by [Formula 2], unit Nm 3 / t-molten iron) excluding the oxygen consumed for the desiliconization reaction. According to the experiments by the present inventors, the removal rate was further improved when deoxygenated oxygen of 5 Nm 3 / t-molten or higher was introduced.
Q O2 ex. De-Si = Q O2 gas + Q O2 sol.− Δ [Si] / 28 × 224 (2 formulas)
Here, Q O2 ex. De-Si : oxygen outside desiliconization (Nm 3 / t-input pig iron), Q O2 gas : gaseous oxygen (Nm 3 / t-input pig iron), Q O2 sol . : Oxygen (Nm 3 / t-input pig iron) supplied as iron ore, dust or iron oxide in the refining material used in the present invention during de-P treatment, Δ [Si] : Difference in Si concentration (mass%) in steel before and after oxygen addition.

本発明の精錬材の平均組成は以下のような範囲が望ましい。CaOとFe23の和で全体の70mass%以上を占め、残部はAl,Mn,Mg,P,Siの1種以上の酸化物で構成される。P25濃度は2mass%以下、さらには1mass%以下が好ましい。CaO濃度は20−70mass%であるが、30−50%CaOが高い効果を示す。 The average composition of the refining material of the present invention is preferably in the following range. The sum of CaO and Fe 2 O 3 occupies 70 mass% or more of the whole, and the balance is composed of one or more oxides of Al, Mn, Mg, P, and Si. The P 2 O 5 concentration is preferably 2 mass% or less, more preferably 1 mass% or less. The CaO concentration is 20-70 mass%, but 30-50% CaO shows a high effect.

ここで、以上に述べてきた精錬材の製法の一例を以下に示す。   Here, an example of the manufacturing method of the refining material described above is shown below.

原料として、粉状の石灰石と粉状の鉄鉱石を主原料とし、燃料となる粉状の炭材と、返鉱を該原料に混合した配合原料を、焼結機で焼結して製造することを基本とし、さらに以下の1)〜4)の条件も併せて、適宜実施することにより、本発明の製錬材を製造できる。なお、ここで返鉱とは、製品の精錬材のうち、原料に戻す、5mm未満の部分を言う。   As a raw material, powdery limestone and powdered iron ore are used as the main raw materials, and powdered carbonaceous material used as a fuel and a blended raw material mixed with the returned ore into the raw material are sintered by a sintering machine. Based on this, the smelting material of the present invention can be produced by appropriately carrying out the following conditions 1) to 4) together. In addition, return ore here means the part less than 5 mm returned to a raw material among the refined materials of a product.

1)石灰石と鉄鉱石のどちらか一方、あるいは両方の粒度を3mm以下とすること
2)原料中のCa/Fe比をモル比で2.5〜1.5の範囲とすること
3)返鉱を配合原料中40%以上循環すること
4)配合原料準備に際して、石灰石と鉄鉱石をあらかじめ高速攪拌ミキサーで解砕・混合し、その後炭材を添加して造粒することにより、炭材を原料粒子の周りに存在させること。
1) The particle size of either or both of limestone and iron ore should be 3 mm or less 2) The Ca / Fe ratio in the raw material should be in the range of 2.5 to 1.5 3) Returning 4) When preparing the blended raw material, limestone and iron ore are pulverized and mixed in advance with a high-speed stirring mixer, and then the charcoal is added and granulated to prepare the raw material. Be present around the particles.

以下に、300t規模の上底吹転炉を用いて、溶銑の脱燐処理を行い、脱燐処理後に溶銑を転炉内に残したまま、転炉を傾転させてスラグを排滓し、その後、同一転炉で脱炭処理を行った。その実施例及び比較例を示す。   Below, using a 300 t scale upper bottom blow converter, the hot metal is dephosphorized, and after the dephosphorization process, the hot metal is left in the converter and the converter is tilted to remove slag, Then, decarburization processing was performed in the same converter. The Example and a comparative example are shown.

実施例、比較例ともに、装入溶銑温度1300−1320℃、溶銑配合率(転炉装入主原料に占める溶銑量の比率で、溶銑質量/(溶銑質量+スクラップ質量+冷銑質量)×100で計算される)は90−92質量%、溶銑中[Si]濃度は0.38−0.42質量%、おなじく溶銑中[P]濃度は0.100−0.105質量%、平均送酸速度(チャージ全体の吹込酸素量を吹錬時間で割ったもの)は29000−30000Nm3/h、脱燐処理後温度は1350−1370℃である。 In both Examples and Comparative Examples, the molten iron temperature was 1300 to 1320 ° C., and the hot metal content was (the ratio of the amount of molten iron in the converter charging main raw material, the molten metal mass / (molten metal mass + scrap mass + cold iron mass) × 100. 90-92% by mass), [Si] concentration in the hot metal is 0.38-0.42% by mass, and similarly [P] concentration in the hot metal is 0.100-0.105% by mass. The rate (the amount of oxygen blown in the entire charge divided by the blowing time) is 29000-30000 Nm 3 / h, and the temperature after dephosphorization is 1350-1370 ° C.

脱炭滓は所定の量となるよう炉内に残し、炉を数回傾動して固化させた後に受銑した。脱炭滓の残留量は、排滓時の炉の傾動角度から推定した値を用いた。また、炉を完全に倒立させて完全排滓を行っても、炉壁等に付着したスラグが不可避的に残留するが、その量は実機データのマスバランス解析から求めた平均値である7.0kg/tとおいた。   The decarburized soot was left in the furnace so as to be a predetermined amount, and the furnace was tilted several times to be solidified and received. As the residual amount of decarburized soot, a value estimated from the tilt angle of the furnace at the time of exhausting was used. In addition, even if the furnace is completely inverted and exhausted completely, slag adhering to the furnace wall remains unavoidably, but the amount is an average value obtained from mass balance analysis of actual data. It was set at 0 kg / t.

用いた化合物精錬材は表2に示す組成のものを用いた。また、脱炭滓の平均組成も表2に併せて示す。脱Pに用いた精錬材の量を表1に示す。これらの量は、投入銑鉄1tあたりの質量(kg)として示した。また、これらの精錬材に加え、吹止温度の制御のために鉄鉱石を投入した。   The compound refining material used has the composition shown in Table 2. Table 2 also shows the average composition of the decarburized soot. Table 1 shows the amount of refining material used for de-P. These amounts are shown as mass (kg) per ton of pig iron. In addition to these refining materials, iron ore was added to control the blowing temperature.

尚、本発明による精錬材は、粒度1−3mmに調整した石灰石、鉄鉱石およびコークスに水分を添加して混合造粒したものを焼結機で焼結する方法により製造した。   In addition, the refined material by this invention was manufactured by the method of sintering with the sintering machine what added the water | moisture content to the limestone adjusted to the particle size of 1-3 mm, iron ore, and coke, and granulated.

精錬材のサイズは前チャージの残留スラグである脱炭滓を除いて、5−50mm以下程度のサイズのものを用いた。生石灰中のCaO分は95%であり残部は水分などの揮発分であった。脱P処理終了後、溶銑を炉内に残したまま転炉を傾転させてスラグを排出し、しかる後に生石灰、鉄鉱石を投入して脱炭吹錬を行った。脱炭吹錬時に新たに投入するCaO分は約20kg/t−溶銑とし、生石灰で添加した。   The size of the refining material was about 5-50 mm or less, excluding the decarburized soot that was the residual slag of the precharge. The CaO content in quicklime was 95%, and the balance was volatiles such as moisture. After completion of the de-P treatment, the converter was tilted while the hot metal was left in the furnace to discharge slag, and then quick lime and iron ore were added to perform decarburization blowing. The CaO content newly added at the time of decarburization blowing was about 20 kg / t-molten iron and added with quick lime.

Figure 0004772454
Figure 0004772454

Figure 0004772454
Figure 0004772454

吹錬結果を判断する基準として、脱炭後の鋼中[P]濃度を用いた。また、その制御性の因子として、脱P処理後の鉄中[P]と、排滓率を調査した。脱炭後の鋼中[P]濃度は脱炭期の酸素吹錬停止後にサブランスを用いて炉内から採取したメタルをQV分析(発光分光分析)法により分析した値を用いた。脱P後[P]には、同様に脱P期の酸素吹錬停止後にサブランスを用いて炉内から採取したメタルをQV法により分析した値を用いた。   [P] concentration in steel after decarburization was used as a standard for judging the blowing result. Moreover, as the controllability factor, the iron [P] after the de-P treatment and the rejection rate were investigated. As the [P] concentration in the steel after decarburization, a value obtained by analyzing the metal collected from the furnace using a sub lance after stopping the oxygen blowing during the decarburization period by the QV analysis (emission spectroscopic analysis) method was used. Similarly, for [P] after de-P, a value obtained by analyzing the metal collected from the furnace using a sub lance after stopping the oxygen blowing in the de-P phase by the QV method was used.

また、排滓率は、マスバランス計算で求めた排出前の炉内スラグ量SVP Total(kg/t−投入銑鉄)と、受滓台車の秤量値から求めた排出スラグ量SVP Ex.(kg/t−投入銑鉄)から、SVP Total/SVP Ex×100として求めた。操業条件の範囲が狭い範囲で一定している場合は、あらかじめ上記の値と排滓時の傾動角度の関係を調査し、その結果に基づいて、排滓率を傾動角度から推定しても実行上は問題ない。 In addition, the discharge rate is determined by calculating the amount of slag in the furnace SV P Total (kg / t – input pig iron) before discharge obtained by mass balance calculation and the amount of discharged slag SV P Ex. kg / t-input pig iron) and calculated as SV P Total / SV P Ex × 100. If the range of operating conditions is constant within a narrow range, investigate the relationship between the above value and the tilt angle at the time of rejection, and execute it even if the rejection rate is estimated from the tilt angle based on the result. Above is no problem.

比較例1−3をベースに実施例1−9を評価すると、脱炭処理後の鋼中[P]濃度が低減しており良好な処理結果が得られている。これは化合物精錬材を用いることで、またそのCaO置換率を増やすこと、さらに、脱炭滓の量を低減することで排滓率が向上し、脱炭処理に持ち越す系内のPの量が低減できた。   When Example 1-9 is evaluated based on Comparative Example 1-3, the [P] concentration in the steel after the decarburization treatment is reduced, and a good treatment result is obtained. This is because the compound refining material is used, the CaO substitution rate is increased, and the amount of P in the system carried over to the decarburization treatment is improved by reducing the amount of decarburized soot. Reduced.

精錬材中の2CaO・Fe23+CaO・Fe23濃度と排滓率の関係Relationship between concentration of 2CaO · Fe 2 O 3 + CaO · Fe 2 O 3 in refining material and rejection rate

Claims (2)

転炉容器内で前チャージの脱炭滓を脱燐用造滓材として熱間で再使用して、転炉にて溶銑の脱燐処理を行い、脱燐処理後に溶銑を転炉内に残したまま、転炉を傾転させてスラグを排滓し、その後、同一転炉で脱炭処理を行う、溶銑の精錬方法において、
前記脱燐処理と引き続く排滓工程において、前チャージの脱炭滓再使用量を7kg/t−溶銑以上、24.9kg/t−溶銑以下とし、2CaO・Fe23 30質量%以上含んだ精錬材を添加し、該添加した精錬材によって添加されるCaO量を溶銑脱燐処理で転炉に装入された全CaO量で割った比で表されるCaO置換率λ(%)を30%以上としてCO気泡の発生によりフォーミングを促進させることを特徴とする溶銑の精錬方法。
In the converter vessel, the pre-charged decarburized iron is reused hot as a dephosphorizing material, and the hot metal is dephosphorized in the converter, and after the dephosphorizing treatment, the hot metal is left in the converter. In the hot metal refining method, the converter is tilted and the slag is exhausted and then decarburized in the same converter.
In the dephosphorization step subsequent to the dephosphorization treatment, the amount of reuse of the precharged decarburized iron is set to 7 kg / t-molten metal or more and 24.9 kg / t-molten metal or less, and contains 2CaO · Fe 2 O 3 in an amount of 30 mass% or more. The refining material is added , and the CaO substitution rate λ (%) expressed by the ratio obtained by dividing the amount of CaO added by the added refining material by the total amount of CaO charged into the converter by the hot metal dephosphorization treatment is A hot metal refining method characterized in that forming is promoted by generating CO bubbles at 30% or more .
前記2CaO・Fe2CaO · Fe 22 O 3Three を30質量%以上含んだ精錬材とは、CaOとFeRefining material containing 30 mass% or more of CaO and Fe 22 O 3Three の和で全体の70mass%以上を占め、残部はAl、Mn、Mg、P、Siの1種以上の酸化物で構成される精錬剤であることを特徴とする請求項1に記載の溶銑の精錬方法。The refining agent is composed of one or more oxides of Al, Mn, Mg, P, and Si. Refining method.
JP2005310927A 2005-10-26 2005-10-26 Hot metal refining method Active JP4772454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310927A JP4772454B2 (en) 2005-10-26 2005-10-26 Hot metal refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310927A JP4772454B2 (en) 2005-10-26 2005-10-26 Hot metal refining method

Publications (2)

Publication Number Publication Date
JP2007119814A JP2007119814A (en) 2007-05-17
JP4772454B2 true JP4772454B2 (en) 2011-09-14

Family

ID=38143959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310927A Active JP4772454B2 (en) 2005-10-26 2005-10-26 Hot metal refining method

Country Status (1)

Country Link
JP (1) JP4772454B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695488B2 (en) * 2005-10-26 2011-06-08 新日本製鐵株式会社 Hot metal refining material and hot metal refining method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798616A (en) * 1980-12-09 1982-06-18 Denki Kagaku Kogyo Kk Dephosphorizing agent for molten iron
JPS5819421A (en) * 1981-07-27 1983-02-04 Nippon Kokan Kk <Nkk> Manufacture of steel with converter
JP2000144227A (en) * 1998-11-10 2000-05-26 Nkk Corp Production of dephosphorizing and refining material for molten iron
JP2000290714A (en) * 1999-04-08 2000-10-17 Nkk Corp Method for refining molten iron
JP4788013B2 (en) * 1999-12-21 2011-10-05 Jfeスチール株式会社 Method for producing low phosphorus hot metal
JP2002371311A (en) * 2001-04-13 2002-12-26 Osaka Koukai Kk Method for dephosphorizing molten metal, dephosphorizing agent with low-temperature slag forming property therefor, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2007119814A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5408369B2 (en) Hot metal pretreatment method
WO1995001458A1 (en) Steel manufacturing method using converter
JP4848757B2 (en) Hot metal dephosphorization method
JP5807720B2 (en) Hot metal refining method
JP6693536B2 (en) Converter steelmaking method
JP5408379B2 (en) Hot metal pretreatment method
JP4977870B2 (en) Steel making method
JP5983492B2 (en) Hot metal pretreatment method
JP5061545B2 (en) Hot metal dephosphorization method
JP5967139B2 (en) Hot metal pretreatment method
JP4772454B2 (en) Hot metal refining method
JP3790414B2 (en) Hot metal refining method
JP3885499B2 (en) Converter steelmaking method
JP5272378B2 (en) Hot metal dephosphorization method
JP5983900B1 (en) Hot metal pretreatment method
JP2003239009A (en) Dephosphorization refining method of hot metal
JP3711835B2 (en) Sintering agent for hot metal dephosphorization and hot metal dephosphorization method
JP4609010B2 (en) Steel manufacturing method
JP4904858B2 (en) Hot metal dephosphorization method
JP5979017B2 (en) Hot metal refining method
JP4224197B2 (en) Hot metal dephosphorization method with high reaction efficiency
JP6565690B2 (en) Pretreatment method of hot metal in chaos car
JP3793390B2 (en) Hot metal desiliconization and desulfurization methods
JP3742543B2 (en) Hot metal desulfurization method
JP2004107735A (en) Method for efficiently dephosphorizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4772454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350