JP2011202200A - Slopping prevention method - Google Patents

Slopping prevention method Download PDF

Info

Publication number
JP2011202200A
JP2011202200A JP2010068095A JP2010068095A JP2011202200A JP 2011202200 A JP2011202200 A JP 2011202200A JP 2010068095 A JP2010068095 A JP 2010068095A JP 2010068095 A JP2010068095 A JP 2010068095A JP 2011202200 A JP2011202200 A JP 2011202200A
Authority
JP
Japan
Prior art keywords
blowing
slopping
slag
hot metal
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010068095A
Other languages
Japanese (ja)
Other versions
JP5585151B2 (en
Inventor
Harukiyo Tokuda
玄聖 徳田
Takatomo Endo
隆智 遠藤
Masaki Miyata
政樹 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010068095A priority Critical patent/JP5585151B2/en
Publication of JP2011202200A publication Critical patent/JP2011202200A/en
Application granted granted Critical
Publication of JP5585151B2 publication Critical patent/JP5585151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a slopping prevention method by which slopping can be prevented without reducing oxygen feeding speed even under high speed feeding of oxygen, and an amount of use of carboneceous material can be reduced and an inexpensive facility cost is actualized.SOLUTION: By using a top-bottom blowing type converter, the top-blowing oxygen is blown for 4-8 min toward molten iron at a top-blowing oxygen flow rate of 2.0-4.0 Nm/min/ton, and iron oxide of Mkg (10≤M≤30) per ton of the molten iron is charged in a lump or intermittently into the converter during elapse of 1-4 min from the blowing start of the top-blowing oxygen, and slag basicity (CaO%/SiO%) and T. Fe concentration at the blowing-finish time of the blowing oxygen are controlled to 2.0-2.5 and 5-15%, respectively and thus, a dephosphorizing treatment of the molten iron is performed. Then, the carbonaceous material of 0.4-1.0 Kg per ton of the molten iron is blown into a slag layer through a sub-lance layer at a speed of 0.4-1.0 Kg/min from the point of time when time T (T≥0) calculated by using {26/(M-1.4)-1.0}≤T≤{26/(M-1.4)} has passed after the charging completion time of the iron oxide. Thereby, the slopping during the dephosphorizing treatment is prevented.

Description

本発明は、スロッピング防止方法に関し、具体的には、転炉型の精錬容器を用いて、ホタル石を用いずに、気体酸素や固体酸素を使用して脱珪と脱燐を同時に行う溶銑予備処理におけるスロッピングを防止する方法に関する。   TECHNICAL FIELD The present invention relates to a method for preventing slopping, and specifically, using a converter-type smelting vessel, and without using fluorite, the use of gaseous oxygen or solid oxygen to simultaneously perform desiliconization and dephosphorization. The present invention relates to a method for preventing slopping in preliminary processing.

近年、溶銑を脱炭して鋼を製造するに当り、製造コストの低減や品質の向上等を目的に、予め脱珪、脱燐、脱硫等の処理を行う溶銑予備処理が実施されている。特に上底吹きが可能な転炉型の精錬容器を用いて、脱珪と脱燐を同時に行う溶銑予備処理が実施されている。   In recent years, when steel is produced by decarburizing hot metal, a hot metal pretreatment for performing treatments such as desiliconization, dephosphorization, and desulfurization has been performed in advance for the purpose of reducing production costs and improving quality. In particular, using a converter-type smelting vessel capable of top-bottom blowing, a hot metal preliminary treatment is performed in which desiliconization and dephosphorization are performed simultaneously.

脱珪により溶銑中のSiが酸化されてSiOとなるので、スラグ中のCaO質量濃度とSiO質量濃度との比である塩基度(CaO/SiO)が低下して、スラグの融点が低下する。また、脱燐反応に必要なスラグ中のFeOも同様にスラグの融点を下げる。 Since Si in the hot metal is oxidized to SiO 2 by desiliconization, the basicity (CaO / SiO 2 ), which is the ratio between the CaO mass concentration and the SiO 2 mass concentration in the slag, is reduced, and the melting point of the slag is reduced. descend. Further, FeO in slag necessary for the dephosphorization reaction similarly lowers the melting point of slag.

その結果、溶融化したスラグが形成され、これと同時に投入された酸素源は、溶銑中の炭素を酸化してガスを発生させる。このとき、スラグがフォーミング(泡化)し、精錬容器のフリーボード以上になると吹き溢れてスロッピングが発生する。スロッピングの発生により、鉄歩留りが低下するのみならず、一時的な操業停止等の操業トラブルが発生することもある。   As a result, a molten slag is formed, and the oxygen source input at the same time oxidizes carbon in the hot metal to generate gas. At this time, when the slag forms (foams) and becomes more than the free board of the smelting vessel, the slag is blown over and slopping occurs. The occurrence of slopping not only lowers the iron yield, but also may cause operational troubles such as temporary suspension of operation.

特許文献1には、トーピードカー内の溶銑に石灰化合物またはコークスを投入し、固体酸化物および気体酸素による酸素投入量とスラグ塩基度を指標にしたスロッピング発生臨界を求め、酸素投入量を制御することによって、スロッピングを抑制する発明が開示されている。   In Patent Document 1, a lime compound or coke is introduced into the hot metal in a torpedo car, and the criticality of slopping using the solid oxide and gaseous oxygen as an index and the slag basicity as indices are obtained, and the oxygen input is controlled. Thus, an invention for suppressing slopping is disclosed.

特許文献2には、転炉を用いる脱燐予備処理において、サブランスを用いて炭材をスラグに吹き込むことにより脱燐吹錬終了後のスラグフォーミングを鎮静することによって、スロッピングを防止する発明(スラグフォーミング防止方法)が開示されている。   Patent Document 2 discloses an invention for preventing slopping by subduing slag forming after dephosphorization blowing by blowing a carbonaceous material into slag using a sublance in dephosphorization pretreatment using a converter ( Slag forming prevention method) is disclosed.

特開平10−195515号公報Japanese Patent Laid-Open No. 10-195515 特開2000ー160222号公報JP 2000-160222 A

特許文献1により開示された発明は、トーピード型の反応容器を対象とするものであり、転炉型の反応容器にはそのまま適用できないとともに、スロッピング発生領域で酸素投入量を低下することから高速で脱燐処理を行うことができない。   The invention disclosed by Patent Document 1 is intended for a torpedo type reaction vessel, and cannot be applied as it is to a converter type reaction vessel, and also reduces the amount of oxygen input in the slopping generation region. The dephosphorization process cannot be performed.

特許文献2により開示された発明は、吹錬終了後のフォーミング鎮静を図るので、脱燐を促進する精錬剤としての酸化鉄(鉄鉱石やスケール)の投入との関係は何ら考慮しない。さらに、高速送酸で短時間脱燐処理を行うと送酸中のスロッピング防止が大きな課題になるところ、特許文献2にはそのような高速送酸に伴うスロッピングの解決手法も何ら開示されていない。   Since the invention disclosed by Patent Document 2 aims at forming calming after the end of blowing, no consideration is given to the relationship with the input of iron oxide (iron ore or scale) as a refining agent that promotes dephosphorization. Furthermore, when dephosphorization is performed for a short time with high-speed acid supply, the prevention of slopping during acid supply becomes a major issue. Patent Document 2 discloses a method for solving such slopping accompanying high-speed acid supply. Not.

本発明の目的は、上底吹き型の転炉を用いて溶銑脱燐処理を高速かつ高効率で行う際に問題となるスロッピングを防止する方法を提供することであり、より具体的には、上吹き酸素の流量を2.0〜4.0Nm/min/tonとした条件下で、操業上問題になるようなスロッピングを発生することなく、上吹き酸素の供給時間4〜8分間で80%以上の脱燐率を安定して得られる方法を提供することである。 An object of the present invention is to provide a method for preventing slopping, which is a problem when performing hot metal dephosphorization processing at high speed and high efficiency using a top-bottom blown converter, more specifically. Under the condition that the flow rate of the top blown oxygen is 2.0 to 4.0 Nm 3 / min / ton, the supply time of the top blown oxygen is 4 to 8 minutes without causing slopping that causes an operational problem. Is to provide a method for stably obtaining a dephosphorization rate of 80% or more.

スロッピングの発生原因は、大別すると、二つ考えられる。
一つは、酸素供給条件であって、上吹き酸素や副原料として転炉内に投入されるスケールや鉄鉱石等の酸素源が溶銑中のCと反応して発生したCOガスがスラグ層中を上昇する際における、そのガス量や気泡の分散状況である。これらがスロッピングの発生に関係する。
There are two possible causes of slopping.
One is oxygen supply conditions, and the CO gas generated by the reaction of oxygen source such as scale or iron ore, which is introduced into the converter as top blown oxygen or auxiliary material, with C in the hot metal is in the slag layer. The amount of gas and the state of dispersion of bubbles when rising. These are related to the occurrence of slopping.

もう一つは、スラグ生成条件であって、COガスがスラグ層中を上昇する際における、転炉内に存在するスラグの組成や温度、スラグ量などである。これらが、COガスのスラグ層からの抜け難さやスラグの炉外へのこぼれ易さに関係する。   The other is slag generation conditions, such as the composition, temperature, and slag amount of slag present in the converter when the CO gas rises in the slag layer. These are related to the difficulty of detaching CO gas from the slag layer and the spillability of slag outside the furnace.

これら二つのスロッピングの発生原因のうちスラグ生成条件は、本発明では考慮しない。本発明の課題は、高速かつ高効率の溶銑脱燐法を行うことに起因したスロッピングの防止であるため、スラグ量の減少やスラグ組成の変更を行うには、高速かつ高効率の溶銑脱燐法そのものを全体的に検討する必要があるからである。例えば、転炉に装入する溶銑やスクラップから持ち込まれるSi量を調整すれば、スラグの生成量を低減できるのでスロッピングの発生を抑制できるものの、脱珪処理やその脱珪スラグの除去等のための時間と手間を要することとなり、その解決の手段や工夫が別途必要になるために結果的に溶銑脱燐法を全体的に検討することになってしまう。また、脱燐処理後のスラグ成分は、高能率で溶銑の脱燐率を80%以上とするという基本目的の達成のために相当程度制約されており、スロッピングの発生防止のために調整できる余地は少ない。   Of these two causes of slopping, the slag generation condition is not considered in the present invention. An object of the present invention is to prevent slopping caused by performing a high-speed and high-efficiency hot metal dephosphorization method. Therefore, in order to reduce the amount of slag or change the slag composition, high-speed and high-efficiency hot metal desorption This is because it is necessary to consider the phosphorus method itself. For example, if the amount of Si brought in from the hot metal or scrap charged in the converter can be adjusted, the amount of slag can be reduced, so that the occurrence of slopping can be suppressed, but the desiliconization treatment and removal of the desiliconized slag, etc. This requires time and labor to solve the problem, and means and solutions for the solution are separately required. As a result, the hot metal dephosphorization method will be examined as a whole. In addition, the slag component after the dephosphorization treatment is considerably restricted to achieve the basic purpose of achieving a high efficiency and a dephosphorization rate of the hot metal of 80% or more, and can be adjusted to prevent the occurrence of slopping. There is little room.

さらに、COガスの生成状況に関しても、本発明では高速で溶銑脱燐処理を行うことを前提とするため、上吹き酸素の流量を、2.0Nm/min/ton以上4.0Nm/min/ton以下と極力高くして吹錬することを基本とする。このため、上吹き酸素の流量も、調整できる余地は少ない。 Further, regarding the generation state of the CO gas, since the present invention is premised on performing hot metal dephosphorization at a high speed, the flow rate of top blown oxygen is set to 2.0 Nm 3 / min / ton or more and 4.0 Nm 3 / min. Basically, it should be blown as high as possible. For this reason, there is little room for adjusting the flow rate of the top blown oxygen.

本発明者らは、このような制約条件下において、溶銑脱燐処理においてスロッピングの防止のために調整可能な条件を鋭意検討した結果、溶銑脱燐処理には副原料(酸化剤)としてスケールや鉄鉱石等の酸化鉄源を必ず用いるので、その酸化鉄源の使用方法が溶銑脱燐処理中のスロッピングの発生に影響することを知見した。   The present inventors have intensively studied conditions that can be adjusted to prevent slopping in hot metal dephosphorization treatment under such constraint conditions. As a result, the hot metal dephosphorization treatment is scaled as an auxiliary material (oxidant). It was found that iron oxide sources such as iron ore are always used, and that the method of using the iron oxide source affects the occurrence of slopping during hot metal dephosphorization.

また、本発明者らは、特許文献1、2にも記載される、コークス粉等の炭材をスラグ中に吹き込んでスラグフォーミングを鎮静する技術を、スロッピングの防止のために用いることもできることを知見した。   In addition, the present inventors can also use the technique described in Patent Documents 1 and 2 for blowing carbonaceous materials such as coke powder into slag to calm down slag forming in order to prevent slopping. I found out.

本発明は、これらの新規な知見に基づいてなされたものである。
本発明は、上吹き酸素を2.0〜4.0Nm/min/tonの流量で上底吹き型の転炉に収容される溶銑へ向けて4〜8分間吹き付け、かつ、上吹き酸素の吹き付け開始から1〜4分経過中に溶銑トン当たりMkgの酸化鉄を一括して又は断続的にこの転炉内に投入して、上吹き酸素の吹付け終了時のスラグ塩基度(CaO質量%/SiO質量%)を2.0〜2.5とするとともにT.Fe濃度を5〜15質量%として溶銑を脱燐処理する際に、酸化鉄の投入完了時点から下記(1)式を用いて計算される時間T(min)が経過した時点から、溶銑トン当たり0.4〜1.0kgの炭材を0.4〜1.0kg/minの速度でスラグ層内に吹き込むことを特徴とするスロッピング防止方法である。
{26/(M−1.4)−1.0}≦T≦{26/(M−1.4)}・・・・・・(1)
ただし、10≦M≦30であり、T≧0である。
The present invention has been made based on these novel findings.
In the present invention, top blown oxygen is blown at a flow rate of 2.0 to 4.0 Nm 3 / min / ton toward hot metal contained in a top bottom blown type converter for 4 to 8 minutes. In 1 to 4 minutes from the start of spraying, Mkg of iron oxide per ton of molten iron is charged all at once or intermittently into this converter, and the slag basicity (CaO mass% at the end of spraying of top-blown oxygen) / SiO 2 % by mass) is set to 2.0 to 2.5 and T.I. When the hot metal is dephosphorized at an Fe concentration of 5 to 15% by mass, from the time when the time T (min) calculated using the following equation (1) has elapsed since the completion of the iron oxide addition, A slopping prevention method characterized by blowing 0.4 to 1.0 kg of carbonaceous material into a slag layer at a rate of 0.4 to 1.0 kg / min.
{26 / (M-1.4) -1.0} ≦ T ≦ {26 / (M-1.4)} (1)
However, 10 ≦ M ≦ 30 and T ≧ 0.

この本発明では、炭材を、サブランスを通じてスラグ層内に吹き込むことが望ましい。   In the present invention, it is desirable to blow the carbon material into the slag layer through the sub lance.

本発明により、高速送酸下でも送酸速度を低下させることなくスロッピングを防止できる。また、本発明により、炭材の使用量も削減できるとともに、サブランスを使用することから安価な設備費でスロッピングを防止できる。   According to the present invention, slapping can be prevented without lowering the acid feeding rate even under high-speed acid feeding. Further, according to the present invention, the amount of carbonaceous material used can be reduced, and the use of a sub lance can prevent slopping at a low equipment cost.

図1は、酸化鉄の投入量とスロッピング開始時間(スケール投入完了からスロッピング発生までの時間)との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of iron oxide input and the slapping start time (the time from the completion of scale injection to the occurrence of slopping). 図2は、炭材の投入速度とスロッピング発生指数との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the charcoal charging speed and the slipping occurrence index. 図3は、実施例における溶銑予備処理の概要を模式的に示す説明図である。FIG. 3 is an explanatory view schematically showing an outline of the hot metal pretreatment in the embodiment.

以下、本発明を実施するための形態を説明する。
はじめに、スロッピングの発生と酸化鉄源の使用条件との関係を説明する。
スロッピングの発生には、溶銑処理条件が深く関係する。そこで、溶銑量や脱燐処理前後の溶銑成分、メインランスからの送酸速度、使用する脱燐剤の種類と量、脱燐処理後のスラグ成分等の条件を、表1に示すように定めて、スロッピングの発生と酸化鉄源(スケール、鉄鉱石)の使用との関係を調査した。
Hereinafter, modes for carrying out the present invention will be described.
First, the relationship between the occurrence of slopping and the use conditions of the iron oxide source will be described.
The occurrence of slopping is closely related to the hot metal treatment conditions. Therefore, as shown in Table 1, conditions such as the amount of hot metal, the hot metal component before and after the dephosphorization treatment, the acid feed rate from the main lance, the type and amount of the dephosphorizing agent used, the slag component after the dephosphorization treatment, etc. The relationship between the occurrence of slopping and the use of iron oxide sources (scale, iron ore) was investigated.

Figure 2011202200
Figure 2011202200

本発明において対象とするスラグ組成の範囲は、脱燐処理終了時のスラグの塩基度(スラグ中のCaO質量濃度とSiO質量濃度との比:(CaO%/SiO%))が2.0以上2.5以下であって、スラグ中の酸化鉄質量濃度(代表値としてT.Fe%)が5%以上15%以下とする。 The range of the slag composition targeted in the present invention is such that the basicity of slag at the end of dephosphorization treatment (ratio of CaO mass concentration to SiO 2 mass concentration in slag: (CaO% / SiO 2 %)) is 2. The iron oxide mass concentration in the slag (T.Fe% as a representative value) is 5% or more and 15% or less.

スラグの塩基度が2.5を超えるような高塩基度では、スラグのフォーミングはあまり問題とならず、代わりに生石灰の投入原単位の増加や処理後スラグ中の未滓化CaO濃度等が問題となるからである。一方、スラグの塩基度が2.0未満のような低塩基度では、T.Fe濃度を5〜15%としても上吹き酸素の供給時間が4〜8分間という短時間では、溶銑の脱燐率80%以上を達成できない場合が生じるので、スラグの塩基度は2.0以上とする。   When the basicity of the slag exceeds 2.5, the slag forming does not cause much problem. Instead, the increase in the input unit of quick lime and the undehydrated CaO concentration in the treated slag are problematic. Because it becomes. On the other hand, when the basicity of the slag is low, such as less than 2.0, T.I. Even if the Fe concentration is 5 to 15%, it may not be possible to achieve the hot metal dephosphorization rate of 80% or more in a short time of 4 to 8 minutes, so the basicity of the slag is 2.0 or more. And

ここで、酸化鉄源の投入時期は、本発明に係る脱燐処理の上吹き送酸継続時間が全部で4分間以上8分間以下であることと、本発明では酸化鉄の投入後に炭材の添加を予定することから、上吹き送酸開始から1分間以上4分間以下の間に、酸化鉄を炉上バンカーから一括して又は断続的に転炉内の溶銑に投入する。   Here, the timing of supplying the iron oxide source is such that the duration of acid transported over the dephosphorization treatment according to the present invention is 4 minutes or more and 8 minutes or less in total. Since the addition is scheduled, iron oxide is charged from the furnace bunker all at once or intermittently into the hot metal in the converter for 1 minute or more and 4 minutes or less from the start of top blowing acid.

この調査の結果、酸化鉄の投入量の増加に応じて、酸化鉄の投入完了からスロッピング発生までの時間(本明細書では「スロッピング開始時間」という)が短くなるという関係があることが分かった。   As a result of this investigation, there is a relationship that the time from the completion of iron oxide input to the occurrence of slapping (referred to as “slipping start time” in this specification) becomes shorter as the amount of iron oxide input increases. I understood.

図1は、酸化鉄の投入量とスロッピング開始時間(スケール投入完了からスロッピング発生までの時間)との関係を示すグラフである。
表1に示す条件下では、酸化鉄の投入量M(kg/ton)とスロッピング開始時間T’(min)とは、図1にグラフで示すように、(2)式により示される関係にあることがわかる。
{26/(M−1.4)−0.5}≦T’≦{26/(M−1.4)+0.5} ・・・(2)
ただし、(2)式において、10≦M≦30である。
FIG. 1 is a graph showing the relationship between the amount of iron oxide input and the slapping start time (the time from the completion of scale injection to the occurrence of slopping).
Under the conditions shown in Table 1, the input amount M (kg / ton) of iron oxide and the slopping start time T ′ (min) are in the relationship shown by the equation (2) as shown in the graph of FIG. I know that there is.
{26 / (M−1.4) −0.5} ≦ T ′ ≦ {26 / (M−1.4) +0.5} (2)
However, in the formula (2), 10 ≦ M ≦ 30.

なお、酸化鉄の種類の影響は、酸化鉄がスケールであっても鉄鉱石(粒径10mm以下)であっても、試験した範囲では有意な差は確認されなかった。
次に、スロッピングの発生防止と炭材の投入条件との関係を説明する。
In addition, as for the influence of the kind of iron oxide, a significant difference was not confirmed in the tested range, whether the iron oxide was a scale or an iron ore (particle size of 10 mm or less).
Next, the relationship between the prevention of slopping and the charging conditions of the carbonaceous material will be described.

スロッピングの発生を防止するためには、炭材の投入は、スロッピングが始まる前に開始しなくてはならない。スロッピングが始まった後に炭材を投入しても、その投入による抑制効果は即効性があるものではないし、投入した炭材がスラグとともに転炉外へ噴き溢れてしまうと、投入自体の安定性にも欠けるからである。   In order to prevent the occurrence of slopping, the charging of the charcoal must be started before the slopping begins. Even if charcoal is added after slopping has started, the suppression effect due to the charging is not immediate, and if the charcoal that has been injected spills out of the converter together with the slag, the stability of the input itself It is also lacking.

一方、スラグがフォーミングしていないのに炭材を投入しても、炭材を投入する意味がない上に、投入するコストが嵩んでしまうので、不適当である。
ここで、前述したように、酸化鉄の投入量M(kg/ton)からスロッピングの開始時期を(2)式により演算で求めることができるので、これを利用し、スロッピングの予測発生時期の0.5〜1分間前から炭材の添加を開始することとして炭材の投入効果を調査した。
On the other hand, even if carbon material is input even though the slag is not formed, it is not appropriate to input the carbon material, and the cost to input is increased.
Here, as described above, the start time of slopping can be obtained from the input amount M (kg / ton) of iron oxide by calculation according to the equation (2). The addition effect of the carbon material was investigated as starting the addition of the carbon material from 0.5 to 1 minute before.

すなわち、上記の(2)式により示すように、酸化鉄の投入完了時から{26/(M−1.4)±0.5}分の間にスロッピングが開始するため、酸化鉄の投入完了時から炭材の投入開始までの時間Tは、(1)式によればよい。
{26/(M−1.4)−1.0}≦T≦{26/(M−1.4)}・・・・・・(1)
ただし、10≦M≦30であり、T≧0である。
That is, as shown by the above equation (2), since the slapping starts within {26 / (M-1.4) ± 0.5} minutes from the completion of the iron oxide charging, the iron oxide charging The time T from the time of completion to the start of charging of the carbonaceous material may be according to equation (1).
{26 / (M-1.4) -1.0} ≦ T ≦ {26 / (M-1.4)} (1)
However, 10 ≦ M ≦ 30 and T ≧ 0.

(1)式には、酸化鉄の投入量Mから計算できる数値に対して0〜1分間の選択幅があるので、この選択幅の中で、溶銑条件や上吹き酸素流量を考慮して炭材の投入開始時間Tを適宜決めればよい。   In the formula (1), there is a selection range of 0 to 1 minute with respect to a numerical value that can be calculated from the input amount M of iron oxide. The material input start time T may be determined as appropriate.

図2は、このようにして炭材を投入した場合における、炭材投入速度とスロッピング発生指数との関係を示すグラフである。
図2にグラフで示す結果は、図1にグラフで示す結果の調査と吹錬条件を同一とし、(1)式で求めた時点から炭材としてコークス粉を0.05〜1.0kg/min/tonの範囲で変化させ、炭材を、サブランスの先端から窒素をキャリアガスとしてスラグ層内に1分間以上吹き込むことにより行った。
FIG. 2 is a graph showing the relationship between the carbon material charging speed and the slipping occurrence index when the carbon material is charged in this way.
The results shown in the graph of FIG. 2 are the same as the investigation of the results shown in the graph of FIG. 1 and the blowing conditions, and the coke powder is 0.05 to 1.0 kg / min as the carbon material from the time point obtained by the equation (1). The carbon material was changed in the range of / ton and blown into the slag layer for 1 minute or more using nitrogen as a carrier gas from the tip of the sub lance.

図2に示すグラフにおいて、スロッピング発生指数とは、指数0:スロッピングの発生気配なし、指数20:炉口部へのスラグの少量付着の発生、指数40:炉口部へのスラグの中量付着の発生、指数100:吹錬継続不能な状態、をそれぞれ示す。   In the graph shown in FIG. 2, the index of occurrence of slopping is: index 0: no sign of occurrence of slopping, index 20: occurrence of small amount of slag adhering to the furnace port, index 40: in the slag to the furnace port Occurrence of quantity adhesion, index 100: state where blowing cannot be continued, respectively.

図2に示すグラフにおいて、安定操業継続にはスロッピング発生指数40以下が必要であることから、炭材の投入速度は0.4kg/min/ton以上1.0kg/min/ton以下であることが分かった。   In the graph shown in FIG. 2, since the slipping occurrence index of 40 or less is required for stable operation, the carbon material charging speed is 0.4 kg / min / ton or more and 1.0 kg / min / ton or less. I understood.

炭材の吹込みは、0.4〜1.0kg/min/tonの投入速度で1分間継続すれば十分であり、1分間吹き付けても効果が現われない場合には、それ以上吹き付けを継続しても殆ど無駄であった。このため、炭材の投入必要量は0.4kg/ton以上であり、また1.0kg/ton以下で十分である。炭材の投入量が多くなると炭材コストが嵩むのみならず、スラグ中の酸化鉄を過剰に還元してしまうために温度低下や脱燐不良が発生するからである。   It is sufficient that the carbon material is blown for one minute at a charging speed of 0.4 to 1.0 kg / min / ton. If the effect does not appear even if one minute is blown, the blowing is continued further. But it was almost useless. For this reason, the required amount of carbonaceous material is 0.4 kg / ton or more, and 1.0 kg / ton or less is sufficient. This is because if the input amount of the carbon material is increased, not only the cost of the carbon material is increased, but also iron oxide in the slag is excessively reduced, resulting in a decrease in temperature and poor dephosphorization.

なお、炭材の投入速度が0.4kg/min/ton以上と速い場合には、炭材の吹き込み量が0.4kg/tonになった時点で、0.4kg/min/tonを1分間継続した場合と同等のスロッピングの抑制効果が得られることも別途確認している。   In addition, when the charging speed of the carbonaceous material is as fast as 0.4 kg / min / ton or more, 0.4 kg / min / ton is continued for 1 minute when the amount of carbonaceous material blown becomes 0.4 kg / ton. It has been separately confirmed that the same effect of suppressing slopping as that obtained can be obtained.

図3は、実施例における溶銑予備処理の概要を示す説明図である。
図3に示すように、上底吹き型の転炉1に収容される溶銑2に対して、溶銑2の量や脱燐処理前後の溶銑2の成分、メインランス3による送酸速度、使用脱燐剤の種類と量、さらには処理後のスラグ4成分等の条件を、下記に示す以外は表1に示すように定めて、溶銑2の脱燐処理を行うことにより、本発明の効果を確認した。なお、図3における符号5はサブランスであり、符号6は底吹プラグである。
FIG. 3 is an explanatory view showing an outline of the hot metal preliminary process in the embodiment.
As shown in FIG. 3, with respect to the hot metal 2 accommodated in the top-bottom blown converter 1, the amount of the hot metal 2, the components of the hot metal 2 before and after the dephosphorization treatment, the acid feed rate by the main lance 3, the use desorption The effect of the present invention can be achieved by dephosphorizing the hot metal 2 by determining the type and amount of the phosphorus agent and the conditions such as the four components of the slag after the treatment as shown in Table 1 except for the following. confirmed. In addition, the code | symbol 5 in FIG. 3 is a sub lance, and the code | symbol 6 is a bottom blow plug.

(本発明例)
処理前溶銑[Si]=0.40質量%、処理前溶銑[P]=0.103質量%の溶銑280tonを対象とし、メインランス3による送酸速度=2.4Nm/min/ton、上吹酸素吹付け時間=4.6分間の処理において、上吹き酸素の吹付け開始から1.5〜2.0分の経過期間中に酸化鉄を20kg/ton断続的に投入した。
(Example of the present invention)
For hot metal 280 ton of hot metal before treatment [Si] = 0.40 mass%, hot metal before treatment [P] = 0.103 mass%, acid feed rate by main lance 3 = 2.4 Nm 3 / min / ton, upper In the treatment of blowing oxygen blowing time = 4.6 minutes, 20 kg / ton of iron oxide was intermittently added during the lapse of 1.5 to 2.0 minutes from the start of blowing of the top blowing oxygen.

そして、酸化鉄の投入完了後0.8分経過時から0.9kg/min/tonの速度で炭材(コークス)を、Nをキャリアガスとしてサブランス5から0.8分間スラグ層内に吹き込んだ。 Then, carbon dioxide (coke) is blown into the slag layer from sub lance 5 for 0.8 minutes using N 2 as a carrier gas at a rate of 0.9 kg / min / ton after 0.8 minutes have elapsed after the completion of iron oxide charging. It is.

脱燐処理中にスロッピングは発生しなかった。処理後スラグ塩基度は2.2、スラグT.Feは11%、溶銑[P]は0.014%であった。
(従来法)
処理前溶銑[Si]=0.38質量%、処理前溶銑[P]=0.098質量%の溶銑280tonを対象とし、メインランス3による送酸速度=2.4Nm/min/ton、上吹酸素吹付け時間=4.9分間の処理において、上吹き酸素の吹付け開始から1.5〜1.9分の経過期間中に酸化鉄を15kg/ton断続的に投入した。
No slipping occurred during the dephosphorization process. After treatment, the slag basicity is 2.2, and slag T.I. Fe was 11% and hot metal [P] was 0.014%.
(Conventional method)
For hot metal 280 ton of hot metal before treatment [Si] = 0.38% by mass and hot metal [P] = 0.098% by mass, acid feed rate by main lance 3 = 2.4 Nm 3 / min / ton, upper In the treatment of blowing oxygen blowing time = 4.9 minutes, 15 kg / ton of iron oxide was intermittently added during the lapse of 1.5 to 1.9 minutes from the start of blowing the upper blowing oxygen.

炭材の吹き込みは行わなかった。
酸化鉄の投入後2.1分経過時にスロッピングが発生した。処理後スラグ塩基度は2.2、スラグT.Feは10%、溶銑[P]は0.018%であった。
Carbon material was not blown in.
Slipping occurred when 2.1 minutes had elapsed since the addition of iron oxide. After treatment, the slag basicity is 2.2, and slag T.I. Fe was 10% and hot metal [P] was 0.018%.

(比較例)
処理前溶銑[Si]=0.36質量%、処理前溶銑[P]=0.100質量%の溶銑280tonを対象とし、メインランス3による送酸速度=2.4Nm/min/ton、上吹酸素吹付け時間=4.4分間の処理において、上吹き酸素の吹付け開始から1.4〜1.9分の経過期間中に酸化鉄を13kg/ton断続的に投入した。そして、酸化鉄の投入完了後0.3分経過後に0.9kg/min/tonの速度で炭材(コークス)を、Nをキャリアガスとしてサブランス5から0.8分間スラグ層内に吹き込んだが、酸化鉄投入後2.0分経過後にスロッピングが発生した。
(Comparative example)
For hot metal 280 ton of hot metal before treatment [Si] = 0.36% by mass and hot metal [P] = 0.100% by mass, acid feed rate by main lance 3 = 2.4 Nm 3 / min / ton, upper In the treatment with blowing oxygen blowing time = 4.4 minutes, 13 kg / ton of iron oxide was intermittently added during the lapse of 1.4 to 1.9 minutes from the start of blowing of the upper blowing oxygen. Then, after 0.3 minutes after the completion of the iron oxide charging, carbon material (coke) was blown into the slag layer from the sublance 5 for 0.8 minutes using N 2 as a carrier gas at a rate of 0.9 kg / min / ton. Slipping occurred 2.0 minutes after the iron oxide was charged.

処理後スラグ塩基度は2.3、スラグT.Feは11%、溶銑[P]は0.015%であった。   After the treatment, the slag basicity is 2.3 and the slag T.P. Fe was 11% and hot metal [P] was 0.015%.

Claims (2)

上吹き酸素を2.0〜4.0Nm/min/tonの流量で上底吹き型の転炉に収容される溶銑へ向けて4〜8分間吹き付け、かつ、前記上吹き酸素の吹き付け開始から1〜4分経過中に溶銑トン当たりMkgの酸化鉄を一括して又は断続的に該転炉内に投入して、前記上吹き酸素の吹付け終了時のスラグ塩基度(CaO質量%/SiO質量%)を2.0〜2.5とするとともにT.Fe濃度を5〜15質量%として溶銑を脱燐処理する際に、
前記酸化鉄の投入完了時点から下記(1)式を用いて計算される時間T(min)が経過した時点から、溶銑トン当たり0.4〜1.0kgの炭材を溶銑トン当たり0.4〜1.0kg/minの速度でスラグ層内に吹き込むこと
を特徴とするスロッピング防止方法。
{26/(M−1.4)−1.0}≦T≦{26/(M−1.4)}・・・・・・(1)
ただし、10≦M≦30であり、T≧0である。
Top blowing oxygen is sprayed at a flow rate of 2.0 to 4.0 Nm 3 / min / ton toward the hot metal contained in the top bottom blowing type converter for 4 to 8 minutes, and from the start of blowing the top blowing oxygen During 1 to 4 minutes, Mkg of iron oxide per ton of molten iron was charged all at once or intermittently into the converter, and the slag basicity (CaO mass% / SiO 2 mass%) is set to 2.0 to 2.5 and T.I. When the hot metal is dephosphorized with an Fe concentration of 5 to 15% by mass,
From the time when the time T (min) calculated using the following equation (1) has elapsed since the completion of the iron oxide charging, 0.4 to 1.0 kg of carbonaceous material per ton of hot metal was 0.4 per ton of hot metal. An anti-slipping method characterized by blowing into the slag layer at a speed of ˜1.0 kg / min.
{26 / (M-1.4) -1.0} ≦ T ≦ {26 / (M-1.4)} (1)
However, 10 ≦ M ≦ 30 and T ≧ 0.
前記炭材を、サブランスを通じて前記スラグ層内に吹き込むことを特徴とする請求項1に記載されたスロッピング防止方法。   The method according to claim 1, wherein the carbonaceous material is blown into the slag layer through a sub lance.
JP2010068095A 2010-03-24 2010-03-24 Anti-slipping method Active JP5585151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010068095A JP5585151B2 (en) 2010-03-24 2010-03-24 Anti-slipping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010068095A JP5585151B2 (en) 2010-03-24 2010-03-24 Anti-slipping method

Publications (2)

Publication Number Publication Date
JP2011202200A true JP2011202200A (en) 2011-10-13
JP5585151B2 JP5585151B2 (en) 2014-09-10

Family

ID=44879146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010068095A Active JP5585151B2 (en) 2010-03-24 2010-03-24 Anti-slipping method

Country Status (1)

Country Link
JP (1) JP5585151B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219817A (en) * 2010-04-09 2011-11-04 Kobe Steel Ltd Dephosphorizing method
CN103555879A (en) * 2013-10-21 2014-02-05 莱芜钢铁集团有限公司 Control method for reducing total iron content of SPHC (steel plate heat commercial) final slag
CN106544465A (en) * 2015-09-17 2017-03-29 鞍钢股份有限公司 A kind of control method for preventing converter dry dedusting early stage venting of dust explosion
CN113584251A (en) * 2021-08-05 2021-11-02 江苏省沙钢钢铁研究院有限公司 Production method of silicon-manganese killed non-oriented silicon steel and submerged nozzle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235416A (en) * 1987-03-25 1988-09-30 Nkk Corp Method for preventing slopping
JPH05125424A (en) * 1991-11-08 1993-05-21 Nippon Steel Corp Method for restraining slag foaming
JPH0849008A (en) * 1994-08-03 1996-02-20 Nippon Steel Corp Prediction of slopping in converter and prevention of the same
JPH09256020A (en) * 1996-03-19 1997-09-30 Nkk Corp Method for dehosphorize-refining of molten iron in converter type refining vessel.
JPH10195515A (en) * 1996-12-27 1998-07-28 Kawasaki Steel Corp Method for pre-refining molten iron
JP2000096115A (en) * 1998-09-21 2000-04-04 Sumitomo Metal Ind Ltd Method for killing slag foaming
JP2000160222A (en) * 1998-11-24 2000-06-13 Sumitomo Metal Ind Ltd Method for dealing with slag foaming at the time of pre- treating molten iron
JP2004250745A (en) * 2003-02-19 2004-09-09 Sumitomo Metal Ind Ltd Method for preventing slopping
JP2009249723A (en) * 2008-04-10 2009-10-29 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235416A (en) * 1987-03-25 1988-09-30 Nkk Corp Method for preventing slopping
JPH05125424A (en) * 1991-11-08 1993-05-21 Nippon Steel Corp Method for restraining slag foaming
JPH0849008A (en) * 1994-08-03 1996-02-20 Nippon Steel Corp Prediction of slopping in converter and prevention of the same
JPH09256020A (en) * 1996-03-19 1997-09-30 Nkk Corp Method for dehosphorize-refining of molten iron in converter type refining vessel.
JPH10195515A (en) * 1996-12-27 1998-07-28 Kawasaki Steel Corp Method for pre-refining molten iron
JP2000096115A (en) * 1998-09-21 2000-04-04 Sumitomo Metal Ind Ltd Method for killing slag foaming
JP2000160222A (en) * 1998-11-24 2000-06-13 Sumitomo Metal Ind Ltd Method for dealing with slag foaming at the time of pre- treating molten iron
JP2004250745A (en) * 2003-02-19 2004-09-09 Sumitomo Metal Ind Ltd Method for preventing slopping
JP2009249723A (en) * 2008-04-10 2009-10-29 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219817A (en) * 2010-04-09 2011-11-04 Kobe Steel Ltd Dephosphorizing method
CN103555879A (en) * 2013-10-21 2014-02-05 莱芜钢铁集团有限公司 Control method for reducing total iron content of SPHC (steel plate heat commercial) final slag
CN106544465A (en) * 2015-09-17 2017-03-29 鞍钢股份有限公司 A kind of control method for preventing converter dry dedusting early stage venting of dust explosion
CN113584251A (en) * 2021-08-05 2021-11-02 江苏省沙钢钢铁研究院有限公司 Production method of silicon-manganese killed non-oriented silicon steel and submerged nozzle

Also Published As

Publication number Publication date
JP5585151B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5585151B2 (en) Anti-slipping method
TW201441378A (en) Preliminary treatment method for molten iron
CN111670258B (en) Method for dephosphorizing molten iron
JP5233378B2 (en) Hot phosphorus dephosphorization method
JP5999157B2 (en) Method of refining hot metal in the converter
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JP2014040623A (en) Dephosphorization method for molten iron
JP5338251B2 (en) Hot phosphorus dephosphorization method
JPS6333512A (en) Pre-treating method for molten iron
JP2012041584A (en) Method for producing high chromium steel
JP2005068533A (en) Method for dephosphorizing molten pig iron
JP7238570B2 (en) Hot metal dephosphorization method
JPH0512405B2 (en)
JP5522202B2 (en) How to remove hot metal
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JP2017145435A (en) Method for desiliconizing molten iron
JPS636606B2 (en)
KR20230133976A (en) Converter steelmaking method
JP2012172213A (en) Method for refining molten steel
EP4324940A1 (en) Method for dephosphorization of molten metal
JPS6342686B2 (en)
JPH02285017A (en) Production of molten stainless steel
JP2013133536A (en) Method for producing molten steel
JP2003328023A (en) Method for manufacturing low-phosphorus molten pig iron
JP2007246950A (en) Converter steelmaking process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R151 Written notification of patent or utility model registration

Ref document number: 5585151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350