JP2017171975A - Dephosphorization agent for molten pig iron and dephosphorization method - Google Patents

Dephosphorization agent for molten pig iron and dephosphorization method Download PDF

Info

Publication number
JP2017171975A
JP2017171975A JP2016057992A JP2016057992A JP2017171975A JP 2017171975 A JP2017171975 A JP 2017171975A JP 2016057992 A JP2016057992 A JP 2016057992A JP 2016057992 A JP2016057992 A JP 2016057992A JP 2017171975 A JP2017171975 A JP 2017171975A
Authority
JP
Japan
Prior art keywords
dephosphorization
mass
sio
cao
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016057992A
Other languages
Japanese (ja)
Other versions
JP6627601B2 (en
Inventor
昌平 柿本
Shohei Kakimoto
昌平 柿本
祐志 野崎
Yuji Nozaki
祐志 野崎
義明 権田
Yoshiaki Gonda
義明 権田
明人 清▲瀬▼
Akihito Kiyose
明人 清▲瀬▼
直樹 古河
Naoki Furukawa
直樹 古河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016057992A priority Critical patent/JP6627601B2/en
Publication of JP2017171975A publication Critical patent/JP2017171975A/en
Application granted granted Critical
Publication of JP6627601B2 publication Critical patent/JP6627601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dephosphorization agent for molten pig iron capable of producing low phosphorus steel effectively even by short term blowing and a dephosphorization method.SOLUTION: A dephosphorization agent consists of calcium ferrite which mainly contains CaO and FeO, has an SiOconcentration of 2 to 10 mass%, an (SiOmass%)/(CaO mass%) ratio of 0.05 to 0.3 and the balance inevitable impurities. The input base degree (CaO)/(SiO) is 1.3 to 2.0 while conducting dephosphorization treatment of molten pig iron 4 by adding a refining agent 3 containing the dephosphorization agent into a converter 1.SELECTED DRAWING: Figure 1

Description

本発明は、上底吹き転炉を用いて行う溶銑の脱りん処理方法に関し、吹錬時間が短い精錬工程でも効率的に低りん鋼を溶製できる溶銑の脱りん剤および脱りん方法に関するものである。   TECHNICAL FIELD The present invention relates to a hot metal dephosphorization method using an upper bottom blowing converter, and relates to a hot metal dephosphorization method and a dephosphorization method that can efficiently produce low phosphorus steel even in a refining process with a short blowing time. It is.

近年、鋼材に対する要求が高度化し、低りん鋼に対する需要が増加している。現在、溶銑の脱りん処理は、熱力学的に有利な溶銑段階の低温条件において処理する方法が、広く行われている。溶銑脱りんの装置としては、上底吹き転炉が適している。それは、脱りんに必要な酸化剤として、固体酸化源に比べて熱ロスの少ない気体酸素を、上吹きランスから高速で溶銑に吹きつけることが可能なためである。   In recent years, the demand for steel materials has increased, and the demand for low phosphorus steel has increased. At present, hot metal dephosphorization is widely performed by a method in which the hot metal is treated under low temperature conditions in a hot metal stage which is thermodynamically advantageous. As the hot metal dephosphorization apparatus, an upper bottom blowing converter is suitable. This is because, as an oxidant necessary for dephosphorization, gaseous oxygen with less heat loss than a solid oxidation source can be blown from the top blowing lance to the hot metal at high speed.

溶銑脱りんは、溶銑段階の低温条件において行われるため、脱りん剤として使用されるCaOの滓化を促進させることが重要である。CaOの滓化には蛍石(CaF2)の使用が効果的であるが、蛍石を使用した場合にはCaOの滓化により発生したスラグがフッ素を含有するため、スラグの再利用先が大幅に制限されるなどの弊害が大きい。そのため、蛍石を用いないCaO滓化促進法が開発されてきた。 Since hot metal dephosphorization is performed under low temperature conditions in the hot metal stage, it is important to promote the hatching of CaO used as a dephosphorizing agent. The use of fluorite (CaF 2 ) is effective for the hatching of CaO. However, when fluorite is used, the slag generated by the hatching of CaO contains fluorine. Detrimental effects such as significant restrictions are significant. Therefore, CaO hatching promotion methods that do not use fluorite have been developed.

その方法として、例えば上底吹き転炉に装入された溶銑にカルシウムフェライトを含む精錬剤を添加する特許文献1、2の方法が知られている。カルシウムフェライトは、CaOとFe23の化合物からなる脱りん剤であり、溶銑脱りんプロセスの脱りん剤として一般的に用いられる生石灰と比較して、脱りんスラグへの溶解速度が高く、脱りん反応を促進することができる。また、特許文献3には、カルシウムフェライトの溶融性を改善するためにNa2Oを加えた脱りん剤について開示されている。 For example, Patent Documents 1 and 2 are known in which a refining agent containing calcium ferrite is added to the hot metal charged in the top-bottom blow converter. Calcium ferrite is a dephosphorization agent composed of a compound of CaO and Fe 2 O 3 , and has a higher dissolution rate in dephosphorization slag as compared with quick lime generally used as a dephosphorization agent for hot metal dephosphorization process. Dephosphorization reaction can be promoted. Patent Document 3 discloses a dephosphorizing agent to which Na 2 O is added in order to improve the meltability of calcium ferrite.

特開2013−163844号公報JP 2013-163844 A 特開2013−064167号公報JP 2013-064167 A 特開2012−12680号公報JP 2012-12680 A

しかしながら、特許文献1、2等に開示された脱りん処理に用いられる通常のカルシウムフェライトは、液相線温度が約1400℃であり、転炉内の溶銑の温度である1200〜1350℃よりも高い。これは上吹きランスから供給される酸素と溶銑中のSiやFeとの酸化反応によって生成する液体の脱りんスラグに、固体のカルシウムフェライトが溶解することになり、吹錬時間が短い場合は、カルシウムフェライトが十分に溶融せず、脱りんが不十分となり、[P](鋼中に溶存するPの質量%)が目標値に到達しない状態で吹錬が終了してしまうことが考えられる。   However, the normal calcium ferrite used in the dephosphorization treatment disclosed in Patent Documents 1 and 2 has a liquidus temperature of about 1400 ° C., which is higher than 1200 to 1350 ° C., which is the temperature of the hot metal in the converter. high. This means that solid calcium ferrite dissolves in the dephosphorization slag of the liquid generated by the oxidation reaction between oxygen supplied from the top blowing lance and Si or Fe in the hot metal, and if the blowing time is short, It is conceivable that calcium ferrite does not melt sufficiently, dephosphorization becomes insufficient, and blowing is completed in a state where [P] (mass% of P dissolved in steel) does not reach the target value.

また、特許文献2には、吹錬時間を10分間程度とし、全吹錬時間の35%が経過した後にカルシウムフェライトを添加し始め、全吹錬時間の80%が経過するまでに添加を完了する技術が記載されている。ところが、例えば4分以内の短時間で吹錬を行う場合、特許文献2の方法では、カルシウムフェライトの溶融が不十分で、脱りん効率が悪化することが懸念される。   In Patent Document 2, the blowing time is about 10 minutes, and after 35% of the total blowing time has elapsed, calcium ferrite starts to be added, and the addition is completed until 80% of the total blowing time has elapsed. The technology to do is described. However, for example, when blowing in a short time of 4 minutes or less, there is a concern that the method of Patent Document 2 may cause insufficient melting of calcium ferrite and deteriorate the dephosphorization efficiency.

特許文献3には、Na2Oを含有したカルシウムフェライトについて記載されているが、それを用いた脱りん方法について記載されておらず、吹錬時間が短い場合に適した脱りん方法は不明である。また、本発明者らの上底吹き転炉を用いた実験によると、特許文献3に記載の脱りん剤を用いて4分程度の短時間で吹錬を行った場合、カルシウムフェライトは十分に溶解せず、脱りん効率も不十分であり、[P]<0.02%の低りん鋼の溶製が困難であった。 Patent Document 3 describes calcium ferrite containing Na 2 O, but does not describe a dephosphorization method using the same, and a dephosphorization method suitable for a short blowing time is unknown. is there. Further, according to experiments using the top-bottom blow converter of the present inventors, when the dephosphorization agent described in Patent Document 3 is used for a short time of about 4 minutes, calcium ferrite is not sufficient. It did not melt, the phosphorus removal efficiency was insufficient, and it was difficult to produce low phosphorus steel with [P] <0.02%.

近年、転炉の生産効率を向上するため、溶銑脱りんプロセスの短時間化が図られており、例えば、4分程度の脱りん吹錬時間で[P]<0.02%の低りん鋼を溶製することが要求される。このような背景の中、短時間の吹錬を行った場合においても、低りん鋼の溶製が可能な脱りん剤および脱りん方法の開発が望まれている。   Recently, in order to improve the production efficiency of converters, the hot metal dephosphorization process has been shortened. For example, [P] <0.02% low phosphorus steel with a dephosphorization blowing time of about 4 minutes. It is required to melt. In such a background, it is desired to develop a dephosphorizing agent and a dephosphorizing method capable of melting low phosphorus steel even when short-time blowing is performed.

本発明は、このような観点に鑑みてなされたものであり、短時間の吹錬であっても、効率的に低りん鋼を溶製できる溶銑の脱りん剤および脱りん方法を提供することを目的とする。   The present invention has been made in view of such a viewpoint, and provides a hot metal dephosphorizing agent and a dephosphorizing method capable of efficiently producing low phosphorus steel even in a short time of blowing. With the goal.

上記課題を解決するため、本発明者らは、カルシウムフェライトにSiO2、または、SiO2とNa2Oとを含有させ、さらにこれらの濃度を適正化することで、短時間の吹錬でも十分に精錬剤が溶解し、効率的に低りん鋼を溶製できることを見出した。 In order to solve the above-mentioned problems, the inventors of the present invention have sufficient SiO 2 or SiO 2 and Na 2 O in calcium ferrite, and by optimizing these concentrations, it is sufficient for short-time blowing. It has been found that the refining agent dissolves and low phosphorus steel can be efficiently produced.

本発明は、CaOとFe23とを主成分とし、SiO2濃度が2〜10質量%、(SiO2質量%)/(CaO質量%)比が0.05〜0.3であり、残部が不可避的な不純物であるカルシウムフェライトからなることを特徴とする、溶銑の脱りん剤を提供する。 The present invention comprises CaO and Fe 2 O 3 as main components, the SiO 2 concentration is 2 to 10% by mass, and the (SiO 2 mass%) / (CaO mass%) ratio is 0.05 to 0.3, There is provided a hot metal dephosphorizing agent characterized in that the balance is made of calcium ferrite which is an inevitable impurity.

さらに、本発明は、CaOとFe23とを主成分とし、SiO2濃度が2〜10質量%、(SiO2質量%)/(CaO質量%)比が0.05〜0.3、(Na2O質量%)/(SiO2質量%)比が0.1〜3.0であり、残部が不可避的な不純物であるカルシウムフェライトからなることを特徴とする、溶銑の脱りん剤を提供する。 Further, the present invention is mainly composed of CaO and Fe 2 O 3 , SiO 2 concentration is 2 to 10% by mass, (SiO 2 mass%) / (CaO mass%) ratio is 0.05 to 0.3, A hot metal dephosphorization agent characterized in that the ratio of (Na 2 O mass%) / (SiO 2 mass%) is 0.1 to 3.0, and the balance is calcium ferrite which is an inevitable impurity. provide.

また、前記溶銑の脱りん剤を含む精錬剤を転炉内に添加し、溶銑の脱りん処理を行う方法であって、装入塩基度(CaO)/(SiO2)が1.3〜2.0であることを特徴とする、溶銑の脱りん方法を提供する。 Further, a refining agent containing the hot metal dephosphorizing agent is added to the converter, and the hot metal dephosphorization treatment is performed, and the basicity of charge (CaO) / (SiO 2 ) is 1.3-2. The present invention provides a method for dephosphorizing hot metal, which is characterized by being 0.0.

前記溶銑の脱りん方法において、前記脱りん剤に含まれるCaO質量が、前記精錬剤に含まれるCaO質量の20%以上であることが好ましい。また、前記精錬剤を、溶銑の装入よりも前に転炉内に投入することが好ましい。   In the hot metal dephosphorization method, the mass of CaO contained in the dephosphorization agent is preferably 20% or more of the mass of CaO contained in the refining agent. The refining agent is preferably charged into the converter before the hot metal is charged.

本発明によれば、上底吹き転炉における脱りん処理において、SiO2、または、SiO2とNa2Oとを適正濃度で含有した脱りん剤を用いることで、短時間の吹錬であっても十分に精錬剤が溶解し、効率的に低りん鋼を溶製することができる。 According to the present invention, the dephosphorization treatment in the upper bottom blown converter, SiO 2, or by using a dephosphorization agent containing a proper concentration and SiO 2 and Na 2 O, a short time of blowing However, the refining agent is sufficiently dissolved, and low phosphorus steel can be efficiently produced.

本発明に係る上底吹き転炉を用いた脱りんプロセスの概略を示す説明図である。It is explanatory drawing which shows the outline of the dephosphorization process using the top bottom blowing converter which concerns on this invention.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本明細書において、カルシウムフェライトとは、CaOとFe23とを主成分とする化合物であって、CaOとFe23との割合は質量比で4:6〜3:7であり、CaO質量%とFe23質量%の合計は70質量%以上のものを指す。また、低りん鋼とは、鋳片段階での[P]が0.02%以下の鋼を指し、効率的とは、溶解したカルシウムフェライトが、十分に脱りんに寄与することを指す。また、特に断らない限り、短時間の吹錬とは、吹錬時間が約2〜6分程度の吹錬のことを指す。 In the present specification, the calcium ferrite, a compound mainly composed of the CaO and Fe 2 O 3, 4 in a ratio mass ratio of CaO and Fe 2 O 3: 6~3: a 7, The total of CaO mass% and Fe 2 O 3 mass% refers to those of 70 mass% or more. Further, low phosphorus steel refers to steel having [P] of 0.02% or less at the slab stage, and efficient means that dissolved calcium ferrite sufficiently contributes to dephosphorization. Unless otherwise specified, short-time blowing refers to blowing with a blowing time of about 2 to 6 minutes.

本発明者らは、上底吹き転炉の脱りんプロセスにおける脱りん剤としてのカルシウムフェライトの溶融性改善のため、CaOおよびFe23に種々の化合物を添加し、これを溶解炉で完全溶融した種々のカルシウムフェライトを作成した。次に、赤外線ゴールドイメージ炉を搭載した高温顕微鏡を用いて、これらのカルシウムフェライトを加熱し、溶融終了温度を測定した。 The present inventors added various compounds to CaO and Fe 2 O 3 in order to improve the meltability of calcium ferrite as a dephosphorizing agent in the dephosphorization process of the top-bottom blow converter, Various molten calcium ferrites were prepared. Next, these calcium ferrites were heated using a high-temperature microscope equipped with an infrared gold image furnace, and the melting end temperature was measured.

その結果、通常のCaOおよびFe23からなるカルシウムフェライト(以後、CFと記すことがある)に対して、CaO、Fe23、およびSiOからなるカルシウムフェライト(以後、CFSと記すことがある)は、溶融終了温度が低いことを見出した。これは、SiOがカルシウムフェライトの液相線温度を下げる効果を有するためと考えられる。 As a result, calcium ferrite composed of CaO, Fe 2 O 3 , and SiO 2 (hereinafter referred to as CFS) is compared with normal calcium ferrite composed of CaO and Fe 2 O 3 (hereinafter sometimes referred to as CF). Has found that the melting end temperature is low. This is presumably because SiO 2 has the effect of lowering the liquidus temperature of calcium ferrite.

上記実験では、CFSの液相線温度は溶融終了温度から1350℃以下と推定され、CFの液相線温度(約1400℃)に対して低いことから、上底吹き転炉における脱りん吹錬にCFSを使用することで、CFを使用した場合に対して溶解速度は増大し、脱りんが促進されると考えられる。しかし、SiOは転炉スラグのフォスフェイトキャパシティーを下げるため、カルシウムフェライト中のSiO濃度が高くなりすぎると脱りん効率が悪化する。本発明者らは、このような状況を防止する適正なSiO濃度を調査し、カルシウムフェライト中のSiOを10質量%以下とすることで、脱りん効率の大きな悪化を抑制できることを見出した。 In the above experiment, the CFS liquidus temperature is estimated to be 1350 ° C. or less from the melting end temperature and is lower than the CF liquidus temperature (about 1400 ° C.). It is considered that the use of CFS increases the dissolution rate with respect to the case of using CF and promotes dephosphorylation. However, since SiO 2 lowers the phosphate capacity of converter slag, if the SiO 2 concentration in the calcium ferrite becomes too high, the dephosphorization efficiency deteriorates. The present inventors investigated an appropriate SiO 2 concentration for preventing such a situation, and found that a large deterioration in dephosphorization efficiency can be suppressed by making SiO 2 in calcium ferrite 10% by mass or less. .

また、SiO濃度が低すぎると、カルシウムフェライトの溶解速度が小さく、短時間の吹錬で低りん鋼を溶製することが困難であったため、SiO濃度を2質量%以上とした。さらに本発明者らは、SiO濃度を3〜6質量%とすることでより高い効果を発現できることを確認した。 In addition, when the SiO 2 concentration is too low, the dissolution rate of calcium ferrite is low, and it is difficult to melt the low phosphorus steel by short-time blowing, so the SiO 2 concentration is set to 2% by mass or more. Furthermore, the present inventors have confirmed that a higher effect can be exhibited by setting the SiO 2 concentration to 3 to 6% by mass.

また、カルシウムフェライト中のSiO濃度が高くなることで、カルシウムフェライトの溶解速度が増大するが、脱りんに必要なカルシウムフェライト中のCaO濃度が、相対的に低くなるため、脱りんに対して、カルシウムフェライトのSiO濃度とCaO濃度には適正な組成が存在すると考えられる。この適正組成について、本発明者らは、SiOの質量%とCaOの質量%との比
(SiO質量%)/(CaO質量%)
を0.05〜0.3とすることで、低りん鋼を溶製できることを確認した。(SiO質量%)/(CaO質量%)比が0.05未満の場合、カルシウムフェライトの溶解速度が小さく、脱りんが不十分となる。また(SiO質量%)/(CaO質量%)比が0.3より大きい場合、CaO濃度が低すぎて脱りん効率が悪化する。なお、本発明者らは(SiO質量%)/(CaO質量%)比を0.1〜0.2に制御することで、より高い効果を発現し、さらに脱りんが促進されることを確認した。
In addition, the SiO 2 concentration in calcium ferrite increases, so that the dissolution rate of calcium ferrite increases. However, the CaO concentration in calcium ferrite necessary for dephosphorization becomes relatively low. It is considered that there is an appropriate composition for the SiO 2 concentration and the CaO concentration of calcium ferrite. This proper composition, the present inventors, the ratio of the mass% of SiO 2 mass% and CaO (SiO 2 mass%) / (CaO mass%)
It was confirmed that the low phosphorus steel can be melted by setting 0.05 to 0.3. When the ratio (SiO 2 % by mass) / (CaO% by mass) is less than 0.05, the dissolution rate of calcium ferrite is low and dephosphorization is insufficient. On the other hand, when the ratio (SiO 2 mass%) / (CaO mass%) is larger than 0.3, the CaO concentration is too low and the dephosphorization efficiency deteriorates. In addition, the present inventors express a higher effect by controlling the (SiO 2 mass%) / (CaO mass%) ratio to 0.1 to 0.2, and further promote dephosphorization. confirmed.

さらに、本発明者らは、前述の赤外線ゴールドイメージ炉を搭載した高温顕微鏡を用いた実験により、CaO、Fe23、SiO、およびNa2Oを含むカルシウムフェライト(以後、CFSNと記すことがある)は、CFSに対して、溶融終了温度がさらに低いことを明らかにした。これは、Na2OがCFSの液相線温度を下げる効果を持つためと考えられ、CFSNの液相線温度は溶融終了温度から1320℃以下と推定される。 Furthermore, the present inventors conducted an experiment using a high-temperature microscope equipped with the above-described infrared gold image furnace, and obtained calcium ferrite containing CaO, Fe 2 O 3 , SiO 2 , and Na 2 O (hereinafter referred to as CFSN). Revealed that the end-of-melting temperature is lower than that of CFS. This is thought to be because Na 2 O has the effect of lowering the liquidus temperature of CFS, and the liquidus temperature of CFSN is estimated to be 1320 ° C. or less from the melting end temperature.

また、上底吹き転炉の脱りんプロセスにおいて、CFSよりもCFSNの方が高い脱りん効率を示し、より[P]が低い鋼を溶製できることを確認した。これは、Na2Oがスラグのフォスフェイトキャパシティーを増大する効果をもつこと、Na2Oが転炉スラグの粘度を下げ、スラグ側のりんの物質移動を促進する効果を有することが原因と推定される。 In addition, in the dephosphorization process of the top-bottom blow converter, it was confirmed that CFSN showed higher dephosphorization efficiency than CFS, and steel with lower [P] could be produced. This can have the effect of Na 2 O increases the phosphate capacity of the slag, Na 2 O is lower the viscosity of the converter slag, and because it has the effect of promoting mass transfer of phosphorus slag side Presumed.

CFSにおいて、SiO濃度を2〜10質量%、(SiO質量%)/(CaO質量%)比を0.05〜0.3とすることで、カルシウムフェライトの溶解速度が増大し、この効果により脱りんを促進することを上述した。一方で、SiOの添加はスラグのフォスフェイトキャパシティーを下げて、脱りん効率を悪化させる効果を有している。Na2Oは、このSiO添加によって低下したフォスフェイトキャパシティーを増大させる効果を持つことから、カルシウムフェライトのSiO濃度とNa2O濃度は脱りんを促進するうえで適正な質量比が存在すると考えられる。 In CFS, the dissolution rate of calcium ferrite is increased by setting the SiO 2 concentration to 2 to 10 mass% and the (SiO 2 mass%) / (CaO mass%) ratio to 0.05 to 0.3. It has been mentioned above that dephosphorization is promoted by. On the other hand, the addition of SiO 2 has the effect of lowering the phosphate capacity of the slag and dephosphorizing efficiency. Na 2 O is from having the effect of increasing the phosphate capacity was reduced by the SiO 2 addition, SiO 2 concentration and the concentration of Na 2 O Calcium ferrite exists proper mass ratio in promoting dephosphorization I think that.

この質量比について、本発明者らは、(Na2O質量%)/(SiO質量%)比を0.1以上とすることで、CFSに対して、より[P]が低い鋼を溶製できることを確認した。また、(Na2O質量%)/(SiO質量%)比が3.0より大きい場合、脱りん効率が悪化した。これは、転炉スラグ中のNa2Oに対するSiOの質量比が下がることで、Na2Oの活量が大きくなり、Na2Oのガス化が進行したことで、脱りんに必要なNa2Oを脱りんスラグに供給できなかったためと推定される。 With respect to this mass ratio, the present inventors set a (Na 2 O mass%) / (SiO 2 mass%) ratio of 0.1 or more to dissolve steel having a lower [P] relative to CFS. It was confirmed that it could be manufactured. Further, when the (Na 2 O mass%) / (SiO 2 mass%) ratio was larger than 3.0, the dephosphorization efficiency was deteriorated. This is because the mass ratio of SiO 2 to Na 2 O of the converter slag is lowered, the greater the activity of Na 2 O, Na 2 by O gasification has proceeded, dephosphorizing the required Na It is estimated that 2 O could not be supplied to the dephosphorization slag.

なお、(Na2O質量%)/(SiO質量%)比を0.2〜2.0とすることで、脱りんを促進しつつ、スラグへのNa2Oの歩留りを、より高く維持できることを確認した。また、CFSに対して、CFSNは、転炉内でのスラグフォーミングが抑制され、転炉炉口やランスへの地金付着の抑制など操業安定化に寄与することがわかった。これは、Na2Oによる転炉スラグの粘度低減により、転炉スラグのフォーミングやスロッピングが抑制されたためと考えられる。 In addition, by maintaining the (Na 2 O mass%) / (SiO 2 mass%) ratio to 0.2 to 2.0, the yield of Na 2 O to the slag is maintained higher while promoting dephosphorization. I confirmed that I can do it. In addition, it was found that CFSN contributes to operational stability, such as suppression of slag forming in the converter, and suppression of metal adhesion to the converter furnace opening and lance, compared to CFS. This is considered to be because the forming and slopping of the converter slag were suppressed by the reduction of the viscosity of the converter slag by Na 2 O.

CFSを製造する際のSiO源としては、軟珪石やカンラン岩およびSiOを含む製鋼スラグ等がある。また、CFSNのNa2O源としては、Na2CO3、ソーダ石灰ガラス、メタケイ酸ソーダ等があり、ソーダ石灰ガラス、メタケイ酸ソーダはSiO源にもなる。 Examples of the SiO 2 source for producing CFS include soft silica, peridotite, and steelmaking slag containing SiO 2 . Further, as the Na 2 O source of CFSN, there are Na 2 CO 3 , soda lime glass, sodium metasilicate, and the like, and soda lime glass and sodium metasilicate are also SiO 2 sources.

次に、本発明に係る脱りん剤を用いて脱りん処理を行う際の実施形態を説明する。   Next, an embodiment when performing a dephosphorization process using the dephosphorizing agent according to the present invention will be described.

製鋼の精錬工程で用いられる精錬炉としては、通常、転炉が用いられ、転炉法による製鋼工程においては、主原料として溶銑とスクラップを装入して溶鋼が生産される。   As the refining furnace used in the steelmaking refining process, a converter is usually used. In the steelmaking process using the converter method, molten steel and scrap are charged as main raw materials to produce molten steel.

図1に、上底吹き転炉を用いた精錬工程の概略を示す。最初に、図1(a)に示すように、転炉1内にスクラップ2を装入する。そして、スクラップ2の装入と同時に、本発明に係る脱りん剤であるCFSまたはCFSNを含む精錬剤3を炉内に投入する。CFS、CFSNの粒径は1〜50mm、好ましくは5〜35mm程度の粒径のものを使用することができる。   In FIG. 1, the outline of the refining process using an upper bottom blowing converter is shown. First, as shown in FIG. 1A, the scrap 2 is charged into the converter 1. Simultaneously with the charging of the scrap 2, the refining agent 3 containing CFS or CFSN as the dephosphorizing agent according to the present invention is put into the furnace. The particle size of CFS and CFSN may be 1 to 50 mm, preferably about 5 to 35 mm.

また、製鋼スラグ発生量削減および製造コスト削減の点から、CFSまたはCFSNを使用する際の転炉スラグの装入塩基度は1.3〜2.0が好ましい。装入塩基度とは、「転炉内へ供給する副原料中に含まれるCaO質量の合計」を分子とし、「転炉内へ供給する副原料中に含まれるSiO2質量の合計」と「溶銑およびスクラップ中に含まれているSiが全部SiO2に酸化されたとした場合のSiO2質量」との合計を分母として計算される比の数値である。さらに、本発明に係る脱りん剤の効果を十分に得るためには、脱りん剤から供給されるCaO量が、転炉内へ供給される精錬剤3に含まれる全CaO質量の20%以上であることが好ましい。 Moreover, from the point of steelmaking slag generation amount reduction and manufacturing cost reduction, the charging basicity of the converter slag when using CFS or CFSN is preferably 1.3 to 2.0. The charge basicity refers to “the total amount of CaO contained in the auxiliary raw material supplied into the converter” as a molecule, and “the total amount of SiO 2 contained in the auxiliary raw material supplied into the converter” and “ Si contained in the molten iron and scrap is a number of the ratio is calculated the sum of the SiO 2 mass "in the case of the oxidized to the total SiO 2 as a denominator. Furthermore, in order to sufficiently obtain the effect of the dephosphorizing agent according to the present invention, the amount of CaO supplied from the dephosphorizing agent is 20% or more of the total CaO mass contained in the refining agent 3 supplied into the converter. It is preferable that

転炉1内にスクラップ2および精錬剤3を装入した後、炉内に溶銑4を装入し(図1(b))、その後、ランス5から酸素を溶銑4に吹き込む吹錬を行う(図1(c))。   After the scrap 2 and the refining agent 3 are charged into the converter 1, the hot metal 4 is charged into the furnace (FIG. 1 (b)), and then blown by blowing oxygen from the lance 5 into the hot metal 4 ( FIG. 1 (c)).

吹錬によって、溶銑4中のりんが酸素およびスラグ中のCaOと反応して、スラグ側に移行する。通常、CaO源として生石灰は高融点であり、精錬時の溶銑温度での溶解速度は小さいが、本発明に係る脱りん剤であるCFSまたはCFSNは溶銑温度で溶融するため溶解速度が大きく、スラグ中のCaO濃度を早期に上昇させることで、溶銑の脱りんを促進することができる。   By blowing, phosphorus in the hot metal 4 reacts with oxygen and CaO in the slag, and shifts to the slag side. Normally, quick lime as a CaO source has a high melting point, and the dissolution rate at the hot metal temperature during refining is small, but CFS or CFSN, which is a dephosphorizing agent according to the present invention, melts at the hot metal temperature, so the dissolution rate is large, and slag By increasing the CaO concentration inside, the dephosphorization of hot metal can be promoted.

本発明において、CFSまたはCFSNを含む精錬剤3の投入は、転炉内に溶銑4を装入した後でも効果を発現するが、溶銑4の装入前に精錬剤3を投入しておくことが好ましい。これは、溶銑4の装入時の撹拌力を利用して、CFSまたはCFSNの溶解を促進するためである。あるいは、精錬剤のうちCFSまたはCFSNのみを溶銑4の装入前に投入し、精錬剤のその他の物質を吹錬時に投入してもよい。   In the present invention, the introduction of the refining agent 3 containing CFS or CFSN is effective even after the molten iron 4 is charged into the converter, but the refining agent 3 is charged before the molten iron 4 is charged. Is preferred. This is for promoting the dissolution of CFS or CFSN by utilizing the stirring force when the molten iron 4 is charged. Alternatively, only CFS or CFSN of the refining agent may be charged before the molten iron 4 is charged, and other substances of the refining agent may be charged at the time of blowing.

CaOおよびFe23からなるカルシウムフェライトは上述の通りCaOの溶融性を改善した化合物であり、生石灰等に対して溶融しやすく、脱りん効果を発揮することは周知であるが、本発明に係る脱りん剤である、SiO2、または、SiO2とNa2Oとを含有するカルシウムフェライトを用いることで、さらに融点が下がり、脱りん効果を高めることができる。 Calcium ferrite composed of CaO and Fe 2 O 3 is a compound that has improved the melting property of CaO as described above, and it is well known that it is easily melted to quicklime and exhibits a dephosphorization effect. according a dephosphorization agent, SiO 2, or, by using calcium ferrite containing SiO 2 and Na 2 O, lower the further melting point, it is possible to enhance the dephosphorization effect.

脱りんを行う精錬の形態としては、脱りんを行った後に別の炉で脱炭を行う場合と、MURC(Multi Refining Converter)法と呼ばれる、脱りんを行った後、転炉を傾動してりん濃度が高いスラグを排出し、その後同一炉で継続して脱炭を行う場合等がある。本発明は、いずれの場合にも適用できるが、殊にMURC法では、脱りん時の吹錬時間が通常4分以内と短時間であり、このような場合でも、本発明に係る脱りん剤を用いた脱りん方法によれば、効率よく脱りん処理が行える。   As a form of refining that performs dephosphorization, after dephosphorization, decarburization is performed in another furnace, and after dephosphorization, called the MURC (Multi Refining Converter) method, the converter is tilted. There are cases where slag with high phosphorus concentration is discharged and then decarburization is continued in the same furnace. Although the present invention can be applied to any case, in particular, in the MURC method, the blowing time during dephosphorization is usually as short as 4 minutes or less, and even in such a case, the dephosphorizing agent according to the present invention According to the dephosphorization method using, dephosphorization can be performed efficiently.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば、上記実施形態では、脱りん剤をCFSまたはCFSNとしたが、脱りん剤として、CFSとCFSNの両方を用いてもよい。   For example, in the above embodiment, the dephosphorizing agent is CFS or CFSN. However, both CFS and CFSN may be used as the dephosphorizing agent.

表1に示す種々の脱りん剤を用いて、転炉での脱りん処理を行った。ここで、表1の各脱りん剤の組成は、CaO,Fe,SiO,NaOの成分の合計が100質量%になるように化学分析値を案分した値である。脱りん処理の条件は、脱りん前[P]が0.1%、吹錬時間が3〜4分、装入塩基度が1.8、脱りん剤の使用量が10kg/tの条件である。表中の「成品[P]」は、鋳片段階での[P]である。また、「投入タイミング」とは、脱りん剤を転炉内に投入するタイミングであり、「溶銑装入前」もしくは「溶銑装入後」とした。 Using various dephosphorization agents shown in Table 1, dephosphorization treatment in a converter was performed. Here, the composition of each dephosphorizing agent in Table 1 is a value obtained by dividing the chemical analysis values so that the total of the components of CaO, Fe 2 O 3 , SiO 2 , and Na 2 O becomes 100% by mass. The conditions for the dephosphorization treatment are as follows: [P] before dephosphorization is 0.1%, blowing time is 3 to 4 minutes, charging basicity is 1.8, and the amount of dephosphorizing agent used is 10 kg / t. is there. “Product [P]” in the table is [P] at the slab stage. Further, the “charging timing” is the timing at which the dephosphorizing agent is charged into the converter, and is “before hot metal charging” or “after hot metal charging”.

Figure 2017171975
Figure 2017171975

本発明例であるNo.1〜No.6は、成品[P]<0.02%を達成し、特にNo.5とNo.6は成品[P]<0.016%であり、より優れた脱りん能を示すことがわかった。一方で、比較例であるNo.7〜11はいずれも成品[P]>0.02%であり、脱りんが不十分であった。   No. which is an example of the present invention. 1-No. 6 achieved the product [P] <0.02%. 5 and No. No. 6 was a product [P] <0.016%, and it was found that it showed a better dephosphorization ability. On the other hand, No. which is a comparative example. 7 to 11 were all products [P]> 0.02%, and dephosphorization was insufficient.

本発明例であるNo.1およびNo.2は、SiOが2〜10質量%、(SiO質量%)/(CaO質量%)比が0.05〜0.3であり、SiOによりカルシウムフェライトの溶融が促進され、脱りんスラグへのCaOの供給速度が大きいため、脱りんが促進されたと考えられる。一方でNo.7はSiOが2質量%未満であり、カルシウムフェライトの溶解が不十分であったため、脱りんが不十分であったと考えられる。また、No.8はSiO濃度が10質量%より大きく、(SiO質量%)/(CaO質量%)比が0.3より大きいため、脱りんが不十分であったと考えられる。 No. which is an example of the present invention. 1 and no. 2, SiO 2 is 2 to 10 wt%, a (SiO 2 mass%) / (CaO mass%) ratio of 0.05 to 0.3, melting of the calcium ferrite is promoted by the SiO 2, dephosphorization slag It is considered that dephosphorization was promoted because of the high CaO supply rate. On the other hand, no. In No. 7, SiO 2 was less than 2% by mass, and dissolution of calcium ferrite was insufficient. No. No. 8 has a SiO 2 concentration larger than 10 mass% and a (SiO 2 mass%) / (CaO mass%) ratio is larger than 0.3.

また、本発明例であるNo.3およびNo.4は、SiOが2〜10質量%、(SiO質量%)/(CaO質量%)比が0.05〜0.3、さらに(Na2O)/(SiO)比が0.1〜3.0であり、SiOおよびNa2Oによりカルシウムフェライトの溶融が促進され、Na2Oがスラグのフォスフェイトキャパシティーを増大したことで転炉スラグの粘度を下げ、スラグ側のりんの物質移動を促進したため、本発明例であるNo.1やNo.2に対して、さらに脱りんが促進されたと考えられる。 Moreover, No. which is an example of the present invention. 3 and no. 4, SiO 2 is 2 to 10 mass%, (SiO 2 mass%) / (CaO mass%) ratio is 0.05 to 0.3, and (Na 2 O) / (SiO 2 ) ratio is 0.1. is 3.0, the melting of the calcium ferrite by SiO 2 and Na 2 O is promoted, lowering the viscosity of the converter slag by Na 2 O was increased phosphate capacity of the slag, the slag side of phosphorus Since the mass transfer was promoted, No. 1 as an example of the present invention. 1 and No. 2 is considered to have further promoted dephosphorylation.

また、本発明例であるNo.5、およびNo.6は、溶銑装入前に脱りん剤を転炉内に装入しており、溶銑装入後に脱りん剤を投入したNo.3およびNo.4に対してさらに脱りんが促進されている。これは転炉への溶銑装入の撹拌力を利用し、脱りん剤の溶解が促進されたためと考えられる。   Moreover, No. which is an example of the present invention. 5 and no. No. 6 had a dephosphorizing agent charged in the converter before the hot metal was charged, and No. 6 in which the dephosphorizing agent was charged after the hot metal was charged. 3 and no. 4 is further promoted to remove phosphorus. This is considered to be because the dissolution of the dephosphorizing agent was promoted by utilizing the stirring force of the hot metal charging to the converter.

一方で、No.9ではSiOが2質量%より小さく、脱りん剤の溶融が不十分であったこと、(Na2O)/(SiO)が3.0より大きく、Na2Oの気化によりNa2Oが十分に脱りんスラグ中に残留しなかったことで、脱りんが不十分であったと考えられる。また、No.10は、SiOが2質量%より小さく、さらに(Na2O)/(SiO)が0.1より小さく、Na2Oによりスラグのフォスフェイトキャパシティー、スラグ側のりんの物質移動速度を十分に大きくできなかったため、脱りんが不十分であったと考えられる。No.11はSiOが2質量%より小さく、さらに(Na2O)/(SiO)が3.0より大きく、Na2Oの気化によりNa2Oが十分に脱りんスラグ中に残留しなかったことで、脱りんが不十分であったと考えられる。 On the other hand, no. In No. 9, SiO 2 was smaller than 2% by mass, the dephosphorization agent was not sufficiently melted, (Na 2 O) / (SiO 2 ) was larger than 3.0, and Na 2 O vaporization caused Na 2 O to vaporize. Was not sufficiently left in the dephosphorization slag, it is considered that the dephosphorization was insufficient. No. 10 is less than 2% by mass of SiO 2 and (Na 2 O) / (SiO 2 ) is less than 0.1, and Na 2 O increases the phosphate capacity of slag and the mass transfer rate of phosphorus on the slag side. It was thought that dephosphorization was insufficient because it was not sufficiently large. No. In No. 11, SiO 2 was smaller than 2% by mass, and (Na 2 O) / (SiO 2 ) was larger than 3.0, and Na 2 O did not sufficiently remain in the dephosphorized slag due to vaporization of Na 2 O. Therefore, it is considered that dephosphorization was insufficient.

本発明は、製鋼工程において、鉄を含有するスクラップと溶銑を精錬炉に装入して吹錬し、溶鋼を溶製する際の脱りん処理方法に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a dephosphorization processing method in which steel-containing scrap and molten iron are charged into a smelting furnace and blown in a steelmaking process to melt the molten steel.

1 転炉
2 スクラップ
3 精錬剤
4 溶銑
5 ランス
1 Converter 2 Scrap 3 Refining agent 4 Hot metal 5 Lance

Claims (5)

CaOとFe23とを主成分とし、SiO2濃度が2〜10質量%、(SiO2質量%)/(CaO質量%)比が0.05〜0.3であり、残部が不可避的な不純物であるカルシウムフェライトからなることを特徴とする、溶銑の脱りん剤。 The main component is CaO and Fe 2 O 3 , the SiO 2 concentration is 2 to 10% by mass, the (SiO 2 mass%) / (CaO mass%) ratio is 0.05 to 0.3, and the balance is inevitable. A hot metal dephosphorizing agent characterized by comprising calcium ferrite which is a major impurity. CaOとFe23とを主成分とし、SiO2濃度が2〜10質量%、(SiO2質量%)/(CaO質量%)比が0.05〜0.3、(Na2O質量%)/(SiO2質量%)比が0.1〜3.0であり、残部が不可避的な不純物であるカルシウムフェライトからなることを特徴とする、溶銑の脱りん剤。 The main component is CaO and Fe 2 O 3 , the SiO 2 concentration is 2 to 10% by mass, the (SiO 2 mass%) / (CaO mass%) ratio is 0.05 to 0.3, (Na 2 O mass%) ) / (SiO 2 mass%) ratio is 0.1 to 3.0, and the balance is made of calcium ferrite which is an inevitable impurity. 請求項1または2のいずれかに記載の溶銑の脱りん剤を含む精錬剤を転炉内に添加し、溶銑の脱りん処理を行う方法であって、
装入塩基度(CaO)/(SiO2)が1.3〜2.0であることを特徴とする、溶銑の脱りん方法。
A refining agent containing the hot metal dephosphorization agent according to claim 1 or 2 is added to a converter, and the hot metal dephosphorization treatment is performed.
A hot metal dephosphorization method, wherein the basic charge (CaO) / (SiO 2 ) is 1.3 to 2.0.
前記脱りん剤に含まれるCaO質量が、前記精錬剤に含まれるCaO質量の20%以上であることを特徴とする、請求項3に記載の溶銑の脱りん方法。   The hot metal dephosphorization method according to claim 3, wherein the CaO mass contained in the dephosphorizing agent is 20% or more of the CaO mass contained in the refining agent. 前記精錬剤を、溶銑の装入よりも前に転炉内に投入することを特徴とする、請求項3または4のいずれかに記載の溶銑の脱りん方法。   The hot metal dephosphorization method according to claim 3, wherein the refining agent is charged into the converter before the hot metal is charged.
JP2016057992A 2016-03-23 2016-03-23 Hot metal dephosphorizer and method Active JP6627601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057992A JP6627601B2 (en) 2016-03-23 2016-03-23 Hot metal dephosphorizer and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057992A JP6627601B2 (en) 2016-03-23 2016-03-23 Hot metal dephosphorizer and method

Publications (2)

Publication Number Publication Date
JP2017171975A true JP2017171975A (en) 2017-09-28
JP6627601B2 JP6627601B2 (en) 2020-01-08

Family

ID=59973685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057992A Active JP6627601B2 (en) 2016-03-23 2016-03-23 Hot metal dephosphorizer and method

Country Status (1)

Country Link
JP (1) JP6627601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018004655T5 (en) 2017-09-07 2020-06-04 Mitsubishi Heavy Industries Thermal Systems, Ltd. CONTROL DEVICE FOR ELECTRIC COMPRESSOR, ELECTRIC COMPRESSOR, AIR CONDITIONING DEVICE FOR A MOVING OBJECT AND METHOD FOR CONTROLLING AN ELECTRIC COMPRESSOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018004655T5 (en) 2017-09-07 2020-06-04 Mitsubishi Heavy Industries Thermal Systems, Ltd. CONTROL DEVICE FOR ELECTRIC COMPRESSOR, ELECTRIC COMPRESSOR, AIR CONDITIONING DEVICE FOR A MOVING OBJECT AND METHOD FOR CONTROLLING AN ELECTRIC COMPRESSOR
DE112018004655B4 (en) 2017-09-07 2022-03-10 Mitsubishi Heavy Industries Thermal Systems, Ltd. ELECTRIC COMPRESSOR CONTROL DEVICE, ELECTRIC COMPRESSOR, AIR CONDITIONING DEVICE FOR A MOVING OBJECT AND METHOD OF CONTROLLING AN ELECTRIC COMPRESSOR

Also Published As

Publication number Publication date
JP6627601B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP2010168641A (en) Method for reclaiming iron and phosphorous from steelmaking slag
JP6481774B2 (en) Molten iron dephosphorizing agent, refining agent and dephosphorizing method
JP5360174B2 (en) How to remove hot metal
JP2018178260A (en) Converter steelmaking process
JP4977870B2 (en) Steel making method
JPH11158526A (en) Production of high p slag
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP5233378B2 (en) Hot phosphorus dephosphorization method
JP6627601B2 (en) Hot metal dephosphorizer and method
JP5365464B2 (en) Steel refining method using electric furnace
JP5915711B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP5286892B2 (en) Dephosphorization method of hot metal
JP6992604B2 (en) Phosphate slag fertilizer manufacturing method
JP6460265B2 (en) Converter blowing method
JPH0141681B2 (en)
JP4422318B2 (en) Hot metal dephosphorization method with little refractory damage
JP4854933B2 (en) Refining method with high reaction efficiency
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP3194212B2 (en) Converter steelmaking method
JP2011058046A (en) Method for dephosphorizing molten iron
JP6398583B2 (en) Refining agent for dephosphorizing hot metal and dephosphorizing method of hot metal
JP2007119813A (en) Method for refining molten iron
JPS6212301B2 (en)
JP3898964B2 (en) Dephosphorization method for hot metal
JPS58181815A (en) Preliminary desiliconizing method of molten pig iron in converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R151 Written notification of patent or utility model registration

Ref document number: 6627601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151