JP2002363628A - Hot metal dephosphorizing method - Google Patents

Hot metal dephosphorizing method

Info

Publication number
JP2002363628A
JP2002363628A JP2001177126A JP2001177126A JP2002363628A JP 2002363628 A JP2002363628 A JP 2002363628A JP 2001177126 A JP2001177126 A JP 2001177126A JP 2001177126 A JP2001177126 A JP 2001177126A JP 2002363628 A JP2002363628 A JP 2002363628A
Authority
JP
Japan
Prior art keywords
hot metal
dephosphorization
ratio
converter slag
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001177126A
Other languages
Japanese (ja)
Other versions
JP3781985B2 (en
Inventor
Taiichi Kamiyama
泰一 上山
Takeshi Mimura
毅 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001177126A priority Critical patent/JP3781985B2/en
Publication of JP2002363628A publication Critical patent/JP2002363628A/en
Application granted granted Critical
Publication of JP3781985B2 publication Critical patent/JP3781985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot metal dephosphorizing method capable of suppressing generation of slopping when dephosphorizing the hot metal by utilizing a converter slag as a CaO source of a dephosphorizing agent. SOLUTION: (1) A hot metal dephosphorizing method in which the ratio of the converter slag in the CaO source of the dephosphorizing agent to be fed is changed in the increasing direction in the middle of the dephosphorizing process in accordance with an Si concentration in the hot metal before the dephosphorizing process and the oxygen quantity fed from the start of the dephosphorizing process. (2) A hot metal dephosphorizing method in which the time of the change is set after the time of completion of the desiliconization period in the dephosphorizing process and before the time of completion of the dephosphorizing period. (3) A hot metal dephosphorizing method in which the ratio of a CaO feed speed A1 in quicklime, or the like, to a CaO feed speed B1 in the converter slag, A1 /B1 , is set to be 1/3 to 3 by the time of change.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶銑脱りん処理方
法に関する技術分野に属し、詳細には、溶銑を脱りん処
理するに際し、脱りん剤のCaO源として転炉スラグと
生石灰および/又は石灰石を用いる溶銑脱りん処理方法
に関する技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of hot metal dephosphorization, and more specifically, in dephosphorizing hot metal, converter slag and quick lime and / or limestone are used as a CaO source of a dephosphorizing agent. Belongs to the technical field related to the hot metal dephosphorization treatment method.

【0002】[0002]

【従来の技術】一般に溶銑の脱りん処理においては、石
灰等の造滓剤と酸化鉄等の酸化剤を溶銑中にインジェク
ションすると共に、酸素を上吹きあるいは溶銑中にイン
ジェクションして脱りん処理を行っている。
2. Description of the Related Art Generally, in the dephosphorization of hot metal, a slag forming agent such as lime and an oxidizing agent such as iron oxide are injected into the hot metal, and oxygen is blown upward or injected into the hot metal to perform the dephosphorizing process. Is going.

【0003】転炉で予備処理溶銑を吹練したときに発生
する転炉スラグは、スラグ中のP濃度が0.2 〜0.8 程度
と低く、また、約50%のCaOを含んでいることから、
溶銑脱りん剤として使用すれば、再度脱りん能を発揮す
ることが知られている。近年では、転炉で発生する転炉
スラグを脱りん処理の際のCaO源として使用し、スラ
グ処理費用の低減および脱りん処理時の生石灰原単位を
低減する方法が報告されている。例えば、特開平06-287
615 号公報では転炉スラグを溶銑予備処理中の溶銑上に
添加あるいは高炉受銑前に入れ置き、又は、溶銑中にイ
ンジェクションし脱りんする方法が提案され報告されて
いる。また、特開平07-268431 号公報、特開平08-00361
1 号公報では転炉スラグを酸化鉄あるいは造滓剤に配合
したものを利用して脱りん処理を行う技術が報告されて
いる。
The converter slag generated when the pretreated hot metal is blown in the converter has a low P concentration of about 0.2 to 0.8 in the slag and contains about 50% CaO.
It is known that when used as a hot metal dephosphorizing agent, it again exhibits a dephosphorizing ability. In recent years, a method has been reported in which converter slag generated in a converter is used as a CaO source at the time of dephosphorization to reduce the cost of slag processing and to reduce the amount of quicklime during dephosphorization. For example, JP-A-06-287
No. 615 proposes and reports on a method of adding converter slag to hot metal during hot metal pretreatment or placing it before blast furnace receiving, or injecting and dephosphorizing hot metal. Also, JP-A-07-268431, JP-A-08-00361
No. 1 discloses a technique for performing a dephosphorization treatment using a converter slag mixed with iron oxide or a slag-making agent.

【0004】実操業においても、脱りん溶銑の吹練で発
生する転炉スラグ(レススラグ吹練滓)を脱りん剤とし
て使用し、りん分配の改善・生石灰代替の効果があるこ
とが報告されている(石坂,寺田,山上,長谷川ら,19
89 STEEL MAKING CONFEREN-CE PROCEEDINGS, 249 〜25
5 )。
[0004] In actual operation, it has been reported that converter slag (less slag blowing slag) generated by blowing molten dephosphorized hot metal is used as a dephosphorizing agent to improve the phosphorus distribution and to replace quicklime. (Ishizaka, Terada, Yamagami, Hasegawa et al., 19
89 STEEL MAKING CONFEREN-CE PROCEEDINGS, 249 〜25
Five ).

【0005】[0005]

【発明が解決しようとする課題】脱りん処理の際、脱り
ん処理の初期では脱りん反応に先立ち溶銑中のSiの酸
化が優先的に進行するため、スラグ中の塩基度(CaO/Si
O2)が上がりにくく、混銑車や転炉の炉口からスラグが
あふれ出すスロッピングという現象が発生しやすい状態
となる。更に、転炉スラグを脱りん剤として使用する場
合、転炉スラグは一旦転炉で溶融状態を経たプリメルト
品であることから滓化速度が速く、このため処理の途中
で滓化が過剰になりスロッピングが発生しやすくなると
いう問題点がある。スロッピングが発生した場合、処理
時間の延長、設備不良休止等の支障が生じるため、転炉
スラグを脱りん剤として使用する場合、スラグの塩基度
・滓化速度をコントロールする必要がある。
At the beginning of the dephosphorization treatment, the oxidation of Si in the hot metal proceeds preferentially prior to the dephosphorization reaction, so that the basicity (CaO / Si
O 2 ) hardly rises, and a phenomenon called sloping in which slag overflows from the furnace opening of a mixed iron wheel or converter is likely to occur. Furthermore, when converter slag is used as a dephosphorizer, the converter slag is a pre-melt product that has once been melted in a converter, so the slagging speed is high, and therefore slagging becomes excessive during the treatment. There is a problem that slopping is likely to occur. If slopping occurs, troubles such as prolongation of processing time and suspension of equipment failure will occur. Therefore, when converter slag is used as a dephosphorizing agent, it is necessary to control the basicity of the slag and the rate of slagging.

【0006】本発明は、このような事情に着目してなさ
れたものであって、その目的は、脱りん剤のCaO源と
して転炉スラグを利用して溶銑の脱りん処理をするに際
し、スロッピングの発生を抑制することができる溶銑脱
りん処理方法を提供しようとするものである。
The present invention has been made in view of such circumstances, and has as its object to perform dephosphorization of hot metal using converter slag as a CaO source of a dephosphorizing agent. An object of the present invention is to provide a hot metal dephosphorization treatment method capable of suppressing the occurrence of lopping.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る溶銑脱りん処理方法は、請求項1〜6
記載の溶銑脱りん処理方法としており、それは次のよう
な構成としたものである。
In order to achieve the above object, a method for dephosphorizing hot metal according to the present invention is described in claims 1-6.
The hot metal dephosphorization treatment method described above has the following configuration.

【0008】即ち、請求項1記載の溶銑脱りん処理方法
は、溶銑を脱りん処理するに際し、脱りん剤のCaO源
として転炉スラグと生石灰および/又は石灰石を用いる
溶銑脱りん処理方法において、脱りん処理前の溶銑中S
i濃度と脱りん処理開始からの供給酸素量によって、供
給する脱りん剤のCaO源の中の転炉スラグの量の比率
を脱りん処理の途中で増大方向に変更することを特徴と
する溶銑脱りん処理方法である(第1発明)。
That is, the hot metal dephosphorization treatment method according to the first aspect of the present invention is a hot metal dephosphorization treatment method using a converter slag and quick lime and / or limestone as a CaO source of a dephosphorizing agent when dephosphorizing hot metal. S in hot metal before dephosphorization
The hot metal characterized by changing the ratio of the amount of converter slag in the CaO source of the dephosphorizing agent to be supplied in the middle of the dephosphorization process in accordance with the i concentration and the amount of oxygen supplied from the start of the dephosphorization process. This is a phosphorus removal method (first invention).

【0009】請求項2記載の溶銑脱りん処理方法は、溶
銑を脱りん処理するに際し、脱りん剤のCaO源として
転炉スラグと生石灰および/又は石灰石を用いる溶銑脱
りん処理方法において、脱りん処理での脱珪期の終了時
点以降、脱りん期の終了前に、供給する脱りん剤のCa
O源の中の転炉スラグの量の比率を増大方向に変更する
ことを特徴とする溶銑脱りん処理方法である(第2発
明)。
A hot metal dephosphorization method according to a second aspect of the present invention is a hot metal dephosphorization method using converter slag and quick lime and / or limestone as a CaO source of a dephosphorizing agent when hot metal is dephosphorized. After the end of the desiliconization period in the treatment and before the end of the dephosphorization period, the Ca
This is a hot metal dephosphorization method characterized by changing the ratio of the amount of converter slag in the O source in the increasing direction (second invention).

【0010】請求項3記載の溶銑脱りん処理方法は、脱
りん処理開始からの供給酸素量(Nm3 /溶銑1トン)
=7×脱りん処理前の溶銑中Si濃度(質量%)となる
時点以降、脱りん期の終了前に、供給する脱りん剤のC
aO源の中の転炉スラグの量の比率を増大方向に変更す
る請求項1又は2記載の溶銑脱りん処理方法である(第
3発明)。
[0010] hot metal dephosphorization treatment method according to claim 3, wherein the supply amount of oxygen from the dephosphorization process start (Nm 3 / hot metal 1 ton)
= 7 × Since the concentration of Si in the hot metal before the dephosphorization treatment (% by mass) and before the end of the dephosphorization period, C
The hot metal dephosphorization treatment method according to claim 1 or 2, wherein the ratio of the amount of converter slag in the aO source is changed in an increasing direction (third invention).

【0011】請求項4記載の溶銑脱りん処理方法は、前
記転炉スラグの量の比率を増大方向に変更するまでの期
間においては生石灰および/又は石灰石中のCaO分の
供給速度A1 と転炉スラグ中のCaO分の供給速度B1
との比:A1 /B1 を1/3〜3とし、それ以降の期間
においては生石灰および/又は石灰石中のCaO分の供
給速度A2 と転炉スラグ中のCaO分の供給速度B2
の比:A2 /B2 を前記比:A1 /B1 よりも小さくす
る請求項1、2又は3記載の溶銑脱りん処理方法である
(第4発明)。
According to a fourth aspect of the present invention, in the hot metal dephosphorization treatment method, the feed rate A 1 of the CaO content in the quicklime and / or limestone is changed until the ratio of the amount of the converter slag is changed in the increasing direction. Feed rate B 1 of CaO in furnace slag
Ratio: A 1 / B 1 is set to 1/3 to 3, and in the subsequent period, the supply rate A 2 of CaO in quicklime and / or limestone and the supply rate B 2 of CaO in converter slag The hot metal dephosphorization treatment method according to claim 1 , wherein the ratio of A 2 / B 2 is smaller than the ratio A 1 / B 1 (the fourth invention).

【0012】請求項5記載の溶銑脱りん処理方法は、前
記転炉スラグの量の比率を増大方向に変更するまでの期
間においては生石灰および/又は石灰石中のCaO分の
供給速度A1 と転炉スラグ中のCaO分の供給速度B1
との比:A1 /B1 を1/3〜3とし、それ以降の期間
においては生石灰および/又は石灰石中のCaO分の供
給速度A2 と転炉スラグ中のCaO分の供給速度B2
の比:A2 /B2 を0以上3未満、より好ましくは0〜
2とする請求項1、2、3又は4記載の溶銑脱りん処理
方法である(第5発明)。
According to a fifth aspect of the present invention, in the hot metal dephosphorization treatment method, the feed rate A 1 of the CaO content in the quicklime and / or limestone is not changed until the ratio of the amount of the converter slag is changed in the increasing direction. Feed rate B 1 of CaO in furnace slag
Ratio: A 1 / B 1 is set to 1/3 to 3, and in the subsequent period, the supply rate A 2 of CaO in quicklime and / or limestone and the supply rate B 2 of CaO in converter slag Ratio of A 2 / B 2 to 0 or more and less than 3, more preferably 0 to
The hot metal dephosphorization treatment method according to any one of claims 1, 2, 3 and 4, wherein the second method is (fifth invention).

【0013】請求項6記載の溶銑脱りん処理方法は、供
給する転炉スラグの一部を溶銑の上方から添加する請求
項1、2、3、4又は5記載の溶銑脱りん処理方法であ
る(第6発明)。
The hot metal dephosphorization treatment method according to claim 6 is the hot metal dephosphorization treatment method according to claim 1, wherein a part of the converter slag to be supplied is added from above the hot metal. (Sixth invention).

【0014】[0014]

【発明の実施の形態】本発明は例えば次のような形態で
実施する。脱りん剤のCaO源として転炉スラグと生石
灰および/又は石灰石(以下、生石灰等という)を用い
て溶銑の脱りん処理をする。即ち、溶銑に対して転炉ス
ラグと生石灰等を添加し、溶銑の脱りん処理をする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is embodied in the following manner, for example. Dephosphorization of hot metal is performed using converter slag and quicklime and / or limestone (hereinafter referred to as quicklime) as a CaO source of a dephosphorizing agent. That is, converter slag, quick lime, and the like are added to the hot metal, and the hot metal is dephosphorized.

【0015】このとき、脱りん処理前の溶銑中Si濃度
と脱りん処理開始からの供給酸素量によって、添加(供
給)する脱りん剤のCaO源の中の転炉スラグの量の比
率を脱りん処理の途中で増大方向に変更する。即ち、転
炉スラグの供給速度(単位時間当たりの供給量)をb、
生石灰等の供給速度をaとすると、b/(a+b)を脱
りん処理の途中で増大させる。
At this time, the ratio of the amount of converter slag in the CaO source of the dephosphorizing agent to be added (supplied) is determined by the Si concentration in the hot metal before the dephosphorization treatment and the amount of oxygen supplied from the start of the dephosphorization treatment. Change in the increasing direction during the phosphorus treatment. That is, the supply speed (supply amount per unit time) of the converter slag is b,
Assuming that the supply speed of quicklime or the like is a, b / (a + b) is increased during the dephosphorization process.

【0016】あるいは、脱りん処理での脱珪期の終了時
点以降、脱りん期の終了前に、供給する脱りん剤のCa
O源の中の転炉スラグの量の比率〔b/(a+b)〕を
増大方向に変更する。
Alternatively, after the end of the desiliconization period in the dephosphorization treatment, and before the end of the dephosphorization period, the supplied dephosphorizer Ca
The ratio [b / (a + b)] of the amount of converter slag in the O source is changed in the increasing direction.

【0017】上記比率〔b/(a+b)〕を増大方向に
変更する時点に関し、より具体的には、例えば、脱りん
処理開始からの供給酸素量(Nm3 /溶銑1トン)=7
×脱りん処理前の溶銑中Si濃度(質量%)となる時点
以降、脱りん期の終了前とする。
Regarding the point in time when the ratio [b / (a + b)] is changed in the increasing direction, more specifically, for example, the supplied oxygen amount (Nm 3 / ton of hot metal) from the start of the dephosphorization treatment = 7
X After the time when the Si concentration (mass%) in the hot metal before the dephosphorization treatment is reached and before the end of the dephosphorization period.

【0018】上記転炉スラグの供給速度b及び生石灰等
の供給速度aに関し、より具体的には、比率〔b/(a
+b)〕を増大方向に変更する時点までの期間において
は、例えば、生石灰等中のCaO分の供給速度A1 と転
炉スラグ中のCaO分の供給速度B1 との比:A1 /B
1 が1/3〜3となるような供給速度b及びaとし、そ
れ以降の期間においては生石灰等中のCaO分の供給速
度A2 と転炉スラグ中のCaO分の供給速度B2 との
比:A2 /B2 が前記比:A1 /B1 よりも小さくなる
ような供給速度b及びaとする。
Regarding the feed rate b of the converter slag and the feed rate a of quicklime, etc., more specifically, the ratio [b / (a
+ B)] in the period up to the point of change in the increasing direction, for example, the ratio of the supply rate A 1 of CaO in quicklime or the like to the supply rate B 1 of CaO in converter slag: A 1 / B
1 is a feed rate b and a such that 1/3 to 3, and the feed rate B 2 of the CaO content in the CaO content supply rate A 2 and BOF slag in quicklime, etc. in the subsequent period Supply speeds b and a are such that the ratio: A 2 / B 2 is smaller than the ratio: A 1 / B 1 .

【0019】このような形態で本発明が実施される。以
下、本発明について主にその作用効果を説明する。
The present invention is implemented in such a form. Hereinafter, the operation and effect of the present invention will be mainly described.

【0020】図1に、溶銑の脱りん処理に使用するCa
O源の中の転炉スラグの比率Xと脱りん処理中のスロッ
ピング発生率Yとの関係を示す。この図1からわかる如
く、脱珪反応が優先的に進行する脱りん処理の初期段階
の脱珪期においては、転炉スラグの比率Xの増加に伴
い、スロッピング発生率Yが上昇する。しかし、脱珪期
の終了時点以降の脱りん期においては、転炉スラグの比
率Xとスロッピング発生率Yの間に相関はなく、全体的
にスロッピング発生率Yが低い。従って、脱りん処理の
初期段階の脱珪期における転炉スラグの比率Xが低くな
るようにすると、スロッピングの発生を抑制することが
できる。また、脱珪期の終了時点以降においては、スロ
ッピング発生率Yの上昇という支障を来すことなく、転
炉スラグの比率Xを高くすることができ、それに伴って
生石灰等の供給量を少なくすることができ、CaO源と
しては転炉スラグだけでもよくなる。これは、脱珪期の
終了時点以降においては、スラグの塩基度が上がって処
理が安定するようになるからである。
FIG. 1 shows a graph of Ca used for hot metal dephosphorization.
The relationship between the ratio X of the converter slag in the O source and the slopping occurrence rate Y during the dephosphorization treatment is shown. As can be seen from FIG. 1, in the desiliconization stage in the initial stage of the dephosphorization treatment in which the desiliconization reaction proceeds preferentially, the slopping occurrence rate Y increases with an increase in the converter slag ratio X. However, in the dephosphorization period after the end of the desiliconization period, there is no correlation between the converter slag ratio X and the slopping occurrence rate Y, and the slopping occurrence rate Y is low overall. Therefore, when the ratio X of the converter slag in the desiliconization stage at the initial stage of the dephosphorization treatment is reduced, the occurrence of slopping can be suppressed. Further, after the end of the desiliconization period, the ratio X of the converter slag can be increased without hindering the increase of the slopping occurrence rate Y, and accordingly, the supply amount of quicklime and the like is reduced. And the converter slag alone may be used as the CaO source. This is because after the end of the desiliconization period, the basicity of the slag increases, and the treatment becomes stable.

【0021】脱りん剤のCaO源として転炉スラグと生
石灰等を用いる溶銑脱りん処理方法において、従来の溶
銑脱りん処理方法では、脱りん処理を通じて転炉スラグ
と生石灰等の供給比率が同じで、転炉スラグからのCa
O分の供給速度と生石灰等からのCaO分の供給速度と
の比率が常に同じであり、転炉スラグの比率Xは数十%
程度である。従って、図1からもわかる如く、脱りん処
理の初期段階の脱珪期においてスロッピングが発生しや
すい。また、CaO源としては転炉スラグだけでもよく
なるような脱珪期の終了時点以降において生石灰等をむ
だに使用していることになる。
In a hot metal dephosphorization method using converter slag and quick lime as a CaO source of a dephosphorizing agent, in the conventional hot metal dephosphorization method, the supply ratio of converter slag and quick lime etc. is the same through dephosphorization. , Ca from converter slag
The ratio between the supply rate of O and the supply rate of CaO from quicklime is always the same, and the ratio X of the converter slag is several tens%.
It is about . Therefore, as can be seen from FIG. 1, slopping is likely to occur in the desiliconization period at the initial stage of the dephosphorization treatment. In addition, quicklime or the like is wasted after the end of the desiliconization period in which only the converter slag is sufficient as the CaO source.

【0022】本発明の第1発明に係る溶銑脱りん処理方
法では、脱りん処理前の溶銑中Si濃度と脱りん処理開
始からの供給酸素量によって、供給する脱りん剤のCa
O源の中の転炉スラグの量の比率を脱りん処理の途中で
増大方向に変更することとしている。即ち、脱りん処理
の初期段階において供給するCaO源の中の転炉スラグ
の量の比率X1 を比較的(後記比率X2 に比較して)小
さくし、脱りん処理の途中以降において供給するCaO
源の中の転炉スラグの量の比率X2 を前記比率X1 より
も大きくする。また、この比率X1 から比率X2 への変
更時点は、脱りん処理前の溶銑中Si濃度と脱りん処理
開始からの供給酸素量(累積供給酸素量)によって定め
る。このSi濃度と累積供給酸素量は脱珪の進捗度の指
標となり、これより脱珪期の終了時点を推定することも
可能であるので、上記の変更時点を脱珪期の終了時点や
その直後とすることも可能である。
In the method for dephosphorizing hot metal according to the first invention of the present invention, the Ca of the dephosphorizing agent to be supplied is determined by the concentration of Si in the hot metal before the dephosphorization and the amount of oxygen supplied from the start of the dephosphorization.
The ratio of the amount of converter slag in the O source is changed in an increasing direction during the dephosphorization treatment. That is, to reduce relatively the amount of ratio X 1 of converter slag in a CaO source is supplied in the early stages of dephosphorization process (as compared to the later ratio X 2), and supplies in the course subsequent dephosphorization treatment CaO
The ratio X 2 of the amount of converter slag in the source be greater than the ratio X 1. Also, the time of changing from the ratio X 1 to a ratio X 2 are determined by the supply amount of oxygen from the Si concentration and the dephosphorization process start during hot metal pre-dephosphorization process (cumulative supply amount of oxygen). Since the Si concentration and the accumulated supply oxygen amount are indicators of the progress of the desiliconization, it is possible to estimate the end point of the desiliconization period. It is also possible to use

【0023】従って、上記転炉スラグの量の比率X1
スロッピング発生の抑制が可能な程度に小さくし、この
比率X1 から比率X2 への変更時点を脱珪期の終了時点
やその後とすることができ、そうすることにより、スロ
ッピングの発生を抑制することができるようになる。ま
た、脱珪期の終了時点以降においては、スロッピング発
生率の上昇を来すことなく、転炉スラグの量の比率X2
を大きくし、生石灰等の供給量を少なくすることがで
き、それにより経済性を向上することも可能となる。
Accordingly, the ratio X 1 of the amount of converter slag is reduced to such an extent that the occurrence of slopping can be suppressed, and the point of change from the ratio X 1 to the ratio X 2 is determined at the end of the desiliconization period or thereafter. By doing so, it becomes possible to suppress the occurrence of slopping. Further, after the end of the desiliconization period, the ratio of the amount of converter slag X 2
Can be increased, and the supply amount of quicklime or the like can be reduced, whereby the economic efficiency can be improved.

【0024】また、本発明の第2発明に係る溶銑脱りん
処理方法は、脱りん処理での脱珪期の終了時点以降、脱
りん期の終了前に、供給する脱りん剤のCaO源の中の
転炉スラグの量の比率を増大方向に変更することとして
いる。即ち、脱りん処理の初期段階において供給するC
aO源の中の転炉スラグの量の比率X1 を比較的小さく
し、脱りん処理での脱珪期の終了時点以降、脱りん期の
終了前に、供給するCaO源の中の転炉スラグの量の比
率X2 を前記比率X1 よりも大きくする。従って、上記
転炉スラグの量の比率X1 をスロッピング発生の抑制が
可能な程度に小さくすることにより、スロッピングの発
生を抑制し得るようになる。また、スロッピング発生率
の上昇を来すことなく、上記転炉スラグの量の比率X2
を大きくすることができ、それに伴って生石灰等の供給
量を少なくすることができるようになる。
Further, in the method for dephosphorizing hot metal according to the second invention of the present invention, the CaO source of the dephosphorizing agent to be supplied is provided after the end of the desiliconization period in the dephosphorization process and before the end of the dephosphorization period. The ratio of the amount of converter slag in the inside is to be changed in the increasing direction. That is, C supplied in the initial stage of the dephosphorization treatment
the ratio X 1 in the amount of converter slag relatively small in aO source, after the end of the de-珪期in dephosphorization process, before the end of the dephosphorization stage, BOF in the CaO source supplying the ratio X 2 of the amount of slag is greater than the ratio X 1. Therefore, by reducing the ratio X 1 in the amount of the converter slag to an extent capable of suppressing the slopping occurs, so it can suppress the occurrence of slopping. Further, the ratio X 2 of the amount of the converter slag can be increased without increasing the rate of occurrence of slopping.
Can be increased, and accordingly, the supply amount of quicklime or the like can be reduced.

【0025】脱りん処理開始からの供給酸素量(Nm3
/溶銑1トン)=7×脱りん処理前の溶銑中Si濃度
(質量%)となる時点は、脱りん処理での脱珪期の終了
時点に相当する。従って、前記CaO源の中の転炉スラ
グの量の比率を増大方向に変更する時点を、脱りん処理
開始からの供給酸素量(Nm3 /溶銑1トン)=7×脱
りん処理前の溶銑中Si濃度(質量%)となる時点以
降、脱りん期の終了前とすると、脱りん処理での脱珪期
の終了時点以降、脱りん期の終了前としたことになり、
このため、前記第2発明の場合と同様の作用効果を奏す
ることができる(第3発明)。
The amount of oxygen supplied from the start of the dephosphorization treatment (Nm 3
/ 1 ton of hot metal) = 7 × the point at which the Si concentration (mass%) in the hot metal before the dephosphorization treatment corresponds to the end point of the desiliconization period in the dephosphorization treatment. Therefore, the point in time when the ratio of the amount of converter slag in the CaO source is changed in the increasing direction is determined by the amount of oxygen supplied from the start of the dephosphorization treatment (Nm 3 / ton of hot metal) = 7 × hot metal before dephosphorization treatment If it is before the end of the dephosphorization period after the time when the medium Si concentration (% by mass) is reached, it will be before the end of the dephosphorization period after the end of the desiliconization period in the dephosphorization treatment.
For this reason, the same operation and effect as in the case of the second invention can be obtained (third invention).

【0026】図2に、脱りん処理での脱珪期における生
石灰等中のCaO分の供給速度A1と転炉スラグ中のC
aO分の供給速度B1 との比:A1 /B1 と、スロッピ
ング発生率Yとの関係を示す。この図2からわかる如
く、A1 /B1 が1/3未満の場合には、A1 /B1
1/3以上の場合と比較してスロッピング発生率Yが高
くなる。この点からすると、A1 /B1 を1/3以上と
することが望ましい。
FIG. 2 shows the supply rate A 1 of CaO in quicklime and the like in the desiliconization period in the dephosphorization treatment and the C rate in the converter slag.
The relationship between the ratio of aO to the supply speed B 1 : A 1 / B 1 and the slopping occurrence rate Y is shown. As can be seen from FIG. 2, when A 1 / B 1 is less than 3, the slapping occurrence rate Y is higher than when A 1 / B 1 is / or more. From this point, it is desirable that A 1 / B 1 be 1/3 or more.

【0027】しかし、A1 /B1 が大きくなると、滓化
しやすい転炉スラグの比率が低下するため、未滓化石灰
が生じることになる。図3に、A1 /B1 と脱りん処理
後スラグ中の未滓化石灰(F−CaO)との関係を示
す。この図3からわかる如く、A1 /B1 が3超になる
と、F−CaO(未滓化石灰)比率が上昇する。この場
合には、パーマネント反応が主体となる脱りん反応にお
いて、脱りん効率が低下し、結果として石灰原単位が悪
化する。この点からすると、A1 /B1 を3以下とする
ことが望ましい。
However, when the ratio A 1 / B 1 is large, the ratio of converter slag which tends to form slag is reduced, so that unslagized lime is generated. FIG. 3 shows the relationship between A 1 / B 1 and unslagified lime (F-CaO) in the slag after the dephosphorization treatment. As can be seen from FIG. 3, when A 1 / B 1 exceeds 3, the F-CaO (unslagged lime) ratio increases. In this case, in the dephosphorization reaction mainly performed by the permanent reaction, the dephosphorization efficiency decreases, and as a result, the lime intensity decreases. From this point, it is desirable to set A 1 / B 1 to 3 or less.

【0028】このような点から、本発明の第4発明に係
る溶銑脱りん処理方法においては、前述の転炉スラグの
量の比率を増大方向に変更するまでの期間においては生
石灰および/又は石灰石中のCaO分の供給速度A1
転炉スラグ中のCaO分の供給速度B1 との比:A1
1 を1/3〜3とし、それ以降の期間においては生石
灰および/又は石灰石中のCaO分の供給速度A2 と転
炉スラグ中のCaO分の供給速度B2 との比:A2 /B
2 を前記比:A1 /B1 よりも小さくすることとした。
この溶銑脱りん処理方法によれば、スロッピング発生率
をより確実に低くすることができると共に、未滓化石灰
(F−CaO)比率を低くし得て脱りん効率を向上させ
ることができ、ひいては石灰原単位の向上がはかれる。
In view of the above, in the hot metal dephosphorization treatment method according to the fourth invention of the present invention, quick lime and / or limestone are not used until the ratio of the amount of converter slag is changed in the increasing direction. Of the supply rate A 1 of CaO in the converter to the supply rate B 1 of CaO in the converter slag: A 1 /
B 1 is set to 1/3 to 3, and in the subsequent period, the ratio of the supply rate A 2 of CaO in quicklime and / or limestone to the supply rate B 2 of CaO in converter slag: A 2 / B
2 was set to be smaller than the above ratio: A 1 / B 1 .
According to this hot metal dephosphorization treatment method, the rate of occurrence of slopping can be more reliably reduced, and the ratio of unslagged lime (F-CaO) can be reduced, so that the dephosphorization efficiency can be improved. As a result, lime intensity can be improved.

【0029】ここで、A2 /B2 については、3未満と
することになるが、これが小さい方がCaO源中の転炉
スラグの比率が高く、それに伴って生石灰等の供給量を
少なくすることができ、経済性を向上することができ
る。かかる点から、A2 /B2を2以下とすることが望
ましい(第5発明)。このとき、CaO源としては転炉
スラグだけでもよく、この場合には最大限に転炉スラグ
の有効利用がはかれ、最も経済性を向上することができ
る。
Here, A 2 / B 2 is set to be less than 3. The smaller the ratio, the higher the ratio of converter slag in the CaO source, and accordingly, the smaller the supply amount of quicklime and the like. And can improve economic efficiency. From such a point, it is desirable to set A 2 / B 2 to 2 or less (fifth invention). At this time, only the converter slag may be used as the CaO source. In this case, the converter slag can be used effectively to the maximum, and the economy can be improved most.

【0030】脱りん剤のCaO源として転炉スラグを供
給するに際し、その添加の方式は特には限定されず、種
々の方式を採用することができ、例えば、転炉スラグの
一部を溶銑の上方から添加する方式を採用することがで
きる(第6発明)。
In supplying the converter slag as a CaO source of the dephosphorizing agent, the method of adding the converter slag is not particularly limited, and various methods can be adopted. A method of adding from above can be adopted (sixth invention).

【0031】脱りん処理対象の溶銑のSi濃度(脱りん
処理前のSi濃度)が極めて低い場合には、脱りん処理
の初期段階の脱珪期が短く、スロッピングが発生しにく
くなる。従って、本発明に係る溶銑脱りん処理方法は、
脱りん処理対象の溶銑のSi濃度が比較的高い場合に効
果が大きくて好適であり、中でも脱りん処理対象の溶銑
のSi濃度が0.10質量%以上の場合に特に効果が大
きくて好適である。
When the Si concentration of the hot metal to be dephosphorized (Si concentration before the dephosphorization treatment) is extremely low, the desiliconization period in the initial stage of the dephosphorization treatment is short, and slopping is unlikely to occur. Therefore, the hot metal dephosphorization method according to the present invention,
The effect is large and suitable when the Si concentration of the hot metal to be dephosphorized is relatively high, and the effect is particularly large and suitable when the Si concentration of the hot metal to be dephosphorized is 0.10% by mass or more. is there.

【0032】[0032]

【実施例】本発明の実施例及び比較例を以下説明する。
尚、本発明はこの実施例に限定されるものではない。
EXAMPLES Examples and comparative examples of the present invention will be described below.
Note that the present invention is not limited to this embodiment.

【0033】表1に、実施例及び比較例に用いた転炉ス
ラグの組成を示す。表2に、実施例及び比較例(従来
法)に係る溶銑脱りん処理の操業条件を示す。この操業
条件にて、Si濃度:0.10質量%以上(0.12〜
0.24質量%)の溶銑について脱りん処理を行った。
即ち、比較例に係る溶銑脱りん処理では、脱珪期と脱珪
期終了時点以降の脱りん期におけるCaO源の転炉スラ
グ及び生石灰の吹き込み速度(供給速度)を同一とし、
脱りん処理の間を通じてCaO源の中の転炉スラグの量
の比率を一定とした。これに対し、実施例に係る溶銑脱
りん処理では、脱珪期終了時点でCaO源の中の転炉ス
ラグの量の比率を増大方向に変更した。
Table 1 shows the composition of the converter slag used in the examples and comparative examples. Table 2 shows the operating conditions of the hot metal dephosphorization treatment according to the example and the comparative example (conventional method). Under these operating conditions, the Si concentration: 0.10% by mass or more (0.12 to
(0.24% by mass) was subjected to a dephosphorization treatment.
That is, in the hot metal dephosphorization treatment according to the comparative example, the blowing speed (supply speed) of the converter slag and quick lime of the CaO source in the dephosphorization period and the dephosphorization period after the end of the desiliconization period is the same,
The ratio of the amount of converter slag in the CaO source was kept constant throughout the dephosphorization treatment. On the other hand, in the hot metal dephosphorization treatment according to the example, the ratio of the amount of converter slag in the CaO source was changed in the increasing direction at the end of the desiliconization period.

【0034】より詳細には、比較例に係る溶銑脱りん処
理においては、脱珪期における生石灰中のCaO分の供
給速度A1 と転炉スラグ中のCaO分の供給速度B1
の比:A1 /B1 も、脱珪期終了時点以降の脱りん期に
おける生石灰中のCaO分の供給速度A2 と転炉スラグ
中のCaO分の供給速度B2 との比:A2 /B2 も、い
ずれも0.28とした。これに対し、実施例に係る溶銑
脱りん処理においては、脱珪期における生石灰中のCa
O分の供給速度A1 と転炉スラグ中のCaO分の供給速
度B1 との比:A1 /B1 を1.64とし、脱珪期終了
時点以降の脱りん期における生石灰中のCaO分の供給
速度A2 と転炉スラグ中のCaO分の供給速度B2 との
比:A2 /B2 を0.31とした。なお、脱りん処理開
始からの供給酸素量(Nm3 /溶銑1トン)=7×脱り
ん処理前の溶銑中Si濃度(質量%)となる時点を脱珪
期終了時点とした。
More specifically, in the hot metal dephosphorization treatment according to the comparative example, the ratio of the supply rate A 1 of CaO in the quicklime and the supply rate B 1 of CaO in the converter slag during the desiliconization period: A 1 / B 1 is also the ratio of the supply rate A 2 of CaO in quicklime and the supply rate B 2 of CaO in converter slag in the dephosphorization period after the end of the desiliconization period: A 2 / B 2 Both were set to 0.28. On the other hand, in the hot metal dephosphorization treatment according to the example, Ca in the quicklime during the desiliconization period
The ratio of the supply rate A 1 of O and the supply rate B 1 of CaO in the converter slag: A 1 / B 1 is set to 1.64, and CaO in quicklime during the dephosphorization period after the end of the desiliconization period. the ratio of the minute feed rate a 2 and feed rate B 2 of the CaO content of the converter slag: and the a 2 / B 2 and 0.31. Incidentally, the supply amount of oxygen (Nm 3 / hot metal 1 t) = 7 × dephosphorization pretreatment Si concentration (wt%) in molten iron and the time de-珪期termination comprising time from dephosphorization process start.

【0035】上記実施例及び比較例(従来法)に係る溶
銑脱りん処理の際のスロッピング発生率を、図4に示
す。比較例の場合、スロッピング発生率が32%と高い
のに対し、本発明の実施例の場合、スロッピング発生率
が13%と低くなっている。一方、脱珪期終了時点以降
の脱りん期においては、スロッピング発生率が生石灰中
のCaO分の供給速度A2 によらず低いことから、この
期間においては生石灰中のCaO分の供給速度A2 を転
炉スラグ中のCaO分の供給速度B2 の3分の1以下に
抑えることが可能であり、CaO分の供給源としては転
炉スラグを主体とした脱りん処理操業が可能となる。
FIG. 4 shows the rate of occurrence of slopping during the hot metal dephosphorization treatment according to the above Examples and Comparative Examples (conventional method). In the case of the comparative example, the rate of occurrence of slopping is as high as 32%, whereas in the example of the present invention, the rate of occurrence of slopping is as low as 13%. On the other hand, in the dephosphorization stage of de珪期end later, since the slopping incidence is low regardless of the feed rate A 2 of the CaO content in the quick lime feed rate A of the CaO content in the quick lime in this period 2 it is possible to suppress the following one third of feed rate B 2 of the CaO content of the converter slag, it is possible to dephosphorization process operation mainly composed of converter slag as a source of CaO content .

【0036】脱りん処理に使用したトータルCaO分に
占める生石灰、転炉スラグの関係を図5に示す。本発明
の実施例の場合、比較例の場合に比較し、転炉スラグの
割合が大きく、生石灰の割合が小さく、トータルCaO
量も小さい。このように、本発明の場合は転炉スラグの
割合を大きくすることができるため、脱りん処理に使用
するトータルCaO量を低くすることも可能である。
FIG. 5 shows the relationship between quick lime and converter slag in the total CaO used in the dephosphorization treatment. In the case of the embodiment of the present invention, the ratio of converter slag, the ratio of quicklime, and the ratio of total CaO were smaller than those of the comparative example.
The amount is also small. As described above, in the case of the present invention, the ratio of converter slag can be increased, so that the total amount of CaO used for the dephosphorization can be reduced.

【0037】なお、上記実施例においてはCaO源中の
転炉スラグ量の比率を増大方向に変更する時点を脱珪期
終了時点とし、脱珪期におけるA1 /B1 を1.64と
し、脱珪期終了時点以降の脱りん期におけるA2 /B2
を0.31としたが、脱珪期におけるA1 /B1 を1/
3とした場合も上記実施例の場合と同様にスロッピング
発生率が低く、更にA1 /B1 を1/3よりも少し小さ
くした場合は上記実施例の場合よりも極僅かスロッピン
グ発生率が大きくなるものの、上記実施例の場合とほぼ
同程度のスロッピング発生率であった。また、A1 /B
1 を3とした場合も上記実施例の場合と同様にスロッピ
ング発生率が低く、更にA1 /B1 を3よりも少し大き
くした場合も上記実施例の場合と同様にスロッピング発
生率が低かった。
In the above embodiment, the point in time when the ratio of the amount of converter slag in the CaO source is changed in the increasing direction is the end point of the desiliconization period, and A 1 / B 1 in the desiliconization period is 1.64. A 2 / B 2 in the dephosphorization period after the end of the desiliconization period
Was set to 0.31, but A 1 / B 1 in the desiliconization period was 1 /
In the case of 3, the rate of occurrence of slopping is low as in the case of the above embodiment, and when A 1 / B 1 is made slightly smaller than 1/3, the rate of occurrence of slopping is very slightly lower than in the case of the above embodiment. However, the rate of occurrence of slopping was substantially the same as that of the above example. Also, A 1 / B
When 1 is set to 3, the rate of occurrence of slopping is low as in the case of the above-described embodiment, and when A 1 / B 1 is slightly larger than 3, the rate of occurrence of slopping is also reduced as in the case of the above-described embodiment. It was low.

【0038】CaO源中の転炉スラグ量の比率を増大方
向に変更する時点を脱珪期終了時点より後にした場合も
上記実施例の場合と同様にスロッピング発生率が低かっ
た。また、この変更時点を脱珪期終了時点より少し前に
した場合も上記実施例の場合とほぼ同程度のスロッピン
グ発生率であった。
When the time when the ratio of the converter slag amount in the CaO source was changed in the increasing direction was set after the end of the desiliconization period, the rate of occurrence of slopping was low as in the case of the above embodiment. Also, when the time point of this change was slightly before the time point of the end of the desiliconization period, the rate of occurrence of slopping was almost the same as in the case of the above embodiment.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】本発明に係る溶銑脱りん処理方法によれ
ば、脱りん剤のCaO源として転炉スラグを利用して溶
銑の脱りん処理をするに際し、スロッピングの発生を抑
制することができるようになる。
According to the method for dephosphorizing hot metal according to the present invention, it is possible to suppress the occurrence of slopping when performing dephosphorizing of hot metal using converter slag as a CaO source of a dephosphorizing agent. become able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 脱りん処理での転炉スラグ配合率とスロッピ
ング発生率との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a converter slag mixing ratio and a slopping occurrence ratio in a dephosphorization treatment.

【図2】 脱りん処理での脱珪期における生石灰等中の
CaO分の供給速度A1 と転炉スラグ中のCaO分の供
給速度B1 との比:A1 /B1 と、スロッピング発生率
との関係を示す図である。
[2] The ratio of the feed rate B 1 of CaO content in CaO fraction supply rate A 1 and BOF slag in lime or the like in de珪期in dephosphorization process: the A 1 / B 1, slopping It is a figure which shows the relationship with an incidence.

【図3】 脱りん処理での脱珪期における生石灰等中の
CaO分の供給速度A1 と転炉スラグ中のCaO分の供
給速度B1 との比:A1 /B1 と、脱りん処理後スラグ
中F−CaO(未滓化石灰)との関係を示す図である。
FIG. 3 shows the ratio of the feed rate A 1 of CaO in quicklime and the like in the desiliconization period in the dephosphorization treatment to the feed rate B 1 of CaO in converter slag: A 1 / B 1 and dephosphorization. It is a figure which shows the relationship with F-CaO (non-slag lime) in slag after a process.

【図4】 脱りん処理の時期(脱珪期、脱りん期)とス
ロッピング発生率との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the time of the dephosphorization treatment (the desiliconization period and the dephosphorization period) and the rate of occurrence of slopping.

【図5】 脱りん処理方法(従来法、本発明例)と脱り
ん石灰指数との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a dephosphorization treatment method (conventional method, an example of the present invention) and a dephosphorization lime index.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K013 BA03 CA04 EA01 EA03 EA12 FA02 4K014 AA01 AA03 AB02 AB03 AB04 AB12 AC01 AC12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K013 BA03 CA04 EA01 EA03 EA12 FA02 4K014 AA01 AA03 AB02 AB03 AB04 AB12 AC01 AC12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶銑を脱りん処理するに際し、脱りん剤
のCaO源として転炉スラグと生石灰および/又は石灰
石を用いる溶銑脱りん処理方法において、脱りん処理前
の溶銑中Si濃度と脱りん処理開始からの供給酸素量に
よって、供給する脱りん剤のCaO源の中の転炉スラグ
の量の比率を脱りん処理の途中で増大方向に変更するこ
とを特徴とする溶銑脱りん処理方法。
In a hot metal dephosphorization method using converter slag and quick lime and / or limestone as a CaO source of a dephosphorizing agent when dephosphorizing hot metal, the concentration of Si in the hot metal before dephosphorization and the dephosphorization are determined. A hot metal dephosphorization treatment method characterized in that the ratio of the amount of converter slag in the CaO source of the supplied dephosphorizer is increased in the middle of the dephosphorization treatment depending on the supplied oxygen amount from the start of the treatment.
【請求項2】 溶銑を脱りん処理するに際し、脱りん剤
のCaO源として転炉スラグと生石灰および/又は石灰
石を用いる溶銑脱りん処理方法において、脱りん処理で
の脱珪期の終了時点以降、脱りん期の終了前に、供給す
る脱りん剤のCaO源の中の転炉スラグの量の比率を増
大方向に変更することを特徴とする溶銑脱りん処理方
法。
2. A hot metal dephosphorization method using converter slag and quick lime and / or limestone as a CaO source of a dephosphorizing agent when dephosphorizing hot metal, after the end of the desiliconization period in the dephosphorization process. A method of dephosphorizing hot metal, wherein the ratio of the amount of converter slag in the CaO source of the dephosphorizing agent to be supplied is increased before the end of the dephosphorization period.
【請求項3】 脱りん処理開始からの供給酸素量(Nm
3 /溶銑1トン)=7×脱りん処理前の溶銑中Si濃度
(質量%)となる時点以降、脱りん期の終了前に、供給
する脱りん剤のCaO源の中の転炉スラグの量の比率を
増大方向に変更する請求項1又は2記載の溶銑脱りん処
理方法。
3. The amount of supplied oxygen (Nm) from the start of the dephosphorization treatment.
3 / hot metal 1 t) = 7 × dephosphorization treatment the hot metal in the Si concentration (wt% before) and a point on, before the end of the dephosphorization stage, and supplies the converter slag in a CaO source dephosphorization agent 3. The hot metal dephosphorization treatment method according to claim 1, wherein the ratio of the amounts is changed in an increasing direction.
【請求項4】 前記転炉スラグの量の比率を増大方向に
変更するまでの期間においては生石灰および/又は石灰
石中のCaO分の供給速度A1 と転炉スラグ中のCaO
分の供給速度B1 との比:A1 /B1 を1/3〜3と
し、それ以降の期間においては生石灰および/又は石灰
石中のCaO分の供給速度A2 と転炉スラグ中のCaO
分の供給速度B2 との比:A2 /B2 を前記比:A1
1 よりも小さくする請求項1、2又は3記載の溶銑脱
りん処理方法。
4. The supply rate A 1 of CaO in quicklime and / or limestone and the CaO in converter slag during the period until the ratio of the amount of converter slag is changed in the increasing direction.
Ratio of the feed rate B 1 to the feed rate B 1 : A 1 / B 1 is set to 1/3 to 3, and in the subsequent period, the feed rate A 2 of the CaO content in the quicklime and / or limestone and the feed rate AO in the converter slag
Min ratio of the feed rate B 2 of: the A 2 / B 2 the ratio: A 1 /
Claim 1, 2 or 3 hot metal dephosphorization method according smaller than B 1.
【請求項5】 前記転炉スラグの量の比率を増大方向に
変更するまでの期間においては生石灰および/又は石灰
石中のCaO分の供給速度A1 と転炉スラグ中のCaO
分の供給速度B1 との比:A1 /B1 を1/3〜3と
し、それ以降の期間においては生石灰および/又は石灰
石中のCaO分の供給速度A2 と転炉スラグ中のCaO
分の供給速度B2 との比:A2 /B2 を0以上3未満、
より好ましくは0〜2とする請求項1、2、3又は4記
載の溶銑脱りん処理方法。
5. The supply rate A 1 of CaO in quicklime and / or limestone and the CaO content in the converter slag until the ratio of the amount of converter slag is changed in the increasing direction.
Ratio of the feed rate B 1 to the feed rate B 1 : A 1 / B 1 is set to 1/3 to 3, and in the subsequent period, the feed rate A 2 of the CaO content in the quicklime and / or limestone and the feed rate AO in the converter slag
Ratio with supply speed B 2 per minute: A 2 / B 2 is 0 or more and less than 3,
5. The hot metal dephosphorization treatment method according to claim 1, 2, 3, or 4, more preferably 0 to 2.
【請求項6】 供給する転炉スラグの一部を溶銑の上方
から添加する請求項1、2、3、4又は5記載の溶銑脱
りん処理方法。
6. The hot metal dephosphorization treatment method according to claim 1, wherein a part of the converter slag to be supplied is added from above the hot metal.
JP2001177126A 2001-06-12 2001-06-12 Hot metal dephosphorization method Expired - Lifetime JP3781985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177126A JP3781985B2 (en) 2001-06-12 2001-06-12 Hot metal dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177126A JP3781985B2 (en) 2001-06-12 2001-06-12 Hot metal dephosphorization method

Publications (2)

Publication Number Publication Date
JP2002363628A true JP2002363628A (en) 2002-12-18
JP3781985B2 JP3781985B2 (en) 2006-06-07

Family

ID=19018019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177126A Expired - Lifetime JP3781985B2 (en) 2001-06-12 2001-06-12 Hot metal dephosphorization method

Country Status (1)

Country Link
JP (1) JP3781985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215360A (en) * 2021-04-07 2021-08-06 邯郸钢铁集团有限责任公司 Deoxidation method of aluminum killed silicon-containing steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215360A (en) * 2021-04-07 2021-08-06 邯郸钢铁集团有限责任公司 Deoxidation method of aluminum killed silicon-containing steel

Also Published As

Publication number Publication date
JP3781985B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
WO2017119392A1 (en) Molten iron dephosphorizing agent, refining agent, and dephosphorization method
JP2004190101A (en) Method for pre-treating molten iron
JP4977870B2 (en) Steel making method
JP2002363628A (en) Hot metal dephosphorizing method
JP3460595B2 (en) Melting method for extremely low sulfur steel
JPH0141681B2 (en)
JP2001115205A (en) Method for dephosphorizing molten iron
JP2653301B2 (en) Reusing method of low P converter slag
JPH10237526A (en) Dephosphorization of hot metal
JP5131872B2 (en) Hot metal dephosphorization method
JP2011246773A (en) Method of dephosphorizing molten iron
JP6460265B2 (en) Converter blowing method
JP2833736B2 (en) Hot metal pretreatment method
JPH08311523A (en) Method for dephosphorizing molten iron
JP2011236448A (en) Method for dephosphorizing molten pig iron
JP4759832B2 (en) Hot phosphorus dephosphorization method
JP7361458B2 (en) Method of dephosphorizing hot metal
JPS636606B2 (en)
JP3684953B2 (en) Pre-silicidation / phosphorization method of hot metal
JP2000212623A (en) Dephosphorization of molten iron low in lime
JP4084527B2 (en) Converter blowing method
JP2002275520A (en) Method for refining molten high carbon steel
JP2000178627A (en) Pretreatment of molten iron
JP2004307941A (en) Method for dephosphorizing molten iron using converter-type vessel
JP2005325389A (en) Method for refining molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Ref document number: 3781985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

EXPY Cancellation because of completion of term