JPH08311523A - Method for dephosphorizing molten iron - Google Patents
Method for dephosphorizing molten ironInfo
- Publication number
- JPH08311523A JPH08311523A JP11461495A JP11461495A JPH08311523A JP H08311523 A JPH08311523 A JP H08311523A JP 11461495 A JP11461495 A JP 11461495A JP 11461495 A JP11461495 A JP 11461495A JP H08311523 A JPH08311523 A JP H08311523A
- Authority
- JP
- Japan
- Prior art keywords
- hot metal
- dephosphorization
- molten iron
- blowing
- blown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、溶銑脱燐法、特に、酸
化カルシウムを主体とする脱燐剤を用いる溶銑脱燐法で
あって、従来のハロゲン系化合物およびアルカリ系化合
物を併用することなく、効率的かつ経済的に行うことが
できる溶銑脱燐方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot metal dephosphorization method, and more particularly to a hot metal dephosphorization method using a dephosphorizing agent mainly containing calcium oxide, in which conventional halogen compounds and alkali compounds are used in combination. The present invention relates to a hot metal dephosphorization method that can be performed efficiently and economically.
【0002】[0002]
【従来の技術】転炉複合吹錬法は、底吹きガス攪拌の併
用によりLD転炉よりも歩留の高い製鋼法として一般化し
つつあるが、転炉複合吹錬法では底吹転炉と同様に、底
吹ガス攪拌のために高炭素領域においてスラグ中T.Feが
低く、したがって、滓化が悪化し、脱燐には問題があっ
た。2. Description of the Related Art The converter-blown blowing method is being generalized as a steelmaking method having a higher yield than that of the LD converter by the combined use of bottom-blown gas stirring. Similarly, T.Fe in the slag was low in the high carbon region due to bottom-blown gas agitation, and therefore slag formation deteriorated and there was a problem in dephosphorization.
【0003】ここに、酸化カルシウム (以下CaO と称す
る) による脱燐反応は下記(1) 式にて進行する。 3(CaO) +5(FeO)+2[P]=3CaO・P2O5 ・・・(1) ( ):スラグ内、 [ ]:溶銑内を示す。The dephosphorization reaction with calcium oxide (hereinafter referred to as CaO) proceeds according to the following equation (1). 3 (CaO) +5 (FeO) +2 [P] = 3CaO · P 2 O 5 (1) (): In the slag, []: In the hot metal.
【0004】このため、溶銑脱燐を効果的に行うために
は、CaO が溶解し、スラグ内に充分に存在し、脱燐
に必要な (FeO)レベルが維持されることが必要となる。
ところが、CaO の融点は約2570℃であり、CaO の溶解促
進のために何らかの造滓剤の添加を必要とする。そこ
で、従来は、例えば蛍石等のハロゲン系化合物およびア
ルカリ系化合物を併用してきた。Therefore, in order to effectively carry out hot metal dephosphorization, it is necessary that CaO is dissolved and sufficiently present in the slag, and the (FeO) level necessary for dephosphorization is maintained.
However, since the melting point of CaO is about 2570 ° C, it is necessary to add some slag forming agent to accelerate the dissolution of CaO. Therefore, conventionally, for example, a halogen compound such as fluorite and an alkaline compound have been used in combination.
【0005】しかし、ハロゲン系化合物およびアルカリ
系化合物を含むスラグは化学的に活性であり再利用上制
約が大きく、また例えば蛍石を使用する場合スラグ中に
F(フッ素)が含まれることになり、処理が困難となり、
溶銑脱燐コストの増大をもたらすものである。However, the slag containing the halogen-based compound and the alkali-based compound is chemically active and has large restrictions in terms of recycling. For example, when fluorite is used,
Since it contains F (fluorine), it becomes difficult to process,
This results in an increase in the hot metal dephosphorization cost.
【0006】この課題を解決するためは、(a) CaO −Fe
On 系の事前焼成脱燐剤を用いる方法、(b) CaO 粉を酸
素と共に吹き込む方法が知られている。しかし、(a) 法
については事前焼成コストが必要であり経済性が損なわ
れるため一般には用いられていない。In order to solve this problem, (a) CaO-Fe
A method using an O n- based pre-calcining dephosphorizing agent and a method of blowing CaO powder (b) together with oxygen are known. However, method (a) is not generally used because it requires a pre-baking cost and impairs economic efficiency.
【0007】また、(b) 法については、例えば「鉄と
鋼」vol.68(1982)S202において開示されている複合吹錬
法があるが、これは造滓剤である脱燐剤 (酸化カルシウ
ム+蛍石) の粉体上吹に酸素ガスを併用した複合吹錬法
である。Regarding the method (b), for example, there is a composite blowing method disclosed in "Iron and Steel" vol.68 (1982) S202, which is a dephosphorizing agent (oxidizing agent) which is a slag forming agent. This is a combined blowing method in which oxygen gas is used in combination with powder top blowing (calcium + fluorspar).
【0008】[0008]
【発明が解決しようとする課題】しかしながら、その後
の研究の結果によれば、この複合吹錬法は、通常の転炉
精錬を想定し脱炭・昇温・脱燐を行うことを前提として
いるため、溶銑脱燐処理時には、過剰の脱炭を行い次
工程である転炉精錬にて熱源不足となる、底吹き攪拌
が強すぎ(FeO) レベルが維持されずスラグの固化を招く
粒鉄ロスを招く等の問題を生じていた。However, according to the results of the subsequent research, this composite blowing method is premised on decarburization, temperature rise, and dephosphorization assuming normal converter refining. Therefore, during hot metal dephosphorization, excessive decarburization is performed and heat sources become insufficient in the next step, converter smelting, and the bottom-blown stirring is too strong (FeO) level is maintained and the granular iron loss that causes slag solidification Causing problems such as
【0009】例えば、上記「鉄と鋼」'82 −S202 に開
示された吹錬条件は、底吹きガスがArガス0.22〜0.84Nm
3/min.t であり、上吹きランスより石灰50kg/t.pig、蛍
石2kg/t.pigを酸素3Nm3/min.t とともに吹き込むので
あり、この方法では上述の問題は避けられない。つま
り、スラグ中にFが含まれるばかりでなく、操業上も
底吹きが過大であり、溶銑脱燐工程ではスラグ中FeO が
維持できず脱燐不良となる。また、脱燐率を向上させ
るには、[C] を下げ、熱力学的にスラグ中FeO を安定的
に存在するまで、例えば [C]=0.05%にまで脱炭する必
要がある。For example, under the blowing conditions disclosed in the above "Iron and Steel"'82 -S202, the bottom blowing gas is Ar gas 0.22 to 0.84 Nm.
It is 3 /min.t, and 50 kg / t.pig of lime and 2 kg / t.pig of fluorite are blown together with 3 Nm 3 /min.t of oxygen from the top blowing lance, and this method cannot avoid the above problems. That is, not only F is contained in the slag, but also bottom blowing is excessive in operation, and FeO 2 in the slag cannot be maintained in the hot metal dephosphorization process, resulting in poor dephosphorization. In order to improve the dephosphorization rate, it is necessary to lower [C] and decarburize until FeO 2 in slag is thermodynamically stable, for example, [C] = 0.05%.
【0010】本発明の目的は、酸化カルシウムを主体と
する脱燐剤を用い、ハロゲン系化合物およびアルカリ系
化合物を併用することなく、効率的かつ経済的に溶銑脱
燐を行うことのできる溶銑脱燐方法を提供することであ
る。より具体的には、本発明の目的は、溶銑に十分な量
の炭素量を確保しながら、複合吹錬転炉を用いて効率的
に行い得る脱燐法を提供することである。The object of the present invention is to use a dephosphorizing agent mainly composed of calcium oxide, and to perform hot metal dephosphorization efficiently and economically without using a halogen compound and an alkaline compound together. It is to provide a phosphorus method. More specifically, an object of the present invention is to provide a dephosphorization method which can be efficiently performed using a composite blowing converter while ensuring a sufficient amount of carbon in the hot metal.
【0011】[0011]
【課題を解決するための手段】ここに、本発明者らは、
かかる目的を達成すべく、種々検討を重ね、むしろ酸素
供給量を少なくすることで、蛍石などの造滓剤を使用せ
ずにスラグの速やかな生成を図ることができることを知
り、本発明を完成した。Here, the present inventors
In order to achieve such an object, various studies were repeated, and it was found that by rapidly reducing the amount of oxygen supply, it is possible to achieve a rapid generation of slag without using a slag-forming agent such as fluorite, and the present invention completed.
【0012】すなわち、前述の CaO+蛍石を酸素ととも
に吹込む方法と比較して、本発明によれば、上底 (複
合) 吹錬の酸素量を適正にコントロールするので、スラ
グ中(FeO) 濃度が適正化されるため、蛍石の使用を省略
することができるのである。That is, according to the present invention, the amount of oxygen in the upper bottom (composite) blowing is appropriately controlled, as compared with the method in which CaO + fluorite is blown together with oxygen as described above. Therefore, the use of fluorite can be omitted.
【0013】よって、本発明の要旨とするところは、転
炉型反応容器に収容された溶銑に対して上吹きランスよ
り、例えば溶銑1ton 当たり5〜30kgというように予め
定められた量の酸化カルシウム粉を、同じく溶銑1ton
当たり0.7 〜2.0 Nm3/min の酸素とともに吹き付けると
ともに、前記反応容器の炉底または側壁から溶銑1ton
当たり0.05〜0.30 Nm3/minの攪拌用ガスを吹込むことを
特徴とする溶銑脱燐方法である。Therefore, the gist of the present invention is that a predetermined amount of calcium oxide is applied to the molten pig iron contained in the converter-type reaction vessel from the top blowing lance, for example, 5 to 30 kg per ton of molten pig iron. 1 ton of hot metal
It is sprayed with oxygen of 0.7 to 2.0 Nm 3 / min per 1 ton of hot metal from the bottom or side wall of the reaction vessel.
The hot metal dephosphorization method is characterized in that a stirring gas of 0.05 to 0.30 Nm 3 / min is blown in.
【0014】本発明の好適態様によれば、転炉型反応容
器に収容された、例えばC:4.0 〜5.0 %の溶銑に対し
て上吹きランスより、例えば溶銑1ton 当たり5〜30kg
というように予め定められた量の酸化カルシウム粉を、
同じく溶銑1ton 当たり0.7〜2.0 Nm3/min の酸素とと
もに吹き付けるとともに、前記反応容器の炉底または側
壁から溶銑1ton 当たり0.05〜0.30 Nm3/minの攪拌用ガ
スを吹込み、C:3.5〜4.5 %となるまで吹錬を行い、
次いで脱燐滓と溶銑とを分離後、脱炭処理を行うことを
特徴とする溶銑脱燐方法である。According to a preferred embodiment of the present invention, for the hot metal of, for example, C: 4.0 to 5.0% contained in the converter-type reaction vessel, from the top blowing lance, for example, 5 to 30 kg per ton of hot metal.
In this way, a predetermined amount of calcium oxide powder,
Similarly, it is sprayed with 0.7 to 2.0 Nm 3 / min of oxygen per ton of hot metal, and 0.05 to 0.30 Nm 3 / min of stirring gas per ton of hot metal is blown from the bottom or side wall of the reaction vessel, C: 3.5 to 4.5% Perform blowing until
Next, a method for dephosphorizing hot metal is characterized in that after the dephosphorization slag and the hot metal are separated, decarburization treatment is performed.
【0015】[0015]
【作用】次に、本発明において処理条件を上記のように
限定した理由とその作用についてそれぞれ説明する。Next, the reasons for limiting the processing conditions in the present invention as described above and their functions will be described.
【0016】(1) 酸化カルシウムの添加量について:ま
ず、本発明において使用する脱燐剤としてのCaO は、一
般的には溶銑トン当たり5〜30kg使用するが、これは脱
燐に必要かつ十分な量としてのそれであり、処理すべき
溶銑に含まれる燐の総量、つまり除去すべき燐の量によ
って予め決まる量のCaO を添加するという意味である。
通常、0.10%程度のPは含まれているとすると、溶銑1
トン当たり所要CaO 量はほぼ20kgである。(1) Regarding the amount of calcium oxide added: First, CaO as a dephosphorizing agent used in the present invention is generally used in an amount of 5 to 30 kg per ton of hot metal, which is necessary and sufficient for dephosphorization. That is, it means that the total amount of phosphorus contained in the hot metal to be treated, that is, the amount of CaO 2 which is predetermined by the amount of phosphorus to be removed is added.
Normally, assuming that 0.10% P is contained, hot metal 1
The required amount of CaO per ton is approximately 20 kg.
【0017】かかる量のCaO は粉末状で供給され、酸素
とともに上吹ランスから溶銑表面に吹き付けられるか
ら、その粒度は例えば15〜150 μm であり、より好まし
くは15〜50μm である。Since such an amount of CaO is supplied in the form of powder and is sprayed together with oxygen from the top blowing lance onto the surface of the hot metal, the particle size thereof is, for example, 15 to 150 μm, more preferably 15 to 50 μm.
【0018】(2) 酸化カルシウム粉を酸素とともに溶銑
に吹き付け溶銑脱燐を行う際に、転炉型反応容器を用い
上吹き水冷ランスを使用する理由:溶銑脱燐に用いる反
応容器としては、取鍋、トピードカー、転炉が考
えられるが、本発明の場合も底吹き可能であれば特に制
限はないが、実際上からは吹き付けに伴うスピッティン
グならびにフォーミングの発生を考慮すると、フリーボ
ードの大きな転炉型反応容器が好ましい。またランス寿
命を確保し、粉体を溶銑に吹きつけるために酸素気流の
動圧を確保するためのラバールノズル化を実現するには
水冷ランスが望ましく、耐火物製のランス等では不充分
である。(2) The reason for using a top-blown water-cooling lance with a converter-type reactor when spraying hot metal with calcium oxide on hot metal to remove phosphorus: The reaction vessel used for hot metal dephosphorization is Pots, toped cars, and converters are conceivable, but there is no particular limitation in the case of the present invention as long as bottom blowing is possible, but in practice, considering the occurrence of spitting and forming accompanying spraying, a large freeboard Furnace type reaction vessels are preferred. In addition, a water-cooled lance is desirable to realize a Laval nozzle for securing a lance life and securing a dynamic pressure of an oxygen stream for spraying powder to molten pig iron, and a refractory lance or the like is insufficient.
【0019】(3) 酸化カルシウム粉を溶銑1ton 当たり
0.7 〜2.0 Nm3/min の酸素とともに吹き付ける理由:上
吹き水冷ランスより酸化カルシウム粉を酸素とともに吹
き付ける場合、上吹き酸素量は、酸化カルシウムの溶
解 (滓化) 、スピッティング発生量、溶銑の脱炭量
に影響する。(3) Calcium oxide powder per ton of hot metal
Reason for spraying with 0.7-2.0 Nm 3 / min of oxygen: When spraying calcium oxide powder with oxygen from a top-blown water-cooled lance, the top-blown oxygen content depends on the dissolution of calcium oxide (slagging), the amount of spitting, and the removal of hot metal. Affects the amount of coal.
【0020】そこで、上吹き酸素量を変化させ、その効
果を調査したところ図1の通りであった。すなわち、脱
燐前のSi濃度がそれぞれ0.1 %、0.3 %、0.5 %の溶銑
(C:4.4 〜4.8 %) を底吹Arガス量0.20Nm3/min で上
吹送酸速度を変化させてときの脱燐状況を示すグラフで
ある。Therefore, when the amount of top-blown oxygen was changed and the effect thereof was investigated, it was as shown in FIG. That is, hot metal with Si concentrations of 0.1%, 0.3%, and 0.5% before dephosphorization, respectively.
(C: 4.4 to 4.8%) is a graph showing the dephosphorization state when the top blowing acid rate is changed at a bottom blowing Ar gas amount of 0.20 Nm 3 / min.
【0021】CaO の滓化度は下記(2) 式にて計算した。 滓化度= (溶銑脱燐後のスラグ中CaO/SiO2比)/(装入CaO/SiO2比) ・・・(2) 。The degree of slag formation of CaO was calculated by the following equation (2). Degree of slag = (CaO / SiO 2 ratio in slag after hot metal dephosphorization) / (CaO / SiO 2 ratio charged) (2).
【0022】酸化カルシウムの溶解 (滓化) には、溶
銑1ton 当たり最低0.7 Nm3/min の酸素吹込みが必要で
あり、2.0 Nm3/min 超でほぼその効果は一定となる。 スピッティング発生量は、上吹き酸素量が溶銑1ton
当たり2.0 Nm3/min 超で急増しており溶銑脱燐処理で
は、酸素量を2.0 Nm3/min 以下とすることが望ましい。To dissolve (slag) calcium oxide, it is necessary to blow oxygen at a minimum of 0.7 Nm 3 / min per 1 ton of hot metal, and the effect is almost constant at 2.0 Nm 3 / min or more. The amount of spitting generated is 1 ton of hot metal when the amount of top-blown oxygen is
The surge to which hot metal dephosphorization treatment with 2.0 Nm 3 / min greater per, it is preferable that the amount of oxygen than 2.0 Nm 3 / min.
【0023】次工程である転炉脱炭工程での熱源とし
て溶銑中炭素を使用するため、溶銑の脱炭量は少ないこ
とが望ましい。このため、、の効果を勘案して最適
酸素量は、溶銑1ton 当たり0.7 〜2.0 Nm3/min と決定
した。好ましくは0.7 〜1.5Nm3/minである。Since carbon in the hot metal is used as a heat source in the subsequent converter decarburization step, it is desirable that the amount of hot metal decarburization is small. Therefore, the optimum oxygen amount was determined to be 0.7 to 2.0 Nm 3 / min per ton of hot metal in consideration of the effect of. It is preferably 0.7 to 1.5 Nm 3 / min.
【0024】(4) 転炉型反応容器の炉底または側壁から
吹き込む攪拌用ガス量を溶銑1ton 当たり0.05〜0.30 N
m3/minとする理由:転炉型反応容器の炉底または側壁か
ら吹き込み攪拌用ガス (例:アルゴンガスなどの不活性
ガス) は、溶銑およびスラグの攪拌に有用であり、攪拌
を行うことで反応速度を向上することができる。転炉に
おける脱炭工程では、溶鋼レベルまで脱炭するので、溶
鋼中酸素が高まり、これと平衡するスラグ中酸化鉄[(1)
式の(FeO)]も高く維持できるので、攪拌用ガス量増大に
よる反応速度向上は脱燐促進に結びつく。(4) The amount of stirring gas blown from the bottom or side wall of the converter type reactor is 0.05 to 0.30 N per ton of hot metal.
Reason for setting m 3 / min: Stirring gas blown from the bottom or side wall of the converter type reactor (eg, inert gas such as argon gas) is useful for stirring hot metal and slag. Can improve the reaction rate. In the decarburization process in the converter, since decarburization is performed to the level of molten steel, oxygen in molten steel increases and iron oxide in slag equilibrates with this [(1)
[FeO)] in the formula can also be maintained at a high level, so the improvement of the reaction rate by increasing the amount of stirring gas leads to the promotion of dephosphorization.
【0025】ところが、溶銑脱燐工程ではスラグ中酸化
鉄と溶銑中炭素の酸化力は平衡しておらず、いたずらに
攪拌を強化すると、溶銑中炭素によりスラグ中酸化鉄
[(1)式の(FeO)]が還元され、脱燐の悪化、スラグ固
化によるスラグ中への粒鉄損出を引き起こす可能性があ
る。However, in the hot metal dephosphorization step, the oxidizing powers of iron oxide in slag and carbon in hot metal are not in equilibrium, and if stirring is unnecessarily enhanced, iron oxide in slag is caused by carbon in hot metal.
There is a possibility that [FeO in formula (1)] is reduced, deterioration of dephosphorization and loss of granular iron in the slag due to slag solidification.
【0026】そこで攪拌用ガス量を変化させ、脱燐、ス
ラグ中への粒鉄損出に対する影響を調査した結果を図2
にまとめて示す。すなわち、Si:0.15〜0.20%、C:4.
4 〜4.6 %の脱硅溶銑を 180トン、CaO投入量15〜20kg
/トン、上吹酸素ガス 1.2 Nm3/minの一定条件の下で攪
拌Arガスの流量を変化させたときの脱燐効果をみた。Therefore, the results of investigating the effects of dephosphorization and loss of granular iron in the slag by changing the amount of stirring gas are shown in FIG.
Are shown together. That is, Si: 0.15 to 0.20%, C: 4.
180 tons of 4 to 4.6% demolition hot metal, 15 to 20 kg of CaO
The dephosphorization effect was observed when the flow rate of the stirring Ar gas was changed under the constant conditions of / ton and top blowing oxygen gas of 1.2 Nm 3 / min.
【0027】これらの結果からも分かるように、脱燐の
ためには攪拌用ガス量が溶銑1ton当たり0.05〜0.30 Nm
3/min程度が望ましい。また攪拌用ガス量が溶銑1ton
当たり0.30 Nm3/min超では、スラグ中への粒鉄損出が急
増した。As can be seen from these results, for dephosphorization, the amount of stirring gas was 0.05 to 0.30 Nm / ton of hot metal.
About 3 / min is desirable. The amount of stirring gas is 1 ton of hot metal.
Above 0.30 Nm 3 / min, the loss of granular iron in the slag increased sharply.
【0028】このため、本発明にあっては、転炉型反応
容器の炉底または側壁から吹き込む攪拌用ガス量を溶銑
1ton 当たり0.05〜0.30 Nm3/minに限定する。好ましく
は、0.08〜0.20Nm3/min である。次に、実施例によって
本発明の作用効果をさらに具体的に説明する。Therefore, in the present invention, the amount of stirring gas blown from the bottom or side wall of the converter type reactor is limited to 0.05 to 0.30 Nm 3 / min per ton of hot metal. It is preferably 0.08 to 0.20 Nm 3 / min. Next, the working effects of the present invention will be described more specifically by way of examples.
【0029】[0029]
【実施例】脱燐処理前の成分: [C]=4.4 〜4.8 %、[S
i]=0.2 〜0.3 %、[Mn]=0.25〜0.35%、[P] =0.09〜
0.11%、[S] <0.01%、脱燐処理前の温度=1320〜1340
℃の予備脱珪処理済みの溶銑180 ton について、各処理
条件を変えて底吹き転炉にて溶銑脱燐処理を行った。[Examples] Components before dephosphorization treatment: [C] = 4.4 to 4.8%, [S]
i] = 0.2-0.3%, [Mn] = 0.25-0.35%, [P] = 0.09-
0.11%, [S] <0.01%, temperature before dephosphorization treatment = 1320-1340
Hot metal dephosphorization was performed in a bottom-blown converter by changing the processing conditions for 180 ton of hot metal that had been pre-desiliconized at ℃.
【0030】脱燐剤としては、粒度=−200 メッシュの
酸化カルシウム粉を溶銑1ton 当たり20kg使用した。比
較のため、塊状の酸化カルシウムを溶銑1ton 当たり20
kg使用し、そのまま投入した脱燐処理も行った。また従
来例として蛍石4kg/トンを用いた例についても行っ
た。As the dephosphorizing agent, 20 kg of calcium oxide powder having a particle size of -200 mesh was used per ton of hot metal. For comparison, 20 tons of lumpy calcium oxide was added per ton of hot metal.
A dephosphorization treatment was also performed in which the amount of kg was used and the raw material was added as it was. Further, as a conventional example, an example using 4 kg / ton of fluorite was also performed.
【0031】上吹き水冷ランスは、4孔外向き10°の
出口速度マッハ=2.25のラバールランスを基本とし、
中心ストレート1孔+3孔外向き5°の出口速度マッハ
=2.25のラバールランス (酸化カルシウムは中心ストレ
ート管より吹き込み) についても調査した。底吹き羽口
は4本使用し、上吹き送酸時間は10分とした。The top-blown water-cooled lance is based on a Laval lance with an exit velocity of Mach = 2.25 with 4 holes facing outward,
Central straight 1 hole + 3 holes Outward velocity of 5 ° Laval lance (calcium oxide is blown from the central straight pipe) with Mach = 2.25 was also investigated. Four bottom-blown tuyeres were used, and the top-blown acid feeding time was 10 minutes.
【0032】本発明にかかる上吹き酸素量と攪拌用ガス
量の条件を満たす実施例1〜3では処理後燐レベル、
[C] 損出、鉄分損出を低位に安定させることができた。
4孔外向き10°の出口速度マッハ=2.25のラバールラン
スに替え、実施例4に示すように中心ストレート1孔+
3孔外向き5°の出口速度マッハ=2.25のラバールラン
スを使用した場合でも充分な効果が得られた。In Examples 1 to 3 satisfying the conditions of the upper blowing oxygen amount and the stirring gas amount according to the present invention, the post-treatment phosphorus level,
[C] Loss and iron loss could be stabilized at a low level.
4 holes outward 10 ° Outlet speed Mach = 2.25 Replaced by laval lance, center straight 1 hole +
A sufficient effect was obtained even when using a Laval lance with an exit velocity of Mach = 2.25 at the 3 hole outward direction of 5 °.
【0033】一方、上吹き酸素量不足 (比較例1) では
脱燐不良、上吹き酸素量過大 (比較例2) では[C] 損出
を招き、攪拌用ガス量不足 (比較例3) では脱燐不良と
なった。また攪拌用ガス量過大 (比較例4) の場合、鉄
分の損出が大きく、塊状酸化カルシウム使用 (比較例
5) では脱燐が不良であった。On the other hand, when the amount of top-blown oxygen is insufficient (Comparative Example 1), dephosphorization is poor, when the amount of top-blown oxygen is excessive (Comparative Example 2), [C] loss is caused, and when the amount of stirring gas is insufficient (Comparative Example 3). Poor dephosphorization. Further, when the amount of stirring gas was too large (Comparative Example 4), loss of iron content was large, and when bulk calcium oxide was used (Comparative Example 5), dephosphorization was poor.
【0034】また、比較例6、7は、CaO とともに蛍石
を併用する場合において、上吹酸素量を変えた例を示
す。表2に示す結果からも本発明により蛍石使用時と同
等の脱燐が可能であることが分かる。Further, Comparative Examples 6 and 7 show examples in which the amount of top blowing oxygen was changed when fluorite was used in combination with CaO. The results shown in Table 2 also show that the present invention enables dephosphorization equivalent to that when fluorite is used.
【0035】[0035]
【表1】 [Table 1]
【0036】[0036]
【表2】 [Table 2]
【0037】[0037]
【発明の効果】本発明により、酸化カルシウムを主体と
する脱燐剤を用い、ハロゲン系化合物およびアルカリ系
化合物を併用することなく、効率的かつ経済的に溶銑脱
燐を行うことが可能となった。EFFECTS OF THE INVENTION According to the present invention, it is possible to efficiently and economically perform hot metal dephosphorization by using a dephosphorizing agent mainly composed of calcium oxide and without using a halogen compound and an alkaline compound together. It was
【図1】上吹き送酸速度と滓化度、脱炭量およびスピッ
ティング発生量とのそれぞれの関係を示すグラフであ
る。FIG. 1 is a graph showing a relationship between an upper blowing acid velocity, a degree of slag formation, a decarburization amount, and a spitting generation amount.
【図2】底吹き攪拌ガス量と粒鉄ロスおよび脱燐率との
関係を示すグラフである。FIG. 2 is a graph showing the relationship between the bottom-blown stirring gas amount, granular iron loss, and dephosphorization rate.
Claims (1)
て上吹きランスより予め決められた量の酸化カルシウム
粉を、同じく溶銑1ton 当たり0.7 〜2.0 Nm3/min の酸
素とともに吹き付けるとともに、前記反応容器の炉底ま
たは側壁から溶銑1ton 当たり0.05〜0.30 Nm3/minの攪
拌用ガスを吹込むことを特徴とする溶銑脱燐方法。1. A predetermined amount of calcium oxide powder is sprayed from a top-blowing lance onto hot metal contained in a converter-type reaction vessel together with 0.7 to 2.0 Nm 3 / min of oxygen per ton of hot metal, and A hot metal dephosphorization method, characterized in that a stirring gas of 0.05 to 0.30 Nm 3 / min per ton of hot metal is blown from the bottom or side wall of the reaction vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11461495A JP3440630B2 (en) | 1995-05-12 | 1995-05-12 | Hot metal dephosphorization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11461495A JP3440630B2 (en) | 1995-05-12 | 1995-05-12 | Hot metal dephosphorization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08311523A true JPH08311523A (en) | 1996-11-26 |
JP3440630B2 JP3440630B2 (en) | 2003-08-25 |
Family
ID=14642270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11461495A Expired - Lifetime JP3440630B2 (en) | 1995-05-12 | 1995-05-12 | Hot metal dephosphorization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3440630B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1533388A1 (en) * | 2002-08-27 | 2005-05-25 | JFE Steel Corporation | Method of manufacturing low phosphorous hot metal |
JP2006336033A (en) * | 2005-05-31 | 2006-12-14 | Jfe Steel Kk | Blowing method in converter and top-blown lance for blowing in converter |
JP2007092181A (en) * | 1998-06-18 | 2007-04-12 | Jfe Steel Kk | Method for producing low phosphorus molten iron |
JP2013241654A (en) * | 2012-05-22 | 2013-12-05 | Kobe Steel Ltd | Method for producing medium and high carbon steel |
WO2015011910A1 (en) * | 2013-07-25 | 2015-01-29 | Jfeスチール株式会社 | Method for removing phosphorus from hot metal |
KR20150018878A (en) | 2012-06-18 | 2015-02-24 | 제이에프이 스틸 가부시키가이샤 | Refining method and molten steel production method |
-
1995
- 1995-05-12 JP JP11461495A patent/JP3440630B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007092181A (en) * | 1998-06-18 | 2007-04-12 | Jfe Steel Kk | Method for producing low phosphorus molten iron |
EP1533388A1 (en) * | 2002-08-27 | 2005-05-25 | JFE Steel Corporation | Method of manufacturing low phosphorous hot metal |
EP1533388A4 (en) * | 2002-08-27 | 2011-02-02 | Jfe Steel Corp | Method of manufacturing low phosphorous hot metal |
JP2006336033A (en) * | 2005-05-31 | 2006-12-14 | Jfe Steel Kk | Blowing method in converter and top-blown lance for blowing in converter |
JP2013241654A (en) * | 2012-05-22 | 2013-12-05 | Kobe Steel Ltd | Method for producing medium and high carbon steel |
KR20150018878A (en) | 2012-06-18 | 2015-02-24 | 제이에프이 스틸 가부시키가이샤 | Refining method and molten steel production method |
WO2015011910A1 (en) * | 2013-07-25 | 2015-01-29 | Jfeスチール株式会社 | Method for removing phosphorus from hot metal |
CN105408501A (en) * | 2013-07-25 | 2016-03-16 | 杰富意钢铁株式会社 | Method for removing phosphorus from hot metal |
JP6011728B2 (en) * | 2013-07-25 | 2016-10-19 | Jfeスチール株式会社 | Hot metal dephosphorization method |
TWI568856B (en) * | 2013-07-25 | 2017-02-01 | 杰富意鋼鐵股份有限公司 | Dephosphorizing treatment method for molten iron |
JPWO2015011910A1 (en) * | 2013-07-25 | 2017-03-02 | Jfeスチール株式会社 | Hot metal dephosphorization method |
CN105408501B (en) * | 2013-07-25 | 2017-06-20 | 杰富意钢铁株式会社 | The dephosphorization treatment method of molten iron |
Also Published As
Publication number | Publication date |
---|---|
JP3440630B2 (en) | 2003-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4456477A (en) | Production of ultra-low phosphorus steel | |
JP3440630B2 (en) | Hot metal dephosphorization method | |
JP2000073111A (en) | Manufacture of low-phosphorus molten iron | |
JP2013227664A (en) | Molten iron preliminary treatment method | |
US4891064A (en) | Method of melting cold material including iron | |
JP5286892B2 (en) | Dephosphorization method of hot metal | |
JPS58147506A (en) | Preliminary treatment of molten iron | |
JP3832386B2 (en) | Method for producing low phosphorus hot metal | |
JP3736229B2 (en) | Hot metal processing method | |
JP3665600B2 (en) | Hot metal dephosphorization method | |
JPH01147011A (en) | Steelmaking method | |
JP5333423B2 (en) | Hot metal dephosphorization method | |
JPH11193414A (en) | Steel manufacturing method using a plurality of converters | |
JP3297997B2 (en) | Hot metal removal method | |
JP2000087125A (en) | Method for dephosphorize-refining molten iron | |
JP2004010935A (en) | Method for manufacturing molten steel | |
JPS6121285B2 (en) | ||
JP2002069525A (en) | Top-blown lance for dephosphorizing molten iron and method for dephosphorizing molten iron | |
JPH116006A (en) | Sub raw material charging method into converter | |
JP3823623B2 (en) | Hot metal refining method | |
JPH10102120A (en) | Steelmaking method | |
JP5370347B2 (en) | How to remove hot metal | |
JPS61104014A (en) | Method for reducing mn ore with high efficiency in oxidation refining furnace | |
JPH024938A (en) | Manufacture of medium-carbon and low-carbon ferromanganese | |
JP2003328025A (en) | Method for manufacturing low-phosphorus molten pig iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030520 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |