JP3775424B2 - 電動モータ駆動車輪の駆動制御装置 - Google Patents

電動モータ駆動車輪の駆動制御装置 Download PDF

Info

Publication number
JP3775424B2
JP3775424B2 JP2004302637A JP2004302637A JP3775424B2 JP 3775424 B2 JP3775424 B2 JP 3775424B2 JP 2004302637 A JP2004302637 A JP 2004302637A JP 2004302637 A JP2004302637 A JP 2004302637A JP 3775424 B2 JP3775424 B2 JP 3775424B2
Authority
JP
Japan
Prior art keywords
motor
clutch
electric motor
wheel
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004302637A
Other languages
English (en)
Other versions
JP2005073499A (ja
Inventor
圭司 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004302637A priority Critical patent/JP3775424B2/ja
Publication of JP2005073499A publication Critical patent/JP2005073499A/ja
Application granted granted Critical
Publication of JP3775424B2 publication Critical patent/JP3775424B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、前後輪の一方を内燃機関(エンジン)によって駆動し、他方の車輪を電動モータからの動力によりクラッチを介して適宜駆動するモータ4輪駆動車両などのように、電動モータ駆動車輪を具える車両に関し、特に電動モータ駆動車輪の回転方向を判別して、その結果に応じ該電動モータ駆動車輪を駆動制御する装置に関するものである。
電動モータからの動力によりクラッチを介して適宜駆動する電動モータ駆動車輪を具えた車両としては従来、例えば特許文献1に記載されたごときモータ4輪駆動車両がある。
この車両は、前2輪(または後2輪)をエンジン駆動し、後2輪(または前2輪)を電動モータによりクラッチを介して駆動可能とし、エンジンに駆動結合した4輪駆動専用の発電機からの電力により電動モータを直接駆動する。
概略説明すると、エンジン駆動車輪が駆動スリップしそうな、若しくは駆動スリップした時におけるエンジンの余剰トルク分だけ発電機に負荷をかけて発電させ、この発電した電力で電動モータを駆動し、この時に締結させたクラッチを経て電動モータからの動力を電動モータ駆動車輪に伝達することによりモータ4輪駆動を可能にする。
なおクラッチは基本的に、4輪駆動しない時は解放しておくことで電動モータ駆動車輪が電動モータを引きずることのないようにして燃費の悪化を回避するが、
停車時は次の発進時にエンジン駆動車輪が駆動スリップを生ずる虞が多くて4輪駆動状態にするのが好ましいことからクラッチを締結状態にしておく。
そして発進時は、アクセルペダル踏み込み量に応じた負荷を発電機にかけて発電させ、その電力により電動モータを駆動して4輪駆動状態で発進を行わせる。
特開2002−218605号公報
ところで、クラッチを解放状態から締結させて電動モータ駆動車輪を駆動する4輪走行に移行するに当たっては、クラッチの締結の前に先ず電動モータを空回しさせてクラッチのモータ側回転速度を車輪側回転速度にほぼ一致するまで上昇させ、一致したところでクラッチを締結するのがショック対策のために常識的である。
しかし、上記回転速度の一致を判定するのに不可欠な回転速度センサは極低速度(車速換算で例えば1.5Km/h未満)を検出することができず、当該検出不能時はそれまでの加減速度から時系列的に速度を推定しなければならないこと、
そして再び回転速度の検出が可能になった時に回転方向まで検出できるようにしようとするとコスト高になるため実用的でなく、現状では検出した回転速度の回転方向が判らないことから、
運転者が指令する走行方向(自動変速機の場合、前進走行用のDレンジや、後進走行用のRレンジ)から電動モータ駆動車輪の回転方向を推定するしかなく、以下に説明する問題を生ずる。
例えばDレンジにした状態で登坂路に停車し、発進に際しブレーキペダルから足を離してアクセルペダルを踏み込もうとする時に車両が自動変速機のクリープトルクで停車を維持できず若干後退(これを一般的にロールバックという)した場合を考察する。
この場合電動モータ駆動車輪は車両の後退により後進回転(以下、逆転という)しており、この逆転は、アクセルペダルの踏み込みにより車両が前進し始めるまで継続する。
一方でクラッチは、エンジン駆動車輪の駆動スリップが発生していないことにより解放され、その後アクセルペダルの踏み込みによりエンジン駆動車輪の駆動スリップが発生すると、これを検知してコントローラは、電動モータをクラッチの入出力回転速度が一致するよう空回しし、一致したところでクラッチを締結しようとする。
ところで、電動モータ駆動車輪は車両の後退により上記の通り逆転しているが、この回転方向を検知することができないことからコントローラは、Dレンジ選択中を基に電動モータ駆動車輪が前進回転(以下、正転という)していると判断し、この判断との整合をとるために電動モータの前記の空回しを正転方向に行わせる。
これがため、クラッチの入出力回転速度は絶対値が同じであるものの、クラッチの車輪側回転方向が逆転方向であるのに対し、モータ側回転方向が正転方向であることとなり、クラッチの入出力速度差が回転合わせをしない場合の2倍になってクラッチの締結時に大きな締結ショックを生ずる。
本発明は、例えばかような問題を解消し得るように、先ず電動モータ駆動車輪の回転方向を判別可能にすることを主旨とする。
本発明は特に、上記のクラッチが停車時に締結されていてロールバック当初は電動モータが電動モータ駆動車輪により連れ回され、連れ回し方向に応じた極性を持つ逆起電圧を発生するとの事実認識に基づき、
当該逆起電圧の極性を用いて上記の回転方向判別を行い得るようにすることを第1目的とする。
本発明は更に、上記の判別結果を用いて前記ショックの問題を解消し得るようにした電動モータ駆動車輪の駆動制御装置を提案することを最終目的とする。
これらの目的のため、本発明による電動モータ駆動車輪の駆動制御装置は、請求項1または請求項2に記載のごとくに構成する。
つまり何れの場合も、電動モータからの動力によりクラッチを介して駆動される電動モータ駆動車輪を具えた車両を基礎前提とし、
運転者が前進走行を指令しているのか後進走行を指令しているのかをチェックする進行方向指令判定手段と、
前記電動モータが車輪に連れ回されて発生した逆起電圧を検出するモータ逆起電圧検出手段と、
これら手段からの信号に応答し、モータ逆起電圧の極性が運転者の走行方向指令と整合しない状態をもって、運転者が指令する走行方向とは逆の方向に電動モータ駆動車輪が回転していると判定するモータ駆動車輪回転方向判定手段と、
前記電動モータ駆動車輪の駆動が必要な車両運転状態になった時に前記クラッチの締結を指令するクラッチ締結指令手段とを設ける。
かかる共通な構成に対し、請求項1に記載の発明では、
モータ駆動車輪回転方向判定手段による判定結果から電動モータ駆動車輪の回転方向が運転者の指令する走行方向とは逆の回転方向である時は、前記クラッチ締結指令手段からのクラッチ締結指令によってもクラッチの締結を禁止するよう構成し、
請求項2に記載の発明では、
前記モータ駆動車輪回転方向判定手段による判定結果から電動モータ駆動車輪の回転方向が運転者の指令する走行方向とは逆の回転方向である時は、前記クラッチ締結指令手段からのクラッチ締結指令に呼応したクラッチの締結を、前記電動モータを電動モータ駆動車輪の回転方向へ回転駆動させた後に実行するよう構成する。
請求項1および請求項2に記載の何れの発明においても、
車輪に連れ回されて電動モータが発生した逆起電圧の極性が運転者による車両の走行方向指令と整合しない時をもって、電動モータ駆動車輪が運転者の走行方向指令とは逆の方向に回転していると判定するから、
モータ逆起電圧の極性を検出して運転者の走行方向指令と突き合わせるだけの簡単な構成により電動モータ駆動車輪の回転方向判別が可能となり、この判別結果を以下のごとく、前記したクラッチの再締結時におけるショックの問題解決に用立てることができる。
また、電動モータ駆動車輪の駆動が必要な車両運転状態になって前記クラッチの締結指令があっても、電動モータ駆動車輪回転方向の判定結果からこれが運転者の指令する走行方向とは逆の回転方向である時は、請求項1に記載の発明のようにクラッチの締結を禁止したり、請求項2に記載の発明のように電動モータを電動モータ駆動車輪の回転方向へ回転駆動させた後にクラッチの締結を実行するため、
少なくとも、電動モータ駆動車輪が運転者の走行方向指令とは逆の方向に回転している時にクラッチが締結される事態を回避することができ、これによりクラッチの前記した大きな締結ショックが発生するのを防止することができる。
以下、本発明の実施の形態を図面に示す実施例に基づき詳細に説明する。
図1は、本発明の一実施例になる電動モータ駆動車輪の駆動制御装置を具えたモータ4輪駆動車両の駆動系を略示し、本実施例においてはこの車両を、左右前輪1L,1Rを内燃機関であるエンジン2によって駆動するフロントエンジン・フロントホイールドライブ車(F/F車)をベース車両とし、左右後輪3L,3Rを必要に応じ電動モータである後輪駆動モータ4によって駆動可能にしたモータ4輪駆動車両とする。
エンジン2は、変速機(ここでは自動変速機とする)5およびディファレンシャルギヤ装置6を一体ユニットに構成したトランスアクスルを介し左右前輪1L,1Rに駆動結合し、
エンジン2の出力トルクが自動変速機5およびディファレンシャルギヤ装置6を経て左右前輪1L,1Rに伝達されて車両の走行に供されるものとする。
次に電動モータ4による後輪駆動系を説明するに、これを基本的には前記の特許文献1に記載されたモータ4輪駆動車両におけると同様なものとする。
つまり、エンジン2の出力トルクの一部により無端ベルト7を介して駆動される専用発電機8を具え、この発電機8は、エンジン2の回転数にプーリ比を乗じた回転数で回転されており、4輪駆動コントローラ9によって調整される界磁電流Ifhに応じた発電負荷をエンジン2にかけて負荷トルクに応じた電力を発電する。
発電機8が発電した電力は、電線10によりリレー11を経て後輪駆動モータ4に供給する。
リレー11はコントローラ9からの指令により、発電機8が制御不良になった時に電線10を遮断したり、後輪駆動が不要でコントローラ9が発電機8に発電負荷をかけないようにした時も、永久磁石による若干の発電があることからこれがモータ4に供給されないようにするために電線10を遮断する。
後輪駆動モータ4の駆動軸は、減速機12およびこれに内蔵されたクラッチ13を介して後輪3L,3Rのディファレンシャルギヤ装置14に結合し、モータ4の出力トルクが減速機12によりギヤ比分で増大され、
クラッチ13が締結状態であれば、この増大されたトルクがディファレンシャルギヤ装置14により左右後輪3L,3Rに分配出力されるようになす。
クラッチ13の締結・解放、およびモータ4の回転方向・駆動トルクも4輪駆動コントローラ9によって制御する。
モータ4の制御に当たってコントローラ9は、モータ4への界磁電流Ifmの調整によってモータ駆動トルクを制御し、界磁電流Ifmの方向によってモータ回転方向を制御する。
モータ4、発電機8、リレー11、クラッチ13の上記した制御を行うために4輪駆動コントローラ9には、4輪駆動スイッチ21からの信号を入力するほかに、
左右前輪1L,1Rの車輪速(前輪速)VWFL,VWFRおよび左右後輪3L,3Rの車輪速(後輪速)VWRL,VWRRを個々に検出する車輪速センサ群22からの信号と、
後輪駆動モータ4の回転速度Nmを検出するモータ回転センサ23からの信号と、
自動変速機5の選択レンジRNG(運転者による走行方向指令)が前進(D)レンジか後進(R)レンジかを検出するインヒビタスイッチ24からの信号と、
アクセルペダル踏み込み量APOを検出するアクセル開度センサ25からの信号とを入力する。
なお4輪駆動コントローラ9は、運転者が4輪駆動スイッチ21をONにしている間、以下に説明するごとく4輪駆動の必要を判断して自動的にモータ4輪駆動を行い、
運転者が4輪駆動スイッチ21をOFFにしている間、前2輪のエンジン駆動のみによる2輪駆動を継続的に行わせるものとする。
以下、コントローラ9が行う基本的な4輪駆動制御を説明するに、まず図2に示す処理により、エンジン駆動輪である前輪1L,1Rの駆動スリップを生起させるエンジン2の余剰トルクを演算する。
先ずステップS1において、車輪速センサ群22で検出した前輪速VWFL,VWFRから求め得る平均前輪速Vwfより、同じく車輪速センサ群22で検出した後輪速VWRL,VWRRから求め得る平均後輪速Vwrを減算して、エンジン駆動輪である左右前輪1L,1Rの加速スリップ量ΔVfを求める。
次のステップS2では、上記左右前輪1L,1Rの加速スリップ量ΔVfが所定値、例えば3km/h以上か否かにより、加速スリップが発生しているか否かを判定する。
加速スリップ量ΔVfが3km/h未満と判定する場合は、加速スリップが発生しておらず、エンジン出力の余剰がないとして制御をそのまま終了する。
ステップS2で加速スリップ量ΔVfが3km/h以上と判定する加速スリップ発生時は、ステップS3において、前輪1L,1Rの加速スリップを発生させる原因であるエンジンの余剰トルク、つまり加速スリップを抑制するのに必要な吸収トルクT(ΔVf)を、T(ΔVf)=K1×ΔVfにより演算する。
なおK1は、実験などによって求めたゲインである。
次のステップS4では現在の発電機8の負荷トルクTgを求め、更にステップS5において、現在の発電機負荷トルクTgと、前記の余剰トルクT(ΔVf)との合算により発電機8の目標発電負荷トルクTh=Tg+T(ΔVf)を求める。
そしてステップS6で、前記車輪速VWFL,VWFR,VWRL,VWRRから求め得る車速が、クラッチ13の締結時にモータ4を過回転させる車速域の下限値であるモータ過回転車速(例えば30km/h)未満か否かをチェックする。
車速がモータ過回転車速以上である場合、モータ4が過回転してその耐久性が低下することから4輪駆動を行わせないよう制御をそのまま終了するが、車速がモータ過回転車速未満ならステップS7において発電機8の最大負荷トルクThmaxを求める。
次いでステップS8において、発電機8の目標発電負荷トルクThが最大負荷トルクThmax以上か否かをチェックし、
Th≧ThmaxならステップS9でTh=Thmaxとして目標発電負荷トルクThを実現可能な限界であるThmaxに制限し、Th<Thmaxなら制御を終了して目標発電負荷トルクThをステップS5で求めたままの値とする。
なお図2では、エンジン駆動輪1L,1Rが加速スリップを発生した場合のみについて、発電機8の目標発電負荷トルクThを求める方法を説明したが、エンジン駆動輪1L,1Rが加速スリップする虞のある場合や、或いは所定以下の低速状態である時も、モータ4輪駆動を実現するために発電機8の目標発電負荷トルクThを運転状況に応じて求めるものとする。
コントローラ9は、上記のようにして求めた発電機8の目標発電負荷トルクThを基に図3の制御プログラムにより発電機8およびモータ4を制御する。
ステップS11においては、発電機8の目標発電負荷トルクThが正か否かにより発電要求があるか否かをチェックする。
発電要求がなければ制御を終了して発電機8の発電負荷をエンジン2にかけないようにすると共に、クラッチ13を解放状態にしておく。
発電要求があればステップS12において、予定のマップをもとにモータ回転速度Nmから目標モータ界磁電流Ifmを算出してこれをモータ4に指令する。
なお図示しなかったが同時に、クラッチ13の入出力回転速度が一致した時にクラッチ13を締結してモータ4の回転を後輪3L,3Rで伝達可能にする。
ここで、モータ4の回転数Nmに対する目標モータ界磁電流Ifmは、ステップS12内に図示するごとく、モータ回転数Nmが所定回転数以下の場合には一定の所定電流値とし、それ以上のモータ回転数になった場合には、公知の弱め界磁制御方式でモータ4の界磁電流Ifmを小さくする。
その理由は、モータ4が高速回転になるとモータ逆起電圧Eの上昇によりモータトルクが低下することから、モータ回転数Nmが所定値以上になったらモータ4の界磁電流Ifmを小さくして逆起電圧Eを低下させ、これによりモータ4に流れる電流を増加させて所要のモータトルクTmが得られるようにするためである。
次いでステップS13において、上記のようにして求めた目標モータ界磁電流Ifmおよびモータ4の回転数Nmから予定のマップをもとにモータ4の逆起電圧Eを算出する。
更にステップS14で、前記した発電負荷トルクThに基づき対応する目標モータトルクTmを算出し、
次にステップS15で、目標モータトルクTmおよび目標モータ界磁電流Ifmの関数である目標電機子電流Iaを算出し、
その後ステップS16において、目標電機子電流Ia、総合抵抗R、および逆起電圧Eから発電機8の目標電圧VをV=Ia×R+Eの演算により求める。
コントローラ9は、発電機8の実電圧が、このようにして求めた目標電圧Vとなるよう、発電機8の界磁電流Ifhをフィードバック制御する。
以上はコントローラ9が実行する通常のモータ4輪駆動制御であるが、次に本発明に係わる電動モータ駆動車輪3L,3Rの回転方向判別処理および駆動制御処理について詳述する。
図4〜図9は本発明の一実施例を示し、図4は、電動モータ駆動車輪の回転方向判別処理および駆動制御処理を示すメインルーチンである。
図4のステップS20においては、図5に明示する信号検出処理を行い、ステップS30においては、図6に明示するロールバック判定処理を行い、ステップS60においては、図7に明示するクラッチ締結要求判定処理を行い、ステップS70においては、図8に明示するモータ出力制御処理を行い、ステップS90においては、図9に明示するクラッチ制御出力決定処理を行う。
図5に明示する信号検出処理に際しては、先ずステップS21で選択レンジ位置信号RNGをもとに、運転者が自動変速機5をDレンジなどの前進走行を指令しているのか、Rレンジなどの後進走行を指令しているのかを検出する。
従ってステップS21は、本発明における進行方向指令判定手段に相当する。
本発明における逆起電圧検出手段に相当する図5のステップS22においては、図3のステップS13で求めたモータ4の逆起電圧Eを検出し、
本発明におけるモータ回転速度検出手段に相当するステップS23においては、センサ23で計測したモータ4の回転速度Nmを検出する。
次のステップS24およびステップS25においては、図2のステップS1におけると同様に、車輪速センサ群22で検出した前輪速VWFL,VWFRから求め得る平均前輪速Vwf、および同じく車輪速センサ群22で検出した後輪速VWRL,VWRRから求め得る平均後輪速Vwrを検出する。
そして最後にステップS26において、図3のステップS12で求めた目標モータ界磁電流Ifmをモータ4の界磁電流として検出する。
図4のステップS30で行うロールバック判定処理を図6により詳述するに、
先ずステップS31で、エンジン駆動されないことから加速スリップすることのない後輪3L,3Rの平均後輪速Vwrを停車判定車速(例えば|2|km/h)と比較し、停車判定車速以上なら走行中、停車判定車速未満なら停車と判定する。
ここで、停車判定車速を例えば|2|km/hと定めた理由は、車輪速センサ群22の車輪速検出限界が1.5km/h当たりであることから、これより若干上の車速値をあてがったことに起因する。
ステップS31で停車中と判定する間は制御をステップS32〜ステップS34に進め、
ステップS32でロールバックフラグFRBを0にリセットし、
ステップS33で、ロールバック判定を行うためにクラッチ13用の締結保持フラグCLHを1にセットし、
ステップS34で、ロールバック判定を行わせるためにロールバック判定要求フラグFDUを1にセットする。
ステップS31で走行中と判定する間は、先ずステップS35において、上記のロールバック判定要求フラグFDUをもとにロールバック判定要求があるか否かをチェックする。
ここでロールバック判定要求フラグFDUは、停車のたびにステップS34で1にされてロールバック判定を要求し、走行の開始で後述するごとくロールバックの有無が判定された後は0にされて、次の停車までロールバック判定要求を行わず、判定結果を保持させるためのフラグである。
ステップS35でロールバック判定要求フラグFDUが0(ロールバック判定要求なし)と判定する時は、当然に制御をそのまま終了する。
ステップS35でロールバック判定要求フラグFDUが1(ロールバック判定要求あり)と判定する時は、ステップS36〜ステップS38においてロールバック判定を行うための3条件が揃っているか否かをチェックする。
ステップS36では、クラッチ13が締結状態でモータ4とモータ駆動輪3L,3Rとが結合されているか否かを、
またステップS37では、モータ4が逆起電圧を発生する回転速度(|200|rpm以上)か否かを、
更にステップS38では、モータ4の界磁電流Ifmが逆起電圧を発生させ得る電流値(|3|A以上)か否かをチェックする。
ステップS36でクラッチ13が締結状態でないと判定したり、ステップS37でモータ回転速度が|200|rpm未満と判定する時は、ロールバック判定条件が揃っていないから制御をそのまま終了して当該判定を行わない。
ステップS38でモータ4の界磁電流Ifmが|3|A未満である判定する時は、ステップS39で自動変速機の選択レンジ信号RNGから判定した走行方向指令に応じ、前進指令状態ならステップS40でモータ4に正転方向の界磁指令を与え、後進指令状態ならステップS41でモータ4に逆転方向の界磁指令を与え、これによりステップS38の条件が満足されて、次回はステップS38が制御をステップS42以後のロールバック判定処理に進め得るようにする。
このロールバック判定処理に当たっては、先ずステップS42においてモータ4の端子電圧(逆起電圧)Eが正か負かを判定する。
かかるモータ逆起電圧Eの極性はモータ4がモータ駆動車輪3L,3Rにより連れ回される方向によって図10のごとくに決まり、当該車輪が前進回転する(モータ4が正転方向に連れ回される)時におけるモータ逆起電圧Eの極性は正であり、当該車輪が後進回転する(モータ4が逆転方向に連れ回される)時におけるモータ逆起電圧Eの極性は負である。
上記のようにモータ逆起電圧Eの極性を判定した後は、ステップS43またはステップS44において、自動変速機の選択レンジ信号RNGから運転者が前進走行を指令しているのか、後進走行を指令しているのかをチェックする。
従ってステップS43およびステップS44は、本発明における進行方向指令判定手段に相当する。
ステップS42でモータ逆起電圧Eの極性が正である(モータ4が後輪3L,3Rにより正転方向に連れ回されている)と判定し、ステップS43で自動変速機の選択レンジが前進走行レンジであると判定する時は、図10からも明らかなように両者の整合がとれていてモータ駆動車輪3L,3Rが選択レンジ対応の方向に回転しているため、ステップS45において、ロールバックが発生していないことを示すようにロールバックフラグFRBを0にリセットする。
ステップS42でモータ逆起電圧Eの極性が正である(モータ4が後輪3L,3Rにより正転方向に連れ回されている)と判定し、ステップS43で自動変速機の選択レンジが後進走行レンジであると判定する時は、図10からも明らかなように両者の整合がとれておらずモータ駆動車輪3L,3Rが選択レンジ対応の方向とは逆の方向に回転しているため、ステップS46において、ロールバックが発生していることを示すようにロールバックフラグFRBを1にセットする。
ステップS42でモータ逆起電圧Eの極性が負である(モータ4が後輪3L,3Rにより逆転方向に連れ回されている)と判定し、ステップS44で自動変速機の選択レンジが前進走行レンジであると判定する時は、図10からも明らかなように両者の整合がとれておらずモータ駆動車輪3L,3Rが選択レンジ対応の方向と逆の方向に回転しているため、ステップS46において、ロールバックが発生していることを示すようにロールバックフラグFRBを1にセットする。
ステップS42でモータ逆起電圧Eの極性が負である(モータ4が後輪3L,3Rにより逆転方向に連れ回されている)と判定し、ステップS44で自動変速機の選択レンジが後進走行レンジであると判定する時は、図10からも明らかなように両者の整合がとれていてモータ駆動車輪3L,3Rが選択レンジ対応の方向に回転しているため、ステップS45において、ロールバックが発生していないことを示すようにロールバックフラグFRBを0にリセットする。
従ってステップS45およびステップS46は、ステップS42と共に本発明における電動モータ駆動車輪回転方向判定手段を構成する。
以上のように、発進後にロールバックの判定が一度終了したら、ステップS47においてロールバック判定要求フラグFDUを0にし、これにより以後はステップS35が制御をそのまま終了するようになすことで、ステップS31で次の停車判定がなされるまでの間は前記したロールバック判定結果を保持する。
次いでステップS48において、ロールバック判定の終了により不要になったクラッチ締結保持フラグCLHを0にリセットし、更にステップS49で、ロールバック判定の終了により不要になったモータ界磁電流IfmをOFFしてロールバック判定処理を終了する。
図4のステップS60で行うクラッチ締結要求判定処理を図7により詳述するに、先ずステップS61において、前輪速VWFL,VWFRの平均値Vwfから後輪速VWRL,VWRRの平均値Vwrを減算して、エンジン駆動輪である左右前輪1L,1Rの加速スリップ量ΔVfを求める。
次のステップS6では、左右前輪1L,1Rの加速スリップ量ΔVfが所定値、例えば3km/h以上か否かにより、加速スリップが発生しているか否かを判定する。
加速スリップ量ΔVfが3km/h未満と判定する場合は、加速スリップが発生しておらず、モータ4による後輪駆動が不要であるから、ステップS63においてクラッチ13の締結要求RCONを0にリセットする。
ステップS62で加速スリップ量ΔVfが3km/h以上と判定する加速スリップ発生時は、モータ4による後輪駆動が必要であるから、ステップS64においてクラッチ13の締結要求RCONを1にセットする。
ステップS64は、本発明におけるクラッチ締結指令手段に相当する。
図4のステップS70で行うモータ出力制御処理を図8により詳述するに、先ずステップS71において、上記したクラッチ13の締結要求RCONが1か否かをチェックし、ステップS72で前記のロールバックフラグFRBが0か否かをチェックする。
ステップS71でクラッチ締結要求RCONが0(ない)と判定した場合や、ステップS72でロールバックフラグFRBが1(ロールバックがある)と判定した場合は、制御をそのまま終了してモータ4による後輪駆動を行わせない。
しかし、ステップS71でクラッチ締結要求RCONが1(有る)と判定し、且つ、ステップS72でロールバックフラグFRBが0(ロールバックがない)と判定した場合は、制御をステップS73に進め、以下のごとくにモータ4を駆動して後輪の駆動を行わせる。
つまり、ステップS73において自動変速機の選択レンジ信号RNGから判定した走行方向指令に応じ、前進指令状態ならステップS74でモータ4に正転方向の界磁を与えてモータ4の正転を指令し、後進指令状態ならステップS75でモータ4に逆転方向の界磁を与えてモータ4の逆転を指令する。
その後ステップS76でリレー11をONして電線10を導通状態にし、更にステップS77で発電機8を図3のように制御して発電させ、この発電電力に応じた走行方向指令対応方向のトルクが後輪3L、3Rに向け出力されるようモータ4を、上記界磁方向の指令により選択レンジ対応の方向へ駆動させる。
図4のステップS90で行うクラッチ制御出力決定処理を図9により以下に詳述するに、先ずステップS91において前記クラッチ締結保持フラグCLHが0か否かを判定する。
クラッチ締結保持フラグCLHが0でなければクラッチ13の締結状態を保持すべきであるから、ステップS92においてクラッチ13の締結を行わせる。
ステップS91でクラッチ締結保持フラグCLHが0であると判定する場合、ステップS93において今度は前記のクラッチ締結要求RCONが1か否かを判定し、 クラッチ締結要求RCONも0であれば、ステップS94においてクラッチ13を解放させる。
ステップS93でクラッチ締結要求RCONが1と判定した場合は、ステップS95において、前記のロールバックフラグFRBが0か否かによりロールバック有りの判定がされていないかどうかを判定する。
ロールバックフラグFRBが1である場合、つまりロールバック有りの判定がされている場合、たとえステップS93でクラッチ締結要求RCONが1である(クラッチ締結要求があった)と判定結果であっても、制御をステップS94に進めてクラッチ13を解放させ、クラッチ13の締結を禁止する。
ステップS95でロールバックフラグFRBが0であると判定する場合、つまりロールバック有りの判定がされていなければ、以下のようにしてクラッチ13を締結制御する。
つまり、ステップS96においてモータ回転速度Nmを後輪回転数に換算した時の換算値NwをNw=Nm・Gm(ただしGmは、モータ4およびディファレンシャルギヤ装置14間の減速比)の演算により求め、次いでステップS97において平均後輪速Vwrの後輪回転数換算値Nwrを、後輪有効半径を用いて演算する。
そしてステップS98で、平均後輪速Vwrの後輪回転数換算値Nwrと、モータ回転速度Nmの後輪回転数換算値Nwとの間における差の絶対値が、例えば50rpmの設定値未満であるか否かにより、クラッチ13の入出力回転数がほぼ一致しているか否かをチェックする。
クラッチ13の入出力回転数が一致していなければ、ステップS99でクラッチ13を解放してその締結を行わせず、クラッチ13の入出力回転数が一致した時にステップS100でクラッチ13を締結させることによりクラッチの締結ショックを緩和する。
上記した本実施例になる電動モータ駆動車輪3L,3Rの回転方向判別装置および駆動制御装置の作用を、図11に示す動作タイムチャートにより説明する。
図11は、運転者が自動変速機5を前進走行(D)レンジにした登坂路停車状態で足をブレーキペダルからアクセルペダルに移す間に車両が後退し、後退途中にアクセルペダルを踏み込んで発進しようとした場合の動作タイムチャートである。
瞬時t1から上記の後退により平均前輪速Vwfおよび平均後輪速Vwrが逆転方向の負値を呈し、例えば図示のような時系列変化をもって逆転される。
そして、停車時は前記した通りクラッチ13が無条件に締結されているため、モータ4が後輪3L,3Rにより連れ回されて、減速機12の減速比分だけ増速下に例えばモータ回転速度Nmで示すように逆転され、この逆転によりモータ4はモータ回転方向に応じた負極性の逆起電圧Eを発生する。
一方でモータ4には、Dレンジの選択に呼応して正転方向の界磁電流Ifmが供給されている(図6のステップS40)。
前記の後退に伴ってモータ4の逆転速度Nmが−200rpm(図6のステップS37)に達し、他の条件(図6のステップS36およびステップS38)と共にロールバック判定条件が揃う瞬時t2に、図6のステップS42〜ステップS46による前記したロールバック判定を行う。
図11では、Dレンジにもかかわらずモータ逆起電圧Eが負極性であるという不整合により、電動モータ駆動車輪3L,3Rの回転方向がロールバックによって走行方向指令と逆の向きであることがわかり、このためロールバックフラグFRBを図11に示すごとく1にセットする。
かかるロールバック判定の終了と同時に、図6のステップS48でクラッチ締結保持フラグCLHをリセットすることによりクラッチ13を図11に示すごとく解放状態にし、図6のステップS49でモータ界磁電流IfmをOFFすることにより(図11も参照)モータ逆起電圧Eを図11に示すごとく0にする。
瞬時t3におけるアクセルペダルの踏み込みでエンジン出力が増大され、エンジン駆動輪である前輪1L,1Rの平均速度Vwfが平均後輪速Vwrから図11の瞬時t4以後図示ごとくに乖離して上昇する場合につき、電動モータ駆動車輪3L,3Rの駆動制御を以下に説明する。
この場合、図7のステップS61で求める前輪スリップ量ΔVf(=Vwf−Vwr)が図11の瞬時t4以後図11に示すごとくに増大し、これが図7のステップS62につき前述した設定値3km/h以上になる瞬時t5に、4輪駆動への移行が必要なことからクラッチ締結要求RCONが立ち上がる(図7のステップS64)。
しかし本実施例においては、瞬時t5に当該クラッチ締結要求があっても(図9のステップS93)、瞬時t2での前記したロールバック判定(FRB=1)がある(図9のステップS95)場合は、図9のステップS94でクラッチ13を解放してその締結を図11に示すように禁止する。
よって本実施例によれば、Dレンジ選択状態でロールバックにより電動モータ駆動車輪3L,3Rが走行方向指令と逆の向きに回転されている間、エンジン駆動輪1L,1Rの駆動スリップ発生でクラッチ13の締結要求があってもこの締結を禁止することとなり、このようにクラッチ13の入出力回転が逆になる状態のもとでクラッチ13が締結されて大きなショックが発生するという問題を回避することができる。
なお当該作用効果は、Rレンジ選択状態での降坂路停車中に車両が前進するようなロールバック発生時も同様に奏し得ることは言うまでもない。
また本実施例においては、モータ4の逆起電圧Eが運転者による車両の走行方向指令(Dレンジ、Rレンジ)と整合しないの極性を持つ時をもって、電動モータ駆動車輪3L,3Rが運転者の走行方向指令とは逆の方向に回転していると判定するから、モータ逆起電圧Eの極性を検出して運転者の走行方向指令と突き合わせるだけの簡単な構成により電動モータ駆動車輪3L,3Rの回転方向判別(ロールバック判定)が可能となり、この判別結果を、前記したごとくクラッチ13の再締結時に発生するショックの問題解決に用立てることができる。
図12および図13は本発明の他の実施例を示し、本実施例は、メインルーチンを図4に示すと同じものとし、ここにおけるステップS20の信号検出処理、ステップS30のロールバック判定処理、およびステップS60のクラッチ締結要求判定処理をそれぞれ、図5および図6並びに図7に示すと同じものとし、図4におけるステップS70で行うモータ出力制御処理を図12に示すようなものに置換し、また図4のステップS90におけるクラッチ制御出力決定処理を図13に示すようなものに置換したものである。
前記した実施例とは、ロールバック判定を同様にして行うが、その判定結果を用いた電動モータ駆動車輪3L,3Rの駆動制御に際し、前記した実施例ではロールバックの発生時にクラッチ13の締結を要求があっても禁止することによりショック対策を行うものであるのに対し、本実施例ではロールバックの発生時にクラッチ13の締結を、モータ(4)駆動でクラッチ入出力回転差がなくなるような回転合わせ後に行わせることによりショック対策を行うものである点において異なる。
これがため本実施例においては、モータ出力制御処理を図8に示すものから図12に示すごときものに変更し、この図において図8におけると同様のステップを同一符号にて示す。
図12の第1ステップS71においては、前記したクラッチ13の締結要求RCONが1(有る)か否かをチェックし、次のステップS78においては現在クラッチ13が解放状態か締結状態かをチェックし、その後ステップS72で前記のロールバックフラグFRBをもとに、ロールバックが発生しなかったか、発生したかをチェックする。
ステップS71でクラッチ締結要求RCONが0(ない)と判定した場合は、エンジン駆動輪1L,1Rの駆動スリップが発生していないためモータ4輪駆動が不要なことから、制御をそのまま終了してモータ4による後輪駆動を行わせない。
しかし、ステップS71でクラッチ締結要求RCONが1(有る)と判定し、且つ、ステップS78でクラッチ13が締結状態と判定する場合や、
ステップS78でクラッチ13が解放状態と判定しても、ステップS71でクラッチ締結要求RCONが1(有る)と判定し、且つ、ステップS72でロールバックフラグFRBが0(ロールバックがない)と判定した場合は、
本発明が解決しようとするクラッチ締結ショックの問題を生じないから、制御をステップS73に進め、以下のごとくにモータ4を駆動して後輪の駆動を行わせ得るようにする。
つまり、ステップS73において自動変速機の選択レンジ信号RNGから判定した走行方向指令に応じ、前進指令状態ならステップS74でモータ4に正転方向の界磁を与えてモータ4の正転を指令し、後進指令状態ならステップS75でモータ4に逆転方向の界磁を与えてモータ4の逆転を指令する。
その後ステップS76でリレー11をONして電線10を導通状態にし、更にステップS77で発電機8を図3のように制御して発電させ、この発電電力に応じた走行方向指令対応方向のトルクが後輪3L、3Rに向け出力されるようモータ4を、上記界磁方向の指令により選択レンジ対応の方向へ駆動させる。
ステップS71でクラッチ締結要求RCONが1(有る)と判定し、且つ、ステップS78でクラッチ13が解放状態と判定し、且つ、ステップS72でロールバックフラグFRBが1(ロールバック有り)と判定した場合は、
クラッチ13を入出力回転方向が逆のまま締結することになって本発明が解決しようとするクラッチ締結ショックの問題を生ずるから、制御をステップS79に進め、以下のごとくにモータ4をクラッチ13の入出力回転方向が同じになるよう駆動してクラッチ13の締結ショックを低減し得るようになす。
つまり、ステップS79において自動変速機の選択レンジ信号RNGから判定した走行方向指令をもとに、前進指令状態ならステップS80で、ロールバック判定に呼応してモータ4に逆転方向の界磁を与えてモータ4の逆転を指令し、後進指令状態ならステップS81で、ロールバック判定に呼応してモータ4に正転方向の界磁を与えてモータ4の正転を指令する。
その後ステップS76でリレー11をONして電線10を導通状態にし、更にステップS77で発電機8を図3のように制御して発電させ、この発電電力に応じたモータ界磁方向のトルクが出力されるようモータ4を駆動させる。
次に図13のクラッチ制御出力決定処理を詳述するに、本実施例においてはこの処理を、図9に示すものからステップS95を除去したものに同じものとし、この図13において図9におけると同様のステップを同一符号にて示す。
ステップS91でクラッチ締結保持フラグCLHが0でないと判定するときはクラッチ13の締結状態を保持すべきであるから、ステップS92においてクラッチ13の締結を行わせる。
ステップS91でクラッチ締結保持フラグCLHが0であると判定する場合、ステップS93において今度はクラッチ締結要求RCONが1(有る)か否かを判定し、クラッチ締結要求RCONも0であれば、ステップS94においてクラッチ13を解放させる。
ステップS93でクラッチ締結要求RCONが1と判定した場合は、ステップS96においてモータ回転速度Nmを後輪回転数に換算した時の換算値NwをNw=Nm・Gm(ただしGmは、モータ4およびディファレンシャルギヤ装置14間の減速比)の演算により求め、次いでステップS97において平均後輪速Vwrの後輪回転数換算値Nwrを、後輪有効半径を用いて演算する。
そしてステップS98で、平均後輪速Vwrの後輪回転数換算値Nwrと、モータ回転速度Nmの後輪回転数換算値Nwとの間における差の絶対値が、例えば50rpmの設定値未満であるか否かにより、クラッチ13の入出力回転数がほぼ一致しているか否かをチェックする。
クラッチ13の入出力回転数が一致していなければ、ステップS99でクラッチ13を解放してその締結を行わせず、クラッチ13の入出力回転数が一致した時にステップS100でクラッチ13を締結させることによりクラッチの締結ショックを緩和する。
上記した本実施例になる電動モータ駆動車輪3L,3Rの回転方向判別装置および駆動制御装置の作用を、図14に示す動作タイムチャートにより説明する。
図14は、図11の場合と同様に運転者が自動変速機5を前進走行(D)レンジにした登坂路停車状態で足をブレーキペダルからアクセルペダルに移す間に車両が後退し、後退途中にアクセルペダルを踏み込んで発進しようとした場合の動作タイムチャートである。
電動モータ駆動車輪3L,3Rの回転方向判別は、以下に説明するように前述した実施例の場合と同様になされる。
瞬時t1から上記の後退により平均前輪速Vwfおよび平均後輪速Vwrが逆転方向の負値を呈し、例えば図示のような時系列変化をもって逆転される。
そして、停車時は前記した通りクラッチ13が無条件に締結されているため、モータ4が後輪3L,3Rにより連れ回されて、減速機12の減速比分だけ増速下に例えばモータ回転速度Nmで示すように逆転され、この逆転によりモータ4はモータ回転方向に応じた負極性の逆起電圧Eを発生する。
一方でモータ4には、Dレンジの選択に呼応して正転方向の界磁電流Ifmが供給されている(図6のステップS40)。
前記の後退に伴ってモータ4の逆転速度Nmが−200rpm(図6のステップS37)に達し、他の条件(図6のステップS36およびステップS38)と共にロールバック判定条件が揃う瞬時t2に、図6のステップS42〜ステップS46による前記したロールバック判定を行う。
図14では、Dレンジにもかかわらずモータ逆起電圧Eが負極性であるという不整合により、電動モータ駆動車輪3L,3Rの回転方向がロールバックによって走行方向指令と逆の向きであることが判明し、このためロールバックフラグFRBを図14に示すごとく1にセットする。
かかるロールバック判定の終了と同時に、図6のステップS48でクラッチ締結保持フラグCLHをリセットすることによりクラッチ13を図14に示すごとく解放状態にし、図6のステップS49でモータ界磁電流IfmをOFFすることにより(図14も参照)モータ逆起電圧Eを図14に示すごとく0にする。
瞬時t3におけるアクセルペダルの踏み込みでエンジン出力が増大され、エンジン駆動輪である前輪1L,1Rの平均速度Vwfが平均後輪速Vwrから図14の瞬時t4以後図示ごとくに乖離して上昇する場合につき、電動モータ駆動車輪3L,3Rの駆動制御を以下に説明する。
この場合、図7のステップS61で求める前輪スリップ量ΔVf(=Vwf−Vwr)が図14の瞬時t4以後図14に示すごとくに増大し、これが図7のステップS62につき前述した設定値3km/h以上になる瞬時t5に、4輪駆動への移行が必要なことからクラッチ締結要求RCONが立ち上がる(図7のステップS64)。
しかし本実施例においては、瞬時t5に当該クラッチ締結要求があっても(図13のステップS93)、図13のステップS98でクラッチ13の入出力回転差|Nwr-Nw|が設定値50rpm未満になったと判定しない限り、図13のステップS99でクラッチ13を解放してその締結を図14に示すように行わせない。
一方でこの間、本実施例においては図12のステップS72が、図14の瞬時t2におけるロールバック有りの判定に呼応して制御をステップS79、ステップS80、ステップS76、およびステップS77に順次進める結果、図14にモータ界磁電流Ifmとして示すごとくモータ4が逆転方向界磁によりDレンジでありながらロールバック判定に呼応して逆転を指令され、ステップS77での発電指令により同方向に駆動される。
かかるモータ駆動により、クラッチ13のモータ側回転方向がロールバック時も後輪側回転方向と同じにされることとなり、しかも当該モータ駆動によりクラッチ13のモータ側回転数が後輪側回転数に接近する。
これにより、図13のステップS98でクラッチ13の入出力回転差|Nwr-Nw|が設定値50rpm未満になったと判定されるようになる図14の瞬時t6に至ったところで、図13のステップS100によりクラッチ13の締結を図14に示すように行わせる。
よって本実施例によれば、Dレンジ選択状態でロールバックにより電動モータ駆動車輪3L,3Rが走行方向指令と逆の向きに回転されている間、エンジン駆動輪1L,1Rの駆動スリップ発生でクラッチ13の締結要求があった時のクラッチ締結を、モータ4の上記空回しによるクラッチ13の入出力回転の回転方向合わせおよび回転速度合わせの後にショックなしに行わせ得ることとなる。
従って、ロールバック時のようにクラッチ13の入出力回転が逆になる状態のもとでクラッチ13が締結されて大きなショックが発生するという問題を回避することができる。
なお、上記したモータ4の空回しによるクラッチ13の入出力回転の回転方向合わせおよび回転速度合わせは必ずしも組み合わせる必要はなく、前者の回転方向合わせのみでも上記の作用効果をある程度達成することができる。
また上記した作用効果は、Rレンジ選択状態での降坂路停車中に車両が前進するようなロールバック発生時も同様に奏し得ることは言うまでもない。
ところで図14の瞬時t6にクラッチ13が締結されると、図12のステップS78が制御をステップS73〜ステップS75、およびステップS76,77に進めることから、モータ界磁電流Ifmは図14に示すようにDレンジに呼応して正転方向界磁に切り替わり、ステップS77での発電によって発生した電力がモータ4を運転者の走行方向指令に対応した方向へ駆動し、対応する方向のモータ出力トルクを発生させる。
これがため、瞬時t5〜t6間において上記のごとくクラッチ13の入出力回転方向合わせを行わせても、クラッチ13の締結瞬時t6には確実にモータ4の出力トルクを運転者の走行方向指令に符合させることができ、クラッチ4の締結時にモータ4が運転者の走行方向指令とは逆方向のトルクを出力する違和感をなくすことができる。
なおいずれの実施例においても、前記した電動モータ駆動車輪3L,3Rの回転方向判別装置によれば、図6のステップS37でモータ回転速度Nmが設定速度|200|rpm以上の時にロールバック判定(モータ駆動車輪回転方向判定)を行い、この判定を、モータ回転速度Nmが設定速度|200|rpm未満の時は禁止するよう構成したから、モータ逆起電圧Eが上記の判定を行うのに十分な値となるようなモータ回転速度である時に当該判定を行うこととなり、逆起電圧Eの極性判定が正確となって判定精度を高めることができる。
また図6の制御プログラムによれば、電動モータ駆動車輪3L,3Rの回転方向判別(ロールバック判定)の判定結果を停車時まで保持し、走行再開のたびに当該判定をし直すこととなり、判定結果を常に最新の状態にしておくことができて判定結果を用いた電動モータ駆動車輪3L,3Rの駆動制御によるショック対策を常時確実なものにし得る。
本発明の一実施例になる電動モータ駆動車輪の駆動制御装置を具えたモータ4輪駆動車両の駆動制御系を示す略線図である。 同モータ4輪駆動車両の駆動制御系における4輪駆動コントローラが実行するエンジン余剰トルク演算プログラムを示すフローチャートである。 同4輪駆動コントローラが実行する発電機制御プログラムを示すフローチャートである。 同4輪駆動コントローラが実行する電動モータ駆動車輪の回転方向判別処理および駆動制御処理を示すメインルーチンのフローチャートである。 同メインルーチンにおける信号検出処理に関したサブルーチンを示すフローチャートである。 同メインルーチンにおけるロールバック判定処理に関したサブルーチンを示すフローチャートである。 同メインルーチンにおけるクラッチ締結要求判定処理に関したサブルーチンを示すフローチャートである。 同メインルーチンにおけるモータ出力制御処理に関したサブルーチンを示すフローチャートである。 同メインルーチンにおけるクラッチ制御出力決定処理に関したサブルーチンを示すフローチャートである。 同実施例における後輪駆動モータの回転方向と、逆起電圧と、モータ界磁方向(進行方向指令)との関係を示す説明図である。 同実施例になる電動モータ駆動車輪の回転方向判別装置および電動モータ駆動車輪の駆動制御装置の動作を例示するタイムチャートである。 本発明の他の実施例を示す、図8のサブルーチンに対応したモータ出力制御処理のフローチャートである。 同実施例におけるクラッチ制御出力決定処理を示す、図9のサブルーチンに対応したフローチャートである。 同実施例になる電動モータ駆動車輪の回転方向判別装置および電動モータ駆動車輪の駆動制御装置の動作を例示するタイムチャートである。
符号の説明
1L 左前輪
1R 右前輪
2 エンジン
3L 左前輪(電動モータ駆動車輪)
3R 右前輪(電動モータ駆動車輪)
4 後輪駆動モータ(電動モータ)
5 自動変速機
6 ディファレンシャルギヤ装置
7 無端ベルト
8 発電機
9 4輪駆動コントローラ
10 電線
11 リレー
12 減速機
13 クラッチ
14 ディファレンシャルギヤ装置
21 4輪駆動スイッチ
22 車輪速センサ群
23 モータ回転センサ
24 インヒビタスイッチ
25 アクセル開度センサ

Claims (6)

  1. 電動モータからの動力によりクラッチを介して駆動される電動モータ駆動車輪を具えた車両において、
    運転者が前進走行を指令しているのか後進走行を指令しているのかをチェックする進行方向指令判定手段と、
    前記電動モータが車輪に連れ回されて発生した逆起電圧を検出するモータ逆起電圧検出手段と、
    これら手段からの信号に応答し、モータ逆起電圧の極性が運転者の走行方向指令と整合しない状態をもって、運転者が指令する走行方向とは逆の方向に電動モータ駆動車輪が回転していると判定するモータ駆動車輪回転方向判定手段と、
    前記電動モータ駆動車輪の駆動が必要な車両運転状態になった時に前記クラッチの締結を指令するクラッチ締結指令手段とを具え、
    前記モータ駆動車輪回転方向判定手段による判定結果から電動モータ駆動車輪の回転方向が運転者の指令する走行方向とは逆の回転方向である時は、前記クラッチ締結指令手段からのクラッチ締結指令によってもクラッチの締結を禁止するよう構成したことを特徴とする電動モータ駆動車輪の駆動制御装置。
  2. 電動モータからの動力によりクラッチを介して駆動される電動モータ駆動車輪を具えた車両において、
    運転者が前進走行を指令しているのか後進走行を指令しているのかをチェックする進行方向指令判定手段と、
    前記電動モータが車輪に連れ回されて発生した逆起電圧を検出するモータ逆起電圧検出手段と、
    これら手段からの信号に応答し、モータ逆起電圧の極性が運転者の走行方向指令と整合しない状態をもって、運転者が指令する走行方向とは逆の方向に電動モータ駆動車輪が回転していると判定するモータ駆動車輪回転方向判定手段と、
    前記電動モータ駆動車輪の駆動が必要な車両運転状態になった時に前記クラッチの締結を指令するクラッチ締結指令手段とを具え、
    前記モータ駆動車輪回転方向判定手段による判定結果から電動モータ駆動車輪の回転方向が運転者の指令する走行方向とは逆の回転方向である時は、前記クラッチ締結指令手段からのクラッチ締結指令に呼応したクラッチの締結を、前記電動モータを電動モータ駆動車輪の回転方向へ回転駆動させた後に実行するよう構成したことを特徴とする電動モータ駆動車輪の駆動制御装置。
  3. 請求項2に記載の駆動制御装置において、
    前記クラッチ締結指令手段からのクラッチ締結指令に呼応したクラッチの締結を前記クラッチの入出力回転速度がほぼ一致した時に実行するよう構成したことを特徴とする電動モータ駆動車輪の駆動制御装置。
  4. 請求項3に記載の駆動制御装置において、
    前記クラッチの締結時以後前記電動モータを、運転者の指令する走行方向に対応した方向の出力トルクが発生するよう制御する構成にしたことを特徴とする電動モータ駆動車輪の駆動制御装置。
  5. 請求項1〜4のいずれか1項に記載の駆動制御装置において、
    前記電動モータの回転速度を検出するモータ回転速度検出手段を設け、
    該手段により検出したモータ回転速度が設定速度以上の時に前記モータ駆動車輪回転方向判定手段による判定を行い、この判定を、モータ回転速度が設定速度未満の時は禁止するよう構成したことを特徴とする電動モータ駆動車輪の駆動制御装置。
  6. 請求項1〜5のいずれか1項に記載の駆動制御装置において、
    前記モータ駆動車輪回転方向判定手段が判定結果を停車時まで保持し、走行再開のたびに電動モータ駆動車輪の回転方向を判別し直すよう構成したことを特徴とする電動モータ駆動車輪の駆動制御装置。
JP2004302637A 2004-10-18 2004-10-18 電動モータ駆動車輪の駆動制御装置 Expired - Lifetime JP3775424B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302637A JP3775424B2 (ja) 2004-10-18 2004-10-18 電動モータ駆動車輪の駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302637A JP3775424B2 (ja) 2004-10-18 2004-10-18 電動モータ駆動車輪の駆動制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002257639A Division JP3687639B2 (ja) 2002-09-03 2002-09-03 電動モータ駆動車輪の回転方向判別装置

Publications (2)

Publication Number Publication Date
JP2005073499A JP2005073499A (ja) 2005-03-17
JP3775424B2 true JP3775424B2 (ja) 2006-05-17

Family

ID=34420351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302637A Expired - Lifetime JP3775424B2 (ja) 2004-10-18 2004-10-18 電動モータ駆動車輪の駆動制御装置

Country Status (1)

Country Link
JP (1) JP3775424B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8177679B2 (en) 2007-01-31 2012-05-15 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
JP5167701B2 (ja) * 2007-01-31 2013-03-21 トヨタ自動車株式会社 車両用駆動装置の制御装置
US7695401B2 (en) * 2007-08-23 2010-04-13 Ford Global Technologies, Llc Holding a hybrid electric vehicle on an inclined surface
KR101013870B1 (ko) 2008-12-05 2011-02-14 기아자동차주식회사 클러치 슬립을 이용한 하이브리드 차량의 트랜스미션 역회전 방지 방법
JP7170591B2 (ja) * 2019-06-19 2022-11-14 株式会社小松製作所 作業車両及び作業車両の制御方法

Also Published As

Publication number Publication date
JP2005073499A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
JP3687639B2 (ja) 電動モータ駆動車輪の回転方向判別装置
US11292451B2 (en) Control system for hybrid vehicle operable in different modes
US7498757B2 (en) Control device for a hybrid electric vehicle
JP4135682B2 (ja) 車両の駆動力制御装置
US7143851B2 (en) Method for controlling a wheel drive system of a hybrid vehicle
US20080228363A1 (en) Engine start control system for hybrid vehicle
US9902393B2 (en) Vehicle control system
US20080190675A1 (en) Vehicle Driving System
JP2003209902A (ja) 車両の駆動力制御装置
JP3775424B2 (ja) 電動モータ駆動車輪の駆動制御装置
JP3891166B2 (ja) 車両の駆動力制御装置
KR101944310B1 (ko) 사륜구동 하이브리드 자동차의 코스팅 및 회생제동 제어방법
JP2004104843A (ja) 車両の駆動力制御装置
JP2005185006A (ja) 4輪駆動車両の駆動制御装置
JP4752282B2 (ja) 電動モータ式4輪駆動車両のモータ駆動制御装置
JP2021062757A (ja) ハイブリッド車両の駆動制御装置
JP2017013583A (ja) ハイブリッド車両のエンジントルク補正装置
JP3627664B2 (ja) 4輪駆動装置
JP2007237829A (ja) 電動モータ式4輪駆動車両の手動変速時4輪駆動制御装置
JP2007245899A (ja) 電動モータ式4輪駆動車両の駆動力制御装置
JP2009214805A (ja) 車両の駆動力制御装置
JP3582522B2 (ja) 車両のクラッチ締結制御装置
JP4788155B2 (ja) 電動モータ式4輪駆動車両のスタック検出装置およびスタック時モータ駆動制御装置
WO2022181409A1 (ja) 車両用駆動装置
JP2006101644A (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R150 Certificate of patent or registration of utility model

Ref document number: 3775424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

EXPY Cancellation because of completion of term