JP3772260B2 - Hydrogen supply device using solid polymer water electrolyzer - Google Patents

Hydrogen supply device using solid polymer water electrolyzer Download PDF

Info

Publication number
JP3772260B2
JP3772260B2 JP2002156612A JP2002156612A JP3772260B2 JP 3772260 B2 JP3772260 B2 JP 3772260B2 JP 2002156612 A JP2002156612 A JP 2002156612A JP 2002156612 A JP2002156612 A JP 2002156612A JP 3772260 B2 JP3772260 B2 JP 3772260B2
Authority
JP
Japan
Prior art keywords
water
pressure
hydrogen
electrolysis tank
hydrogen supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002156612A
Other languages
Japanese (ja)
Other versions
JP2003342769A (en
Inventor
俊秀 高間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2002156612A priority Critical patent/JP3772260B2/en
Publication of JP2003342769A publication Critical patent/JP2003342769A/en
Application granted granted Critical
Publication of JP3772260B2 publication Critical patent/JP3772260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、固体高分子電解膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる水電解槽に関し、より詳しくは、例えば燃料電池用水素ステーションで35〜70MPaの高圧水素ガスを供給することができる水素供給装置に関するものである。
【0002】
【従来の技術】
高分子電解質膜を用いて水を電解し、陽極に酸素を、陰極に水素を発生させる固体高分子型水電解槽と、水電解槽の陰極にて発生した水素と水を分離する水素気液分離器と、水電解槽の陽極にて発生した酸素と水を分離する酸素気液分離器と、水電解槽へ水を供給する電解水循環ラインとを備えている水素供給装置は、従来より知られている。
【0003】
固体高分子型水電解槽は、図2および図3に示すように、両端に配された陽極主電極(1)および陰極主電極(2)と、これらの主電極(1)(2)の間に直列に配された複数の単位セル(16)と、陽極主電極(1)−複数の単位セル(16)−陰極主電極(2)の組み合わせを両側から挟む一対の端板(13)と、一対の端板(13)の各四隅部を貫通し、陽極主電極(1)、複数の単位セル(16)および陰極主電極(2)を両側から締め付けるボルト(14)・ナット(15)とから主として構成されている。1つのセル(16)は、複極板(9)の陽極側、陽極給電体(7)、電極接合体膜(3)、陰極給電体(8)、および隣の複極板(9)の陰極側から主として構成されている。各セル(16)の周縁部には、電極接合体膜(3)と複極板(9)の陰極給電体(8)側の面との間に水電解槽内部と外部をシールするOリング(17)が介在されている。
【0004】
水電解槽(51)には、図3に示すように、下端部の中央に給水ヘッダ(10)が形成されるとともに、上端部に平行状に水素ヘッダ(11)および酸素ヘッダ(12)が形成されている。
【0005】
上記の水素供給装置では、水電解槽の電解反応によって発熱し、その排熱は、酸素側の循環水による移動と水素側の水蒸気の蒸発潜熱とによって行われている。
【0006】
また、この装置では、内部圧力は、水電解槽外周部に設けられたOリング(17)によって保たれており、その発生ガスの圧力は、1.1MPa(10kg/cmG)未満とされている。
【0007】
【発明が解決しようとする課題】
ところで、水素の燃料電池での使用が進んでおり、そのためには、燃料電池用水素ステーションで35〜70MPaの高圧水素ガスを供給することが課題となっている。
【0008】
しかしながら、上記従来の水素供給装置を使用して、数十MPa程度の高圧にて水電解した場合、水素側の水蒸気の発生量が極端に減少し、十分な排熱が得られなくなり、このため、電解質膜の温度が局部的に耐熱温度以上に上昇し、電解質膜が破損するという問題があった。
【0009】
また、上記従来の水素供給装置を使用して、数十MPa程度の高圧にて水電解した場合、Oリングによるシールが破損するという問題があった。したがって、高圧の水素ガスを得るには、従来の水素供給装置を使用して低圧の水素を製造し、これをガス用ポンプ(圧縮機)によって加圧することが必要となるが、この場合には、加圧のための装置が大がかりになってしまうという問題がある。そこで、水電解槽を圧力容器内に設置することが考えられるが(特開平6−33283号参照)、数十MPa程度の高圧に対応できる点および圧力容器の構造をできるだけ簡素で小容量なものにするという点で、満足なものが得られていない。
【0010】
本発明は、数十MPa程度の高圧にて水電解した場合でも、電解質膜が破損することが防止される、固体高分子型水電解槽を用いた水素供給装置を提供することを課題とする。
【0011】
さらに、本発明は、数十MPa程度の高圧にて水電解した場合でも、耐圧性能を有し、しかも、圧力容器の構造をできるだけ簡素で小容量なものにすることができる、固体高分子型水電解槽を用いた水素供給装置を提供することを課題とする。
【0012】
【課題を解決するための手段】
本発明の固体高分子型水電解槽を用いた水素供給装置は、高分子電解質膜を用いて水を電解し、陽極に酸素を、陰極に水素を発生させる固体高分子型水電解槽と、水電解槽の陰極にて発生した水素と水を分離する水素気液分離器と、水電解槽の陽極にて発生した酸素と水を分離する酸素気液分離器と、水電解槽へ水を供給する電解水循環ラインとを備えている水素供給装置において、水電解槽との間隙が水で充満されるように水電解槽を収める圧力容器と、圧力容器内の水を外部に取り出して処理した後に同容器内に戻す冷却水循環ラインとをさらに備えており、圧力容器の水充満間隙に、整流板が設けられていることを特徴とするものである。
【0013】
本発明の固体高分子型水電解槽を用いた水素供給装置において、電解槽内部と圧力容器の水充満部との差圧が所定値となるように冷却水循環ラインの水循環量を制御する差圧制御ラインをさらに備えていることが好ましい。この場合に、差圧制御ラインは、冷却水循環ラインの圧力容器側の圧力=圧力容器に供給される冷却水の圧力(水電解槽外部の圧力に相当)と水素気液分離器または酸素気液分離器の圧力(水電解槽内部の圧力に相当)との差を制御するものとされる。そして、水電解槽内部の圧力よりも水電解槽外部の圧力を数K〜10K程度低くなるように水電解槽をプラスの内圧に維持するようにする。
【0014】
流板は、冷却水が水電解槽に均一に当たるようにするためのもので、その形状は、例えば、多孔板タイプとされるが、特に限定されるものではない。
【0015】
さらにまた、冷却水循環ラインに、RO膜またはイオン交換膜からなる脱イオン装置が設けられていることが好ましい。冷却水は、電解水と同程度の純水である必要はなく、水電解槽の外周部の材料や圧力容器の液接部の材料間で電気腐食が生じない程度の脱イオン水であればよいので、RO膜を使用したものでも、十分な水質を確保することができる。
【0016】
差圧制御ラインを備えているものでは、水電解槽に、同槽を所定の締め付け力で締め付ける与圧装置が設けられているようにしてもよい。水電解槽の電極接合体膜、給電体および複極板は、電気を全面で均一に導通させるためにこれらを適切な締め付け力で締め付ける必要がある。差圧制御ラインが設けられているものでは、製造するガスの圧力が高い場合でも水電解槽の内外の圧力差が一定に維持されることから、締め付けに必要な荷重をこの与圧装置により独立して設定することができる。
【0017】
【発明の実施の形態】
以下、この発明を実施例に基づいて具体的に説明する。以下の説明において、左右は、図の左右をいうものとする。
【0018】
図1において、固体高分子型水電解槽を用いた水素供給装置は、高分子電解質膜を用いて水を電解し、陽極に酸素を、陰極に水素をそれぞれ発生させる固体高分子型水電解槽(51)と、水電解槽(51)を収める圧力容器(21)と、水電解槽(51)の水素排出口から圧力容器(21)の右側壁を貫通してのびる水素ライン(22)と、水素ライン(22)に設けられて水電解槽(51)の陰極にて発生した水素と水を分離する水素気液分離器(23)と、水電解槽(51)の酸素排出口から圧力容器(21)の頂壁を貫通してのびる酸素ライン(24)と、水電解槽(51)の陽極にて発生した酸素と水を分離する酸素気液分離器(25)と、圧力容器(21)の右側壁を貫通して水電解槽(51)の給水ヘッダに通じている電解水循環ライン(26)と、圧力容器(21)底壁を貫通してのびる冷却水循環ライン(27)と、電解槽(51)と圧力容器(21)との差圧が所定値となるように冷却水循環ライン(27)の水循環量を制御する差圧制御ライン(28)と、水電解槽(51)で使用される純水を蓄える純水タンク(29)と、純水タンク(29)と酸素気液分離器(25)とを接続する純水導入ライン(30)と、水素気液分離器(23)の気相部と酸素気液分離器(25)の気相部とを接続するガス圧均圧化ラインライン(31)と、水電解槽(51)に接続された直流電源(図示略)とを備えている。
【0019】
水電解槽(51)は、図2および図3に示した従来のものと同じであり、その右側の端板(13)が圧力容器(21)の右壁に支持板(32)を介して固定されることにより、圧力容器(21)内に保持されている。圧力容器(21)と水電解槽(51)との間隙は、純水で充満されており、圧力容器(21)の上部および下部の水充満間隙に、多孔板タイプの整流板(33)がそれぞれ設けられている。支持板(32)にも、冷却水を通過させるための複数の孔が設けられている。支持板(32)には、また、水電解槽(51)を所定の締め付け力で締め付ける与圧装置(34)が取り付けられている。
【0020】
水素ライン(22)で取り出された水分を含む水素は、水素気液分離器(23)により、水素と純水に分離され、分離された水素は、水素ライン(22)中の水素圧力調整弁(35)に設定された圧力で外部に供給される。水素気液分離器(23)で分離された純水は、酸素気液分離器(25)に送られる。
【0021】
酸素気液分離器(25)で分離された酸素は、酸素圧力調整弁(36)に設定された圧力で外部に供給される。酸素気液分離器(25)で分離された純水は、酸素気液分離器側の配管(26a)を通った後、電解水循環ライン(26)によって水電解槽(51)に供給される。純水タンク(29)内の水は、純水導入ライン(30)中に設けられた水供給ポンプ(37)によって酸素気液分離器(25)に送られ、酸素気液分離器(25)で分離された純水とともに、電解水循環ライン(26)の酸素気液分離器側の配管(26a)に供給される。電解水循環ライン(26)には、循環ポンプ(38)が設けられている。
【0022】
冷却水循環ライン(27)は、一端が圧力容器(21)右側壁に設けられた冷却水出口に接続され、他端が圧力容器(21)底壁の左端部に設けられた冷却水入口()に接続されている。冷却水循環ライン(27)には、逆止弁(39)、冷却器(40)、冷却水タンク(41)、循環ポンプ(42)、RO膜からなる脱イオン装置(43)、逆止弁(44)および圧力調整弁(45)が、圧力容器(21)の冷却水出口に近い側からこの順で設けられている。
【0023】
差圧制御ライン(28)は、一端が冷却水循環ライン(27)の冷却水入口近くに、他端が酸素気液分離器(25)(水素気液分離器(23)でも可)に接続されるとともに、両端間の差圧ΔP0によって、冷却水循環ライン(27)の圧力調整弁(45)を制御するようになされている。
【0024】
この固体高分子型水電解槽を用いた水素供給装置によると、電解用の水は、電解水循環ライン(26)によって水電解槽(51)の給水ヘッダー(10)に加圧供給され、給水ヘッダー(10)から各単位セル(16)内に導かれ、電極接合体膜(3)の表面で電気分解され、陽極側では酸素、陰極側では水素がそれぞれ発生する。発生した酸素および水素はそれぞれ多孔質の給電体(7)(8)を通って複極板(9)の陽極側および陰極側に達し、更に複極板(9)に設けられたガス流路を通って水電解槽(51)上部に達し、水電解槽(51)上部の酸素ヘッダー(11)および水素ヘッダー(12)を通ってそれぞれ排出される。
【0025】
水電解槽(51)の陽極にて発生した酸素は酸素気液分離器(25)に送られ、陰極にて発生した水素は水素気液分離器(23)に送られる。このとき水電解槽(51)から出る水はほとんど酸素側に送られる。水素気液分離器(23)で分離された水は、酸素気液分離器(25)に送られ、新規に供給された純水とともに、電解水循環ライン(26)に送られ、循環ポンプ(38)によって再度水電解槽(51)に直接(圧力容器(21)内に導入される冷却水とは別に)電解用純水として供給される。水電解槽(51)への純水の供給は、予め設定しておいた酸素気液分離器(25)のレベルの設定値に合わせて水供給ポンプ(37)によって純水を酸素気液分離器(25)に供給することにより行われる。こうして、所望する圧力に見合う圧力(水電解槽(51)内および配管内圧力損失を見込んだ圧力)に加圧された電解用の純水が水電解槽(51)に供給される。酸素気液分離器(25)で分離された酸素は、酸素圧力調整弁(36)の設定圧力に基づいて外部へ供給され、陰極にて発生した水素は、水素圧力調整弁(35)の設定圧力に基づいて外部へ供給される。水素圧力調整弁(35)は、35〜70MPaの高圧水素ガスが得られるように設定されている。
【0026】
圧力容器(21)内の冷却水は、冷却水循環ライン(27)の冷却水出口側から抜き出され、冷却器(40)で冷却されて、冷却水タンク(41)に蓄えられる。そして、冷却水タンク(41)内の水が循環ポンプ(42)によって強制的に圧力容器(21)内に送り込まれることにより、所定以上の流速を有する冷却水が圧力容器(21)内に流される。この冷却水は、整流板(33)によって、流れ方向および滞留時間などが調整された後、冷却水循環ライン(27)の冷却水出口側に再度流入する。こうして、電解槽(51)を冷却する冷却水が循環させられる。
【0027】
圧力容器(21)に供給される冷却水は、RO膜からなる脱イオン装置(43)に通されることにより、電解槽(51)および圧力容器(21)を腐食させない程度の脱イオン水とされる。
【0028】
水電解槽(51)における電解反応は、発熱反応であり、その排熱は、酸素側の循環水による移動、水素側の水蒸気の蒸発潜熱および圧力容器(21)を流れる冷却水への熱移動によって行われている。高圧にて水電解した場合には、水素側の水蒸気の発生量が極端に減少するが、この水蒸気の蒸発潜熱による排熱が圧力容器(21)内を流れる冷却水への熱移動による排熱によって補償される。こうして、高圧水素ガスを発生させる場合でも、熱によって電極接合体膜(電解質膜)(3)が破損することが防止される。
【0029】
この水素供給装置を運転するに際しては、差圧制御ライン(28)によって、冷却水循環ライン(27)の冷却水入口近くの圧力と水素気液分離器(23)の圧力との差ΔP0が検知され、冷却水循環ライン(27)の循環量を決定する圧力調整弁(45)が制御される。この際、電解槽(51)内部が水充満部(すなわち水電解槽の外部)の圧力と比べて若干プラス圧力になるように制御され、これにより、電解槽(51)に設けられているOリング(17)の破損が防止される。
【0030】
【発明の効果】
本発明によれば、水電解槽との間隙が水で充満されるように水電解槽を収める圧力容器を備えており、圧力容器の水充満間隙に、整流板が設けられているので、冷却水が水電解槽に均一に当たり、水電解槽との間隙に充満された水によって、水電解槽に圧力を与えることができるとともに、圧力容器の耐圧性が確保される。また、圧力容器内の水を外部に取り出して処理した後に同容器内に戻す冷却水循環ラインをさらに備えているので、所定値以上の流速を有する冷却水によって電解槽が効率よく冷却され、したがって、電解質膜の温度が局部的に耐熱温度以上になることが抑えられ、数十MPa程度の高圧にて水電解した場合でも、電解質膜が破損することが防止される。
【0031】
また、電解槽内部と圧力容器の水充満部との差圧が所定値となるように冷却水循環ラインの水循環量を制御する差圧制御ラインをさらに備えているものでは、電解槽内部が水充満部の圧力と比べて若干プラス圧力になるように制御することが可能となり、これにより、電解槽に設けられているOリングの破損が防止される。
【図面の簡単な説明】
【図1】 この発明による水素供給装置を示す概略図である。
【図2】 この発明で使用されている固体高分子型水電解槽を示す分解斜視図である。
【図3】 同垂直縦断面図である。
【符号の説明】
(21):圧力容器
(23):水素気液分離器
(25):酸素気液分離器
(26):電解水循環ライン
(27):冷却水循環ライン
(28):差圧制御ライン
(33):整流板
(34):与圧装置
(43):脱イオン装置
(51):固体高分子型水電解槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water electrolyzer that electrolyzes water using a solid polymer electrolyte membrane and generates oxygen at an anode and hydrogen at a cathode, and more specifically, high-pressure hydrogen gas of 35 to 70 MPa, for example, at a hydrogen station for a fuel cell. The present invention relates to a hydrogen supply apparatus capable of supplying
[0002]
[Prior art]
A polymer electrolyte membrane that electrolyzes water, generates oxygen at the anode and hydrogen at the cathode, and a hydrogen gas / liquid that separates water and hydrogen generated at the cathode of the water electrolysis tank A hydrogen supply apparatus comprising a separator, an oxygen gas-liquid separator that separates oxygen and water generated at the anode of the water electrolysis tank, and an electrolyzed water circulation line that supplies water to the water electrolysis tank has been conventionally known. It has been.
[0003]
As shown in FIGS. 2 and 3, the polymer electrolyte water electrolyzer is composed of an anode main electrode (1) and a cathode main electrode (2) disposed at both ends, and these main electrodes (1) and (2). A plurality of unit cells (16) arranged in series between and a pair of end plates (13) sandwiching a combination of anode main electrode (1) -multiple unit cells (16) -cathode main electrode (2) from both sides And bolts (14) and nuts (15) that pass through the four corners of the pair of end plates (13) and tighten the anode main electrode (1), the plurality of unit cells (16), and the cathode main electrode (2) from both sides. ). One cell (16) consists of the anode side of the bipolar plate (9), the anode feeder (7), the electrode assembly film (3), the cathode feeder (8), and the adjacent bipolar plate (9). It is mainly configured from the cathode side. At the peripheral edge of each cell (16) is an O-ring that seals the inside and outside of the water electrolysis cell between the electrode assembly membrane (3) and the surface of the bipolar plate (9) on the cathode power supply (8) side. (17) is interposed.
[0004]
As shown in FIG. 3, in the water electrolysis tank (51), a water supply header (10) is formed at the center of the lower end portion, and a hydrogen header (11) and an oxygen header (12) are formed in parallel with the upper end portion. Is formed.
[0005]
In the above hydrogen supply device, heat is generated by the electrolytic reaction of the water electrolysis tank, and the exhaust heat is generated by the movement by the circulating water on the oxygen side and the latent heat of vaporization of the water vapor on the hydrogen side.
[0006]
In this apparatus, the internal pressure is maintained by an O-ring (17) provided on the outer periphery of the water electrolysis tank, and the pressure of the generated gas is less than 1.1 MPa (10 kg / cm 2 G). ing.
[0007]
[Problems to be solved by the invention]
By the way, the use of hydrogen in fuel cells is progressing, and for that purpose, it is a problem to supply high-pressure hydrogen gas of 35 to 70 MPa at a hydrogen station for fuel cells.
[0008]
However, when water electrolysis is performed at a high pressure of about several tens of MPa using the conventional hydrogen supply device, the amount of water vapor generated on the hydrogen side is extremely reduced, and sufficient exhaust heat cannot be obtained. There has been a problem that the temperature of the electrolyte membrane locally rises above the heat-resistant temperature and the electrolyte membrane is damaged.
[0009]
Moreover, when water electrolysis is performed at a high pressure of about several tens of MPa using the conventional hydrogen supply device, there is a problem that the seal by the O-ring is broken. Therefore, in order to obtain high-pressure hydrogen gas, it is necessary to produce low-pressure hydrogen using a conventional hydrogen supply device and pressurize this with a gas pump (compressor). There is a problem that a device for pressurization becomes a large scale. Therefore, it is conceivable to install a water electrolysis tank in the pressure vessel (see JP-A-6-33283), but the point that can handle a high pressure of about several tens of MPa and the structure of the pressure vessel are as simple and small in capacity as possible. Satisfactory things have not been obtained.
[0010]
It is an object of the present invention to provide a hydrogen supply device using a solid polymer type water electrolysis tank that prevents the electrolyte membrane from being damaged even when water electrolysis is performed at a high pressure of about several tens of MPa. .
[0011]
Furthermore, the present invention is a solid polymer type that has pressure resistance even when water electrolysis is performed at a high pressure of about several tens of MPa, and can make the structure of the pressure vessel as simple and small in capacity as possible. It is an object to provide a hydrogen supply device using a water electrolysis tank.
[0012]
[Means for Solving the Problems]
A hydrogen supply apparatus using the solid polymer type water electrolyzer of the present invention comprises a solid polymer type water electrolyzer that electrolyzes water using a polymer electrolyte membrane, generates oxygen at the anode and hydrogen at the cathode, A hydrogen gas-liquid separator that separates hydrogen and water generated at the cathode of the water electrolysis tank, an oxygen gas-liquid separator that separates oxygen and water generated at the anode of the water electrolysis tank, and water to the water electrolysis tank In a hydrogen supply device provided with an electrolyzed water circulation line to be supplied, a pressure vessel for storing the water electrolyzer so that the gap with the water electrolyzer is filled with water, and the water in the pressure vessel was taken out and processed. A cooling water circulation line that is later returned to the container is further provided, and a rectifying plate is provided in the water filling gap of the pressure container .
[0013]
In the hydrogen supply apparatus using the solid polymer type water electrolyzer of the present invention, the differential pressure for controlling the water circulation amount of the cooling water circulation line so that the differential pressure between the inside of the electrolyzer and the water filling part of the pressure vessel becomes a predetermined value. It is preferable to further include a control line. In this case, the differential pressure control line includes the pressure on the pressure vessel side of the cooling water circulation line = the pressure of the cooling water supplied to the pressure vessel (corresponding to the pressure outside the water electrolyzer) and the hydrogen gas / liquid separator or oxygen gas / liquid. The difference from the pressure of the separator (corresponding to the pressure inside the water electrolyzer) is controlled. Then, the water electrolysis tank is maintained at a positive internal pressure so that the pressure outside the water electrolysis tank is lower by several K to 10K than the pressure inside the water electrolysis tank.
[0014]
Integer Nagareban is for cooling water to impinge uniformly in water electrolyser, the shape, for example, but are porous plate type, but is not particularly limited.
[0015]
Furthermore, it is preferable that a deionization device comprising an RO membrane or an ion exchange membrane is provided in the cooling water circulation line. The cooling water does not have to be pure water as much as electrolyzed water, and is deionized water that does not cause electrical corrosion between the material of the outer periphery of the water electrolysis tank and the material of the liquid container of the pressure vessel. Since it is good, sufficient water quality can be ensured even with an RO membrane.
[0016]
In the case where the differential pressure control line is provided, the water electrolysis tank may be provided with a pressurizing device for tightening the tank with a predetermined tightening force. The electrode assembly film, the power feeder and the bipolar plate of the water electrolysis tank need to be tightened with an appropriate tightening force in order to conduct electricity uniformly over the entire surface. In the case where a differential pressure control line is provided, the pressure difference between the inside and outside of the water electrolyzer is kept constant even when the pressure of the gas to be produced is high. Can be set.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described based on examples. In the following description, the left and right refer to the left and right in the figure.
[0018]
In FIG. 1, a hydrogen supply apparatus using a solid polymer type water electrolyzer uses a polymer electrolyte membrane to electrolyze water, and generates oxygen at the anode and hydrogen at the cathode, respectively. (51), a pressure vessel (21) for containing the water electrolyzer (51), a hydrogen line (22) extending from the hydrogen discharge port of the water electrolyzer (51) through the right side wall of the pressure vessel (21), A hydrogen gas-liquid separator (23) provided in the hydrogen line (22) for separating hydrogen and water generated at the cathode of the water electrolyzer (51) and a pressure from the oxygen outlet of the water electrolyzer (51) An oxygen line (24) extending through the top wall of the vessel (21), an oxygen gas-liquid separator (25) for separating oxygen and water generated at the anode of the water electrolysis tank (51), and a pressure vessel ( An electrolyzed water circulation line (26) passing through the right side wall of 21) and leading to the feed header of the water electrolysis tank (51), and a cooling water circulation line (27) extending through the bottom wall of the pressure vessel (21), Electrolyzer (51) and pressure capacity A differential pressure control line (28) for controlling the water circulation amount of the cooling water circulation line (27) so that the differential pressure with respect to (21) becomes a predetermined value, and a pure water for storing pure water used in the water electrolysis tank (51). The water tank (29), the pure water introduction line (30) connecting the pure water tank (29) and the oxygen gas / liquid separator (25), the gas phase portion of the hydrogen gas / liquid separator (23) and the oxygen gas A gas pressure equalization line line (31) connecting the gas phase part of the liquid separator (25) and a DC power source (not shown) connected to the water electrolysis tank (51) are provided.
[0019]
The water electrolyzer (51) is the same as the conventional one shown in FIGS. 2 and 3, and the right end plate (13) is connected to the right wall of the pressure vessel (21) via the support plate (32). By being fixed, it is held in the pressure vessel (21). The gap between the pressure vessel (21) and the water electrolyzer (51) is filled with pure water, and a porous plate type rectifier plate (33) is inserted in the upper and lower water filling gaps of the pressure vessel (21). Each is provided. The support plate (32) is also provided with a plurality of holes for allowing cooling water to pass therethrough. A pressurizing device (34) for fastening the water electrolyzer (51) with a predetermined fastening force is also attached to the support plate (32).
[0020]
The hydrogen containing water taken out in the hydrogen line (22) is separated into hydrogen and pure water by the hydrogen gas-liquid separator (23), and the separated hydrogen is supplied to the hydrogen pressure regulating valve in the hydrogen line (22). Supplied to the outside at the pressure set in (35). The pure water separated by the hydrogen gas / liquid separator (23) is sent to the oxygen gas / liquid separator (25).
[0021]
The oxygen separated by the oxygen gas-liquid separator (25) is supplied to the outside at the pressure set in the oxygen pressure regulating valve (36). The pure water separated by the oxygen gas / liquid separator (25) passes through the piping (26a) on the oxygen gas / liquid separator side, and then is supplied to the water electrolysis tank (51) by the electrolyzed water circulation line (26). The water in the pure water tank (29) is sent to the oxygen gas-liquid separator (25) by the water supply pump (37) provided in the pure water introduction line (30), and the oxygen gas-liquid separator (25) Is supplied to the pipe (26a) on the oxygen gas-liquid separator side of the electrolyzed water circulation line (26). A circulating pump (38) is provided in the electrolyzed water circulation line (26).
[0022]
One end of the cooling water circulation line (27) is connected to a cooling water outlet provided on the right side wall of the pressure vessel (21), and the other end of the cooling water inlet () provided on the left end portion of the bottom wall of the pressure vessel (21). It is connected to the. The cooling water circulation line (27) includes a check valve (39), a cooler (40), a cooling water tank (41), a circulation pump (42), a deionization device (43) composed of an RO membrane, a check valve ( 44) and a pressure regulating valve (45) are provided in this order from the side close to the cooling water outlet of the pressure vessel (21).
[0023]
The differential pressure control line (28) has one end connected to the cooling water inlet of the cooling water circulation line (27) and the other end connected to the oxygen gas / liquid separator (25) (or hydrogen gas / liquid separator (23)). At the same time, the pressure regulating valve (45) of the cooling water circulation line (27) is controlled by the differential pressure ΔP0 between both ends.
[0024]
According to the hydrogen supply device using this polymer electrolyte water electrolyzer, water for electrolysis is pressurized and supplied to the feed header (10) of the water electrolyzer (51) by the electrolyzed water circulation line (26). (10) is led into each unit cell (16) and electrolyzed on the surface of the electrode assembly film (3), and oxygen is generated on the anode side and hydrogen is generated on the cathode side. The generated oxygen and hydrogen respectively reach the anode side and the cathode side of the bipolar plate (9) through the porous power feeders (7) and (8), and further the gas flow path provided in the bipolar plate (9) The water reaches the upper part of the water electrolysis tank (51), and is discharged through the oxygen header (11) and the hydrogen header (12) above the water electrolysis tank (51).
[0025]
Oxygen generated at the anode of the water electrolysis tank (51) is sent to the oxygen gas-liquid separator (25), and hydrogen generated at the cathode is sent to the hydrogen gas-liquid separator (23). At this time, most of the water coming out of the water electrolysis tank (51) is sent to the oxygen side. The water separated by the hydrogen gas-liquid separator (23) is sent to the oxygen gas-liquid separator (25), and is sent to the electrolyzed water circulation line (26) together with the newly supplied pure water, and the circulation pump (38 ) Is supplied again as pure water for electrolysis directly to the water electrolysis tank (51) (apart from the cooling water introduced into the pressure vessel (21)). Pure water is supplied to the water electrolyzer (51) by separating the pure water into oxygen gas and liquid using the water supply pump (37) according to the preset value of the oxygen gas and liquid separator (25). This is done by supplying to the vessel (25). In this way, pure water for electrolysis pressurized to a pressure commensurate with the desired pressure (a pressure allowing for the pressure loss in the water electrolysis tank (51) and the piping) is supplied to the water electrolysis tank (51). The oxygen separated by the oxygen gas-liquid separator (25) is supplied to the outside based on the set pressure of the oxygen pressure regulating valve (36), and the hydrogen generated at the cathode is set by the hydrogen pressure regulating valve (35). It is supplied to the outside based on the pressure. The hydrogen pressure regulating valve (35) is set so as to obtain a high pressure hydrogen gas of 35 to 70 MPa.
[0026]
The cooling water in the pressure vessel (21) is extracted from the cooling water outlet side of the cooling water circulation line (27), cooled by the cooler (40), and stored in the cooling water tank (41). Then, the water in the cooling water tank (41) is forcibly sent into the pressure vessel (21) by the circulation pump (42), so that the cooling water having a flow rate higher than a predetermined level flows into the pressure vessel (21). It is. This cooling water flows again into the cooling water outlet side of the cooling water circulation line (27) after the flow direction and the residence time are adjusted by the rectifying plate (33). Thus, the cooling water for cooling the electrolytic cell (51) is circulated.
[0027]
The cooling water supplied to the pressure vessel (21) is passed through a deionization device (43) made of an RO membrane, so that the deionized water has a degree that does not corrode the electrolytic cell (51) and the pressure vessel (21). Is done.
[0028]
The electrolytic reaction in the water electrolyzer (51) is an exothermic reaction, and its exhaust heat is transferred by circulating water on the oxygen side, latent heat of vaporization of water vapor on the hydrogen side, and heat transfer to the cooling water flowing through the pressure vessel (21). Has been done by. When water electrolysis is performed at a high pressure, the amount of water vapor generated on the hydrogen side is drastically reduced, but the heat exhausted by the latent heat of vaporization of this water vapor is exhausted by heat transfer to the cooling water flowing in the pressure vessel (21). Is compensated by Thus, even when high-pressure hydrogen gas is generated, the electrode assembly membrane (electrolyte membrane) (3) is prevented from being damaged by heat.
[0029]
When operating this hydrogen supply device, the differential pressure control line (28) detects the difference ΔP0 between the pressure near the cooling water inlet of the cooling water circulation line (27) and the pressure of the hydrogen gas-liquid separator (23). The pressure regulating valve (45) for determining the circulation amount of the cooling water circulation line (27) is controlled. At this time, the inside of the electrolytic cell (51) is controlled to be a slightly positive pressure compared with the pressure of the water filling part (that is, the outside of the water electrolytic cell), and thereby, the O provided in the electrolytic cell (51) is controlled. Damage to the ring (17) is prevented.
[0030]
【The invention's effect】
According to the present invention, the gap between the water electrolysis tank includes a pressure vessel to contain the water electrolyzer as filled with water, the water filling the gap of the pressure vessel, since the rectifying plates are provided, the cooling Water hits the water electrolysis tank uniformly, and the water filled in the gap with the water electrolysis tank can apply pressure to the water electrolysis tank and ensure the pressure resistance of the pressure vessel. In addition, since it further includes a cooling water circulation line that takes out the water in the pressure vessel to the outside and treats it into the vessel, the electrolytic cell is efficiently cooled by the cooling water having a flow rate of a predetermined value or more. The temperature of the electrolyte membrane is suppressed from being locally higher than the heat-resistant temperature, and even when water electrolysis is performed at a high pressure of about several tens of MPa, the electrolyte membrane is prevented from being damaged.
[0031]
Moreover, in the case of further comprising a differential pressure control line for controlling the water circulation amount of the cooling water circulation line so that the differential pressure between the inside of the electrolytic cell and the water filling part of the pressure vessel becomes a predetermined value, the inside of the electrolytic cell is filled with water. It is possible to control the pressure so as to be slightly positive compared with the pressure of the portion, and thereby, damage to the O-ring provided in the electrolytic cell is prevented.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a hydrogen supply apparatus according to the present invention.
FIG. 2 is an exploded perspective view showing a polymer electrolyte water electrolyzer used in the present invention.
FIG. 3 is a vertical sectional view of the same.
[Explanation of symbols]
(21): Pressure vessel
(23): Hydrogen gas-liquid separator
(25): Oxygen gas-liquid separator
(26): Electrolyzed water circulation line
(27): Cooling water circulation line
(28): Differential pressure control line
(33): Rectifying plate
(34): Pressurizing device
(43): Deionizer
(51): Solid polymer water electrolyzer

Claims (5)

高分子電解質膜を用いて水を電解し、陽極に酸素を、陰極に水素を発生させる固体高分子型水電解槽と、水電解槽の陰極にて発生した水素と水を分離する水素気液分離器と、水電解槽の陽極にて発生した酸素と水を分離する酸素気液分離器と、水電解槽へ水を供給する電解水循環ラインとを備えている水素供給装置において、水電解槽との間隙が水で充満されるように水電解槽を収める圧力容器と、圧力容器内の水を外部に取り出して処理した後に同容器内に戻す冷却水循環ラインとをさらに備えており、圧力容器の水充満間隙に、整流板が設けられていることを特徴とする、固体高分子型水電解槽を用いた水素供給装置。A polymer electrolyte membrane that electrolyzes water, generates oxygen at the anode and hydrogen at the cathode, and a hydrogen gas / liquid that separates water and hydrogen generated at the cathode of the water electrolysis tank In a hydrogen supply apparatus comprising a separator, an oxygen gas-liquid separator that separates oxygen and water generated at the anode of the water electrolysis tank, and an electrolyzed water circulation line that supplies water to the water electrolysis tank, the water electrolysis tank A pressure vessel that houses the water electrolyzer so that the gap between the pressure vessel and the water is filled with water, and a cooling water circulation line that takes out the water in the pressure vessel to the outside and treats it, and returns it to the vessel. A hydrogen supply device using a solid polymer type water electrolysis tank, characterized in that a rectifying plate is provided in the water filling gap . 水電解槽内部と圧力容器の水充満部との差圧が所定値となるように冷却水循環ラインの水循環量を制御する差圧制御ラインをさらに備えていることを特徴とする、請求項1記載の固体高分子型水電解槽を用いた水素供給装置。  The pressure difference control line which controls the amount of water circulation of a cooling water circulation line is further provided so that the differential pressure of the inside of a water electrolysis tank and the water filling part of a pressure vessel may become a predetermined value, The 1st characterized by the above-mentioned. Hydrogen supply device using solid polymer type water electrolyzer. 差圧制御ラインは、冷却水循環ラインの圧力容器側の圧力と水素気液分離器または酸素気液分離器の圧力との差を制御するものである、請求項2記載の固体高分子型水電解槽を用いた水素供給装置。  3. The polymer electrolyte water electrolysis according to claim 2, wherein the differential pressure control line controls the difference between the pressure on the pressure vessel side of the cooling water circulation line and the pressure of the hydrogen gas-liquid separator or oxygen gas-liquid separator. Hydrogen supply device using a tank. 冷却水循環ラインに、RO膜またはイオン交換膜からなる脱イオン装置が設けられている、請求項1からまでのいずれかに記載の固体高分子型水電解槽を用いた水素供給装置。The hydrogen supply device using the solid polymer water electrolyzer according to any one of claims 1 to 3 , wherein a deionization device comprising an RO membrane or an ion exchange membrane is provided in the cooling water circulation line. 水電解槽に、同槽を所定の締め付け力で締め付ける与圧装置が設けられている、請求項2からまでのいずれかに記載の固体高分子型水電解槽を用いた水素供給装置。The hydrogen supply apparatus using the polymer electrolyte water electrolyzer according to any one of claims 2 to 4 , wherein the water electrolyzer is provided with a pressurizing device for tightening the tank with a predetermined tightening force.
JP2002156612A 2002-05-30 2002-05-30 Hydrogen supply device using solid polymer water electrolyzer Expired - Fee Related JP3772260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156612A JP3772260B2 (en) 2002-05-30 2002-05-30 Hydrogen supply device using solid polymer water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156612A JP3772260B2 (en) 2002-05-30 2002-05-30 Hydrogen supply device using solid polymer water electrolyzer

Publications (2)

Publication Number Publication Date
JP2003342769A JP2003342769A (en) 2003-12-03
JP3772260B2 true JP3772260B2 (en) 2006-05-10

Family

ID=29772771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156612A Expired - Fee Related JP3772260B2 (en) 2002-05-30 2002-05-30 Hydrogen supply device using solid polymer water electrolyzer

Country Status (1)

Country Link
JP (1) JP3772260B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635514B2 (en) * 2004-08-20 2011-02-23 日立造船株式会社 Hydrogen supply device using solid polymer water electrolyzer
JP6449572B2 (en) * 2014-07-03 2019-01-09 株式会社Ihi Regenerative fuel cell system and operation method thereof
AT524442B1 (en) * 2021-07-01 2022-06-15 H2i GreenHydrogen GmbH Plant for carrying out an electrolysis
CN113750936B (en) * 2021-07-05 2022-09-09 福建永荣科技有限公司 Caprolactam's refined purification system
CN113667997A (en) * 2021-08-30 2021-11-19 广东能源集团科学技术研究院有限公司 High-pressure proton exchange membrane electrolytic water system

Also Published As

Publication number Publication date
JP2003342769A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP6912557B2 (en) Water electrolysis system, water electrolysis method, hydrogen production method
JP3772261B2 (en) Hydrogen supply device using solid polymer water electrolyzer
US8999135B2 (en) PEM water electrolyser module
US5888361A (en) Apparatus for producing hydrogen and oxygen
EP1243671B1 (en) Water electrolyzing device
US20100219066A1 (en) Water electrolysis system
JP2017203203A (en) Water electrolysis system and temperature control method thereof
US20240003028A1 (en) Alkaline water electrolysis system and method of operating alkaline water electrolysis system
JP3772260B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP2005248246A (en) Apparatus for generating hydrogen by water electrolysis accommodated in high-pressure vessel
JP3991146B2 (en) Solid polymer water electrolyzer
JP3766893B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP5490654B2 (en) Method for stopping operation of high-pressure water electrolyzer
US20050211567A1 (en) Apparatus and method for integrated hypochlorite and hydrogen fuel production and electrochemical power generation
JP5415168B2 (en) Water electrolysis system
JP3763018B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP4206500B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP3733463B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP3631476B2 (en) High-pressure hydrogen oxygen generator
JP3750802B2 (en) Water electrolyzer and its operation method
US4101406A (en) Simplified electrolytic system
CN220284244U (en) Water electrolysis hydrogen production control device
JP3297250B2 (en) Electrolytic ozone generator
KR102488845B1 (en) Hydrogen-oxygen generating apparatus
KR100498234B1 (en) Electrolytic Hydrogen-Oxygen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees