JP3763018B2 - Hydrogen supply device using solid polymer water electrolyzer - Google Patents

Hydrogen supply device using solid polymer water electrolyzer Download PDF

Info

Publication number
JP3763018B2
JP3763018B2 JP2002155271A JP2002155271A JP3763018B2 JP 3763018 B2 JP3763018 B2 JP 3763018B2 JP 2002155271 A JP2002155271 A JP 2002155271A JP 2002155271 A JP2002155271 A JP 2002155271A JP 3763018 B2 JP3763018 B2 JP 3763018B2
Authority
JP
Japan
Prior art keywords
hydrogen
water
oxygen
chamber
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002155271A
Other languages
Japanese (ja)
Other versions
JP2003342767A (en
Inventor
雅芳 近藤
仁志 尾白
浩史 辰己
省吾 濱田
鉄也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2002155271A priority Critical patent/JP3763018B2/en
Publication of JP2003342767A publication Critical patent/JP2003342767A/en
Application granted granted Critical
Publication of JP3763018B2 publication Critical patent/JP3763018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、固体高分子電解膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる水電解槽に関し、より詳しくは、燃料電池用水素ステーションで35〜70MPaの高圧水素ガスを供給する水素供給装置に関するものである。
【0002】
【従来の技術】
従来、固体高分子型水電解槽を用いた水素供給装置は、図4に示すように、高分子電解質膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる水電解槽(51)と、水電解槽の陰極にて発生した水素と水を分離する水素気液分離器(53)と、水電解槽の陽極にて発生した酸素と水を分離する酸素気液分離器(54)と、水電解槽へ水を供給するように水を循環させる循環ポンプ(55)を備えた水循環ライン(52)と、水素気液分離器に設けられ、かつ水素圧力調整弁(58)を備えた水素ライン(56)と、酸素気液分離器に設けられ、かつ酸素圧力調整弁(59)を備えた酸素ライン(57)と、酸素気液分離器(54)に給水ポンプ(60)を介して接続された純水タンク(61)と、水電解槽(51)に接続された直流電源(62)と、水素ライン(56)に設けられた圧力調整弁(63)とからなる。
【0003】
固体高分子型水電解槽は、図5に示すように、両端に配された陽極主電極(71)および陰極主電極(72)と、これらの主電極(71)(72)の間に直列に配された複数の単位セル(86)と、陽極主電極(71)−複数の単位セル(76)−陰極主電極(72)の組み合わせを両側から挟む一対の端板(83)と、一対の端板(83)の各四隅部を貫通し、陽極主電極(71)、複数の単位セル(86)および陰極主電極(72)を両側から締め付けるボルト(84)・ナット(85)とから主として構成されている。1つのセル(86)は、複極板(79)の陽極側、陽極給電体(77)、電極接合体膜(73)、陰極給電体(78)、および隣の複極板(79)の陰極側から主として構成されている。各セル(86)の周縁部には、電極接合体膜(73)と複極板(79)の陰極給電体(78)側の面との間に水電解槽内部と外部をシールするOリングが介在されている。
【0004】
水電解槽(51)の陽極にて発生した酸素は酸素気液分離器(54)に送られ、陰極にて発生した水素は水素気液分離器(53)に送られる。このとき水電解槽(51)から出る水はほとんど酸素側に送られる。水素気液分離器(53)と酸素気液分離器(54)は配管にてつながれており、両気液分離器の水面レベルは常に同じに制御されている。両気液分離器に送られた水は、循環水冷却器にて温度調整されて、循環ポンプ(55)にて再度水電解槽(51)に送られる。水電解装置への水の供給は、予め設定しておいた酸素気液分離器(54)のレベルの設定値に合わせて水供給ポンプ(60)によって純水を酸素気液分離器(54)に供給することにより行われる。
【0005】
また、水が封入された耐圧容器内に前記構成の水電解槽を配置することにより、水電解槽内部で発生した高圧水素および高圧酸素を水電解槽外に漏らさぬようにした構造の高圧水素供給装置もある(図示省略)。この構造では、酸素あるいは水素のどちらか一方を耐圧容器内に放出するため、水電解槽内部と外部が同圧になり漏れの可能性が少ない。
【0006】
【発明が解決しようとする課題】
耐圧容器を用いないで大気中で35〜70MPaの高圧水素を得ようとすると、水電解槽が内圧に耐えられずガスが外部に漏れる恐れがある。また、耐圧容器を用いる場合、耐圧容器内への各部材の取付け構造が複雑になり装置の運転が難しくなる。
【0007】
本発明は、このような問題を解消することを課題とする。
【0008】
【課題を解決するための手段】
本発明による第1の水素供給装置は、耐圧容器内に水平仕切壁が容器内部を上下2室に分けるように配置され、下室に固体高分子型水電解槽が設けられると共に水供給ラインが配されて水供給ラインの水が下室から同水電解槽の給水ヘッダーに加圧供給され、上室が垂直仕切壁によって酸素気液分離室と水素気液分離室とに区画され、酸素気液分離室には水電解槽の酸素ヘッダーが水平仕切壁の酸素側連通孔を経て連通すると共に、水素気液分離室には水電解槽の水素ヘッダーが水平仕切壁の水素側連通孔を経て連通し、酸素気液分離室には酸素取出管と酸素側水排出孔とが、水素気液分離室には水素取出管と水素側水排出ラインとがそれぞれ設けられていることを特徴とするものである。
【0009】
上記水素供給装置において、酸素気液分離室および水素気液分離室の空間比は好ましくは約1:2である。
【0010】
本発明による第2の水素供給装置は、耐圧容器内に高さ可変仕切り板が、容器内部を上側の水素貯留室と下側の酸素貯留室とに分けるように水平に配置されて弾性部材を介して耐圧容器に吊持され、酸素貯留室に固体高分子型水電解槽が配置され、水電解槽の給水ヘッダーに水供給ラインが接続され、水電解槽の水素ヘッダーが水素貯留室に酸素ヘッダーが酸素貯留室にそれぞれ連通され、水素貯留室および酸素貯留室にそれぞれ酸素取出管および水素取出管が配され、両貯留室間の気密性および水電解槽内外間の気密性が確保されることを特徴とするものである。
【0011】
【発明の実施の形態】
以下、この発明を実施例に基づいて具体的に説明する。
【0012】
図1において、上端にフランジ(1a)を有する有底円筒状の耐圧容器(1) 内に、上端にフランジ(2a)を有する凹形の中容器(2) が嵌込まれてフランジ(1a)(2a)どうしが重ね合わされている。中容器(2) の上には蓋体(3) が配されて、その周縁部と中容器(2) のフランジ(2a)と耐圧容器(1) のフランジ(1a)がボルト・ナット(4) で締め付けられている。中容器(2) の高さは耐圧容器(1) の半分よりやや短い。中容器(2) の底壁(2b)は耐圧容器(1) 内部を上下2室に分ける水平仕切壁としての役割を果たす。耐圧容器(1) の下室(28) には底部近くに台板(6) が水平に配され、下室(28) の内面に溶接されている。下室(28) には、中容器(2) の底壁(2b)と台板(6) に上下から挟まれる状態で固体高分子型水電解槽(7) が配され、底壁(2b)と台板(6) にボルト・ナット(8) で固着されている。ボルト・ナット(8) の締め付け部は、中容器(2) の底壁(2b)のガスリークを防ぐようにテフロン(登録商標)系ゴムコーティングされあるいはシール剤で処理されている。固体高分子型水電解槽(7) には直流電源(23)が接続されている。
【0013】
耐圧容器(1) の上室に相当する中容器(2) の内部は、垂直仕切壁(9) によって酸素気液分離室(10)と水素気液分離室(11)とに区画されている。酸素気液分離室(10)および水素気液分離室(11)の空間は単位時間あたりの各々のガス発生量比率(1:2)と実質上同等にしてある。
【0014】
下室(28) には水タンク(19)から水供給ポンプ(20)を有する水供給ライン(16)が配され、下室(28) から固体高分子型水電解槽(7) の給水ヘッダーに、循環ポンプ(21)を有する循環ライン(22)が、耐圧容器(1) および中容器(2) の側壁を貫いて配されている。
【0015】
水電解槽(7) の酸素ヘッダーは中容器(2) の底壁(2b)すなわち水平仕切壁に開けられた酸素側連通孔(17)を経て酸素気液分離室(10)に連通している。水素ヘッダーは底壁(2b)に開けられた水素側連通孔(24)を経て水素気液分離室(11)に連通している。
【0016】
酸素気液分離室(10)には、その頂壁すなわち蓋体(3) に、圧力調整弁(12)を有する酸素取出管(13)が設けられると共に、その底壁すなわち中容器(2) の底壁に、下室(28) に通じる酸素側水排出孔(25)が設けられている。水素気液分離室(11)には、その頂壁すなわち蓋体(3) に、圧力調整弁(14)を有する水素取出管(15)が設けられると共に、水素側水排出ライン(18)が耐圧容器(1) および中容器(2) の側壁を貫いて配され、水タンク(19)に至る。台板(6) には水抜き孔(26)が開けられている。中容器(2) の底部外周面と耐圧容器(1) の内周面の間にはOリング(27)が介在されている。
【0017】
上記構成の水素供給装置において、水タンク(19)から水供給ライン(16)を経て水供給ポンプ(20)で下室(28)に加圧供給された水は、循環ライン(22)を経て循環ポンプ(21)で固体高分子型水電解槽(7) の給水ヘッダーに加圧供給され、給水ヘッダーから各単位セル内に導かれ、触媒電極層の表面で電気分解され、陽極側では酸素、陰極側では水素がそれぞれ発生する。得られた酸素は酸素ヘッダーから酸素側連通孔(17)を経て酸素気液分離室(10)に導入され、ここで同伴水と気液分離され蓄えられる。他方、得られた水素は水素ヘッダーから水素側連通孔(24)を経て水素気液分離室(11)に入り、ここで同伴水と気液分離され蓄えられる。水素気液分離室(11)と酸素気液分離室(10)の各空間部の容積比は単位時間辺りの各ガス発生量比(=2:1)と実質上等しくなされている。酸素気液分離室(10)から酸素取出管(13)を経て、圧力調整弁(12)の調整により圧力35〜70MPaに調整された高圧酸素ガスが、他方、水素気液分離室(11)から水素取出管(15)を経て、圧力調整弁(14)の調整により圧力35〜70MPaに調整された高圧水素ガスが、同圧にバランスされて、得られる。このような条件では、耐圧容器(1) における水電解槽(7) の内部と外部でガス圧力が同じになされるため、35〜70MPaの高圧でも水電解槽内部から外部へガスが漏れる恐れはない。酸素気液分離室(10)の水は酸素側水排出孔(25)を経て下室(28)に戻され、水素気液分離室(11)の水は水素側水排出ライン(18)を経て水タンク(19)に戻される。
【0018】
実施例2
図2において、縦長円筒状の耐圧容器(31)内に高さ可変仕切り板(32)が、容器内部を上側の水素貯留室(48)と下側の酸素貯留室(34)とに分けるように水平に配置されている。高さ可変仕切り板(32)は耐圧容器(31)に内方突状に設けられた吊持部材(33)にスプリング(35)を介して耐圧容器(31)内に吊り下げられている。吊持部材(33)は上側ストッパの役目もする。耐圧容器(31)の内周面との外周面の間には摺動自在のOリング(36)が介在されている。高さ可変仕切り板(32)の下方には耐圧容器(31)に内方突状に下側ストッパ(37)が設けられており、高さ可変仕切り板(32)は上側ストッパとしての吊持部材(33)と下側ストッパ(37)の間を、両室(48)(34)間の気密性を確保しながら、耐圧容器(31)に対し摺動自在に上下動し得る。酸素貯留室(34)には固体高分子型水電解槽(38)が配置され、同水電解槽(38)の給水ヘッダーに水供給ライン(39)が接続され、同ライン(39)には水圧送ポンプ(40)および流量制御弁(41)が設けられ、酸素貯留室(34)からの水循環ライン(42)が接続されている。水電解槽(38)の水素ヘッダーは高さ可変仕切り板(32)を気密状に貫通する垂直通気管(43)によって水素貯留室(48)に連通し、酸素ヘッダーは酸素貯留室(34)に連通している。水素貯留室(48)および酸素貯留室(34)にはそれぞれ、圧力調整弁(44)を有する酸素取出管(45)および圧力調整弁(46)を有する水素取出管(47)が配されている。
【0019】
上記構成の水素供給装置において、水供給ライン(39)により水電解槽(38)の給水ヘッダー に加圧供給された水は、給水ヘッダーから各単位セル内に導かれ、触媒電極層の表面で電気分解され、陽極側では酸素、陰極側では水素がそれぞれ発生する。得られた酸素は酸素ヘッダーを経て水電解槽(38)から出た後、酸素貯留室(34)内に蓄えられ、水素は水素ヘッダーを経て水電解槽(38)から出た後、垂直通気管(43)を通って水素貯留室(48)内に導かれここに蓄えられる。高さ可変仕切り板(32)は耐圧容器(31)に対し摺動自在に上下動して、酸素貯留室(34)と水素貯留室(48)の間に差圧が生じないようにバランスされ、これにより水電解槽(38)の電極接合体膜が破損するのが防止されている。酸素貯留室(34)から酸素取出管(45)を経て、圧力調整弁(44)の調整により圧力35〜70MPaに調整された高圧酸素ガスが、他方、水素貯留室(48)から水素取出管(47)を経て、圧力調整弁(46)の調整により圧力35〜70MPaに調整された高圧水素ガスが、同圧にバランスされて、得られる。酸素貯留室(28)底部の水は水循環ライン(42)を経て水供給ライン(39)に戻される。
【0020】
【発明の効果】
第1発明によれば、大気と水電解槽内部の圧力(35〜70MPa)差によるガス漏れの恐れがない安全な水素供給装置を提供できる。また、通常、外部に別途設ける気液分離器を省略することも可能なため装置の簡略化が図れる。
【0021】
第2発明によれば、高さ可変仕切り板(32)は耐圧容器(31)に対し摺動自在に上下動できるので、酸素貯留室(34)と水素貯留室(48)の間に差圧が生じない。これにより水電解槽の電極接合体膜が破損するのが効果的に防止される。
【図面の簡単な説明】
【図1】 実施例1による水素供給装置を示す垂直縦断面図である。
【図2】 固体高分子型水電解槽を示す垂直縦断面図である。
【図3】 実施例2による水素供給装置を示す垂直縦断面図である。
【図4】 従来の固体高分子型水電解槽を用いた水素供給装置を示す概略図である。
【図5】 従来の固体高分子型水電解槽を示す垂直縦断面図である。
【符号の説明】
(1)(31):耐圧容器
(15)(47):水素取出管
(13)(45):酸素取出管
(34):酸素貯留室
(7) (38):固体高分子型水電解槽
(2) :中容器
(3) :蓋体
(28):下室
(6) :台板
(9) :垂直仕切壁
(10):酸素気液分離室
(11):水素気液分離室
(18):水素側水排出ライン
(25):酸素側水排出孔
(32):高さ可変仕切り板
(35):スプリング
(36):Oリング
(16)(39):水供給ライン
(43):垂直通気管
(48):水素貯留室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water electrolyzer that electrolyzes water using a solid polymer electrolyte membrane to generate oxygen at an anode and hydrogen at a cathode, and more specifically, high-pressure hydrogen gas of 35 to 70 MPa is generated at a hydrogen station for a fuel cell. The present invention relates to a hydrogen supply device to be supplied.
[0002]
[Prior art]
Conventionally, as shown in FIG. 4, a hydrogen supply apparatus using a solid polymer type water electrolyzer electrolyzes water using a polymer electrolyte membrane and generates oxygen at the anode and hydrogen at the cathode ( 51), a hydrogen gas-liquid separator (53) for separating hydrogen and water generated at the cathode of the water electrolysis tank, and an oxygen gas-liquid separator for separating oxygen and water generated at the anode of the water electrolysis tank ( 54), a water circulation line (52) having a circulation pump (55) for circulating water so as to supply water to the water electrolyzer, and a hydrogen gas-liquid separator and a hydrogen pressure regulating valve (58) A hydrogen line (56) provided with an oxygen gas-liquid separator and an oxygen line (57) provided with an oxygen pressure regulating valve (59), and an oxygen gas-liquid separator (54) with a water supply pump (60 ) Connected through a pure water tank (61), a direct current power source (62) connected to the water electrolysis tank (51), and a pressure regulating valve (63) provided in the hydrogen line (56). .
[0003]
As shown in FIG. 5, the polymer electrolyte water electrolyzer is composed of an anode main electrode (71) and a cathode main electrode (72) arranged at both ends, and a series connection between these main electrodes (71) (72). A plurality of unit cells (86), a pair of end plates (83) sandwiching a combination of the anode main electrode (71) -the plurality of unit cells (76) -the cathode main electrode (72) from both sides, and a pair Bolts (84) and nuts (85) that pass through the four corners of the end plate (83) and tighten the anode main electrode (71), the plurality of unit cells (86), and the cathode main electrode (72) from both sides. It is mainly composed. One cell (86) includes the anode side of the bipolar plate (79), the anode feeder (77), the electrode assembly film (73), the cathode feeder (78), and the adjacent bipolar plate (79). It is mainly configured from the cathode side. At the periphery of each cell (86) is an O-ring that seals the inside and outside of the water electrolysis cell between the electrode assembly membrane (73) and the surface of the bipolar plate (79) on the cathode feeder (78) side. Is intervened.
[0004]
Oxygen generated at the anode of the water electrolysis tank (51) is sent to the oxygen gas-liquid separator (54), and hydrogen generated at the cathode is sent to the hydrogen gas-liquid separator (53). At this time, most of the water coming out of the water electrolysis tank (51) is sent to the oxygen side. The hydrogen gas-liquid separator (53) and the oxygen gas-liquid separator (54) are connected by piping, and the water level of both gas-liquid separators is always controlled to be the same. The water sent to both gas-liquid separators is adjusted in temperature by a circulating water cooler and sent again to the water electrolyzer (51) by a circulating pump (55). The supply of water to the water electrolyzer is performed by supplying pure water to the oxygen gas-liquid separator (54) by a water supply pump (60) in accordance with the preset value of the level of the oxygen gas-liquid separator (54). This is done by supplying to
[0005]
In addition, the high-pressure hydrogen having a structure in which the high-pressure hydrogen and high-pressure oxygen generated inside the water electrolysis tank are prevented from leaking out of the water electrolysis tank by disposing the water electrolysis tank having the above-described configuration in a pressure-resistant container filled with water. There is also a supply device (not shown). In this structure, since either oxygen or hydrogen is released into the pressure vessel, the inside and outside of the water electrolysis tank are at the same pressure, and there is little possibility of leakage.
[0006]
[Problems to be solved by the invention]
If high pressure hydrogen of 35 to 70 MPa is obtained in the atmosphere without using a pressure vessel, the water electrolyzer cannot withstand the internal pressure and gas may leak to the outside. Moreover, when using a pressure vessel, the attachment structure of each member in a pressure vessel becomes complicated, and operation | movement of an apparatus becomes difficult.
[0007]
An object of the present invention is to solve such a problem.
[0008]
[Means for Solving the Problems]
In a first hydrogen supply apparatus according to the present invention, a horizontal partition wall is arranged in a pressure vessel so that the inside of the vessel is divided into two upper and lower chambers, a polymer electrolyte water electrolyzer is provided in the lower chamber, and a water supply line is provided. The water supply line is pressurized and supplied from the lower chamber to the water header of the water electrolysis tank, and the upper chamber is divided into an oxygen gas-liquid separation chamber and a hydrogen gas-liquid separation chamber by a vertical partition wall. The oxygen header of the water electrolysis tank communicates with the liquid separation chamber through the oxygen side communication hole of the horizontal partition wall, and the hydrogen header of the water electrolysis tank passes through the hydrogen side communication hole of the horizontal partition wall with the hydrogen gas-liquid separation chamber. The oxygen gas / liquid separation chamber is provided with an oxygen extraction pipe and an oxygen side water discharge hole, and the hydrogen gas / liquid separation chamber is provided with a hydrogen extraction pipe and a hydrogen side water discharge line. Is.
[0009]
In the hydrogen supply apparatus, the space ratio between the oxygen gas-liquid separation chamber and the hydrogen gas-liquid separation chamber is preferably about 1: 2.
[0010]
In the second hydrogen supply device according to the present invention, the variable height partition plate is arranged horizontally in the pressure vessel so as to divide the inside of the vessel into an upper hydrogen storage chamber and a lower oxygen storage chamber. The polymer electrolyte water electrolyzer is placed in the oxygen storage chamber, the water supply line is connected to the water header of the water electrolyzer, and the hydrogen header of the water electrolyzer is connected to the oxygen reservoir. The header communicates with the oxygen storage chamber, and the oxygen storage pipe and the hydrogen discharge pipe are arranged in the hydrogen storage chamber and the oxygen storage chamber, respectively, so that airtightness between the storage chambers and between the inside and outside of the water electrolyzer is ensured. It is characterized by this.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described based on examples.
[0012]
In FIG. 1, a concave middle container (2) having a flange (2a) at the upper end is fitted into a bottomed cylindrical pressure-resistant container (1) having a flange (1a) at the upper end, and the flange (1a). (2a) The two are superimposed. A lid (3) is arranged on the middle container (2), and its peripheral edge, the flange (2a) of the middle container (2), and the flange (1a) of the pressure vessel (1) are bolts and nuts (4 ) The height of the middle container (2) is slightly shorter than half of the pressure container (1). The bottom wall (2b) of the middle container (2) serves as a horizontal partition wall that divides the inside of the pressure vessel (1) into two upper and lower chambers. A base plate (6) is horizontally arranged near the bottom of the lower chamber (28) of the pressure vessel (1) and welded to the inner surface of the lower chamber (28). In the lower chamber (28), a polymer electrolyte water electrolyzer (7) is placed between the bottom wall (2b) of the middle container (2) and the base plate (6) from above and below, and the bottom wall (2b ) And the base plate (6) with bolts and nuts (8). The tightening part of the bolt and nut (8) is coated with Teflon (registered trademark) rubber or treated with a sealant so as to prevent gas leakage of the bottom wall (2b) of the inner container (2). A DC power source (23) is connected to the polymer electrolyte water electrolyzer (7).
[0013]
The inside of the middle container (2) corresponding to the upper chamber of the pressure vessel (1) is divided into an oxygen gas-liquid separation chamber (10) and a hydrogen gas-liquid separation chamber (11) by a vertical partition wall (9). . The space of the oxygen gas / liquid separation chamber (10) and the hydrogen gas / liquid separation chamber (11) is substantially equal to the ratio of gas generation amount per unit time (1: 2).
[0014]
The lower chamber (28) is provided with a water supply line (16) having a water supply pump (20) from the water tank (19), and the water header of the polymer electrolyte water electrolyzer (7) from the lower chamber (28). In addition, a circulation line (22) having a circulation pump (21) is arranged through the side walls of the pressure vessel (1) and the middle vessel (2).
[0015]
The oxygen header of the water electrolyzer (7) communicates with the oxygen gas-liquid separation chamber (10) via the bottom wall (2b) of the middle vessel (2), that is, the oxygen side communication hole (17) opened in the horizontal partition wall. Yes. The hydrogen header communicates with the hydrogen gas-liquid separation chamber (11) through a hydrogen side communication hole (24) opened in the bottom wall (2b).
[0016]
The oxygen gas-liquid separation chamber (10) is provided with an oxygen take-out pipe (13) having a pressure regulating valve (12) on its top wall, i.e., the lid (3), and its bottom wall, i.e., the middle vessel (2). An oxygen-side water discharge hole (25) that leads to the lower chamber (28) is provided in the bottom wall of this. The hydrogen gas-liquid separation chamber (11) is provided with a hydrogen take-off pipe (15) having a pressure regulating valve (14) on its top wall, that is, a lid (3), and a hydrogen side water discharge line (18). It is arranged through the side walls of the pressure vessel (1) and the middle vessel (2) and reaches the water tank (19). The base plate (6) has a drain hole (26). An O-ring (27) is interposed between the bottom outer peripheral surface of the middle container (2) and the inner peripheral surface of the pressure vessel (1).
[0017]
In the hydrogen supply device having the above configuration, the water pressure-supplied from the water tank (19) through the water supply line (16) to the lower chamber (28) by the water supply pump (20) passes through the circulation line (22). The circulation pump (21) is pressurized and supplied to the water supply header of the polymer electrolyte water electrolyzer (7), led into each unit cell from the water supply header, electrolyzed on the surface of the catalyst electrode layer, and oxygen on the anode side. Hydrogen is generated on the cathode side. The obtained oxygen is introduced from the oxygen header through the oxygen side communication hole (17) into the oxygen gas / liquid separation chamber (10), where it is separated from entrained water and stored in a gas / liquid separation. On the other hand, the obtained hydrogen enters the hydrogen gas-liquid separation chamber (11) from the hydrogen header through the hydrogen side communication hole (24), where it is gas-liquid separated from the entrained water and stored. The volume ratio of the space portions of the hydrogen gas-liquid separation chamber (11) and the oxygen gas-liquid separation chamber (10) is substantially equal to the gas generation ratio (= 2: 1) per unit time. From the oxygen gas-liquid separation chamber (10), the high-pressure oxygen gas adjusted to a pressure of 35 to 70 MPa by adjusting the pressure regulating valve (12) through the oxygen take-out pipe (13), on the other hand, the hydrogen gas-liquid separation chamber (11) The high-pressure hydrogen gas adjusted to a pressure of 35 to 70 MPa by adjusting the pressure adjusting valve (14) through the hydrogen extraction pipe (15) is balanced and obtained at the same pressure. Under such conditions, the gas pressure is made the same inside and outside the water electrolysis tank (7) in the pressure vessel (1), so there is a possibility that gas leaks from the inside of the water electrolysis tank to the outside even at a high pressure of 35 to 70 MPa. Absent. The water in the oxygen gas / liquid separation chamber (10) is returned to the lower chamber (28) through the oxygen side water discharge hole (25), and the water in the hydrogen gas / liquid separation chamber (11) passes through the hydrogen side water discharge line (18). After that, it is returned to the water tank (19).
[0018]
Example 2
In FIG. 2, the height variable partition plate (32) is divided into an upper hydrogen storage chamber (48) and a lower oxygen storage chamber (34) in a vertically long cylindrical pressure vessel (31). Are arranged horizontally. The variable height partition plate (32) is suspended in the pressure vessel (31) via a spring (35) by a suspension member (33) provided in an inward projecting manner on the pressure vessel (31). The suspension member (33) also serves as an upper stopper. A slidable O-ring (36) is interposed between the outer peripheral surface and the inner peripheral surface of the pressure vessel (31). Below the variable height partition plate (32), a pressure-resistant container (31) is provided with a lower stopper (37) projecting inwardly, and the variable height partition plate (32) is suspended as an upper stopper. Between the member (33) and the lower stopper (37), it can move up and down slidably with respect to the pressure vessel (31) while ensuring airtightness between the chambers (48) and (34). A solid polymer type water electrolyzer (38) is disposed in the oxygen storage chamber (34), and a water supply line (39) is connected to a feed header of the water electrolyzer (38). A water pressure pump (40) and a flow rate control valve (41) are provided, and a water circulation line (42) from the oxygen storage chamber (34) is connected. The hydrogen header of the water electrolyzer (38) communicates with the hydrogen storage chamber (48) by a vertical vent pipe (43) that penetrates the variable height partition plate (32) in an airtight manner, and the oxygen header is the oxygen storage chamber (34). Communicating with Each of the hydrogen storage chamber (48) and the oxygen storage chamber (34) is provided with an oxygen extraction pipe (45) having a pressure adjustment valve (44) and a hydrogen extraction pipe (47) having a pressure adjustment valve (46). Yes.
[0019]
In the hydrogen supply apparatus configured as described above, the water pressure-supplied to the water supply header of the water electrolysis tank (38) by the water supply line (39) is guided from the water supply header into each unit cell, and on the surface of the catalyst electrode layer. Electrolysis is performed to generate oxygen on the anode side and hydrogen on the cathode side. The obtained oxygen exits from the water electrolyzer (38) through the oxygen header and is then stored in the oxygen storage chamber (34) .Hydrogen passes from the water electrolyzer (38) through the hydrogen header and then passes vertically. It is guided into the hydrogen storage chamber (48) through the trachea (43) and stored therein. The variable height partition plate (32) is slidably moved up and down relative to the pressure vessel (31), and is balanced so that no differential pressure is generated between the oxygen storage chamber (34) and the hydrogen storage chamber (48). This prevents the electrode assembly membrane of the water electrolysis tank (38) from being damaged. The high pressure oxygen gas adjusted to a pressure of 35 to 70 MPa by adjusting the pressure regulating valve (44) from the oxygen storage chamber (34) through the oxygen extraction pipe (45), on the other hand, the hydrogen extraction pipe from the hydrogen storage chamber (48). Through (47), the high-pressure hydrogen gas adjusted to a pressure of 35 to 70 MPa by adjusting the pressure adjusting valve (46) is balanced and obtained at the same pressure. The water at the bottom of the oxygen storage chamber (28) is returned to the water supply line (39) through the water circulation line (42).
[0020]
【The invention's effect】
According to the first invention, it is possible to provide a safe hydrogen supply device that does not cause a gas leak due to a difference in pressure (35 to 70 MPa) between the atmosphere and the water electrolyzer. Moreover, since the gas-liquid separator provided separately outside can also be omitted normally, the apparatus can be simplified.
[0021]
According to the second invention, since the variable height partition plate (32) can be slidably moved up and down with respect to the pressure vessel (31), the differential pressure between the oxygen storage chamber (34) and the hydrogen storage chamber (48). Does not occur. This effectively prevents the electrode assembly membrane of the water electrolysis tank from being damaged.
[Brief description of the drawings]
FIG. 1 is a vertical longitudinal sectional view showing a hydrogen supply device according to Embodiment 1. FIG.
FIG. 2 is a vertical longitudinal sectional view showing a solid polymer type water electrolysis tank.
3 is a vertical longitudinal sectional view showing a hydrogen supply device according to Embodiment 2. FIG.
FIG. 4 is a schematic view showing a hydrogen supply apparatus using a conventional solid polymer type water electrolyzer.
FIG. 5 is a vertical longitudinal sectional view showing a conventional solid polymer type water electrolyzer.
[Explanation of symbols]
(1) (31): Pressure vessel
(15) (47): Hydrogen extraction pipe
(13) (45): Oxygen extraction pipe
(34): Oxygen storage chamber
(7) (38): Solid polymer water electrolyzer
(2): Middle container
(3): Lid
(28): Lower room
(6): Base plate
(9): Vertical partition wall
(10): Oxygen gas-liquid separation chamber
(11): Hydrogen gas-liquid separation chamber
(18): Hydrogen side water discharge line
(25): Oxygen side water discharge hole
(32): Height variable partition plate
(35): Spring
(36): O-ring
(16) (39): Water supply line
(43): Vertical ventilation pipe
(48): Hydrogen storage chamber

Claims (3)

耐圧容器内に水平仕切壁が容器内部を上下2室に分けるように配置され、下室に固体高分子型水電解槽が設けられると共に水供給ラインが配されて水供給ラインの水が下室から同水電解槽の給水ヘッダーに加圧供給され、上室が垂直仕切壁によって酸素気液分離室と水素気液分離室とに区画され、酸素気液分離室には水電解槽の酸素ヘッダーが水平仕切壁の酸素側連通孔を経て連通すると共に、水素気液分離室には水電解槽の水素ヘッダーが水平仕切壁の水素側連通孔を経て連通し、酸素気液分離室には酸素取出管と酸素側水排出孔とが、水素気液分離室には水素取出管と水素側水排出ラインとがそれぞれ設けられていることを特徴とする、固体高分子型水電解槽を用いた水素供給装置。A horizontal partition wall is arranged in the pressure vessel so as to divide the inside of the vessel into two upper and lower chambers, a solid polymer type water electrolyzer is provided in the lower chamber and a water supply line is arranged so that the water in the water supply line is in the lower chamber Is pressurized and supplied to the water header of the same water electrolyzer, and the upper chamber is divided into an oxygen gas-liquid separation chamber and a hydrogen gas-liquid separation chamber by a vertical partition wall. Communicates through the oxygen side communication hole of the horizontal partition wall, the hydrogen header of the water electrolysis tank communicates with the hydrogen gas-liquid separation chamber through the hydrogen side communication hole of the horizontal partition wall, and oxygen gas in the oxygen gas-liquid separation chamber. A solid polymer water electrolyzer was used, characterized in that an extraction pipe and an oxygen-side water discharge hole were provided in the hydrogen gas-liquid separation chamber, respectively, and a hydrogen extraction pipe and a hydrogen-side water discharge line were provided. Hydrogen supply device. 酸素気液分離室および水素気液分離室の空間比が1:2である、請求項1記載の水素供給装置。The hydrogen supply apparatus according to claim 1, wherein a space ratio between the oxygen gas-liquid separation chamber and the hydrogen gas-liquid separation chamber is 1 : 2. 耐圧容器内に高さ可変仕切り板が、容器内部を上側の水素貯留室と下側の酸素貯留室とに分けるように水平に配置されて弾性部材を介して耐圧容器に吊持され、酸素貯留室に固体高分子型水電解槽が配置され、水電解槽の給水ヘッダーに水供給ラインが接続され、水電解槽の水素ヘッダーが水素貯留室に酸素ヘッダーが酸素貯留室にそれぞれ連通され、水素貯留室および酸素貯留室にそれぞれ酸素取出管および水素取出管が配され、両貯留室間の気密性および水電解槽内外間の気密性が確保されることを特徴とする、固体高分子型水電解槽を用いた水素供給装置。A variable height partition plate is horizontally arranged in the pressure vessel so as to divide the inside of the vessel into an upper hydrogen storage chamber and a lower oxygen storage chamber, and is suspended in the pressure vessel via an elastic member to store oxygen. The polymer electrolyte water electrolyzer is placed in the chamber, the water supply line is connected to the water header of the water electrolyzer, the hydrogen header of the water electrolyzer is connected to the hydrogen reservoir, and the oxygen header is connected to the oxygen reservoir, respectively. Solid polymer type water characterized in that an oxygen take-out pipe and a hydrogen take-out pipe are arranged in the storage chamber and the oxygen storage chamber, respectively, so that airtightness between the two storage chambers and airtightness between the inside and outside of the water electrolyzer are secured. A hydrogen supply device using an electrolytic cell.
JP2002155271A 2002-05-29 2002-05-29 Hydrogen supply device using solid polymer water electrolyzer Expired - Fee Related JP3763018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002155271A JP3763018B2 (en) 2002-05-29 2002-05-29 Hydrogen supply device using solid polymer water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002155271A JP3763018B2 (en) 2002-05-29 2002-05-29 Hydrogen supply device using solid polymer water electrolyzer

Publications (2)

Publication Number Publication Date
JP2003342767A JP2003342767A (en) 2003-12-03
JP3763018B2 true JP3763018B2 (en) 2006-04-05

Family

ID=29771835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002155271A Expired - Fee Related JP3763018B2 (en) 2002-05-29 2002-05-29 Hydrogen supply device using solid polymer water electrolyzer

Country Status (1)

Country Link
JP (1) JP3763018B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033312B2 (en) * 2005-03-10 2012-09-26 日立造船株式会社 Solid polymer water electrolyzer
JP4597800B2 (en) * 2005-07-19 2010-12-15 本田技研工業株式会社 High pressure hydrogen production equipment
GB0612567D0 (en) * 2006-06-24 2006-08-02 Itm Fuel Cells Ltd Fueling cassette
GB0714140D0 (en) * 2007-07-19 2007-08-29 Itm Power Research Ltd electrolyser system
JP5196510B1 (en) * 2012-07-20 2013-05-15 株式会社健康支援センター Desktop hydrogen gas generator
JP5685748B1 (en) * 2014-04-28 2015-03-18 株式会社センリョウ High-pressure hydrogen tank and fuel cell vehicle capable of producing hydrogen
JP6449572B2 (en) * 2014-07-03 2019-01-09 株式会社Ihi Regenerative fuel cell system and operation method thereof
TWI671124B (en) * 2018-06-28 2019-09-11 富氫生物科技股份有限公司 Water tank and hydrogen producing device containing the same
CN112877723B (en) * 2020-12-31 2022-08-16 深圳市珐彩科技有限公司 Oxyhydrogen machine

Also Published As

Publication number Publication date
JP2003342767A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
US7226529B2 (en) Electrolyzer system to produce gas at high pressure
US3957618A (en) Water decomposition apparatus for producing detonating gas
JP3763018B2 (en) Hydrogen supply device using solid polymer water electrolyzer
NO333302B1 (en) High pressure electrolyzer module, electrolyzer containing this and annular support frame for a high pressure electrolyzer module
JP3772261B2 (en) Hydrogen supply device using solid polymer water electrolyzer
US7824527B2 (en) Frame for electrolyser module and electrolyser module and electrolyser incorporating same
WO2019061710A1 (en) Base structure of hydrogen-oxygen-separated electrolysis device and electrolysis device with base structure
US3220937A (en) Process and apparatus for operating porous gas diffusion electrodes under variating pressure with back coupling of pressure
JP2005248246A (en) Apparatus for generating hydrogen by water electrolysis accommodated in high-pressure vessel
JP3733463B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP5033312B2 (en) Solid polymer water electrolyzer
US20240344220A1 (en) Method for the electrolysis of water at variable current densities
JP2003342768A (en) Hydrogen supplying apparatus using solid polymer type water electrolytic cell
JP3772260B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP4909521B2 (en) Solid polymer water electrolyzer
JP4206500B2 (en) Hydrogen supply device using solid polymer water electrolyzer
US4744873A (en) Multiple compartment electrolytic cell
JP4674659B2 (en) Container-contained water electrolyzer for water electrolysis hydrogen generator
CN1109516A (en) Combined water electrolysis hydrogen generator
JP2003342771A (en) High pressure type hydrogen - oxygen generator
FI90568C (en) Electrolyser for hydrogen production
CN220284244U (en) Water electrolysis hydrogen production control device
CN110697849A (en) Wastewater treatment active carbon adsorption tower
JP2006299390A (en) Vessel storage water electrolytic tank in water electrolytic hydrogen generator
JP4635567B2 (en) Container-contained water electrolyzer for water electrolysis hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3763018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees