JP3733463B2 - Hydrogen supply device using solid polymer water electrolyzer - Google Patents

Hydrogen supply device using solid polymer water electrolyzer Download PDF

Info

Publication number
JP3733463B2
JP3733463B2 JP2002155267A JP2002155267A JP3733463B2 JP 3733463 B2 JP3733463 B2 JP 3733463B2 JP 2002155267 A JP2002155267 A JP 2002155267A JP 2002155267 A JP2002155267 A JP 2002155267A JP 3733463 B2 JP3733463 B2 JP 3733463B2
Authority
JP
Japan
Prior art keywords
hydrogen
water electrolyzer
oxygen
storage chamber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002155267A
Other languages
Japanese (ja)
Other versions
JP2003342765A (en
Inventor
雅芳 近藤
仁志 尾白
浩史 辰己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2002155267A priority Critical patent/JP3733463B2/en
Publication of JP2003342765A publication Critical patent/JP2003342765A/en
Application granted granted Critical
Publication of JP3733463B2 publication Critical patent/JP3733463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、固体高分子電解膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる水電解槽に関し、より詳しくは、燃料電池用水素ステーションで35〜70MPaの高圧水素ガスを供給する水素供給装置に関するものである。
【0002】
【従来の技術】
従来、固体高分子型水電解槽を用いた水素供給装置は、図4に示すように、高分子電解質膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる水電解槽(51)と、水電解槽の陰極にて発生した水素と水を分離する水素気液分離器(53)と、水電解槽の陽極にて発生した酸素と水を分離する酸素気液分離器(54)と、水電解槽へ水を供給するように水を循環させる循環ポンプ(55)を備えた水循環ライン(52)と、水素気液分離器に設けられ、かつ水素圧力調整弁(58)を備えた水素ライン(56)と、酸素気液分離器に設けられ、かつ酸素圧力調整弁(59)を備えた酸素ライン(57)と、酸素気液分離器(54)に吸水ポンプ(60)を介して接続された純水タンク(61)と、水電解槽(51)に接続された直流電源(62)と、水素ライン(56)に設けられた圧力調整弁(63)とからなる。
【0003】
固体高分子型水電解槽は、図5に示すように、両端に配された陽極主電極(1) および陰極主電極(2) と、これらの主電極(1) (2) の間に直列に配された複数の単位セル(16)と、陽極主電極(1) −複数の単位セル(16)−陰極主電極(2) の組み合わせを両側から挟む一対の端板(13)と、一対の端板(13)の各四隅部を貫通し、陽極主電極(1) 、複数の単位セル(16)および陰極主電極(2) を両側から締め付けるボルト(14)・ナット(15)とから主として構成されている。1つのセル(16)は、複極板(9) の陽極側、陽極給電体(7) 、電極接合体膜(3) 、陰極給電体(8) 、および隣の複極板(9) の陰極側から主として構成されている。各セル(16)の周縁部には、電極接合体膜(3) と複極板(9) の陰極給電体(8) 側の面との間に水電解槽内部と外部をシールするOリングが介在されている。
【0004】
水電解槽(51)の陽極にて発生した酸素は酸素気液分離器(54)に送られ、陰極にて発生した水素は水素気液分離器(53)に送られる。このとき水電解槽(51)から出る水はほとんど酸素側に送られる。水素気液分離器(53)と酸素気液分離器(54)は配管にてつながれており、両気液分離器の水面レベルは常に同じに制御されている。両気液分離器に送られた水は、循環水冷却器にて温度調整されて、循環ポンプ(55)にて再度水電解槽(51)に送られる。水電解装置への水の供給は、予め設定しておいた酸素気液分離器(54)のレベルの設定値に合わせて水供給ポンプ(60)によって純水を酸素気液分離器(54)に供給することにより行われる。
【0005】
また、水が封入された耐圧容器内に前記構成の水電解槽を配置することにより、水電解槽内部で発生した高圧水素および高圧酸素を水電解槽外に漏らさぬようにした構造の高圧水素供給装置もある(図示省略)。この構造では、酸素あるいは水素のどちらか一方を耐圧容器内に放出するため、水電解槽内部と外部が同圧になり漏れの可能性が少ない。
【0006】
【発明が解決しようとする課題】
耐圧容器を用いないで大気中で35〜70MPaの高圧水素を得ようとすると、水電解槽が内圧に耐えられずガスが外部に漏れる恐れがある。また、耐圧容器を用いる場合、耐圧容器内への各部材の取付け構造が複雑になり装置の運転が難しくなる。
【0007】
本発明は、このような問題を解消することを課題とする。
【0008】
【課題を解決するための手段】
本発明による第1の水素供給装置は、耐圧容器内に固体高分子型水電解槽が、容器内部を、水素取出口を持つ水素貯留室と酸素取出口を持つ酸素貯留室とに左右に分けるように、かつ、水電解槽のセルが実質上垂直になるように配置され、水電解槽の水素ヘッダーが水素貯留室に酸素ヘッダーが酸素貯留室にそれぞれ連通され、両貯留室間の気密性および水電解槽内外間の気密性が確保され、固体高分子型水電解槽に水が加圧供給されるものである。
【0009】
耐圧容器の内周面と固体高分子型水電解槽の外周面の間には、両貯留室間の気密性を確保するシール部材が介在されている。
【0010】
本発明による第2の水素供給装置は、耐圧容器内に仕切り板が、容器内部を上側の酸素貯留室と下側の水素貯留室とに分けるように水平に配置され、固体高分子型水電解槽が仕切り板上にそのセルが実質上水平になるように配置され、水電解槽の水素ヘッダーが水素貯留室に酸素ヘッダーが酸素貯留室にそれぞれ連通され、両貯留室間の気密性および水電解槽内外間の気密性が確保され、固体高分子型水電解槽に水が加圧供給されるものである。
【0011】
第1および第2の水素供給装置において、両貯留室は気液分離器としても作用する。
【0012】
水素貯留室と酸素貯留室の各空間部の容積比は実質的に2:1である。
【0013】
固体高分子型水電解槽は、両端に配された陽極主電極および陰極主電極と、これらの主電極の間に直列に配された複数の単位セルと、陽極主電極−複数の単位セル−陰極主電極の組み合わせを両側から締め付ける一対の端板とから主として構成され、各セルの周縁部には、その構成部材である電極接合体膜と複極板の陰極給電体側の面との間に水電解槽内部と外部をシールするOリングが介在されている。
【0014】
【発明の実施の形態】
以下、この発明を実施例に基づいて具体的に説明する。
【0015】
実施例1
図1において、横長直方体の耐圧容器(21)内に固体高分子型水電解槽(29)が、容器内部(21)を、頂壁に水素取出口(22)を持つ水素貯留室(23)と、頂壁に酸素取出口(24)を持つ酸素貯留室(25)とに左右に区分するように設けられている。水電解槽(29)はその積層セルが実質上垂直になるように配されている。水電解槽(29)の水素ヘッダー(26)は水素貯留室(23)に酸素ヘッダー(27)は酸素貯留室(25)にそれぞれ連通されている。耐圧容器(21)の内周面と水電解槽(29)の外周面の間に、両貯留室間の気密性を確保するシール部材としてOリング(28)が介在されている。酸素貯留室(25)の底部に、給水ポンプ(44)を備えた水補給管(4) が配され、酸素貯留室(25)の側壁から水電解槽(29)の給水ヘッダー(10)端部に、水循環ポンプ(5) を備えた水循環管(6) が配されている。
【0016】
固体高分子型水電解槽は、図2に示すように、両端に配された陽極主電極(1) および陰極主電極(2) と、これらの主電極(1) (2) の間に直列に配された複数の単位セル(16)と、陽極主電極(1) −複数の単位セル(16)−陰極主電極(2) の組み合わせを両側から挟む一対の端板(13)と、一対の端板(13)、陽極主電極(1) 、複数の複極板(9) および陰極主電極(2) の各四隅部を貫通し両側から締め付けるボルト(14)・ナット(15)と、陽極主電極(1) および陰極主電極(2) に接続された直流電源とから主として構成されている。1つのセル(16)は、複極板(9) の陽極側半体、陽極給電体(7) 、電極接合体膜(3) 、陰極給電体(8) 、および隣の複極板(9) の陰極側半体から主として構成されている。各セル(16)の周縁部には、電極接合体膜(3) と複極板(9) との間、隣接複極板(9) の間、陽極主電極(1) と複極板(9) との間、および陰極主電極(2) と複極板(9) との間に、それぞれ水電解槽内部と外部をシールするOリング(20)(42)が介在されている。上記Oリング(28)は耐圧容器(21)の内周面と水電解槽(29)の複極板(9) の外周面の間に介在されている。ボルト(14)は陽極主電極(1) 、複極板(9) および陰極主電極(2) と短絡しないように所要部分で樹脂コーティングされている。電極接合体膜(3) は、イオン交換膜と、その両面に貴金属めっきされた触媒電極層とからなる。複極板(9) 、陽極主電極(1) および陰極主電極(2) において水素ヘッダー(26)および酸素ヘッダー(27)を構成するマニホールド部には、水素ヘッダー(26)および酸素ヘッダー(27)をシールするOリング(17)が設けられている。単位セルの個数は、商業規模の水電解槽では、30から600である。
【0017】
上記構成の水素供給装置において、水補給管(4) により酸素貯留室(25)内に導入された水は、ここから水循環管(6) により水電解槽(29)の給水ヘッダー(10)に加圧供給され、給水ヘッダー(10)から各単位セル内に導かれ、触媒電極層の表面で電気分解され、陽極側では酸素、陰極側では水素がそれぞれ発生する。発生した酸素および水素はそれぞれ多孔質の給電体(7)(8)を通って複極板(9) の陽極側および陰極側に達し、更に複極板に設けられたガス流路を通って水電解槽上部に達し、水電解槽上部の酸素ヘッダー(11)および水素ヘッダー(12)を通って酸素貯留室(25)および水素貯留室(23)内の水中にそれぞれ導入される。未反応の水も水素と共に水素貯留室(23)に導入される。水素貯留室と酸素貯留室の各空間部の容積比は単位時間辺りの各ガス発生量比(=2:1)と等しくなされている。酸素貯留室(25)および水素貯留室(23)は気液分離器としても作用する。水素貯留室(23)の水素取出口(22)には圧力調整弁(30)が設けられ、酸素貯留室(25)の酸素取出口(24)には圧力調整弁(45)が設けられており、これらの弁により酸素と水素は35〜70MPaの範囲で同圧にバランスされている。こうして高圧水素ガスが得られる。このような条件では、耐圧容器(21)における水電解槽(29)の内部と外部でガス圧力が同じになされる。
【0018】
実施例2
図3において、縦長直方体の耐圧容器(31)内にその下端寄りに仕切り板(41)が水平に配されて、耐圧容器(31)の側壁に溶接で固定されている。仕切り板(41)によって、耐圧容器(31)内部が、頂壁に酸素取出口(34)を持つ酸素貯留室(35)と、側壁に水素取出口(32)を持つ水素貯留室(33)とに上下に区分され、かつ仕切り板(41)で両貯留室(35)(33)間の気密性が確保されている。仕切り板(41)上に固体高分子型水電解槽(29)がそのセルが実質上水平になるように配置されている。水電解槽(29)の水素ヘッダー(36)は水素貯留室(33)に酸素ヘッダー(37)は酸素貯留室(35)にそれぞれ連通されている。
【0019】
酸素貯留室(35)の一側部に、給水ポンプ(43)を備えた水補給管(38)が配され、酸素貯留室(35)の他側壁から水電解槽(29)の給水ヘッダー(10)端部に、水循環ポンプ(39)を備えた水循環管(40)が配されている。
【0020】
その他の点を実施例1と同じである。
【0021】
【発明の効果】
本発明によれば、水電解槽の内部と外部でガス圧力を同じにすることにより、35〜70MPaの高圧でも水電解槽内部から外部へガスが漏れることがなく、安全な水素供給装置を提供することができる。また、酸素貯留室(25)および水素貯留室(23)は、気液分離器としても作用し、通常は外部に別途設ける気液分離器を省略することができて装置の簡略化が図れる。
【図面の簡単な説明】
【図1】 実施例1による水素供給装置を示す垂直縦断面図である。
【図2】 固体高分子型水電解槽を示す垂直縦断面図である。
【図3】 実施例2による水素供給装置を示す垂直縦断面図である。
【図4】 従来の固体高分子型水電解槽を用いた水素供給装置を示す概略図である。
【図5】 従来の固体高分子型水電解槽を示す垂直縦断面図である。
【符号の説明】
(10):給水ヘッダー
(21)(31):耐圧容器
(22)(32):水素取出口
(23)(33):水素貯留室
(24)(34):酸素取出口
(25)(35):酸素貯留室
(26)(36):水素ヘッダー
(27)(37):酸素ヘッダー
(28):Oリング
(29):固体高分子型水電解槽
(41):仕切り板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water electrolyzer that electrolyzes water using a solid polymer electrolyte membrane to generate oxygen at an anode and hydrogen at a cathode, and more specifically, high-pressure hydrogen gas of 35 to 70 MPa is generated at a hydrogen station for a fuel cell. The present invention relates to a hydrogen supply device to be supplied.
[0002]
[Prior art]
Conventionally, as shown in FIG. 4, a hydrogen supply apparatus using a solid polymer type water electrolyzer electrolyzes water using a polymer electrolyte membrane and generates oxygen at the anode and hydrogen at the cathode ( 51), a hydrogen gas-liquid separator (53) for separating hydrogen and water generated at the cathode of the water electrolysis tank, and an oxygen gas-liquid separator for separating oxygen and water generated at the anode of the water electrolysis tank ( 54), a water circulation line (52) having a circulation pump (55) for circulating water so as to supply water to the water electrolyzer, and a hydrogen gas-liquid separator and a hydrogen pressure regulating valve (58) A hydrogen line (56) provided with an oxygen gas-liquid separator and an oxygen line (57) provided with an oxygen pressure regulating valve (59), and an oxygen gas-liquid separator (54) with a water absorption pump (60 ) Connected through a pure water tank (61), a direct current power source (62) connected to the water electrolysis tank (51), and a pressure regulating valve (63) provided in the hydrogen line (56). .
[0003]
As shown in FIG. 5, the solid polymer type water electrolyzer is connected in series between an anode main electrode (1) and a cathode main electrode (2) arranged at both ends, and these main electrodes (1) (2). A plurality of unit cells (16) arranged in a pair, a pair of end plates (13) sandwiching a combination of the anode main electrode (1) -the plurality of unit cells (16) -the cathode main electrode (2) from both sides, and a pair Bolts (14) and nuts (15) that pass through the four corners of the end plate (13) and tighten the anode main electrode (1), multiple unit cells (16), and cathode main electrode (2) from both sides. It is mainly composed. One cell (16) consists of the anode side of the bipolar plate (9), the anode feeder (7), the electrode assembly film (3), the cathode feeder (8), and the adjacent bipolar plate (9). It is mainly configured from the cathode side. At the periphery of each cell (16) is an O-ring that seals the inside and outside of the water electrolysis cell between the electrode assembly membrane (3) and the surface of the bipolar plate (9) on the cathode feeder (8) side. Is intervened.
[0004]
Oxygen generated at the anode of the water electrolysis tank (51) is sent to the oxygen gas-liquid separator (54), and hydrogen generated at the cathode is sent to the hydrogen gas-liquid separator (53). At this time, most of the water coming out of the water electrolysis tank (51) is sent to the oxygen side. The hydrogen gas-liquid separator (53) and the oxygen gas-liquid separator (54) are connected by piping, and the water level of both gas-liquid separators is always controlled to be the same. The water sent to both gas-liquid separators is adjusted in temperature by a circulating water cooler and sent again to the water electrolyzer (51) by a circulating pump (55). The supply of water to the water electrolyzer is performed by supplying pure water to the oxygen gas-liquid separator (54) by a water supply pump (60) in accordance with the preset value of the level of the oxygen gas-liquid separator (54). This is done by supplying to
[0005]
In addition, the high-pressure hydrogen having a structure in which the high-pressure hydrogen and high-pressure oxygen generated inside the water electrolysis tank are prevented from leaking out of the water electrolysis tank by disposing the water electrolysis tank having the above-described configuration in a pressure-resistant container filled with water. There is also a supply device (not shown). In this structure, since either oxygen or hydrogen is released into the pressure vessel, the inside and outside of the water electrolysis tank are at the same pressure, and there is little possibility of leakage.
[0006]
[Problems to be solved by the invention]
If high pressure hydrogen of 35 to 70 MPa is obtained in the atmosphere without using a pressure vessel, the water electrolyzer cannot withstand the internal pressure and gas may leak to the outside. Moreover, when using a pressure vessel, the attachment structure of each member in a pressure vessel becomes complicated, and operation | movement of an apparatus becomes difficult.
[0007]
An object of the present invention is to solve such a problem.
[0008]
[Means for Solving the Problems]
In a first hydrogen supply device according to the present invention, a polymer electrolyte water electrolyzer is divided into a hydrogen storage chamber having a hydrogen outlet and an oxygen storage chamber having an oxygen outlet. And the cell of the water electrolyzer is arranged so as to be substantially vertical, the hydrogen header of the water electrolyzer is communicated with the hydrogen reservoir and the oxygen header is communicated with the oxygen reservoir, respectively. In addition, airtightness between the inside and outside of the water electrolysis tank is ensured, and water is pressurized and supplied to the solid polymer type water electrolysis tank.
[0009]
Between the inner peripheral surface of the pressure vessel and the outer peripheral surface of the polymer electrolyte water electrolysis tank, a seal member is interposed to ensure airtightness between the storage chambers.
[0010]
In the second hydrogen supply device according to the present invention, a partition plate is horizontally arranged in the pressure vessel so as to divide the inside of the vessel into an upper oxygen storage chamber and a lower hydrogen storage chamber, and the polymer electrolyte water electrolysis The tank is arranged on the partition plate so that the cell is substantially horizontal, the hydrogen header of the water electrolysis tank is communicated with the hydrogen storage chamber and the oxygen header is communicated with the oxygen storage chamber, respectively. Airtightness between the inside and outside of the electrolytic cell is ensured, and water is pressurized and supplied to the solid polymer water electrolytic cell.
[0011]
In the first and second hydrogen supply devices, both storage chambers also function as gas-liquid separators.
[0012]
The volume ratio of each space between the hydrogen storage chamber and the oxygen storage chamber is substantially 2: 1.
[0013]
The polymer electrolyte water electrolyzer comprises an anode main electrode and a cathode main electrode arranged at both ends, a plurality of unit cells arranged in series between these main electrodes, and an anode main electrode-a plurality of unit cells- It consists mainly of a pair of end plates that clamp the combination of cathode main electrodes from both sides, and the peripheral part of each cell is between the electrode assembly film, which is a component, and the surface on the cathode power supply side of the bipolar plate. An O-ring that seals the inside and outside of the water electrolysis tank is interposed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described based on examples.
[0015]
Example 1
In FIG. 1, a solid polymer water electrolyzer (29) is placed in a horizontally-long rectangular parallelepiped pressure vessel (21), the inside of the vessel (21), and a hydrogen storage chamber (23) having a hydrogen outlet (22) on the top wall. And an oxygen storage chamber (25) having an oxygen outlet (24) on the top wall. The water electrolysis tank (29) is arranged so that the stacked cells are substantially vertical. In the water electrolysis tank (29), the hydrogen header (26) communicates with the hydrogen storage chamber (23), and the oxygen header (27) communicates with the oxygen storage chamber (25). An O-ring (28) is interposed between the inner peripheral surface of the pressure vessel (21) and the outer peripheral surface of the water electrolysis tank (29) as a seal member for ensuring airtightness between the two storage chambers. A water supply pipe (4) equipped with a water supply pump (44) is arranged at the bottom of the oxygen storage chamber (25), and the end of the water supply header (10) of the water electrolysis tank (29) extends from the side wall of the oxygen storage chamber (25). A water circulation pipe (6) equipped with a water circulation pump (5) is arranged in the section.
[0016]
As shown in FIG. 2, the polymer electrolyte water electrolyzer is composed of an anode main electrode (1) and a cathode main electrode (2) arranged at both ends, and a series connection between these main electrodes (1) (2). A plurality of unit cells (16) arranged in a pair, a pair of end plates (13) sandwiching a combination of the anode main electrode (1) -the plurality of unit cells (16) -the cathode main electrode (2) from both sides, and a pair Bolts (14) and nuts (15) that pass through the four corners of the end plate (13), anode main electrode (1), multiple bipolar plates (9) and cathode main electrode (2) It is mainly composed of a DC power source connected to the anode main electrode (1) and the cathode main electrode (2). One cell (16) is composed of the anode half of the bipolar plate (9), the anode feeder (7), the electrode assembly film (3), the cathode feeder (8), and the adjacent bipolar plate (9 ) Of the cathode side half. At the periphery of each cell (16), between the electrode assembly membrane (3) and the bipolar plate (9), between the adjacent bipolar plate (9), the anode main electrode (1) and the bipolar plate ( 9) and between the cathode main electrode (2) and the bipolar plate (9), O-rings (20) and (42) for sealing the inside and outside of the water electrolysis cell are interposed, respectively. The O-ring (28) is interposed between the inner peripheral surface of the pressure vessel (21) and the outer peripheral surface of the bipolar plate (9) of the water electrolysis tank (29). The bolt (14) is resin-coated at a required portion so as not to be short-circuited with the anode main electrode (1), the bipolar plate (9) and the cathode main electrode (2). The electrode assembly membrane (3) comprises an ion exchange membrane and a catalyst electrode layer plated with noble metal on both sides thereof. The manifold part constituting the hydrogen header (26) and the oxygen header (27) in the bipolar plate (9), the anode main electrode (1) and the cathode main electrode (2) has a hydrogen header (26) and an oxygen header (27 ) Is provided with an O-ring (17). The number of unit cells is 30 to 600 in a commercial scale water electrolyzer.
[0017]
In the hydrogen supply device configured as described above, water introduced into the oxygen storage chamber (25) by the water supply pipe (4) is supplied from here to the water supply header (10) of the water electrolysis tank (29) by the water circulation pipe (6). Pressurized and supplied from the water supply header (10) into each unit cell and electrolyzed on the surface of the catalyst electrode layer, generating oxygen on the anode side and hydrogen on the cathode side. The generated oxygen and hydrogen pass through the porous feeder (7) and (8), respectively, and reach the anode side and the cathode side of the bipolar plate (9), and further pass through the gas flow path provided in the bipolar plate. It reaches the upper part of the water electrolysis tank and is introduced into the water in the oxygen storage chamber (25) and the hydrogen storage chamber (23) through the oxygen header (11) and the hydrogen header (12) at the upper part of the water electrolysis tank. Unreacted water is also introduced into the hydrogen storage chamber (23) together with hydrogen. The volume ratio between the space portions of the hydrogen storage chamber and the oxygen storage chamber is equal to the ratio of gas generation per unit time (= 2: 1). The oxygen storage chamber (25) and the hydrogen storage chamber (23) also function as a gas-liquid separator. A pressure regulating valve (30) is provided at the hydrogen outlet (22) of the hydrogen reservoir (23), and a pressure regulating valve (45) is provided at the oxygen outlet (24) of the oxygen reservoir (25). These valves balance oxygen and hydrogen at the same pressure in the range of 35 to 70 MPa. Thus, high-pressure hydrogen gas is obtained. Under such conditions, the gas pressure is made the same inside and outside the water electrolysis tank (29) in the pressure vessel (21).
[0018]
Example 2
In FIG. 3, a partition plate (41) is horizontally disposed near the lower end of a vertically long rectangular parallelepiped pressure vessel (31), and is fixed to the side wall of the pressure vessel (31) by welding. By the partition plate (41), the inside of the pressure vessel (31) has an oxygen storage chamber (35) having an oxygen outlet (34) on the top wall and a hydrogen storage chamber (33) having a hydrogen outlet (32) on the side wall. In addition, the partition plate (41) ensures airtightness between the storage chambers (35) and (33). A polymer electrolyte water electrolyzer (29) is disposed on the partition plate (41) so that the cell is substantially horizontal. In the water electrolysis tank (29), the hydrogen header (36) communicates with the hydrogen storage chamber (33), and the oxygen header (37) communicates with the oxygen storage chamber (35).
[0019]
A water supply pipe (38) equipped with a water supply pump (43) is arranged on one side of the oxygen storage chamber (35), and the water supply header (29) of the water electrolyzer (29) is provided from the other side wall of the oxygen storage chamber (35). 10) A water circulation pipe (40) equipped with a water circulation pump (39) is arranged at the end.
[0020]
The other points are the same as in the first embodiment.
[0021]
【The invention's effect】
According to the present invention, by making the gas pressure the same inside and outside the water electrolysis tank, there is no gas leaking from the inside of the water electrolysis tank to the outside even at a high pressure of 35 to 70 MPa. can do. Further, the oxygen storage chamber (25) and the hydrogen storage chamber (23) also function as a gas-liquid separator, and a gas-liquid separator that is normally provided separately from the outside can be omitted, thereby simplifying the apparatus.
[Brief description of the drawings]
FIG. 1 is a vertical longitudinal sectional view showing a hydrogen supply device according to Embodiment 1. FIG.
FIG. 2 is a vertical longitudinal sectional view showing a solid polymer type water electrolysis tank.
3 is a vertical longitudinal sectional view showing a hydrogen supply device according to Embodiment 2. FIG.
FIG. 4 is a schematic view showing a hydrogen supply apparatus using a conventional solid polymer type water electrolyzer.
FIG. 5 is a vertical longitudinal sectional view showing a conventional solid polymer type water electrolyzer.
[Explanation of symbols]
(10): Water supply header
(21) (31): Pressure vessel
(22) (32): Hydrogen outlet
(23) (33): Hydrogen storage chamber
(24) (34): Oxygen outlet
(25) (35): Oxygen storage chamber
(26) (36): Hydrogen header
(27) (37): Oxygen header
(28): O-ring
(29): Solid polymer water electrolyzer
(41): Partition plate

Claims (6)

耐圧容器内に固体高分子型水電解槽が、容器内部を、水素取出口を持つ水素貯留室と酸素取出口を持つ酸素貯留室とに左右に分けるように、かつ、水電解槽のセルが実質上垂直になるように配置され、水電解槽の水素ヘッダーが水素貯留室に酸素ヘッダーが酸素貯留室にそれぞれ連通され、両貯留室間の気密性および水電解槽内外間の気密性が確保され、固体高分子型水電解槽に水が加圧供給される、固体高分子型水電解槽を用いた水素供給装置。The polymer electrolyte water electrolyzer in the pressure vessel is divided into a hydrogen storage chamber having a hydrogen outlet and an oxygen storage chamber having an oxygen outlet. Arranged so as to be substantially vertical, the hydrogen header of the water electrolysis tank communicates with the hydrogen storage chamber, and the oxygen header communicates with the oxygen storage chamber. A hydrogen supply apparatus using a solid polymer water electrolyzer, in which water is supplied under pressure to the polymer electrolyte water electrolyzer. 耐圧容器の内周面と固体高分子型水電解槽の外周面の間に両貯留室間の気密性を確保するシール部材が介在されてなる、請求項1記載の固体高分子型水電解槽を用いた水素供給装置。2. The polymer electrolyte water electrolyzer according to claim 1, wherein a seal member for ensuring airtightness between the two storage chambers is interposed between the inner peripheral surface of the pressure vessel and the outer periphery of the polymer electrolyte water electrolyzer. Hydrogen supply device using 耐圧容器内に仕切り板が、容器内部を上側の酸素貯留室と下側の水素貯留室とに分けるように水平に配置され、固体高分子型水電解槽が仕切り板上にそのセルが実質上水平になるように配置され、水電解槽の水素ヘッダーが水素貯留室に酸素ヘッダーが酸素貯留室にそれぞれ連通され、両貯留室間の気密性および水電解槽内外間の気密性が確保され、固体高分子型水電解槽に水が加圧供給される、固体高分子型水電解槽を用いた水素供給装置。A partition plate is arranged horizontally in the pressure vessel so as to divide the inside of the container into an upper oxygen storage chamber and a lower hydrogen storage chamber, and the polymer electrolyte water electrolyzer is substantially placed on the partition plate. Placed horizontally, the hydrogen header of the water electrolyzer is connected to the hydrogen reservoir and the oxygen header is communicated to the oxygen reservoir, respectively, to ensure airtightness between both reservoirs and between the inside and outside of the water electrolyzer A hydrogen supply apparatus using a solid polymer type water electrolyzer in which water is pressurized and supplied to the solid polymer type water electrolyzer. 両貯留室が気液分離器としても作用する、請求項1〜3のいずれかに記載の固体高分子型水電解槽を用いた水素供給装置。The hydrogen supply apparatus using the polymer electrolyte water electrolyzer according to any one of claims 1 to 3, wherein both the storage chambers also function as a gas-liquid separator. 水素貯留室と酸素貯留室の各空間部の容積比が実質的に2:1である、請求項1〜4のいずれかに記載の固体高分子型水電解槽を用いた水素供給装置。The hydrogen supply apparatus using the solid polymer type water electrolyzer according to any one of claims 1 to 4, wherein a volume ratio of each space portion between the hydrogen storage chamber and the oxygen storage chamber is substantially 2: 1. 固体高分子型水電解槽が、両端に配された陽極主電極および陰極主電極と、これらの主電極の間に直列に配された複数の単位セルと、陽極主電極−複数の単位セル−陰極主電極の組み合わせを両側から締め付ける一対の端板とから主として構成され、各セルの周縁部には、その構成部材である電極接合体膜と複極板の陰極給電体側の面との間に水電解槽内部と外部をシールするOリングが介在されている、請求項1〜5のいずれかに記載の固体高分子型水電解槽を用いた水素供給装置。A polymer electrolyte water electrolyzer comprises an anode main electrode and a cathode main electrode arranged at both ends, a plurality of unit cells arranged in series between these main electrodes, and an anode main electrode-a plurality of unit cells- It consists mainly of a pair of end plates that clamp the combination of cathode main electrodes from both sides, and the peripheral part of each cell is between the electrode assembly film, which is a component, and the surface on the cathode power supply side of the bipolar plate The hydrogen supply apparatus using the polymer electrolyte water electrolyzer according to any one of claims 1 to 5, wherein an O-ring that seals the inside and outside of the water electrolyzer is interposed.
JP2002155267A 2002-05-29 2002-05-29 Hydrogen supply device using solid polymer water electrolyzer Expired - Fee Related JP3733463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002155267A JP3733463B2 (en) 2002-05-29 2002-05-29 Hydrogen supply device using solid polymer water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002155267A JP3733463B2 (en) 2002-05-29 2002-05-29 Hydrogen supply device using solid polymer water electrolyzer

Publications (2)

Publication Number Publication Date
JP2003342765A JP2003342765A (en) 2003-12-03
JP3733463B2 true JP3733463B2 (en) 2006-01-11

Family

ID=29771831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002155267A Expired - Fee Related JP3733463B2 (en) 2002-05-29 2002-05-29 Hydrogen supply device using solid polymer water electrolyzer

Country Status (1)

Country Link
JP (1) JP3733463B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635567B2 (en) * 2004-11-04 2011-02-23 日立造船株式会社 Container-contained water electrolyzer for water electrolysis hydrogen generator
JP5021950B2 (en) * 2006-03-31 2012-09-12 大同メタル工業株式会社 Solid polymer membrane water electrolyzer
JP5603928B2 (en) * 2010-03-23 2014-10-08 本田技研工業株式会社 Electrochemical device
CN204999979U (en) * 2015-08-05 2016-01-27 林信涌 An electrolysis apparatus

Also Published As

Publication number Publication date
JP2003342765A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
US5888361A (en) Apparatus for producing hydrogen and oxygen
KR102277912B1 (en) Apparatus for producing high pressure hydrogen and oxygen gas by water electrolysis
US11108061B2 (en) Water electrolysis or co-electrolysis reactor (SOEC) or fuel cell (SOFC) for pressurized operation and with a clamping system suitable for such operation
JP3772261B2 (en) Hydrogen supply device using solid polymer water electrolyzer
US20060231386A1 (en) Solid polymer membrane-type water-electrolysis apparatus
JP2010236087A (en) Water electrolysis system
US7824527B2 (en) Frame for electrolyser module and electrolyser module and electrolyser incorporating same
JP2004115860A (en) Water electrolyzing apparatus
JPH0967689A (en) Device for producing electrolytic gaseous oxygen and hydrogen, and device for producing ultrapure water using the device
JP3763018B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP3733463B2 (en) Hydrogen supply device using solid polymer water electrolyzer
DK181191B1 (en) An electrolysis system comprising a buffer tank
JP5140123B2 (en) Water electrolysis system
JP3766893B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP2005248246A (en) Apparatus for generating hydrogen by water electrolysis accommodated in high-pressure vessel
JP3772260B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP4206500B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP5021950B2 (en) Solid polymer membrane water electrolyzer
JP2971780B2 (en) Spiral electrolysis cell
CA2435571A1 (en) Electrolysis device
JP4674659B2 (en) Container-contained water electrolyzer for water electrolysis hydrogen generator
JP4909521B2 (en) Solid polymer water electrolyzer
JP2006299390A (en) Vessel storage water electrolytic tank in water electrolytic hydrogen generator
JP4635567B2 (en) Container-contained water electrolyzer for water electrolysis hydrogen generator
WO2024144398A1 (en) Low-capacity high-pressure electrolysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees