JP4206500B2 - Hydrogen supply device using solid polymer water electrolyzer - Google Patents
Hydrogen supply device using solid polymer water electrolyzer Download PDFInfo
- Publication number
- JP4206500B2 JP4206500B2 JP2004313286A JP2004313286A JP4206500B2 JP 4206500 B2 JP4206500 B2 JP 4206500B2 JP 2004313286 A JP2004313286 A JP 2004313286A JP 2004313286 A JP2004313286 A JP 2004313286A JP 4206500 B2 JP4206500 B2 JP 4206500B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- hydrogen
- pressure vessel
- water electrolyzer
- solid polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Fuel Cell (AREA)
Description
この発明は、固体高分子電解膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる固体高分子型水電解槽に関し、より詳しくは、例えば燃料電池用水素ステーションで35〜70MPaの高圧水素ガスを供給することができる、固体高分子型水電解槽を用いた水素供給装置に関するものである。 This invention uses the solid polymer electrolyte membrane electrolyze water, oxygen on the anode relates to a solid-state polymer type water electrolysis cell for generating hydrogen on the cathode, and more particularly, in the hydrogen station for example, a fuel cell 35~70MPa The present invention relates to a hydrogen supply apparatus using a polymer electrolyte water electrolyzer capable of supplying a high-pressure hydrogen gas.
固体高分子型水電解槽を用いた水素供給装置は、例えば特許文献1に開示されているように、従来より知られているものであり、その固体高分子型水電解槽(51)は、図6および図7に示すように、両端に配された陽極主電極(1)および陰極主電極(2)と、これらの主電極(1)(2)の間に直列に配された複数の単位セル(16)と、陽極主電極(1)−複数の単位セル(16)−陰極主電極(2)の組み合わせを両側から挟む一対の端板(13)とから主として構成されている。1つのセル(16)は、複極板(90)の陽極側、陽極給電体(7)、電極接合体膜(3)、陰極給電体(8)、および隣の複極板(90)の陰極側から主として構成され、電極接合体膜(3)は、イオン交換膜(4)とその両面に設けられた触媒電極層(5)(6)とからなる。各セル(16)の周縁部には、電極接合体膜(3)と複極板(90)の陰極給電体(8)側の面との間に固体高分子型水電解槽内部と外部をシールするOリング(17)が介在されている。また、固体高分子型水電解槽(51)には、下端部の中央に給水ヘッダ(10)が形成されるとともに、上端部に平行状に水素ヘッダ(11)および酸素ヘッダ(12)が形成されている。
A hydrogen supply device using a solid polymer type water electrolyzer is conventionally known as disclosed in, for example,
この水素供給装置では、固体高分子型水電解槽(51)の電解反応によって発熱し、その排熱は、酸素側の循環水による移動と水素側の水蒸気の蒸発潜熱とによって行われている。また、この装置では、内部圧力は、固体高分子型水電解槽(51)外周部に設けられたOリング(17)によって保たれており、その発生ガスの圧力は、1.1MPa(10kg/cm2G)未満とされている。 In this hydrogen supply device, heat is generated by the electrolytic reaction of the polymer electrolyte water electrolyzer (51), and the exhaust heat is generated by the movement of the circulating water on the oxygen side and the latent heat of vaporization of the water vapor on the hydrogen side. Further, in this apparatus, the internal pressure is maintained by an O-ring (17) provided on the outer periphery of the solid polymer water electrolyzer (51), and the pressure of the generated gas is 1.1 MPa (10 kg / cm 2 G).
また、固体高分子型水電解槽を圧力容器内に設置することが特許文献2に開示されている。
ところで、水素の燃料電池での使用が進んでおり、そのためには、燃料電池用水素ステーションで35〜70MPaの高圧水素ガスを供給することが課題となっている。 By the way, the use of hydrogen in fuel cells is advancing, and for that purpose, supplying high-pressure hydrogen gas of 35 to 70 MPa at a hydrogen station for fuel cells has become a problem.
しかしながら、上記従来の水素供給装置を使用して、数十MPa程度の高圧にて水電解した場合、Oリングによるシールが破損するという問題があった。そこで、特許文献2に示されているように、固体高分子型水電解槽を圧力容器内に設置することが考えられるが、数十MPa程度の高圧に対応できる点および圧力容器の構造をできるだけ簡素で小容量なものにするという点で、満足なものが得られていない。
However, when water electrolysis is performed at a high pressure of about several tens of MPa using the above-described conventional hydrogen supply apparatus, there is a problem that the seal by the O-ring is broken. Therefore, as disclosed in
本発明は、数十MPa程度の高圧にて水電解した場合でも、電解質膜が破損することが防止され、しかも、十分な耐圧性能を有し、圧力容器の構造をできるだけ簡素で小容量なものにすることができる、固体高分子型水電解槽を用いた水素供給装置を提供することを課題とする。 In the present invention, even when water electrolysis is performed at a high pressure of about several tens of MPa, the electrolyte membrane is prevented from being damaged, and has sufficient pressure resistance, and the pressure vessel structure is as simple and small in capacity as possible. It is an object of the present invention to provide a hydrogen supply device using a solid polymer type water electrolyzer that can be used.
この発明による固体高分子型水電解槽を用いた水素供給装置は、高分子電解質膜を用いて水を電解し陽極に酸素を、陰極に水素をそれぞれ発生させる固体高分子型水電解槽と、固体高分子型水電解槽を収める蓋付きの圧力容器とからなる水素供給装置であって、圧力容器の蓋の下面に、固体高分子型水電解槽を圧力容器本体の底壁に押し付けて固定する下方突出状の電解槽押さえが設けられることにより、固体高分子型水電解槽と蓋との間に、電解槽押さえの長さに相当する間隙が形成され、固体高分子型水電解槽に供給される純水の圧力を調整することにより、この間隙に電解水層が確保され、この電解水層の上方に、発生した水素ガスの層が形成されることにより、圧力容器の頂部に水素気液分離部が形成されていることを特徴とするものである。 A hydrogen supply apparatus using a solid polymer type water electrolyzer according to the present invention comprises a polymer electrolyte membrane for electrolyzing water to generate oxygen at the anode and hydrogen at the cathode, A hydrogen supply device consisting of a pressure vessel with a lid that contains a polymer electrolyte water electrolyzer, and is fixed to the bottom surface of the pressure vessel lid by pressing the polymer electrolyte water electrolyzer against the bottom wall of the pressure vessel body the downward projecting shape of the electrolytic cell presser set vignetting Rukoto you, between the solid polymer water electrolyzer and the lid, the clearance corresponding to the length of the electrolytic cell retainer is formed, a solid polymer type water By adjusting the pressure of pure water supplied to the electrolyzer, an electrolyzed water layer is secured in the gap, and a layer of generated hydrogen gas is formed above the electrolyzed water layer, thereby also characterized in that the hydrogen gas-liquid separator at the top is formed It is.
上端が開口した筒状の容器本体に蓋が被せられることにより、圧力容器が形成され、固体高分子型水電解槽は、例えば、これを構成する複極板、陽極給電体、電極接合体膜および陰極給電体が、全て水平状に配置され、各複極板の表裏いずれか一方に、各セルの電解水および酸素の通路となる水平状並列通路が、同他方に、各セルの水素ガスの通路となる水平状並列通路が形成され、各セルの水素ガス通路が、各複極板を貫通して垂直状にのびる水素ヘッダに合流させられているものとされる。固体高分子型水電解槽内の電解水通路には、電解水がポンプ等によって強制的に通され、これにより、陽極に酸素、陰極に水素が発生する。発生した水素は、固体高分子型水電解槽内を上方に移動して圧力容器の頂部に蓄えられていくことから、圧力容器頂部に水素気液分離部を設けることにより、水素を得ることができる。 A pressure vessel is formed by covering a cylindrical vessel body whose upper end is open, and a solid polymer type water electrolysis tank is, for example, a bipolar plate, an anode feeder, and an electrode assembly film constituting the same. And the cathode feeders are all arranged horizontally, and either one of the front and back sides of each bipolar plate is provided with a horizontal parallel passage serving as a passage for the electrolyzed water and oxygen of each cell. A horizontal parallel passage is formed, and a hydrogen gas passage of each cell is joined to a hydrogen header extending vertically through each bipolar plate. The electrolytic water passage in the solid polymer type water electrolysis bath is electrolyzed water is forced through a pump or the like, thereby, oxygen, hydrogen on the cathode to generate an anode. Since the generated hydrogen moves upward in the polymer electrolyte water electrolyzer and is stored at the top of the pressure vessel, hydrogen can be obtained by providing a hydrogen gas-liquid separator at the top of the pressure vessel. it can.
固体高分子型水電解槽内の電解水の通路が水平方向並列状に形成されているようにしたものでは、1本の給水ヘッダで電解水を供給しているものに比べて、電解水によって固体高分子型水電解槽全体をほぼ均等に冷却することができ、また、電解水の流量も多くすることができることから、固体高分子型水電解槽が効率よく冷却され、したがって、電解質膜の温度が局部的に耐熱温度以上になることが抑えられ、数十MPa程度の高圧にて水電解した場合でも、電解質膜が破損することが防止される。 In the case where the electrolyzed water passages in the polymer electrolyte water electrolyzer are formed in parallel in the horizontal direction, the electrolyzed water is used in comparison with the case where the electrolyzed water is supplied by a single feed header. Since the entire polymer electrolyte water electrolyzer can be cooled almost uniformly and the flow rate of the electrolyzed water can be increased, the polymer electrolyte water electrolyzer is efficiently cooled. The temperature is suppressed from locally exceeding the heat-resistant temperature, and even when water electrolysis is performed at a high pressure of about several tens of MPa, the electrolyte membrane is prevented from being damaged.
外周にOリングが嵌められた複極板が容器本体内に密に積層されることにより、固体高分子型水電解槽が形成されていることが好ましい。このようにすると、Oリングの径方向へののびは圧力容器内周面によって規制され、固体高分子型水電解槽内部圧力が高圧になってもOリングが破損することはなく、高圧の水素ガスが必要な場合においても、圧力容器を小さくかつ簡素なものにすることができる。 It is preferable that a solid polymer type water electrolyzer is formed by densely laminating a bipolar plate having an O-ring fitted on the outer periphery in the container body. In this way, the radial extension of the O-ring is regulated by the inner peripheral surface of the pressure vessel, and the O-ring is not damaged even if the internal pressure of the solid polymer type water electrolysis tank becomes high. Even when gas is required, the pressure vessel can be made small and simple.
また、圧力容器は、上端が開口した筒状の容器本体に蓋が絶縁層を介して被せられることにより形成されており、容器本体と蓋とが電極とされていることが好ましい。圧力容器と固体高分子型水電解槽の電極とが直接接触することから、通常は金属製である圧力容器を絶縁性材料で形成し、固体高分子型水電解槽の電極を圧力容器外部に取り出すことが考えられるが、圧力容器が金属製であることを利用して、容器本体と蓋とを電極とすることにより、固体高分子型水電解槽の電極を圧力容器外部に取り出すための構成を省略することができる。 Moreover, the pressure vessel is formed by covering a cylindrical vessel body whose upper end is open with an insulating layer interposed therebetween, and the vessel body and the lid are preferably electrodes. Since the electrode of the pressure vessel and the solid polymer water electrolyzer direct contact, usually to form a pressure vessel is made of metal with an insulating material, an electrode of a solid polymer type water electrolysis cell in the pressure vessel exterior Although it is possible to take out, the structure for taking out the electrode of the solid polymer type water electrolyzer to the outside of the pressure vessel by using the vessel main body and the lid as an electrode utilizing the fact that the pressure vessel is made of metal Can be omitted.
この発明の固体高分子型水電解槽を用いた水素供給装置によると、圧力容器内に固体高分子型水電解槽を収める構成を採用し、固体高分子型水電解槽を圧力容器本体の底壁に押し付ける電解槽押さえが固体高分子型水電解槽と蓋との間に設けられているようにすることで、圧力容器の構造をできるだけ簡素で小容量なものにすることができ、数十MPa程度の高圧にて水電解した場合でも、電解質膜の破損を防止して、十分な耐圧性能を確保することが可能となる。しかも、固体高分子型水電解槽と蓋との間に、水素気液分離部とされる間隙が形成されているので、水素供給装置から水素気液分離器を省略することができる。 According to the hydrogen supply apparatus using the polymer electrolyte water electrolyzer of the present invention, a configuration in which the polymer electrolyte water electrolyzer is accommodated in the pressure vessel is adopted, and the polymer electrolyte water electrolyzer is attached to the bottom of the pressure vessel body. By making the electrolytic cell holder pressed against the wall between the polymer electrolyte water electrolytic cell and the lid, the structure of the pressure vessel can be made as simple and as small as possible. Even when water electrolysis is performed at a high pressure of about MPa, it is possible to prevent damage to the electrolyte membrane and ensure sufficient pressure resistance. In addition, since a gap serving as a hydrogen gas / liquid separator is formed between the solid polymer water electrolyzer and the lid, the hydrogen gas / liquid separator can be omitted from the hydrogen supply device.
以下、この発明を図面に基づいて具体的に説明する。以下の説明において、左右および上下は、図1の左右および上下をいうものとし、これらに直交する方向を前後というものとする。 Hereinafter, the present invention will be specifically described with reference to the drawings. In the following description, left and right and top and bottom refer to the left and right and top and bottom of FIG.
図1において、固体高分子型水電解槽を用いた水素供給装置は、高分子電解質膜を用いて水を電解し、陽極に酸素を、陰極に水素をそれぞれ発生させる固体高分子型水電解槽(40)と、固体高分子型水電解槽(40)を収める蓋(42)付きの圧力容器(41)と、圧力容器(41)の頂部に設けられた水素気液分離部(43)と、水素気液分離部(43)に設けられた水素ライン(44)と、圧力容器(41)の周壁の水・酸素排出口に接続された酸素ライン(45)と、酸素ライン(45)に設けられて固体高分子型水電解槽(40)の陽極にて発生した酸素と水を分離する酸素気液分離器(46)と、循環ポンプ(48)を有し、酸素気液分離器(46)と圧力容器(41)の水入口とを接続する水循環ライン(47)と、固体高分子型水電解槽(40)に接続された直流電源(図示略)とを備えている。 In FIG. 1, a hydrogen supply apparatus using a solid polymer type water electrolyzer uses a polymer electrolyte membrane to electrolyze water, and generates oxygen at the anode and hydrogen at the cathode, respectively. (40), a pressure vessel (41) with a lid (42) for accommodating the solid polymer water electrolyzer (40), and a hydrogen gas-liquid separation unit (43) provided on the top of the pressure vessel (41) A hydrogen line (44) provided in the hydrogen gas-liquid separator (43), an oxygen line (45) connected to the water / oxygen discharge port on the peripheral wall of the pressure vessel (41), and an oxygen line (45). An oxygen gas-liquid separator (46) provided with an oxygen gas-liquid separator (46) for separating oxygen and water generated at the anode of the polymer electrolyte water electrolyzer (40) and a circulation pump (48) ( 46) and a water circulation line (47) connecting the water inlet of the pressure vessel (41), and a DC power source (not shown) connected to the solid polymer type water electrolyzer (40).
固体高分子型水電解槽(40)の各セル(16)は、図3に示すように、複極板(19)の陽極側、陽極給電体(7)、電極接合体膜(3)、陰極給電体(8)および隣の複極板(19)の陰極側から主として構成されている。電極接合体膜(3)は、イオン交換膜(4)とその両面に設けられた触媒電極層(5)(6)とからなる。 As shown in FIG. 3, each cell (16) of the polymer electrolyte water electrolyzer (40) has an anode side of a bipolar plate (19), an anode feeder (7), an electrode assembly film (3), It is mainly configured from the cathode side of the cathode feeder (8) and the adjacent bipolar plate (19). The electrode assembly membrane (3) includes an ion exchange membrane (4) and catalyst electrode layers (5) and (6) provided on both sides thereof.
複極板(19)は、厚板を研削加工したもので、図2(a)および図4に示すように、円板状で、その両面に、並列状通路(19a)(19b)が形成されるとともに、外周に設けられた環状溝に、Oリング(50)が嵌め入れられている。図4において、複極板の上面に設けられている通路は、酸素発生側の通路(19a)で、同下面に設けられている通路は、水素発生側の通路(19b)とされている。水素発生側の通路(19b)は、同図(c)に示すように、複極板(19)の外周には開口しておらず、これに対し、酸素発生側の通路(19a)には、同図(a)(b)に示すように、複極板(19)の外周に開口し水の導入口と水および酸素の排出口となる開口連通路(19c)が連通させられている。開口連通路(19c)は、複極板(19)の上下面には開口せず、外周にだけ開口している。 The bipolar plate (19) is obtained by grinding a thick plate. As shown in FIG. 2 (a) and FIG. 4, the bipolar plate (19) has a disk shape, and parallel passages (19a, 19b) are formed on both sides thereof. In addition, an O-ring (50) is fitted in an annular groove provided on the outer periphery. In FIG. 4, the passage provided on the upper surface of the bipolar plate is the passage (19a) on the oxygen generation side, and the passage provided on the lower surface is the passage (19b) on the hydrogen generation side. The hydrogen generation side passage (19b) does not open to the outer periphery of the bipolar plate (19) as shown in FIG. 5C, whereas the oxygen generation side passage (19a) As shown in FIGS. 5A and 5B, an open communication passage (19c) that opens to the outer periphery of the bipolar plate (19) and that serves as an inlet for water and an outlet for water and oxygen is communicated. . The open communication path (19c) does not open on the upper and lower surfaces of the bipolar plate (19), but opens only on the outer periphery.
Oリング(50)付き複極板(19)は、それらの通路(19a)(19b)を水平に向けてかつOリング(50)が圧力容器(41)の内周に接するようにして水平層状に積層されている。複極板(19)、陽極給電体(7)、電極接合体膜(3)および陰極給電体(8)が積層されて形成された固体高分子型水電解槽(40)には、これを垂直に貫通する方向に水素ヘッダ(49)が形成されている。 The bipolar plate (19) with the O-ring (50) is horizontally layered so that the passages (19a) and (19b) are oriented horizontally and the O-ring (50) is in contact with the inner periphery of the pressure vessel (41). Are stacked. In the polymer electrolyte water electrolyzer (40) formed by laminating the bipolar plate (19), the anode feeder (7), the electrode assembly film (3) and the cathode feeder (8), A hydrogen header (49) is formed in a direction penetrating vertically.
図5に示すように、水素ヘッダ(49)は、複極板(19)、陽極給電体(7)、電極接合体膜(3)および陰極給電体(8)を貫通する垂直貫通孔(49a)と、各複極板(19)に設けられた段付き孔部(57)(58)にOリング(53)(54)を介して嵌め入れられた1対の通路形成リング(55)(56)とによって形成されている。各通路形成リング(55)(56)は、セラミックまたは耐熱樹脂(例えばエンジニアリングプラスチック)製であり、それぞれ、一端に、内径は同じで外径が小さい小径部を有している。そして、一方のOリング(53)は、小径部の外周に、他方のOリング(54)は、小径部がない方の端面の環状溝に、それぞれ通路に露出しないように嵌め入れられ、通路形成リング(55)(56)の大径部の端面同士が隣り合うもの同士突き合わされ、小径部の端面が、複極板の最も内径が小さい部分に当接させられている。水素側の通路形成リング(56)には、側面に1〜2mm程度の小孔(56a)が複数設けられている。 As shown in FIG. 5, the hydrogen header (49) has a vertical through-hole (49a) that penetrates the bipolar plate (19), the anode feeder (7), the electrode assembly film (3), and the cathode feeder (8). ) And a pair of passage forming rings (55) (55) (55) (58) fitted into stepped holes (57) (58) provided in each bipolar plate (19) via O-rings (53) (54). 56). Each of the passage forming rings (55) and (56) is made of ceramic or heat-resistant resin (for example, engineering plastic), and has a small diameter portion having the same inner diameter and a smaller outer diameter at one end. One O-ring (53) is fitted into the outer periphery of the small-diameter portion, and the other O-ring (54) is fitted into the annular groove on the end surface without the small-diameter portion so as not to be exposed to the passage. The end surfaces of the large-diameter portions of the forming rings (55) and (56) are abutted against each other, and the end surfaces of the small-diameter portions are brought into contact with the portion having the smallest inner diameter of the bipolar plate. The hydrogen side passage forming ring (56) is provided with a plurality of small holes (56a) of about 1 to 2 mm on the side surface.
こうして、固体高分子型水電解槽(40)には、各セルの電解水および酸素の通路となる水平状並列通路(19a)(19c)と、各セルの水素ガスの通路となる水平状並列通路(19b)およびこれらの水素ガス通路が合流させられる垂直状水素ヘッダ(49)とが形成されている。そして、複極板(19)の外周に嵌められたOリング(50)は、圧力容器(41)の内周によってその径の増大が抑えられている。 Thus, in the polymer electrolyte water electrolyzer (40), horizontal parallel passages (19a) (19c) that serve as passages for electrolytic water and oxygen in each cell and horizontal parallel passages that serve as hydrogen gas passages in each cell. A passage (19b) and a vertical hydrogen header (49) in which these hydrogen gas passages are joined are formed. The O-ring (50) fitted to the outer periphery of the bipolar plate (19) is suppressed from increasing in diameter by the inner periphery of the pressure vessel (41).
圧力容器(41)は、上端が開口した筒状の容器本体に蓋(42)が絶縁層を介して被せられることにより形成されており、この実施例では、容器本体が陰極に、蓋(42)が陽極とされている。圧力容器(41)の蓋(42)の下面には、下方突出状の電解槽押さえ(42a)が設けられている。この電解槽押さえ(42a)は、固体高分子型水電解槽(40)全体を容器本体底壁に押し付けるもので、圧力容器(41)の蓋(42)と固体高分子型水電解槽(40)上面との間には、電解槽押さえ(42a)の長さに相当する間隙が形成されている。固体高分子型水電解槽(40)に供給される純水の圧力を調整することにより、この間隙には、電解水層が確保され、この電解水層の上方に、発生した水素ガスの層が形成され、こうして、圧力容器(41)の頂部に、水素気液分離部(43)が形成されている。 The pressure vessel (41) is formed by covering a cylindrical vessel body whose upper end is open with a lid (42) through an insulating layer.In this embodiment, the vessel body is a cathode and a lid (42 ) Is the anode. A downwardly projecting electrolytic cell holder (42a) is provided on the lower surface of the lid (42) of the pressure vessel (41). The electrolytic cell holder (42a) presses the entire polymer electrolyte water electrolyzer (40) against the bottom wall of the container body, and the lid (42) of the pressure vessel (41) and the polymer electrolyte water electrolyzer (40 A gap corresponding to the length of the electrolytic cell holder (42a) is formed between the upper surface and the upper surface. By adjusting the pressure of pure water supplied to the polymer electrolyte water electrolyzer (40), an electrolyzed water layer is secured in the gap, and the generated hydrogen gas layer is located above the electrolyzed water layer. Thus, a hydrogen gas-liquid separator (43) is formed at the top of the pressure vessel (41).
この実施形態の固体高分子型水電解槽を用いた水素供給装置によると、循環ポンプ(48)によって固体高分子型水電解槽(40)に強制的に送り込まれた電解水は、複極板(19)の水平状並列通路(19a)(19c)を左から右に流れ、水素および酸素に分解されるとともに、固体高分子型水電解槽(40)の冷却水の機能を果たして、圧力容器(41)から排出される。陽極で発生した酸素は、電解水とともに複極板(19)の水平状並列通路(19a)(19c)を流れ、陰極に発生した水素は、各セルの複極板(19)の水平状並列通路(19b)を流れて、水素ヘッダ(49)に合流させられ、圧力容器(41)の頂部に蓄えられていく。水素ガスは、圧力容器(41)頂部の水素気液分離部(43)においてその純度を高められ、水素ライン(44)に設けられた逆止弁式圧力弁(44a)により所定圧力に調整されて外部に供給される。従来の複極板は、薄板を超塑性加工により波形に成形したものであり、圧力によるたわみなどにより、イオン交換膜(4)と触媒電極層(5)(6)との接触にばらつきを生じることがあったが、厚板を研削加工した複極板(19)を使用することにより、ばらつきが抑えられ、安定して水素を得ることができる。 According to the hydrogen supply apparatus using the polymer electrolyte water electrolyzer of this embodiment, the electrolyzed water forcedly fed into the polymer electrolyte water electrolyzer (40) by the circulation pump (48) is a bipolar plate. Flowing from left to right through the horizontal parallel passages (19a) and (19c) of (19), being decomposed into hydrogen and oxygen, and serving as cooling water for the polymer electrolyte water electrolyzer (40), the pressure vessel Discharged from (41). Oxygen generated at the anode flows through the parallel parallel passages (19a) and (19c) of the bipolar plate (19) together with the electrolyzed water, and hydrogen generated at the cathode is horizontal parallel of the bipolar plates (19) of each cell. It flows through the passage (19b), joins the hydrogen header (49), and is stored at the top of the pressure vessel (41). The purity of the hydrogen gas is increased in the hydrogen gas-liquid separator (43) at the top of the pressure vessel (41), and is adjusted to a predetermined pressure by a check valve pressure valve (44a) provided in the hydrogen line (44). Supplied to the outside. A conventional bipolar plate is formed by corrugating thin plates into a corrugated shape, resulting in variations in contact between the ion exchange membrane (4) and the catalyst electrode layers (5) and (6) due to pressure deflection. However, by using the bipolar plate (19) obtained by grinding a thick plate, variation can be suppressed and hydrogen can be stably obtained.
固体高分子型水電解槽(40)の排熱は、圧力容器(41)内に冷却された循環水が導入されて固体高分子型水電解槽(40)との間隙を充満していることによって行われている。高圧にて水電解した場合には、水素側の水蒸気の発生量が極端に減少するが、この水蒸気の蒸発潜熱による排熱が水平状通路(19b)を流れる大量の水への熱移動による排熱によって補償される。こうして、高圧水素ガスを発生させる場合でも、電極接合体膜(電解質膜)(3)が破損することが防止される。 The exhaust heat from the polymer electrolyte water electrolyzer (40) is such that the circulating water cooled in the pressure vessel (41) is introduced to fill the gap with the polymer electrolyte water electrolyzer (40). Has been done by. When water electrolysis is performed at high pressure, the amount of water vapor generated on the hydrogen side is drastically reduced. Compensated by heat. Thus, even when high-pressure hydrogen gas is generated, the electrode assembly membrane (electrolyte membrane) (3) is prevented from being damaged.
また、水素ヘッダ(49)を形成するのに、従来使用されていたゴムブッシュを使用していないため、ゴムブッシュに起因する加工精度が悪くかつ熱的な変形が大きいという問題が解消されている。 In addition, since the conventional rubber bush is not used to form the hydrogen header (49), the problem of poor processing accuracy and large thermal deformation due to the rubber bush is eliminated. .
上記において、複極板(19)は、円板状とされているが、図2(b)に示すように、方形板状で、その角部が面取りされて丸くなっている複極板を使用することもできる。なお、複極板(19)は、アルミニウム製の厚板に研削加工を施して、通路(19a)(19b)を形成したものであり、その表面には、チタン/白金コーティングが施されており、その通路(19a)(19b)は曲線状または屈曲状にしてもよい。 In the above description, the bipolar plate (19) has a disc shape. However, as shown in FIG. 2 (b), the bipolar plate (19) is a square plate shape with corners chamfered and rounded. It can also be used. The bipolar plate (19) is formed by grinding a thick aluminum plate to form passages (19a) and (19b), and the surface is coated with titanium / platinum. The passages (19a) and (19b) may be curved or bent.
厚板に溝研削加工する製造方法で複極板(19)を製造することにより、複極板(19)の周縁部を厚くすることができ、複極板(19)の強度が上がり、高圧ガスを発生させる場合でも、セルに歪みが生じることがなく、耐圧性が向上する。さらに、締め付けによりセル全体としての剛性も大きくなり、高強度の固体高分子型水電解槽が得られる。 By manufacturing the bipolar plate (19) with a manufacturing method that performs groove grinding on a thick plate, the peripheral edge of the bipolar plate (19) can be made thicker, the strength of the bipolar plate (19) is increased, and the high pressure Even when the gas is generated, the cell is not distorted and the pressure resistance is improved. Furthermore, the rigidity of the entire cell is increased by tightening, and a high-strength polymer electrolyte water electrolyzer is obtained.
(40):固体高分子型水電解槽
(41):圧力容器
(42):蓋
(42a):電解槽押さえ
(43):水素気液分離部
(49):水素ヘッダ
(50):Oリング
(40): Solid polymer water electrolyzer
(41): Pressure vessel
(42): Lid
(42a): Electrolyzer holder
(43): Hydrogen gas-liquid separator
(49): Hydrogen header
(50): O-ring
Claims (4)
圧力容器の蓋の下面に、固体高分子型水電解槽を圧力容器本体の底壁に押し付けて固定する下方突出状の電解槽押さえが設けられることにより、固体高分子型水電解槽と蓋との間に、電解槽押さえの長さに相当する間隙が形成され、固体高分子型水電解槽に供給される純水の圧力を調整することにより、この間隙に電解水層が確保され、この電解水層の上方に、発生した水素ガスの層が形成されることにより、圧力容器の頂部に水素気液分離部が形成されていることを特徴とする固体高分子型水電解槽を用いた水素供給装置。 Hydrogen comprising a polymer electrolyte water electrolyzer that electrolyzes water using a polymer electrolyte membrane to generate oxygen at the anode and hydrogen at the cathode, and a pressure vessel with a lid for housing the polymer electrolyte water electrolyzer A feeding device,
The lower surface of the lid of the pressure vessel, by Rukoto downward projecting shape of the electrolytic cell holding you fixed against a solid polymer water electrolyzer in the bottom wall of the pressure vessel body is set vignetting, solid polymer water electrolyzer A gap corresponding to the length of the electrolytic cell holder is formed between the lid and the lid, and an electrolytic water layer is secured in this gap by adjusting the pressure of pure water supplied to the solid polymer type water electrolytic cell A solid polymer water electrolyzer characterized in that a hydrogen gas-liquid separation part is formed at the top of the pressure vessel by forming a layer of the generated hydrogen gas above the electrolyzed water layer. Hydrogen supply device using
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004313286A JP4206500B2 (en) | 2004-10-28 | 2004-10-28 | Hydrogen supply device using solid polymer water electrolyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004313286A JP4206500B2 (en) | 2004-10-28 | 2004-10-28 | Hydrogen supply device using solid polymer water electrolyzer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002158685A Division JP3772261B2 (en) | 2002-05-31 | 2002-05-31 | Hydrogen supply device using solid polymer water electrolyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005097746A JP2005097746A (en) | 2005-04-14 |
JP4206500B2 true JP4206500B2 (en) | 2009-01-14 |
Family
ID=34464232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004313286A Expired - Fee Related JP4206500B2 (en) | 2004-10-28 | 2004-10-28 | Hydrogen supply device using solid polymer water electrolyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4206500B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006316288A (en) | 2005-05-10 | 2006-11-24 | Honda Motor Co Ltd | High-pressure hydrogen production apparatus |
KR100863725B1 (en) | 2007-04-25 | 2008-10-16 | 삼성전기주식회사 | Hydrogen generating apparatus and fuel cell power generation system |
KR100862004B1 (en) | 2007-04-26 | 2008-10-07 | 삼성전기주식회사 | Hydrogen generating apparatus using polymer membranes and fuel cell system using the same |
KR100878052B1 (en) | 2008-04-23 | 2009-01-15 | 모진희 | Gas generator using electrolysis |
JP5364056B2 (en) * | 2010-08-12 | 2013-12-11 | 本田技研工業株式会社 | Water electrolysis equipment |
-
2004
- 2004-10-28 JP JP2004313286A patent/JP4206500B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005097746A (en) | 2005-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3772261B2 (en) | Hydrogen supply device using solid polymer water electrolyzer | |
JP2911381B2 (en) | Hydrogen / oxygen generator | |
US10053784B2 (en) | Differential pressure water electrolysis system | |
JP2006316288A (en) | High-pressure hydrogen production apparatus | |
US8894829B2 (en) | Water electrolysis apparatus | |
US9828682B2 (en) | Differential pressure water electrolysis apparatus | |
JP4206500B2 (en) | Hydrogen supply device using solid polymer water electrolyzer | |
JP5341547B2 (en) | Water electrolysis system | |
JP5490654B2 (en) | Method for stopping operation of high-pressure water electrolyzer | |
JPH07252682A (en) | Water electrolyzing cell using high-polymer electrolyte membrane | |
JP3766893B2 (en) | Hydrogen supply device using solid polymer water electrolyzer | |
JP7037965B2 (en) | Water electrolyzer | |
JPH08260180A (en) | Hydrogen and oxygen generator | |
JPH08260178A (en) | Water electrolytic cell using solid high molecular electrolyte membrane | |
JP2005248246A (en) | Apparatus for generating hydrogen by water electrolysis accommodated in high-pressure vessel | |
US4560452A (en) | Unitary central cell element for depolarized, filter press electrolysis cells and process using said element | |
JPS59182984A (en) | Electrolytic cell | |
JP3772260B2 (en) | Hydrogen supply device using solid polymer water electrolyzer | |
JPH08260177A (en) | Water electrolytic cell using solid high molecular electrolyte membrane | |
JP4611345B2 (en) | Water electrolysis cell, water electrolysis stack using the same, and hydrogen production apparatus | |
JP4451954B2 (en) | Separator and electrolytic cell structure using the same | |
JP3733463B2 (en) | Hydrogen supply device using solid polymer water electrolyzer | |
JPH09202985A (en) | Hydrogen and oxygen generator | |
CA2435571A1 (en) | Electrolysis device | |
US4101406A (en) | Simplified electrolytic system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080909 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081006 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |