JP4451954B2 - Separator and electrolytic cell structure using the same - Google Patents

Separator and electrolytic cell structure using the same Download PDF

Info

Publication number
JP4451954B2
JP4451954B2 JP2000008522A JP2000008522A JP4451954B2 JP 4451954 B2 JP4451954 B2 JP 4451954B2 JP 2000008522 A JP2000008522 A JP 2000008522A JP 2000008522 A JP2000008522 A JP 2000008522A JP 4451954 B2 JP4451954 B2 JP 4451954B2
Authority
JP
Japan
Prior art keywords
water
separator
supply
electrolyte membrane
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000008522A
Other languages
Japanese (ja)
Other versions
JP2001081589A (en
Inventor
克俊 清水
長生 久留
俊宏 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000008522A priority Critical patent/JP4451954B2/en
Publication of JP2001081589A publication Critical patent/JP2001081589A/en
Application granted granted Critical
Publication of JP4451954B2 publication Critical patent/JP4451954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子膜水電解(SPWE:Solid Polymer Water Electrolysis)装置に用いるセパレータに関する。
【0002】
【従来の技術】
例えば固体電解質燃料電池の燃料としての水素の生成にあたって、固体高分子膜水電解(装置)が用いられることは良く知られている。この固体高分子膜水電解の基本構造を図8及び図9に示す。
【0003】
図9に示すように、水素イオン透過性の固体高分子膜からなる電解質膜1がチタン(Ti)焼結体等からなる陽極側給電体2とステンレス鋼(SUS)焼結体等からなる陰極側給電体3とに挾持され、これら給電体2,3の外側に電解する純水が通るための多数の溝4を有した金属製のセパレータ5が配されて固体高分子膜水電解装置のスタック6が形成される。
【0004】
上記セパレータ5は、図8に示すように、電解のために供給穴7aに水を供給し、対向する位置に設けられた排出穴7bから発生した水素又は酸素を伴って排出されている。なお、図中符号8は溝5と穴7a,7bとを連通する通路を図示する。
【0005】
そして、前記スタック6の溝4に水(純水)を流し、両給電体2,3間に直流電流を印加すると、陽極側に酸素ガス、陰極側に水素ガスがそれぞれ発生するのである。これらガスを含んだ水は図示しない循環水タンク及びドレンタンクを流れる途中で気水分離され、酸素ガス及び水素ガスは系外にそれぞれ取り出されると共に水は再び電解に供される。
【0006】
【発明が解決しようとする課題】
ところで、前記固体高分子膜水電解(装置)において、高効率での電解を行うには、前記セパレータ5と電解質膜1とが両給電体2,3を介して均一に且つ高い面圧で密着して接触抵抗を減らす必要がある。
【0007】
そのため、従来では、図6及び図7に示すように、金属の厚板に多数の溝4を有するセパレータ5を用いて電解をしていた。ところが、このセパレータ5は、水供給のための孔7a,7b及び通路8の加工、並びに切削による加工で溝4を形成していたため、金属の厚板をある程度厚くする必要があり、材料費・加工費ともに非常に高価であるという不具合があった。
特に、発生するガスである水素及び酸素に対する耐性、電解質に対する耐蝕性からチタン等の材料を使用する場合には、チタンむく材からの加工のため、セパレータの加工及び材料費用が嵩むという問題がある。
また、厚いセパレータを使用するために、セルスタックの容積が嵩むという問題もある。
【0008】
本発明は上記問題に鑑み、セパレータ構造を薄くすると共に加工が容易でシール性の高いセパレータ及びそれを用いた電解セル構造を提供することを目的とする。
【0009】
【課題を解決するための手段】
前述した課題を解決する[請求項1]の発明は、
固体電解質膜を挾持してなる給電体の外側に設けられ、電解用の水を供給する多数の溝を有したセパレータであって、
セパレータ本体の四隅に設けた水供給・排出孔と、
該水供給孔から供給された水を流通する複数の波形の供給溝と、
上記給電体を両面で支持する支持部と、をプレス型で一体に形成してなり、
上記給電体の支持部が上記供給溝の外周に形成され、6角形状の各辺に交互に形成された凹凸部である
ことを特徴とする。
【0011】
[請求項2]の発明は、
請求項1において、
上記6角形を構成する二辺の凹凸部と供給溝とで囲まれる領域に凹凸部を形成し、上記給電体を支持する
ことを特徴とする。
【0012】
[請求項]の発明は、
請求項1において、
セパレータ本体がチタン合金薄膜である
ことを特徴とする。
【0013】
[請求項4]の発明は、
請求項1において、
上記水供給・排出孔に近接する6角形を構成する一辺の凹凸部と当該水供給・排出孔との間に凹凸部を形成し、該凹凸部と固体電解質膜との間に剛性のヘッダ部を介装してなる
ことを特徴とする。
【0014】
[請求項]の電解セル構造の発明は、
水素イオン透過性の固体高分子膜からなる電解質膜と、
該電解質膜の両側に配された陽極側給電体と陰極側給電体と、
これら給電体の外側に電解する純水が通るための多数の溝を有した請求項1乃至のいずれか1項に記載のセパレータとからなる
ことを特徴とする。
【0015】
[請求項]の水素製造装置の発明は、
請求項1乃至のいずれか1項に記載のセパレータの表面側と裏面側とに水を供給して陽極側給電体と陰極側給電体とに電解用の水を供給し、
両給電体間に直流電流を印加し、陰極側に水素ガスを取り出す
ことを特徴とする。
【0016】
【発明の実施の形態】
本発明の実施の形態を以下に説明するが、本発明はこれらの実施の形態に限定されるものではない。
【0017】
本発明の実施の形態を図1乃至図4を用いて説明する。
図1は本実施の形態にかかるセパレータの斜視図である。図2(A)はそのA−A断面図、図2(B)はそのB−B断面図である。
図4は、本実施の形態にかかる電解セル構造の概略図である。
図4に示すように、本実施の形態にかかる固体高分子膜水電解装置のセパレータは、固体電解質膜11を挾持してなる給電体12,13の外側に設けられ、電解用の水14を供給するセパレータ16であって、薄肉のセパレータ本体の四隅に設けた水を供給する供給孔18a,18bと、水を排出する排出孔19a,19bと、該水供給孔18a,18bから供給された水14を流通する複数の波形の供給溝20と、上記給電体12,13を両面で交互に支持する凸部(支持部)21とをプレス型で一体に形成してなるものである。
なお、図4(A)に示すものは、そのX部分拡大図である図4(B)に示すように、固体電解質膜11の両表面に電極11a及び電極11bを設けたものであるが、本発明はこれに限定されず、例えば図4(C)に示すように、給電体12,13の固体電解質膜11側に各々電極12a,13bを設けるようにしてもよい。
【0018】
図1に示すように、本実施の形態にかかるセパレータ16は、セパレータ本体の四隅に水供給18a,18b、排出孔19a,19bが形成されており、表面側の供給孔18aから供給された水は排出孔19aから排出され、一方、裏面側の供給孔18bから供給された水は排出孔19bから排出されている。該排出水は、各々電解により生じた水素及び酸素を伴った水(O2 を含んだ水14A及びH2 を含んだ水14B)として排出される。
該水供給孔18a,18bから供給された水14はプレスで一体に形成された複数の波形の供給溝20を流通することになる。
【0019】
上記セパレータ本体の材質は特に限定されるものではなく、ステンレス,チタン等を用いることができるが、発生するガスである水素及び酸素に対する耐性、電解質に対する耐蝕性からチタン系の材料を用いるのが好ましい。
【0020】
また、肉厚は特に限定されるものではく、プレスで一体に成形できる厚さ及び一体化した場合に強度を保持できる厚さであればよく、8mm以下のものを適宜用いるようにしている。
【0021】
また、セパレータ本体の6角形状に交互に形成された凸部21と凹部22は、表面側では凸部21において、図4における6角形状の給電体12を支持し、裏面側では、凹部22の裏面において、図4における6角形状の給電体13を支持するようにした、完全リバーシブル構造で支持している。
また、給電体12,13は溝頂部20aにおいても支持されると共に、入口水室23及び出口水室24に形成された凹凸部の凸部25においても支持されている。
【0022】
図3に供給する水(O2 側)の流れを示す。
図3に示すように、セパレータ16の供給孔18aから供給された水14Aは凹部22−1から流入し、入口水室23において分散され、各々形成された溝20に向かって流れ、溝20において発生する酸素を伴って出口水室24において集められ、凹部22−3から流出し、排出孔19aから排出される。
また、表面側の給電体は凸部21−1〜21−4により支持され、裏面側の給電体は凹部22−1〜22−4の裏面側が逆に凸部になるのでそれらにより支持されている。同様に、裏面側では供給孔18bから供給された水は凹部22−1から流入し、入口水室23において分散され、各々形成された溝20に向かって流れ、溝20において発生する水素を伴って出口水室24において集められ、凹部22−3から流出し、排出孔19bから排出される。
なお、セパレータ16を積層する際には、供給孔18a,18b、排出孔19a,19bの周囲には図示しないパッキンを設けて積層し、シールしている。
【0023】
上記セパレータ16を用いて、水素イオン透過性の固体高分子膜11からなる電解質膜の両面に設けた陽極側給電体と陰極側給電体を積層させてスタックを構成することにより、従来に較べて容積が小さいものとなる。
また、セパレータは一体化され、両面に形成した供給溝20に水を供給することができ、しかも水の流れは均一となり、水供給が安定され、電解の進行が安定して行うことができる。
【0024】
また、上述したようなセパレータを用い、セパレータ本体の表面側と裏面側とに水を供給して陽極側給電体と陰極側給電体とに電解用の水を供給し、両給電体間に直流電流を印加し、陰極側に水素ガスを取り出すことで水素を安定して製造することができる。
【0025】
図5は本発明の他の実施の形態のセパレータ構造の概略図である。図6はヘッダ部の構成図であり、図7はセパレータとヘッダ部とを積層させた状態の断面図である。
【0026】
これらの図面に示すように、本実施の形態では図1に示すセパレータと同様な構成であり、水の供給孔18a近傍及び排出孔19a近傍に凸部25を形成してなるものである。
そして、この凸部25の頂点と固体高分子膜11との間には剛性のヘッダ部31が介装されており、上記固体高分子膜11が凹凸部の凹部内を閉塞し、水の流れを阻止することを防止している。
上記ヘッダ部31には、水の供給又は排出用の孔32を形成してなると共に、凸部25の頂点と接する空間部である切り欠き部33が形成されている。
上記ヘッダ部31はその材質をチタン材やポリテトラフルオロエチレン(PTFE)等の剛性を高いものとしている。
【0027】
上記ヘッダ部31を用いて固体高分子膜11とセパレータ16を積層することにより、図7に示すように、凸部25の頂点部分とヘッダ部31の切り欠き部分33の内面が接するので、固体高分子膜11が凹部内に侵入することがなくなり、水14の流路の閉塞が防止される。
これにより、気液の流路が固体高分子膜11で閉塞することが防止され、供給溝20への水14の供給のアンバランスが解消し、均一な水14の供給が可能となる。
また、ヘッダ部31に剛性があるので、気液のシール性が向上し、燃料電池運転の信頼性も向上する。
なお、図中符号34,35はシール部材を各々図示する。
【0028】
本実施の形態ではセパレータ16の水を供給又は排出する孔18a,19aの周囲近傍に凸部25を形成しているので、ヘッダ部材31の形状を直角三角形状としているが、例えば図1のような供給溝20の両端部分の二等辺三角形状となるように凹凸部を形成した場所にはそれに合わせて二等辺三角形状のヘッダ部材とすればよい。
【0029】
【発明の効果】
以上述べたように、[請求項1]の発明によれば、固体電解質膜を挾持してなる給電体の外側に設けられ、電解用の水を供給する多数の溝を有したセパレータであって、セパレータ本体の四隅に設けた水供給・排出孔と、該水供給孔から供給された水を流通する複数の波形の供給溝と、上記給電体を両面で支持する支持部と、をプレス型で一体に形成してなるので、支持部で給電体を良好に支持できると共に、両面に形成した溝に水を供給することができ、しかも水の流れは均一となり、水供給が安定され、電解の進行が安定して行うことができる。また、一体に成形してなるので、従来のような水の供給・排出ヘッダ等の部材が不要となり、コンパクトになるとともに、製造コストが低減する。
上記給電体の支持部が上記供給溝の外周に形成され、6角形状の各辺に交互に形成された凹凸部であるので、給電体の支持構造が完全リバーシブル構造となると共に、供給水の流れがさらに良好となり、電解の進行が安定して行うこと
ができる。
【0031】
[請求項2]の発明によれば、上記6角形を構成する二辺の凹凸部と供給溝とで囲まれる領域に水供給・排出孔の近傍に凹凸部を形成し、上記給電体を支持するので、供給体の支持がさらに良好となる。
【0032】
[請求項]の発明によれば、請求項1において、セパレータ本体がチタン合金薄膜であるので、発生するガスである水素及び酸素に対する耐性、電解質に対する耐蝕性が良好となる。
【0033】
[請求項4]の発明によれば、請求項1において、上記水供給・排出孔に近接する6角形を構成する一辺の凹凸部と当該水供給・排出孔との間に凹凸部を形成し、該凹凸部と固体電解質膜との間に剛性のヘッダ部を介装してなるので、固体高分子膜が凹部に張り付くことが防止され、水の供給が良好となり、供給溝への水の供給が均一と共に、シール性も向上する。
【0034】
[請求項]の電解セル構造の発明によれば、水素イオン透過性の固体高分子膜からなる電解質膜と、該電解質膜の両側に配された陽極側給電体と陰極側給電体と、これら給電体の外側に電解する純水が通るための多数の溝を有した請求項1乃至記載のいずれか1項のセパレータとからなるので、電解セル構造がコンパクト化され、また良好な電解が可能となる。
【0035】
[請求項]の水素製造装置の発明によれば、請求項1乃至記載のいずれか1項のセパレータの表面側と裏面側とに水を供給して陽極側給電体と陰極側給電体とに電解用の水を供給し、両給電体間に直流電流を印加し、陰極側に水素ガスを取り出すので、コンパクトな構造で安定して水素を得ることができる。
【図面の簡単な説明】
【図1】本実施の形態にかかるセパレータの概略図である。
【図2】図2(A)は図1のA−A断面図、図2(B)は図1のB−B断面図である。
【図3】本実施の形態にかかるセパレータ本体の平面図である。
【図4】本実施の形態にかかる電解セル構造の概略図である。
【図5】他の実施の形態のセパレータ構造の概略図である。
【図6】ヘッダ部の構成図であり、
【図7】セパレータとヘッダ部とを積層させた状態の断面図である。
【図8】従来技術にかかるセパレータの斜視図である。
【図9】従来技術にかかる電解セル構造図である。
【符号の説明】
11 固体電解質膜
12,13 給電体
14 水
16 セパレータ
18a,18b 供給孔
19a,19b 排出孔
20 供給溝
21 凸部(支持部)
22 凹部
23 入口水室
24 出口水室
25 凸部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator used in a solid polymer water electrolysis (SPWE) apparatus.
[0002]
[Prior art]
For example, it is well known that solid polymer membrane water electrolysis (apparatus) is used in the production of hydrogen as fuel for a solid electrolyte fuel cell. The basic structure of this solid polymer membrane water electrolysis is shown in FIGS.
[0003]
As shown in FIG. 9, the electrolyte membrane 1 made of a hydrogen ion permeable solid polymer membrane has an anode-side power feeding body 2 made of a titanium (Ti) sintered body and a cathode made of a stainless steel (SUS) sintered body or the like. A metal separator 5 having a large number of grooves 4 for holding pure water to be electrolyzed passes between the power feeding bodies 2 and 3 and is disposed outside the power feeding bodies 2 and 3. A stack 6 is formed.
[0004]
As shown in FIG. 8, the separator 5 supplies water to the supply hole 7a for electrolysis, and is discharged with hydrogen or oxygen generated from the discharge hole 7b provided at the opposite position. In the figure, reference numeral 8 denotes a passage that communicates the groove 5 with the holes 7a and 7b.
[0005]
When water (pure water) is caused to flow through the groove 4 of the stack 6 and a direct current is applied between the power feeding bodies 2 and 3, oxygen gas is generated on the anode side and hydrogen gas is generated on the cathode side. Water containing these gases is separated into air and water while flowing through a circulating water tank and a drain tank (not shown), and oxygen gas and hydrogen gas are respectively taken out of the system and water is again subjected to electrolysis.
[0006]
[Problems to be solved by the invention]
By the way, in the solid polymer membrane water electrolysis (apparatus), in order to perform electrolysis with high efficiency, the separator 5 and the electrolyte membrane 1 are in close contact with each other at high surface pressure through both the power feeders 2 and 3. It is necessary to reduce the contact resistance.
[0007]
Therefore, conventionally, as shown in FIGS. 6 and 7, electrolysis was performed using a separator 5 having a large number of grooves 4 in a thick metal plate. However, since the separator 5 has the grooves 4 formed by machining the holes 7a and 7b and the passage 8 for supplying water and machining by cutting, it is necessary to increase the thickness of the metal plate to some extent. There was a problem that the processing cost was very expensive.
In particular, when a material such as titanium is used because of resistance to generated gases such as hydrogen and oxygen, and corrosion resistance to an electrolyte, there is a problem that processing of the separator and material costs increase due to processing from the titanium stripping material. .
In addition, since a thick separator is used, there is a problem that the volume of the cell stack increases.
[0008]
In view of the above problems, an object of the present invention is to provide a separator having a thin separator structure and being easy to process and having high sealing properties, and an electrolytic cell structure using the separator.
[0009]
[Means for Solving the Problems]
The invention of [Claim 1] that solves the above-mentioned problems is as follows.
A separator having a large number of grooves for supplying water for electrolysis provided on the outside of a power supply body sandwiching a solid electrolyte membrane,
Water supply / discharge holes at the four corners of the separator body,
A plurality of corrugated supply grooves for circulating water supplied from the water supply holes;
A support portion for supporting the feeder body on both sides, Ri Na formed integrally with the press type,
The support portion of the power feeding body is an uneven portion formed on the outer periphery of the supply groove and alternately formed on each side of the hexagon .
[0011]
The invention of [Claim 2]
In claim 1,
A concavo- convex part is formed in a region surrounded by the two-side concavo-convex part constituting the hexagon and the supply groove, and the power feeding body is supported.
[0012]
The invention of [Claim 3 ]
In claim 1,
The separator body is a titanium alloy thin film.
[0013]
The invention of [Claim 4]
In claim 1,
A rugged portion is formed between the concavo-convex portion of one side constituting the hexagon adjacent to the water supply / discharge hole and the water supply / discharge hole, and a rigid header portion is provided between the concavo-convex portion and the solid electrolyte membrane. It is characterized by interposing.
[0014]
The invention of the electrolytic cell structure of [Claim 5 ]
An electrolyte membrane composed of a solid polymer membrane permeable to hydrogen ions;
An anode-side feeder and a cathode-side feeder disposed on both sides of the electrolyte membrane;
It consists of the separator of any one of Claims 1 thru | or 4 which has many groove | channels for the pure water to electrolyze to the outer side of these electric power feeding bodies.
[0015]
The invention of the hydrogen production apparatus of [Claim 6 ]
Water is supplied to the front surface side and the back surface side of the separator according to any one of claims 1 to 4 to supply water for electrolysis to the anode side power supply body and the cathode side power supply body,
A direct current is applied between both power feeding bodies, and hydrogen gas is extracted to the cathode side.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.
[0017]
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view of a separator according to the present embodiment. 2A is a cross-sectional view taken along the line AA, and FIG. 2B is a cross-sectional view taken along the line BB.
FIG. 4 is a schematic view of the electrolytic cell structure according to the present embodiment.
As shown in FIG. 4, the separator of the solid polymer membrane water electrolysis apparatus according to the present embodiment is provided on the outer side of the power feeding bodies 12 and 13 formed by holding the solid electrolyte membrane 11, and electrolyzed water 14 is supplied. A separator 16 to be supplied, which is supplied from supply holes 18a and 18b for supplying water provided at the four corners of the thin separator main body, discharge holes 19a and 19b for discharging water, and the water supply holes 18a and 18b. A plurality of corrugated supply grooves 20 that circulate the water 14 and convex portions (support portions) 21 that alternately support the power feeding bodies 12 and 13 on both surfaces are integrally formed by a press die.
In addition, what is shown to FIG. 4 (A) is what provided the electrode 11a and the electrode 11b on both surfaces of the solid electrolyte membrane 11, as shown to FIG. 4 (B) which is the X partial enlarged view, The present invention is not limited to this. For example, as shown in FIG. 4C, electrodes 12a and 13b may be provided on the side of the solid electrolyte membrane 11 of the power feeders 12 and 13, respectively.
[0018]
As shown in FIG. 1, the separator 16 according to the present embodiment has water supply 18a, 18b and discharge holes 19a, 19b formed at the four corners of the separator body, and the water supplied from the supply hole 18a on the surface side. Is discharged from the discharge hole 19a, while the water supplied from the supply hole 18b on the back side is discharged from the discharge hole 19b. The discharged water is discharged as water accompanied by hydrogen and oxygen generated by electrolysis (water 14A containing O 2 and water 14B containing H 2 ), respectively.
The water 14 supplied from the water supply holes 18a and 18b flows through a plurality of corrugated supply grooves 20 formed integrally by a press.
[0019]
The material of the separator body is not particularly limited, and stainless steel, titanium, or the like can be used. However, it is preferable to use a titanium-based material from the viewpoint of resistance to generated gases such as hydrogen and oxygen and corrosion resistance to the electrolyte. .
[0020]
Further, the thickness is not particularly limited, and may be a thickness that can be integrally formed by a press and a thickness that can maintain strength when integrated, and a thickness of 8 mm or less is appropriately used.
[0021]
Further, the convex portions 21 and the concave portions 22 alternately formed in the hexagonal shape of the separator main body support the hexagonal power feeding body 12 in FIG. 4 at the convex portion 21 on the front surface side, and the concave portions 22 on the back surface side. 4 is supported by a completely reversible structure that supports the hexagonal power feeding body 13 in FIG.
Further, the power feeders 12 and 13 are supported also at the groove top portion 20 a, and are also supported by the convex portions 25 of the uneven portions formed in the inlet water chamber 23 and the outlet water chamber 24.
[0022]
FIG. 3 shows the flow of water (O 2 side) to be supplied.
As shown in FIG. 3, the water 14 </ b> A supplied from the supply hole 18 a of the separator 16 flows from the recess 22-1, is dispersed in the inlet water chamber 23, and flows toward the formed grooves 20. The generated oxygen is collected in the outlet water chamber 24, flows out from the recess 22-3, and is discharged from the discharge hole 19a.
Further, the power feeding body on the front surface side is supported by the convex portions 21-1 to 21-4, and the power feeding body on the back surface side is supported by them because the back surface side of the concave portions 22-1 to 22-4 becomes a convex portion on the contrary. Yes. Similarly, on the back surface side, water supplied from the supply hole 18b flows from the recess 22-1, is dispersed in the inlet water chamber 23, flows toward the formed grooves 20, and is accompanied by hydrogen generated in the grooves 20. Are collected in the outlet water chamber 24, flow out of the recess 22-3, and are discharged from the discharge hole 19b.
When the separators 16 are stacked, packing (not shown) is provided and sealed around the supply holes 18a and 18b and the discharge holes 19a and 19b.
[0023]
By using the separator 16 to form a stack by laminating the anode-side power feeder and the cathode-side power feeder provided on both surfaces of the electrolyte membrane made of the hydrogen ion permeable solid polymer membrane 11, compared to the conventional case. The volume is small.
In addition, the separator is integrated so that water can be supplied to the supply grooves 20 formed on both sides, and the water flow is uniform, the water supply is stabilized, and the progress of electrolysis can be performed stably.
[0024]
Also, using the separator as described above, water is supplied to the front side and the back side of the separator body, water for electrolysis is supplied to the anode side power supply body and the cathode side power supply body, and direct current is supplied between both power supply bodies. Hydrogen can be stably produced by applying an electric current and extracting hydrogen gas to the cathode side.
[0025]
FIG. 5 is a schematic view of a separator structure according to another embodiment of the present invention. FIG. 6 is a configuration diagram of the header portion, and FIG. 7 is a cross-sectional view of a state in which the separator and the header portion are stacked.
[0026]
As shown in these drawings, the present embodiment has a configuration similar to that of the separator shown in FIG. 1, and is formed by forming convex portions 25 in the vicinity of the water supply hole 18a and the discharge hole 19a.
A rigid header portion 31 is interposed between the apex of the convex portion 25 and the solid polymer film 11, and the solid polymer film 11 closes the concave portion of the concavo-convex portion, and the flow of water. To prevent it.
The header portion 31 is formed with a hole 32 for supplying or discharging water, and a notch portion 33 which is a space portion in contact with the apex of the convex portion 25 is formed.
The header portion 31 is made of a material such as titanium or polytetrafluoroethylene (PTFE) having high rigidity.
[0027]
By laminating the solid polymer film 11 and the separator 16 using the header portion 31, as shown in FIG. 7, the apex portion of the convex portion 25 and the inner surface of the notched portion 33 of the header portion 31 are in contact with each other. The polymer film 11 does not enter the recess, and the flow path of the water 14 is prevented from being blocked.
As a result, the gas-liquid flow path is prevented from being blocked by the solid polymer film 11, the unbalance in the supply of the water 14 to the supply groove 20 is eliminated, and the uniform supply of water 14 becomes possible.
Further, since the header portion 31 is rigid, the gas-liquid sealing property is improved and the reliability of the fuel cell operation is also improved.
In the figure, reference numerals 34 and 35 denote seal members, respectively.
[0028]
In the present embodiment, since the convex portion 25 is formed in the vicinity of the periphery of the holes 18a and 19a for supplying or discharging the water of the separator 16, the shape of the header member 31 is a right triangle shape. For example, as shown in FIG. It is only necessary to provide an isosceles triangle-shaped header member at the location where the concavo-convex portions are formed so as to form an isosceles triangle shape at both ends of the supply groove 20.
[0029]
【The invention's effect】
As described above, according to the invention of [Claim 1], the separator is provided on the outer side of the power feeding body sandwiching the solid electrolyte membrane, and has a plurality of grooves for supplying water for electrolysis. A water supply / discharge hole provided at the four corners of the separator body, a plurality of corrugated supply grooves for circulating the water supplied from the water supply hole, and a support portion for supporting the power supply body on both sides. Since the power supply body can be satisfactorily supported by the support portion, water can be supplied to the grooves formed on both sides, the water flow is uniform, the water supply is stabilized, and Can be carried out stably. Further, since it is integrally molded, members such as a conventional water supply / discharge header are not required, and the size is reduced and the manufacturing cost is reduced.
Since the support portion of the power supply body is an uneven portion formed on the outer periphery of the supply groove and alternately formed on each side of the hexagonal shape, the support structure of the power supply body has a completely reversible structure, and the supply water The flow should be even better and the progress of electrolysis should be stable.
Can do.
[0031]
According to the invention of [Claim 2], an uneven portion is formed in the vicinity of the water supply / discharge hole in the region surrounded by the uneven portion of two sides constituting the hexagon and the supply groove, and the power supply body is supported. Thus, the support of the supply body is further improved.
[0032]
According to the invention of [Claim 3 ], since the separator body is a titanium alloy thin film in Claim 1, resistance to hydrogen and oxygen, which are generated gases, and corrosion resistance to the electrolyte are improved.
[0033]
According to the invention of [Claim 4], in Claim 1, an uneven part is formed between the uneven part on one side constituting the hexagon adjacent to the water supply / discharge hole and the water supply / discharge hole. Since the rigid header portion is interposed between the concavo-convex portion and the solid electrolyte membrane, the solid polymer membrane is prevented from sticking to the concave portion, the water supply is improved, and the water to the supply groove is improved. The supply is uniform and the sealing performance is improved.
[0034]
According to the invention of the electrolytic cell structure of [Claim 5 ], an electrolyte membrane made of a hydrogen ion permeable solid polymer membrane, an anode side feeder and a cathode side feeder disposed on both sides of the electrolyte membrane, Since the separator according to any one of claims 1 to 4 having a large number of grooves through which pure water to be electrolyzed passes outside the power feeder, the electrolytic cell structure is made compact and good electrolysis is achieved. Is possible.
[0035]
According to the invention of the hydrogen production apparatus of [Claim 6 ], water is supplied to the front surface side and the back surface side of the separator according to any one of Claims 1 to 4, so that the anode side power supply body and the cathode side power supply body are supplied. In addition, since water for electrolysis is supplied, a direct current is applied between both power feeding bodies, and hydrogen gas is taken out to the cathode side, hydrogen can be stably obtained with a compact structure.
[Brief description of the drawings]
FIG. 1 is a schematic view of a separator according to an embodiment.
2A is a cross-sectional view taken along line AA in FIG. 1, and FIG. 2B is a cross-sectional view taken along line BB in FIG.
FIG. 3 is a plan view of a separator body according to the present embodiment.
FIG. 4 is a schematic view of an electrolytic cell structure according to the present embodiment.
FIG. 5 is a schematic view of a separator structure according to another embodiment.
FIG. 6 is a configuration diagram of a header part;
FIG. 7 is a cross-sectional view of a state in which a separator and a header portion are stacked.
FIG. 8 is a perspective view of a separator according to a conventional technique.
FIG. 9 is a structural diagram of an electrolysis cell according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Solid electrolyte membrane 12, 13 Feed body 14 Water 16 Separator 18a, 18b Supply hole 19a, 19b Discharge hole 20 Supply groove 21 Convex part (support part)
22 Concave portion 23 Inlet water chamber 24 Outlet water chamber 25 Convex portion

Claims (6)

固体電解質膜を挾持してなる給電体の外側に設けられ、電解用の水を供給する多数の溝を有したセパレータであって、
セパレータ本体の四隅に設けた水供給・排出孔と、
該水供給孔から供給された水を流通する複数の波形の供給溝と、
上記給電体を両面で支持する支持部と、をプレス型で一体に形成してなり、
上記給電体の支持部が上記供給溝の外周に形成され、6角形状の各辺に交互に形成された凹凸部である
ことを特徴とするセパレータ。
A separator having a large number of grooves provided on the outside of a power supply body sandwiching a solid electrolyte membrane and supplying water for electrolysis;
Water supply / discharge holes at the four corners of the separator body,
A plurality of corrugated supply grooves for circulating water supplied from the water supply holes;
A support part that supports the power feeding body on both sides is formed integrally with a press die,
The separator, wherein the power supply support portion is an uneven portion formed on the outer periphery of the supply groove and alternately formed on each side of the hexagon.
請求項1において、
上記6角形を構成する二辺の凹凸部と供給溝とで囲まれる領域に凹凸部を形成し、上記給電体を支持する
ことを特徴とするセパレータ。
In claim 1,
The separator characterized by forming an uneven | corrugated | grooved part in the area | region enclosed by the uneven | corrugated | grooved part of two sides and the supply groove | channel which comprise the said hexagon, and supporting the said electric power feeding body.
請求項1において、
セパレータ本体がチタン合金薄膜である
ことを特徴とするセパレータ。
In claim 1,
A separator characterized in that the separator body is a titanium alloy thin film.
請求項1において、
上記水供給・排出孔に近接する6角形を構成する一辺の凹凸部と当該水供給・排出孔との間に凹凸部を形成し、該凹凸部と固体電解質膜との間に剛性のヘッダ部を介装してなる
ことを特徴とするセパレータ。
In claim 1,
A concave and convex portion is formed between the concave and convex portion on one side constituting the hexagon adjacent to the water supply and discharge hole and the water supply and discharge hole, and a rigid header portion is provided between the concave and convex portion and the solid electrolyte membrane. A separator characterized by comprising an interferometer.
水素イオン透過性の固体高分子膜からなる電解質膜と、
該電解質膜の両側に配された陽極側給電体と陰極側給電体と、
これら給電体の外側に電解する純水が通るための多数の溝を有した請求項1乃至4記載のいずれか1項のセパレータとからなる
ことを特徴とする電解セル構造。
An electrolyte membrane composed of a solid polymer membrane permeable to hydrogen ions;
An anode-side feeder and a cathode-side feeder disposed on both sides of the electrolyte membrane;
An electrolytic cell structure comprising the separator according to any one of claims 1 to 4, having a plurality of grooves through which pure water to be electrolyzed passes outside of the power supply body.
請求項1乃至4記載のいずれか1項のセパレータの表面側と裏面側とに水を供給して陽極側給電体と陰極側給電体とに電解用の水を供給し、
両給電体間に直流電流を印加し、陰極側に水素ガスを取り出す
ことを特徴とする水素製造装置。
Water is supplied to the front surface side and the back surface side of the separator according to any one of claims 1 to 4, and water for electrolysis is supplied to the anode side power supply body and the cathode side power supply body,
A hydrogen production apparatus, wherein a direct current is applied between both power feeding bodies and hydrogen gas is taken out to a cathode side.
JP2000008522A 1999-07-14 2000-01-18 Separator and electrolytic cell structure using the same Expired - Lifetime JP4451954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008522A JP4451954B2 (en) 1999-07-14 2000-01-18 Separator and electrolytic cell structure using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-199829 1999-07-14
JP19982999 1999-07-14
JP2000008522A JP4451954B2 (en) 1999-07-14 2000-01-18 Separator and electrolytic cell structure using the same

Publications (2)

Publication Number Publication Date
JP2001081589A JP2001081589A (en) 2001-03-27
JP4451954B2 true JP4451954B2 (en) 2010-04-14

Family

ID=26511779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008522A Expired - Lifetime JP4451954B2 (en) 1999-07-14 2000-01-18 Separator and electrolytic cell structure using the same

Country Status (1)

Country Link
JP (1) JP4451954B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718293B2 (en) * 2002-10-14 2010-05-18 Reinz-Dichtungs-Gmbh Electrochemical system with fluid passage integrated within a sealing bead
CN102939678B (en) * 2010-06-15 2015-04-15 日产自动车株式会社 Fuel cell
JP5980524B2 (en) * 2012-02-27 2016-08-31 株式会社バンテック Electrolytic chamber, electrolytic cell unit, electrolytic cell stack, and hydrogen generator
JP6037285B2 (en) * 2013-06-20 2016-12-07 パナソニックIpマネジメント株式会社 Electrolyzed water generator
JP6139589B2 (en) * 2015-03-18 2017-05-31 株式会社東芝 Electrolyzer

Also Published As

Publication number Publication date
JP2001081589A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
US5723228A (en) Direct methanol type fuel cell
US8691060B2 (en) Water electrolysis apparatus
US7695845B2 (en) Fuel cell
JP5197995B2 (en) Fuel cell
US20010051292A1 (en) Method of cooling a fuel cell
JP2001507406A (en) Electrochemical cell and electrochemical system
US8894829B2 (en) Water electrolysis apparatus
JP4585737B2 (en) Fuel cell
JP6003863B2 (en) Separator and fuel cell
US6682843B2 (en) Integral screen/frame assembly for an electrochemical cell
JP2004002914A (en) Hydrogen feeding apparatus using solid high polymer type water electrolyzer
JP2013522460A (en) High temperature cell structure with high target yield per electrolysis cell and limited cell degradation rate
JP4451954B2 (en) Separator and electrolytic cell structure using the same
JP2006236612A (en) Fuel cell
JP5395521B2 (en) Fuel cell stack
WO2000060140A1 (en) Electrolytic cell using gas diffusion electrode and power distribution method for the electrolytic cell
JP5318693B2 (en) Fuel cell
JP3122734B2 (en) Water electrolysis tank using solid polymer electrolyte membrane
CA2407875C (en) Bipolar multipurpose electrolysis cell for high current loads
JPH07252682A (en) Water electrolyzing cell using high-polymer electrolyte membrane
JP3072333B2 (en) Water electrolyzer using solid polymer electrolyte membrane
WO2023044562A1 (en) Flow fields for electrolyzers with liquid water supplied to the cathode
WO2014075741A1 (en) Pem-type electrolyzer stack for operation at high pressure
JP4838879B2 (en) Water electrolysis equipment
JP4206500B2 (en) Hydrogen supply device using solid polymer water electrolyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R151 Written notification of patent or utility model registration

Ref document number: 4451954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

EXPY Cancellation because of completion of term