JPS59182984A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JPS59182984A
JPS59182984A JP59062083A JP6208384A JPS59182984A JP S59182984 A JPS59182984 A JP S59182984A JP 59062083 A JP59062083 A JP 59062083A JP 6208384 A JP6208384 A JP 6208384A JP S59182984 A JPS59182984 A JP S59182984A
Authority
JP
Japan
Prior art keywords
electrolytic cell
cathode
anode
diaphragm
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59062083A
Other languages
Japanese (ja)
Other versions
JPS6053115B2 (en
Inventor
オロンツイオ・デ・ノラ
アルベルト・ペレグリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora SpA
Original Assignee
Oronzio de Nora Impianti Elettrochimici SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oronzio de Nora Impianti Elettrochimici SpA filed Critical Oronzio de Nora Impianti Elettrochimici SpA
Publication of JPS59182984A publication Critical patent/JPS59182984A/en
Publication of JPS6053115B2 publication Critical patent/JPS6053115B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/40Cells or assemblies of cells comprising electrodes made of particles; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔開示の摘要〕 寸法安定陽極と、前記陽極を陰極室から隔てる無孔イオ
ン選択性隔膜と、陰極室の導電壁と隔膜との間に伸長し
陰極室の壁と前記隔膜との間に電流を伝える陰極室内の
ばらばらの陰極物質の多孔性の静止ベッドを備えた電解
槽を開示する。この電解槽は電極間隙を実質的に隔膜の
厚さに減じ、隔膜を陽極に対して押し付けるものである
。従って全電極面積に亘って電流密度を頗る均一なもの
とし、他種の電解槽で生ずる局部的な機械的電気的応力
による隔膜の性能の低下を来たすおそれのある電流密度
の局部的な差異をなくし、有効陰極面から陰極室の室壁
へ電流を導く方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION SUMMARY OF THE DISCLOSURE A dimensionally stable anode, a nonporous ion-selective diaphragm separating said anode from a cathode chamber, and a diaphragm extending between a conductive wall of the cathode chamber and the diaphragm and a wall of the cathode chamber. An electrolytic cell is disclosed comprising a porous stationary bed of loose cathode material within a cathode chamber that conducts electrical current between said diaphragm. This electrolytic cell reduces the electrode gap to substantially the thickness of the diaphragm and forces the diaphragm against the anode. Therefore, the current density should be largely uniform over the entire electrode area, and local differences in current density that may cause a decrease in diaphragm performance due to local mechanical and electrical stresses that occur in other types of electrolytic cells are avoided. The present invention provides a method for conducting current from the effective cathode surface to the chamber wall of the cathode chamber.

〔先行技術とこの発明の目的〕[Prior art and purpose of this invention]

この発明は、概略すると、イオン選択性隔膜で被覆した
陽極を具備する電解槽であって、陰極が小さな導電性粒
子から成る静的多孔性ベッドで構成され、そのベッドが
陰極室の室壁と隔膜壁との間に伸長し、前記陽極に対し
て前記隔膜を押し付けている。より詳細に述べると、こ
の発明はハロゲン化アルカリ金属の水溶液の電解槽に関
するものであるが、HCI溶液の電解、水の電解、有機
および無機酸化および還元など、電解条件下で分解を行
う塩類の電解のような他の電解作用を実行するのにも用
いることができる。
Briefly, this invention is an electrolytic cell equipped with an anode coated with an ion-selective diaphragm, the cathode comprising a static porous bed of small electrically conductive particles, the bed interfacing with the chamber wall of the cathode chamber. It extends between the diaphragm wall and presses the diaphragm against the anode. More specifically, this invention relates to an electrolytic cell for aqueous solutions of alkali metal halides, but also for electrolysis of salts undergoing decomposition under electrolytic conditions, such as electrolysis of HCI solutions, water electrolysis, organic and inorganic oxidation and reduction. It can also be used to perform other electrolytic functions such as electrolysis.

最近、従来からのアスベスト隔膜の代りにイオン交換膜
を使用する電解槽が、とくにプラインの電解用として開
発されている。イオン交換膜は作動状態にあって導電性
であるが、液体およびガスの流体力学的の流れを透過し
ない。作動に当って、ハロゲン化アルカリ金属を陽極室
に導入すると、ガス状ハロゲンが陽極の表面に生ずる。
Recently, electrolytic cells using ion exchange membranes instead of conventional asbestos diaphragms have been developed, especially for electrolysis of plines. Ion exchange membranes are electrically conductive in operation, but are impermeable to the hydrodynamic flow of liquids and gases. In operation, when an alkali metal halide is introduced into the anode chamber, gaseous halogen is produced at the surface of the anode.

アルカリ金属イオンは陽イオン膜を選択的に通過し、ア
ルカリ金属イオンが水の電解により陰極に生ずる水酸基
と組み合わされて水酸化アルカリ金属を生ずる。
The alkali metal ions selectively pass through the cation membrane, and the alkali metal ions combine with hydroxyl groups generated at the cathode by electrolysis of water to form alkali metal hydroxide.

陽イオン膜を備えた電解槽は従来の隔膜式電解槽よりも
多くの利益を備えている。陽イオン膜を備えた電解槽は
、水酸化アルカリ金属の比較的純    ′粋な溶液が
できるので、多孔性隔膜の場合のように水酸化物を後で
分離して精製しなければならないようなブラインで希釈
されることがなく、電解法を頗る効果的かつ簡易に行え
る。
Electrolysers with cationic membranes offer many benefits over traditional diaphragm electrolysers. Electrolysers with cationic membranes produce relatively pure solutions of alkali metal hydroxides that do not require subsequent separation and purification of the hydroxides, as is the case with porous membranes. It does not need to be diluted with brine and can be performed more effectively and easily than electrolytic methods.

無孔隔膜の特性を十二分に活用するためには、電極間の
距離(すなわち電極間隙)を最小限に短縮することが望
ましく、このように短縮すると作動電圧に顕著な効果が
あり、結局は電解処理のエネルギ効率にきわたった効果
がある。
In order to take full advantage of the properties of a non-porous diaphragm, it is desirable to reduce the distance between the electrodes (i.e. the electrode gap) to a minimum; such a reduction has a significant effect on the operating voltage, and eventually has a remarkable effect on the energy efficiency of electrolytic treatment.

市販の隔膜は電流密度に鋭敏で、これはその効果的な作
動についである種の望ましい限度内に保たなければなら
ない。  − 電流密度は隔膜を破損させてしまうであろう機械的およ
び電気的応力の発生を回避するよう全面に亘って殆んど
一定にすべきものである。
Commercially available diaphragms are sensitive to current density, which must be kept within certain desirable limits for their effective operation. - The current density should be almost constant over the entire surface to avoid creating mechanical and electrical stresses that would damage the diaphragm.

周知の隔膜式電解槽においては、以上に挙げたような助
変数は構造上の許容限度に大きく左右されるもので、市
場の電解槽の電極面の寸法からして、電極スペースが(
数ミリメートル程度の)きわめて小さなものに関して、
陽極面と陰極面との厳密な平行関係に対して回避するこ
とのできない偏差も隔膜の表面についての電流密度に多
少の変動を招ねくものである。その結果として、隔膜の
各種の領域で局部的に電流密度を補正しようとした従来
の試みは不首尾に終っている。
In the well-known diaphragm type electrolytic cell, the parameters listed above are largely influenced by the structural tolerance limits, and considering the dimensions of the electrode surface of the electrolytic cell on the market, the electrode space (
Regarding extremely small objects (about a few millimeters),
Unavoidable deviations from the strict parallelism of the anode and cathode surfaces also lead to some fluctuations in the current density on the surface of the diaphragm. As a result, previous attempts to correct current density locally in various regions of the diaphragm have been unsuccessful.

この発明力実施態様によれば、ハロゲン化アルカリ金属
の水溶液の電解に特に適する陽イオン隔膜電解槽を提供
するものであって、その電極スペースは周知の電解槽の
それとくらべて遥かに小さく、電極スペースは電極面全
面IC亘って一定であり、しかも、こうした特性は電解
槽に厳格な機械的公差を加えるものでなく、かえって従
来の厳格な機械的公差を無用のものとするものである。
According to this inventive embodiment, a cation diaphragm electrolytic cell is provided which is particularly suitable for the electrolysis of aqueous solutions of alkali metal halides, the electrode space of which is much smaller than that of known electrolytic cells, The spacing is constant across the entire IC across the electrode surface, and these characteristics do not impose tight mechanical tolerances on the electrolytic cell, but rather render traditional tight mechanical tolerances unnecessary.

この発明の目的は電極面と電解槽の容積との比が頗る高
比率である隔膜式電解槽を提供することにある。
An object of the present invention is to provide a diaphragm type electrolytic cell in which the ratio of the electrode surface to the volume of the electrolytic cell is extremely high.

この発明の目的は陰極室に調節した度合の水分を送り込
んで隔膜の陰極側の導電率を維持することにある。
The purpose of this invention is to maintain electrical conductivity on the cathode side of the diaphragm by introducing a controlled amount of moisture into the cathode chamber.

この発明の目的はまた陰極室に送り込む水分の量を加減
して陰極室の水酸化アルカリ金属の濃度を調節すること
にある。
Another object of the invention is to control the concentration of alkali metal hydroxide in the cathode chamber by adjusting the amount of water fed into the cathode chamber.

この発明の以上に述べた以外の目的と利益とはさらに下
記によって明確にする。
Other objects and benefits of the invention will be further elucidated as follows.

この発明の電解槽の好ましい実施態様のものは陰極液の
環境内で腐食しない鋼その他の導電性物質製の陰極容器
から成り、その容器の上端は陽極分極条件下で不動態で
あるチタンその他のパルプメタルの板またはカバーで閉
塞されており、チタンの力、バー板には孔が設けてあっ
て少くとも1本、望ましくは一連の管状陽極がその孔に
溶着してあって、はとんど容器の高さ全体に伸長し、管
状陽極の管壁には(チタン板に溶接した附近の管壁の上
部を除いて)穿孔してあって液体およびガスが透過する
ようにしである。
A preferred embodiment of the electrolytic cell of this invention comprises a cathode vessel made of steel or other conductive material that does not corrode in the catholyte environment, the upper end of which is made of titanium or other conductive material that is passive under anodic polarization conditions. The titanium bar plate is closed with a pulp metal plate or cover and has at least one hole, preferably a series of tubular anodes, welded to the hole. Extending the entire height of the vessel, the tube wall of the tubular anode is perforated (except for the upper portion of the tube wall in the immediate vicinity, which is welded to the titanium plate) to permit liquid and gas permeation.

陽極は寸法安定のもの、主にチタンその他のバルブメタ
ル製で、その活性面の少くとも一部に陽極条件に耐え不
動態でない、導電性電気触媒の被覆、好ましくは白金、
パラジウム、ロジウム、ルテニウム及びイリジウム、ま
たはその酸化物または混合酸化物の被覆が施しである、
管状陽極の下端は不活性物質、好ましくはプラスチック
類の栓で閉塞してあって、同心のねじ孔があけである。
The anode is dimensionally stable, typically made of titanium or other valve metal, and has at least a portion of its active surface coated with a conductive electrocatalyst, preferably platinum, that tolerates the anodic conditions and is non-passive.
coated with palladium, rhodium, ruthenium and iridium, or their oxides or mixed oxides,
The lower end of the tubular anode is closed with a plug of inert material, preferably plastic, and is drilled with a concentric threaded hole.

管状陽極の透過することの出来る管壁はその外部を隔膜
ですつかり覆ってあって管状陽極の内側を陽極室に形成
させている、 陰極容器の下端は板、好ましくは不活性のプラスチック
の板で閉塞してあり、数多くの管状陽極の内部にプライ
ンその他の陽極液を供給する装置、主としてプラスチッ
ク類の導入管が設けてあって、この管のフランジには容
器の底板なシールするフランジを備えている。陽極液は
管状陽極の閉塞栓のねじ孔にねじ込んだ管状継手を経て
送られる。
The permeable wall of the tubular anode is covered on the outside with a diaphragm, forming the inside of the tubular anode into an anode chamber; the lower end of the cathode vessel is covered with a plate, preferably an inert plastic plate. Inside the numerous tubular anodes there is a prine or other device for supplying the anolyte, mainly a plastic inlet tube, the flange of which is provided with a flange for sealing against the bottom plate of the container. There is. The anolyte is delivered through a tubular fitting threaded into a threaded hole in the plug of the tubular anode.

好ましい実施態様の容器には陰極ガスを排出する排出口
がその上部に設けてあり、その下部には陰極液排出用の
排出口と希釈陰極液または水を陰極室に再循環する導入
管が設けである、容器のカバーに溶接した陽極はカバー
の孔を経て容器の上部の室と連通し、この上部室にて陽
極ガスが電解液から分離し排出口から脱出しガス回収系
装置に送られ、電解液は電解槽に再び送り込まれる以前
に再飽和系装置へ再循環される、 電解槽の陰極は小片、小球、ボール、円筒、ラシヒリン
グ、金属綿、その他力粒子状の、ばらばらの導電性物質
製の多孔性静止ベッドから成っていて、これら粒子が容
器にぎっしりと詰まっており少くとも隔膜で被覆した管
状陽極の透過壁の高さに達している。陰極物質の充填物
は容器の内壁と数多くの管状陽極上の隔膜の外面とに接
触しており隔膜を押し付けている。導電性陰極充填物質
はグラファイト、鉛、鉄、ニッケル、コバルト、バナジ
ウム、モリブデン、またはその合金、金属間化合物、金
属の水素化物、炭化物および窒化物、または導電性が良
好で陰極条件に耐えるその他の物質とすることができる
In a preferred embodiment, the vessel is provided with an outlet in its upper part for discharging the cathode gas, and an outlet in its lower part for discharging the catholyte and an inlet for recycling diluted catholyte or water into the cathode chamber. The anode welded to the cover of the container communicates with the upper chamber of the container through the hole in the cover, and the anode gas is separated from the electrolyte in this upper chamber, escapes from the outlet, and is sent to the gas recovery system. , the electrolyte is recycled to a resaturation system before being pumped back into the electrolytic cell. The cathode of the electrolytic cell is made of loose conductive particles such as small pieces, globules, balls, cylinders, Raschig rings, metal wool, or other particles. It consists of a porous stationary bed of solid material, the particles of which are tightly packed into the container and reach at least the height of the permeable wall of the tubular anode covered with a diaphragm. A charge of cathode material contacts and presses against the inner wall of the vessel and the outer surface of the membrane on the numerous tubular anodes. Conductive cathode fill materials are graphite, lead, iron, nickel, cobalt, vanadium, molybdenum, or their alloys, intermetallic compounds, metal hydrides, carbides, and nitrides, or other materials that have good conductivity and tolerate cathodic conditions. It can be a substance.

鉄、ニッケル及びその合金のような低水素過電圧を呈す
る物質はブラインの電解に特に適する、これに反して、
たとえば、酸性硫酸塩陰極液を陰イオン隔膜を用い陽極
に酸素を発生させてFemをFeTTに還元するには鉛
および鉛合金のような高水素過電圧の粒子状物質が好ま
しい。陰極充填物質には前述した導電性で耐陰極性物質
の層を被覆したプラスチック、セラミック、その他の非
導電性物質を含めることもできる。
On the contrary, materials exhibiting low hydrogen overpotentials such as iron, nickel and their alloys are particularly suitable for brine electrolysis.
For example, high hydrogen overpotential particulate materials such as lead and lead alloys are preferred for reducing Fem to FeTT using an acidic sulfate catholyte with an anion diaphragm and oxygen generation at the anode. The cathode fill material can also include plastics, ceramics, and other non-conductive materials coated with a layer of conductive, cathodically resistant materials as described above.

管状陽極を溶着するチタン板またはカバーは絶縁ガスケ
ットで陰極室から絶縁されている。それは電流分布回路
網の正の端子に接続してあり、陰極室は電流分布回路網
の負の端子に接続しである。
The titanium plate or cover to which the tubular anode is welded is insulated from the cathode chamber by an insulating gasket. It is connected to the positive terminal of the current distribution network and the cathode chamber is connected to the negative terminal of the current distribution network.

陰極充填物は陰極的に分極され陰極としての機能を果し
、陰極物質の静止ベッドの多孔度は陰極ガスを急速に排
出させるに役立つものであって陰極容器の内壁を陰極的
に保護するのに寄与している。
The cathode fill is cathodically polarized and acts as a cathode, and the porosity of the stationary bed of cathode material facilitates the rapid evacuation of cathode gas and cathodically protects the interior walls of the cathode vessel. contributes to

電極のスペースは隔膜の表面に隣接するベッドの粒子に
よって表わされる陰極物質の幾何学的+c不確定な、そ
して隔膜を付着させる管状陽極の透過壁のメツシュの幾
何学的に不確な電解液流東線の局部的偏向によって隔膜
の厚みより狭ばまれている。
The electrode space is defined by the geometry of the cathode material represented by the particles of the bed adjacent to the diaphragm surface, and the geometrically uncertain electrolyte flow of the mesh of the permeable wall of the tubular anode to which the diaphragm is attached. It is narrowed by the thickness of the diaphragm due to the local deflection of the east line.

陰極充填物質と陽極との間のスペースは電解処理時には
本質的に一定になっている。
The spacing between the cathode fill material and the anode remains essentially constant during the electrolytic process.

以上の電解槽の構成によって、機械的で電気的応力が生
じて隔膜を破壊する恐れのある急激な局部的電流密度の
差異を招ねくことなく、全電極匍積に亘って均等な電流
密度を生ずる。
The electrolytic cell configuration described above ensures that the current density is uniform over the entire electrode volume, without causing sudden local current density differences that could cause mechanical and electrical stresses that could destroy the diaphragm. will occur.

複数本の管状陽極を具備するこの発明の電解槽の好まし
い実施態様のものは、電極面と電解槽によって占められ
る容積との比が従来の市販の隔膜電解槽より遥かに大き
いにもかかわらず、頗る小型であるという利点がある。
Although the preferred embodiment of the electrolytic cell of the present invention with a plurality of tubular anodes has a much greater ratio of electrode surface to volume occupied by the electrolytic cell than conventional commercially available diaphragm electrolysers, It has the advantage of being extremely small.

この発明の好ましい実施態様の図面は、電流密度が極め
て均等であり、コストが低いので好ましい長方形の容器
に円管の陽極を用いたものを示しである。しかし、陽極
管は他の形状、たとえば長円形、長方形、六角形、その
他の多角形のものを用いることができ、これらの形状は
この明細書中「管」と述べる範ちゅうに入るもので、容
器も長方形、円筒形その他の形とすることが出来るもの
である。円筒形容器内に1本の同心の円筒形陽極を収納
したものはこの発明の実施に当って余り良い例とはなら
ないが、この実施態様でも多数のセルを用いれば所望の
容量を達成することができろ。
The drawings of the preferred embodiment of the invention show a circular tube anode in a rectangular vessel, which is preferred because of its highly uniform current density and low cost. However, the anode tube may have other shapes, such as oval, rectangular, hexagonal, or other polygonal shapes, and these shapes fall within the scope of the term "tube" in this specification. The containers can also be rectangular, cylindrical, or other shapes. Although a single concentric cylindrical anode housed within a cylindrical container is not a very good example for practicing this invention, it is possible to achieve the desired capacity by using a large number of cells in this embodiment as well. Be able to do it.

この発明の電解槽を塩素の製造に関連して説明するが、
他の製品を生産する電解にも適用することが出来るもの
である。
The electrolytic cell of the present invention will be explained in connection with the production of chlorine;
It can also be applied to electrolysis for producing other products.

第1図に示すように、電解槽は鋼またはニッケル、ある
いはその合金、あるいはその他の導電性陰極的に耐える
物質製の長四角形の陰極容器1がら成っている。容器1
1Cボルト締めしたチタンその他陽極的に不動態のバル
ブメタル製の力チク−2が容器を頂部で閉じている、絶
縁ガスケット3が陰極容器1とチタンカバー2の間に設
けである。
As shown in FIG. 1, the electrolytic cell consists of a rectangular cathode vessel 1 made of steel or nickel, or alloys thereof, or other conductive cathode-resistant materials. container 1
An insulating gasket 3 is provided between the cathode vessel 1 and the titanium cover 2, with a 1C bolted titanium or other anodically passive valve metal cap 2 closing the vessel at the top.

チタン製の管状陽極4がカバー2の孔に溶着してあって
図面に示すようにカバー」二方に突出している。管状陽
極4の管壁には孔その他の穿孔が設けてあり、これらの
孔はカバー2より僅かに下方から陽極4の底部に設けら
れている。陽極の穿孔部6は無孔の頂部に網状または拡
張したチタン板を溶着したものとするが、あるいは頂部
と一体に構成させることができる。管状陽極4の穿孔部
6の表面には電気触媒被覆を適当に被覆させる、この被
覆は陽極条件に対して非不動態で耐えるもの、主に貴金
属または貴金属の酸化物を含有するものである、管状陽
極4はその下端をチタン製の栓または閉塞体7を溶着し
て閉塞するか、あるいは第1図に示すように、同心のね
じ孔7aを設けたWCなどのような耐薬品性プラスチッ
ク類とすることが好ましい。
A titanium tubular anode 4 is welded to a hole in the cover 2 and protrudes to both sides of the cover as shown in the drawing. The tube wall of the tubular anode 4 is provided with holes and other perforations, which are provided in the bottom of the anode 4 from slightly below the cover 2. The perforations 6 of the anode are formed by welding a reticular or expanded titanium plate to the solid top, or they can alternatively be constructed integrally with the top. The surface of the perforation 6 of the tubular anode 4 is suitably coated with an electrocatalytic coating, which is non-passive and resistant to the anodic conditions and mainly contains noble metals or oxides of noble metals. The lower end of the tubular anode 4 is closed by welding a titanium stopper or a closure body 7, or as shown in FIG. It is preferable that

好ましくは管状の陽イオン隔膜8が陽極4上にかぶせて
あり、陽極の無穿孔頂部と、プラスチック類のバンド9
で栓7の円筒外面に締め付けである。この取り付は方は
、通常のフィルタ・プレス電解槽では面倒な隔膜と陽極
4の穿孔部との間の流体シールを容易かつ完全に果すも
のである、陽イオン隔膜8は陽イオンを透過し、液体と
ガスの流体力学的な流れを透過することのないものとす
ることが好ましい。その隔膜用物質として適当なものは
スルホン酸基を含有するフッ化重合体または共重合体で
ある。この種の物質は頗る可撓性であって射出するが或
は平らなシートをホット接着して管状のものにされる。
A preferably tubular cation diaphragm 8 is placed over the anode 4 and connects the unperforated top of the anode with a plastic band 9.
It is tightened to the cylindrical outer surface of the stopper 7. This mounting method easily and completely achieves a fluid seal between the diaphragm and the perforated part of the anode 4, which is troublesome in ordinary filter press electrolyzers.The cation diaphragm 8 is permeable to cations. , is preferably impermeable to hydrodynamic flow of liquids and gases. Suitable membrane materials are fluorinated polymers or copolymers containing sulfonic acid groups. This type of material is extremely flexible and can be extruded or hot glued from flat sheets into tubular shapes.

この種隔膜の厚さは10分の1ミリメートル程度のもの
である。
The thickness of this type of diaphragm is on the order of one-tenth of a millimeter.

容器】を180°回動して充填を容易にし、陰極物質1
0を詰める。次で容器を陽極4の各々の基部のところに
穿孔した長四角形の板11で閉塞する。この板は不活性
のプラスチック類とすることが好ましい。これまた不活
性のプラスチック類の長四角形のブライン分配箱12が
板11に溶着してあり、ブライン導入用開口】4を備え
た閉塞板13で閉塞しである、板11と長方形の容器]
のフランジ27の底の間にガスケットを設けろことが出
来る。板1】のフランジ27は容器1の底フランジにボ
ルト付けすることができ、閉塞板13は分配箱12の底
にポル、ト付げすることができる、ブライン分配箱は管
状コネクタ15で陽極4の内部に連絡されている。この
コネクタの一端はフランジ付で、閉塞栓7のねじ孔7a
にねじ込んである。コネクタ15のフランジとブライン
分配箱】2の間にシールまたはガスケットか設けである
、陰極室には管状陽極の透過できる部分6の頂部に達す
るところまで粒子状物質が詰めである。
Rotate the container by 180° to facilitate filling, and remove the cathode material 1.
Fill with 0. The vessel is then closed with a rectangular plate 11 having a perforation at the base of each of the anodes 4. Preferably, this plate is made of inert plastics. A rectangular brine distribution box 12, also made of inert plastic, is welded to the plate 11 and closed by a closing plate 13 with a brine introduction opening [4].
A gasket can be provided between the bottoms of the flanges 27. The flange 27 of the plate 1 can be bolted to the bottom flange of the vessel 1, the closure plate 13 can be attached to the bottom of the distribution box 12, the brine distribution box is connected to the anode 4 with a tubular connector 15. has been contacted internally. One end of this connector is equipped with a flange, and has a screw hole 7a of the plug 7.
It is screwed into. A seal or gasket is provided between the flange of the connector 15 and the brine distribution box 2, and the cathode chamber is filled with particulate matter up to the top of the permeable portion 6 of the tubular anode.

陰極室には粒状層10の高さより高い部位に、水素排出
用の1個以上の排出口17が設けてあり、その下部には
陰極液排出用の可調節グーズネック型排出口18が設け
である。
The cathode chamber is provided with one or more outlets 17 for discharging hydrogen at a location higher than the height of the granular layer 10, and an adjustable gooseneck outlet 18 for discharging catholyte is provided below. .

粒子状物質10の上面より上部に散水管すなわちスプレ
ー管24が容器の全長に亘って水平に伸長していて、こ
の管には一連の孔が設けてあり陰極室内に生じた水酸化
アルカリ金属の濃度を希釈調節するため陰極室に水また
は陰極液を加えるようにしである。
Above the top surface of the particulate matter 10, a water sprinkler or spray tube 24 extends horizontally the length of the container and is provided with a series of holes to remove the alkali metal hydroxide formed in the cathode chamber. Water or catholyte is added to the cathode chamber to adjust the concentration.

陰極に生じた水酸化物を希釈し電解槽から流出する陰極
液中の水酸化物濃度を25(重量)%ないし43(重量
)係内に保つために散水管24を経て陰極室内に水を絶
えず添加することが望まし℃λ。
In order to dilute the hydroxide generated at the cathode and maintain the hydroxide concentration in the catholyte flowing out from the electrolytic cell within the range of 25% (by weight) to 43% (by weight), water is introduced into the cathode chamber through the water sprinkler pipe 24. It is desirable to constantly add ℃λ.

管状陽極4の各々の頂部は電解槽容器1の上部全体に亘
って伸長する長四角形のタンク19に接続しである。タ
ンク19内の電解液の液位は電解液排出用グーズネツク
型排出管20で一定に維持される。管20から排出され
る電解液は電解液導入管14を経て電解槽内に再循環さ
れろ前に再飽和系装置に送られる、 陽極に生じたノ・ロゲンはタンク19内の電解液から分
離し出口21を経て排出する。
The top of each tubular anode 4 is connected to a rectangular tank 19 extending over the entire top of the electrolyzer vessel 1 . The level of the electrolyte in the tank 19 is maintained constant by a gooseneck type discharge pipe 20 for discharging the electrolyte. The electrolyte discharged from the tube 20 is recirculated into the electrolytic cell via the electrolyte inlet tube 14 and sent to a resaturation system before being sent to the resaturation system. and is discharged via outlet 21.

管状陽極4が溶着されている板すなわちカバー2は接続
部材22で電源の正の端子に直結してあり、陰極容器1
は接続部材23で負の端子に接続しである。
The plate or cover 2 to which the tubular anode 4 is welded is directly connected to the positive terminal of the power source by a connecting member 22, and is connected to the cathode container 1.
is connected to the negative terminal by the connecting member 23.

第2図は第1図の線Tlについての断面図で第1図につ
いて述べた電解槽の諸要素が同じ符号で示しである。散
水管24の位置は陰極容器1の陰極物質の粒子10の高
さより高いところに破線で示しである。
FIG. 2 is a sectional view taken along line Tl in FIG. 1, in which the elements of the electrolytic cell described in connection with FIG. 1 are designated by the same reference numerals. The position of the water sprinkler tube 24 is indicated by a broken line at a point higher than the height of the cathode material particles 10 of the cathode container 1.

図面に示しである電解槽は長四角形のケーシング内に6
本の管状陽極を具備しているが、陽極の本数は横方向に
変えることができ、多数列のものを使用することができ
、また電解槽の形状と陽極とを図面に示すものと異なら
せることもでき、この発明の精神と範囲内で他の態様の
ものとすることが出来る。
The electrolytic cell shown in the drawing has 6 parts in a rectangular casing.
It is equipped with a regular tubular anode, but the number of anodes can be changed laterally, multiple rows can be used, and the shape of the electrolytic cell and the anode can be different from those shown in the drawing. and other embodiments may be made within the spirit and scope of the invention.

管状陽極4の円筒表面は容器1の容積に比較して頗る広
いもので、一般市場で用いられている電解槽とくらべる
とき、電解槽についての電流密度が等しいのに、小型の
電解槽で高率の生産高を挙げられる。作動に肖って、た
とえばNaC1の濃ブライン(120〜310 g/1
1 )を導入口14を経て分配箱12に送り、管状陽極
4の各陽極を経て塩素を生ずる電気触媒被覆面上を上昇
させた。
The cylindrical surface of the tubular anode 4 is much wider than the volume of the container 1, and when compared with electrolytic cells used in the general market, although the current density for the electrolytic cells is the same, a small electrolytic cell has a high current density. The rate of production can be mentioned. Depending on the operation, for example NaCl concentrated brine (120-310 g/1
1) was sent to the distribution box 12 through the inlet 14, passed through each anode of the tubular anode 4, and rose over the electrocatalyst coated surface producing chlorine.

ナ) I+ウムイオンは陽イオン膜を通過し、水の電解
により陰極に釈放される水酸化物と混合して水酸化ナト
リウムをつくる。塩素は管状陽極4の内側に入っている
電解液中を上昇してタンク19内に入り、そこで液体と
分離して排出口21を経て排出する。上昇する塩素気泡
は管状陽極4内の電解液を急速に上方へ流動させる。
n) The I+ ion passes through the cation membrane and mixes with hydroxide, which is released to the cathode by water electrolysis, to form sodium hydroxide. The chlorine rises in the electrolyte contained inside the tubular anode 4 and enters the tank 19, where it is separated from the liquid and discharged through the outlet 21. The rising chlorine bubbles cause the electrolyte within the tubular anode 4 to rapidly flow upwards.

上昇しなかったプラインは定液位の排出口20を通り、
入口14を経て電解槽中に再導入されるに先立って再飽
和系装置へ再循環される。
The prine that did not rise passes through the discharge port 20 at a constant liquid level,
It is recycled to the resaturation system before being reintroduced into the cell via inlet 14.

隔膜8に隣接する多孔性陰極ベッドの表面上に釈放され
た水素は粒状床10を経て陰極容器の上面に集まり、そ
こから排出口17を経て排出される。水酸化す) IJ
ウム溶液は可調節グーズネツク型排出口】8を経て排出
される。可調節グーズネック型排出口】8は陰極液の液
位を陰極ベッド10の頂部と同じ高さに維持する。
The hydrogen released on the surface of the porous cathode bed adjacent to the diaphragm 8 passes through the granular bed 10 and collects on the top surface of the cathode vessel, from where it is discharged via the outlet 17. hydroxide) IJ
The solution is discharged via an adjustable Gooseneck type outlet 8. An adjustable gooseneck outlet 8 maintains the catholyte level at the same level as the top of the cathode bed 10.

陰極液は電解槽の外部に配設されている水酸化す) I
Jウムの回収系装置を経て循環され、流出する希釈水酸
化す) l]ウム溶液は散水管24を経て陰極室に再導
入される。
The catholyte is a hydroxide solution located outside the electrolytic cell.
The diluted hydroxide solution, which is circulated through the Jum recovery system and flows out, is reintroduced into the cathode chamber via the sprinkler pipe 24.

作動温度は30°と100℃の間で変更することができ
るが、約85℃に保つことが好ましい。陽極液のpH価
は1と6の間で変えることができ、電流密度は1000
ないし5000〜への間とすm。
The operating temperature can vary between 30° and 100°C, but is preferably kept at about 85°C. The pH value of the anolyte can be varied between 1 and 6, and the current density is 1000
Between 5000 m and 5000 m.

ることか出来る。I can do it.

この発明の電解槽を図面について説明したが、多くの変
更をこの発明の精神の範囲内に遂行できること、他の電
解処理を以上に説明した電解槽で行えること、チタンの
代りに、タンタル、ジルコニウム、モリブデン、ニオブ
、タングステン、イツトリウムなどの他のバルブメタル
を電解槽を構成するのに使用できること、静止導電性粒
子物質を別の型式の電解槽に使用することができること
を電解されたい。
Although the electrolytic cell of this invention has been described with reference to the drawings, it is understood that many modifications may be made within the spirit of the invention, that other electrolytic treatments may be performed on the electrolytic cell described above, that titanium may be replaced by tantalum, zirconium, etc. Please note that other valve metals such as molybdenum, niobium, tungsten, and yttrium can be used to construct electrolytic cells, and that static conductive particulate materials can be used in other types of electrolytic cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の好ましい実施態様の断面図で、第2
図は第1図の線I−Iに沿う断面図で、断面上の諸部分
は点線で示しである。 図面において主要部分は次の符号で示しである。
FIG. 1 is a cross-sectional view of a preferred embodiment of the invention;
The figure is a sectional view taken along the line II--I in FIG. 1, and various parts on the cross section are indicated by dotted lines. In the drawings, main parts are indicated by the following symbols.

Claims (1)

【特許請求の範囲】 1、電解液およびガス透過性陽極を収容する陽極室と、
液体不透過性イオン交換隔膜によって隔てられた電解液
およびガス透過性陰極を収容する陰極室と、前記陽極室
に電解液をそして陰極室に水を供給し、前記陽極室と陰
極室とから電解によって生成した液体またはガス生成物
を回収する装置と、電解槽に電流を加える装置とから成
る電解槽において、電解液およびガス透過性陰極を導電
性であって陰極液について耐食性の多孔性充填物質の静
止ベッドで構成し、前記ガス透過性陽極と隔膜および隔
膜と陰極が接触状態にあることを特徴とする電解槽。 2 多孔性充填物質を球状、小球状、サドル状、ラシヒ
リング状、円筒状、小片状、金属ストランド状、金属綿
状のものとした特許請求の範囲第1項に記載の電解槽。 乙、陽極を電気触媒的に被覆した多孔性パルプメタルと
した特許請求の範囲第1項および第2項に記載の電解槽
。 4、隔膜を陽イオン透過性重合体フィルムとし、スルホ
ン基を有するフッ化炭化水素重合体から成るものとした
特許請求の範囲前記各項のいずれかに記載の電解槽。 5、多孔性の充填陰極物質をグラフ了イト、鉛、鉄、ニ
ッケル、コバルト、バナジウム、モリブデン、亜鉛、そ
の合金、金属間化合物、金属の水素化、炭化、窒化化合
物および/または低水素過電圧の物質から成る部類に属
するものとした特許請求の範囲前記各項のいずれかに記
載の電解槽。
[Claims] 1. An anode chamber containing an electrolyte and a gas-permeable anode;
a cathode compartment containing an electrolyte and a gas-permeable cathode separated by a liquid-impermeable ion exchange membrane; an electrolyte supplied to the anode compartment and water to the cathode compartment; in an electrolytic cell comprising a device for recovering the liquid or gaseous products produced by the electrolytic cell and a device for applying an electric current to the electrolytic cell, the electrolyte and the gas permeable cathode are separated by a porous filling material which is electrically conductive and corrosion resistant for the catholyte. An electrolytic cell comprising a stationary bed, wherein the gas-permeable anode and the diaphragm are in contact with each other, and the diaphragm and the cathode are in contact with each other. 2. The electrolytic cell according to claim 1, wherein the porous filling material is in the shape of a sphere, a small sphere, a saddle, a Raschig ring, a cylinder, a small piece, a metal strand, or a metal cotton. B. The electrolytic cell according to claims 1 and 2, wherein the anode is made of porous pulp metal electrocatalytically coated. 4. The electrolytic cell according to any of the preceding claims, wherein the diaphragm is a cation-permeable polymer film and is made of a fluorinated hydrocarbon polymer having a sulfone group. 5. Porous filled cathode materials graphite, lead, iron, nickel, cobalt, vanadium, molybdenum, zinc, their alloys, intermetallic compounds, metal hydrogenation, carbonization, nitride compounds and/or low hydrogen overvoltage An electrolytic cell according to any of the preceding claims, which belongs to the category consisting of substances.
JP59062083A 1977-06-30 1984-03-29 electrolytic cell Expired JPS6053115B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT25251A/77 1977-06-30
IT25251/77A IT1114820B (en) 1977-06-30 1977-06-30 ELECTROLYTIC MONOPOLAR MEMBRANE CELL

Publications (2)

Publication Number Publication Date
JPS59182984A true JPS59182984A (en) 1984-10-17
JPS6053115B2 JPS6053115B2 (en) 1985-11-22

Family

ID=11216133

Family Applications (4)

Application Number Title Priority Date Filing Date
JP53073311A Expired JPS58756B2 (en) 1977-06-30 1978-06-19 electrolytic cell
JP56203825A Granted JPS57126984A (en) 1977-06-30 1981-12-18 Shortening of gap between electrodes of electrolytic tank
JP59062083A Expired JPS6053115B2 (en) 1977-06-30 1984-03-29 electrolytic cell
JP59062084A Granted JPS6036683A (en) 1977-06-30 1984-03-29 Electrolysis of alkali metal chloride aqueous solution

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP53073311A Expired JPS58756B2 (en) 1977-06-30 1978-06-19 electrolytic cell
JP56203825A Granted JPS57126984A (en) 1977-06-30 1981-12-18 Shortening of gap between electrodes of electrolytic tank

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP59062084A Granted JPS6036683A (en) 1977-06-30 1984-03-29 Electrolysis of alkali metal chloride aqueous solution

Country Status (9)

Country Link
JP (4) JPS58756B2 (en)
CA (1) CA1106312A (en)
DE (1) DE2828621A1 (en)
GB (1) GB2002032B (en)
IT (1) IT1114820B (en)
NL (1) NL179926C (en)
SE (3) SE446104B (en)
SU (1) SU1286109A3 (en)
UA (1) UA6325A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1114820B (en) * 1977-06-30 1986-01-27 Oronzio De Nora Impianti ELECTROLYTIC MONOPOLAR MEMBRANE CELL
US4298447A (en) * 1980-03-07 1981-11-03 E. I. Du Pont De Nemours And Company Cathode and cell for lowering hydrogen overvoltage in a chlor-akali cell
US4337127A (en) * 1980-03-07 1982-06-29 E. I. Du Pont De Nemours And Company Method for making a cathode, and method for lowering hydrogen overvoltage in a chlor-alkali cell
JPS5941484A (en) * 1982-08-30 1984-03-07 Toagosei Chem Ind Co Ltd Electrolytic tank for electrolysis of aqueous alkali chloride solution
JPS59164976A (en) * 1983-03-10 1984-09-18 Fuji Electric Corp Res & Dev Ltd Measurement of tritium concentration
JPS6241530U (en) * 1985-08-29 1987-03-12
JPS62284095A (en) * 1986-06-02 1987-12-09 Permelec Electrode Ltd Durable electrolytic electrode and its production
JPH01201225A (en) * 1988-02-04 1989-08-14 Nippon Patent Electric Kk Floor surface grinder
JPH0611227U (en) * 1992-07-15 1994-02-10 東海ゴム工業株式会社 Metal laminated sheath cable
US9962404B2 (en) 2012-09-21 2018-05-08 Reoxcyn Innovation Group, Llc Cell for electrolyzing a liquid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1194181A (en) * 1966-05-24 1970-06-10 Nat Res Dev Improvements relating to Electrode Arrangements for Electrochemical Cells.
US3674676A (en) * 1970-02-26 1972-07-04 Diamond Shamrock Corp Expandable electrodes
DE2244244C3 (en) * 1972-09-15 1981-07-02 Dart Industries Inc., 90048 Los Angeles, Calif. Electrolytic process for removing a contaminant dissolved in an aqueous spent solution and regenerative electrolytic cell which can be used for this purpose
GB1423369A (en) * 1973-09-24 1976-02-04 Electricity Council Electrolytic cells
DE2503652A1 (en) * 1974-02-04 1975-08-07 Diamond Shamrock Corp CELL FOR CHLORAL CALCIUM ELECTROLYSIS
GB1497542A (en) * 1974-05-30 1978-01-12 Parel Sa Electrochemical apparatus
US3969201A (en) * 1975-01-13 1976-07-13 Canadian Patents And Development Limited Electrolytic production of alkaline peroxide solutions
US3984303A (en) * 1975-07-02 1976-10-05 Diamond Shamrock Corporation Membrane electrolytic cell with concentric electrodes
IT1114820B (en) * 1977-06-30 1986-01-27 Oronzio De Nora Impianti ELECTROLYTIC MONOPOLAR MEMBRANE CELL

Also Published As

Publication number Publication date
SE445471B (en) 1986-06-23
SE7805927L (en) 1978-12-31
UA6325A1 (en) 1994-12-29
CA1106312A (en) 1981-08-04
DE2828621C2 (en) 1989-11-09
NL179926C (en) 1986-12-01
SE446104B (en) 1986-08-11
JPS6036683A (en) 1985-02-25
SE8205353L (en) 1982-09-20
SU1286109A3 (en) 1987-01-23
SE445562B (en) 1986-06-30
SE8205353D0 (en) 1982-09-20
JPS5417375A (en) 1979-02-08
JPS6053115B2 (en) 1985-11-22
JPH0153355B2 (en) 1989-11-14
GB2002032A (en) 1979-02-14
JPS58756B2 (en) 1983-01-07
JPS57126984A (en) 1982-08-06
NL179926B (en) 1986-07-01
IT1114820B (en) 1986-01-27
SE8207131D0 (en) 1982-12-14
SE8207131L (en) 1982-12-14
JPH0124867B2 (en) 1989-05-15
DE2828621A1 (en) 1979-01-11
GB2002032B (en) 1982-07-14
NL7807036A (en) 1979-01-03

Similar Documents

Publication Publication Date Title
US4177116A (en) Electrolytic cell with membrane and method of operation
US3984303A (en) Membrane electrolytic cell with concentric electrodes
USRE32077E (en) Electrolytic cell with membrane and method of operation
US6254762B1 (en) Process and electrolytic cell for producing hydrogen peroxide
US4224121A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
FI68429C (en) FOERFARANDE FOER FOERDELNING AV ELSTROEM I EN ELEKTROLYSANORDNING OCH ELEKTROLYSANORDNING
US5082543A (en) Filter press electrolysis cell
EP1274884B1 (en) Electrolytic cell and method for electrolysis
US3884792A (en) Bipolar electrodes
US4032426A (en) Electrolysis cells
US4687558A (en) High current density cell
US4584080A (en) Bipolar electrolysis apparatus with gas diffusion cathode
US4784735A (en) Concentric tube membrane electrolytic cell with an internal recycle device
JPH0561356B2 (en)
JPS59182984A (en) Electrolytic cell
EP0104137B1 (en) Narrow gap gas electrode electrolytic cell
US3948750A (en) Hollow bipolar electrode
US4790914A (en) Electrolysis process using concentric tube membrane electrolytic cell
US4046654A (en) Process for desalination with chlor-alkali production in a mercury diaphragm cell
WO2001004383A1 (en) Method for electrolysis of alkali chloride
US4108756A (en) Bipolar electrode construction
JP2926272B2 (en) Target electrode for corrosion prevention of electrochemical tank
US4069128A (en) Electrolytic system comprising membrane member between electrodes
US4488947A (en) Process of operation of catholyteless membrane electrolytic cell
US4588483A (en) High current density cell