JPH0153355B2 - - Google Patents

Info

Publication number
JPH0153355B2
JPH0153355B2 JP59062084A JP6208484A JPH0153355B2 JP H0153355 B2 JPH0153355 B2 JP H0153355B2 JP 59062084 A JP59062084 A JP 59062084A JP 6208484 A JP6208484 A JP 6208484A JP H0153355 B2 JPH0153355 B2 JP H0153355B2
Authority
JP
Japan
Prior art keywords
cathode
anode
electrolytic cell
tubular
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59062084A
Other languages
Japanese (ja)
Other versions
JPS6036683A (en
Inventor
De Nora Orontsuio
Pereguri Aruberuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORONTSUIO DE NORA IMUPIANTEI ERETSUTOROKIMICHI SpA
Original Assignee
ORONTSUIO DE NORA IMUPIANTEI ERETSUTOROKIMICHI SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORONTSUIO DE NORA IMUPIANTEI ERETSUTOROKIMICHI SpA filed Critical ORONTSUIO DE NORA IMUPIANTEI ERETSUTOROKIMICHI SpA
Publication of JPS6036683A publication Critical patent/JPS6036683A/en
Publication of JPH0153355B2 publication Critical patent/JPH0153355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/40Cells or assemblies of cells comprising electrodes made of particles; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 この発明は、陽イオンを交換することができ、
かつ流体流れに対して実質的に不透過性である膜
によつて分離されたガスおよび液体透過性陽極お
よびガスおよび液体透過性陰極を有する電解槽に
おけるアルカリ金属塩化物水溶液の電解方法にお
いて、 電解時に該陽極の表面と該陰極の表面との間の
空間を実質的に該膜の厚さに維持しながらアルカ
リ金属塩化物水溶液を該陽極に供給し、かつ水を
陰極に供給することを特徴とする電解方法に関す
る。 最近、従来からのアスベスト隔膜の代りにイオ
ン交換膜を使用する電解槽が、とくにブラインの
電解用として開発されている。カチオン交換膜は
作動状態では電解質に導電性であるが、液体およ
びガスのような流体を通さない。作動に当つて、
ハロゲン化アルカリ金属を陽極に導入すると、ガ
ス状のハロゲンが陽極の表面に生ずる。アルカリ
金属イオンはカチオン交換膜を選択的に通過し、
アルカリ金属イオンが水の電解により陰極に生ず
る水酸イオンと組み合されて水酸化アルカリ金属
を生ずる。 カチオン交換膜を備えた電解槽は従来の隔膜式
電解槽よりも多くの利益を備えている。カチオン
交換膜を備えた電解槽は、水酸化アルカリ金属の
比較的純粋な溶液ができるので、多孔性隔膜の場
合のようにブラインで希釈され水酸化物を後で分
離して精製しなければならないことはなく、電解
を頗る効果的かつ簡易に行える。 無孔隔膜の特性を十二分に活用するためには、
電極間の距離(すなわち電極間隙)を最小限に短
縮することが望ましく、このように短縮すると作
動電圧に顕著な効果があり、結局は電解処理のエ
ネルギー効果にきわだつた効果がある。 市販のカチオン交換膜は電流密度に鋭敏で、そ
の効果的な作動をするために電流密度はある程度
の望ましい限度内に保たなければならない。電流
密度は、隔膜を破損させてしまうであろう機械的
および電気的応力の発生を避けるために全面に亘
つて殆ど一定にすべきものである。 周知の隔膜式電解槽において、以上に挙げたよ
うなパラメータは構造上の許容限度に大きく左右
されるもので、市販の電解槽の電極面の寸法から
して、電極スペースが(数ミリメートル程度の)
きわめて小さなものに関して、陽極面と陰極面と
の厳格な平行関係に対して回避することのできな
い偏差は隔膜の表面についての電流密度に多少の
変動を招くものである。その結果として、隔膜の
各種の領域で局部的に電流密度を補正しようとし
た従来の試みは不首尾に終つている。 この発明によれば、ハロゲン化アルカリ金属の
水溶液の電解を特にカチオン交換膜電解槽を利用
して実行するものであつて、その電解槽における
電極スペースを周知の電解槽のそれと比べて遥か
に小さくし、電極スペースを電極面全面に亘つて
一定で、しかも、従来の厳格な機械的交差を考慮
することのないものとしている。 この発明の目的とするところは陽極と陰極との
間にイオン選択性カチオン交換膜を具備する電解
槽の電流密度を実質的に一定に保ち、膜を破壊す
るおそれのある膜に加わる機械的および電気的応
力を軽減する電解槽を用いて効果的にアルカリ金
属塩化物を電解する方法を提供することにある。 この発明の以上に述べた以外の目的と利益とは
さらに下記によつて明確にする。 この発明の方法を実施する電解槽の好ましいも
のは、陰極液の環境内で腐食しない鋼その他の導
電性物質製の陰極容器から成り、その容器の上端
は陽分極条件下で不動態であるチタンその他のバ
ルブメタルの板またはカバーで閉塞されており、
チタンのカバー板には孔が設けてあつて少くとも
1本、望ましくは一連の管状陽極がその孔に溶着
してあつて、ほとんど容器の高さ全体に伸長し、
管状陽極の管壁には(チタン板に溶接した付近の
管壁の上部を除いて)穿孔してあつて液体および
ガスが透過するようにしてある。 陽極は寸法安定のもの、主にチタンその他のバ
ルブメタル製で、その活性面の少くとも一部に陽
極条件に耐え不動態でない、導電性電気触媒の被
覆、好ましくは白金、パラジウム、ロジウム、ル
テニウム及びイリジウム、またはその酸化物また
は混合酸化物の被覆が施してある。管状陽極の下
端は不活性物質、好ましくはプラスチツク製の栓
で閉塞してあつて、同心のねじ孔があけてある。
管状陽極の浸透性管壁はその外部を陽イオン膜で
すつかり覆い、管状陽極の内側を陽極室に形成さ
せている。 陰極容器の下端は板、好ましくは不活性のプラ
スチツク製の板で閉塞してあり、数多くの管状陽
極の内部にブラインその他の陽極液を供給する装
置、主としてプラスチツク製の導入管が設けてあ
つて、この管のフランジには容器の底板をシール
するフランジを備えている。陽極液は管状陽極の
閉塞栓のねじ孔にねじ込んだ管状継手を経て送ら
れる。 この発明の方法を実施する好ましい容器には陰
極ガスを排出する排出口がその上部に設けてあ
り、その下部には陰極液排出用の排出口と希釈陰
極液または水を陰極室に再循環する導入管が設け
てある。容器のカバーに溶接した陽極はカバーの
孔を経て容器の上部の室と連通し、この上部室に
て陽極ガスが電解液から分離し排出口から脱出し
ガス回収系装置に送られ、電解液は電解槽に再び
送り込まれる以前に再飽和系装置へ再循環され
る。 電解槽の陰極は陰極容器とその中に収容された
小片、小球、ボール、円筒、ラシヒリング、金属
綿、その他の粒子状の、ばらばらの導電性物質製
等の陰極物質から成つていて、これら粒子を陰極
容器にぎつしりと詰めて、少くともカチオン交換
膜で被覆した管状陽極の透過壁の高さに至らして
ある。陰極物質は容器の内壁と数多くの管状陽極
上のカチオン交換膜の外面とに接触しており、充
填物の重量によつて該膜を押し付けている。導電
性陰極物質の材質はグラフアイト、鉛、鉄、ニツ
ケル、コバルト、バナジウム、モリブデン、また
はその合金、金属間化合物、金属の水素化物、炭
化物および窒化物、または導電性が良好で陰極条
件に耐えるその他の物質とすることができる。 鉄、ニツケル及びその合金のような低水素過電
圧を呈する物質はブラインの電解に特に適する。
これに反して、たとえば、酸性硫酸塩陰極液を陰
イオン隔膜を用い陽極に酸素を発生させてFe
()をFe()に環元するには鉛および鉛合金
のような高水素過電圧の粒子状物質が好ましい。
陰極物質には導電性で耐陰極性物質の層を被覆し
たプラスチツク、セラミツク、その他の非導電性
物質を含めることもできる。 管状陽極を溶着するチタン板またはカバーは絶
縁ガスケツトで陰極室から絶縁されている。それ
は電流分布回路網の正の端子に接続しており、陰
極室は電流分布回路網の負の端子に接続してあ
る。 陰極物質は陰極側に分極され陰極としての機能
を果し、陰極物質の多孔度は陰極ガスを急速に排
出させるに役立つものであつて陰極容器の内壁を
陰極的に保護するのに寄与している。 電極のスペースは、カチオン交換膜の表面に隣
接する陰極物質の幾何学的に不確定な面、そして
カチオン交換膜を付着させる管状陽極の透過壁の
メツシユの幾何学的に不確定な面で起こる電解液
流束線の局部的偏向によつてカチオン交換膜の厚
みとほとんど同じくらい狭くされる。 陰極物質と陽極との間のスペースは電解処理時
には本質的にカチオン交換膜の厚さになつてい
る。 以上の電解槽の構成によつて、機械的で電気的
応力が生じてカチオン交換膜を破壊する恐れのあ
る急激な局部的電流密度の差異を招くことなく、
全電極面積に亘つて均等な電流密度を生ずる。 複数本の管状陽極を具備するこの発明の方法を
実施する電解槽は、電極面と電解槽によつて占め
られる容積との比が従来の市販の隔膜式電解槽よ
りも遥かに大きいにもかかわらず、頗る小型であ
るという利点がある。 この発明の方法を実施するための電解槽を示す
図面では、長方形の容器に円管の陽極を用いたも
のを示してある。しかし、陽極管は他の形状、た
とえば長円形、六角形、その他の多角形のものを
用いることができ、これらの形状はこの明細書中
「管」と述べる範疇に入るもので、容器も長方形、
円筒形その他の形とすることが出来るものであ
る。円筒形容器内に1本の同心の円筒形陽極を収
納したものはこの発明を実施するには好ましくな
いが、このようにしても多数のセルを用いれば所
望の容量を達成することができる。 第1図に示すように、電解槽は鋼またはニツケ
ル、あるいはその合金、或いはその他の導電性で
陰極的に耐える金属製の長四角形の陰極容器1か
ら成つている。容器1にボルト締めしたチタンそ
の他陽極的に不動態のバルブメタル製のカバー2
が容器を頂部で閉じている。絶縁ガスケツト3が
陰極容器1とチタン・カバー2の間に設けてあ
る。チタン製の管状陽極4がカバー2の孔に溶着
してあつて図面に示すようにカバー上方に突出し
ている。管状陽極4の管壁には孔その他の穿孔が
設けてあり、これらの孔はカバー2より僅かに下
方から陽極4の底部に設けられている。陽極の穿
孔部6は無孔の頂部5に網状または拡張したチタ
ン板を溶着したものとするか、あるいは頂部と一
体に構成させることができる。管状陽極4の穿孔
部6の表面には電気触媒被覆を適当に被覆させ
る。この被覆は陽極条件に対して非不動態で耐え
るもの、主に貴金属または貴金属の酸化物を含有
するものである。管状陽極4はその下端をチタン
製の栓または閉塞体7を溶着して閉塞するか、あ
るいは第1図に示すように、同心のねじ孔7aを
設けたPVCなどのような耐薬品性プラスチツク
製とすることが好ましい。 好ましくは管状のカチオン交換膜8が陽極4上
にかぶせてあり、陽極の無穿孔頂部と、プラスチ
ツク製のバンド9で栓7の円筒外面に締め付けて
ある。この取り付け方は、通常のフイルタ・プレ
ス電解槽では面倒なカチオン交換膜と陽極4の穿
孔部との間の流体シールを容易かつ完全に果すも
のである。 カチオン交換膜8は陽イオンを透過し、液体お
よびガスのような流体を透過させないものとする
ことが好ましい。その膜用物質として適当なもの
はスルホン酸基を含有するフツ化物重合体または
共重合体である。この種の物質は頗る可撓性であ
つて、射出するかあるいは平らなシートをホツト
接着することによつて管状のものにされる。この
種膜の厚さは10分の1ミリメートル程度のもので
ある。 容器1を180゜回動して充填を容易にし、陰極物
質10を詰める。次で容器を陽極4の各々の基部
のところに穿孔した長四角形の板11で閉塞す
る。この板は不活性のプラスチツク製とすること
が好ましい。これにまた不活性のプラスチツク製
の長四角形のブライン分配箱12が板11に溶着
してあり、ブライン導入用開口14を備えた閉塞
板13で閉塞してある。板11と長方形の容器1
のフランジ27の底の間にガスケツトを設けるこ
とが出来る。板11のフランジ27は容器1の底
フランジにボルト付けすることができ、閉塞板1
3は分配箱12の底にボルト付けすることができ
る。ブライン分配箱は管状コネクタ15で陽極4
の内部に連結されている。このコネクタの一端は
フランジ付で、閉塞栓7のねじ孔7aにねじ込ん
である。コネクタ15のフランジとブライン分配
箱12の間にシールまたはガスケツトが設けてあ
る。 陰極容器には管状陽極4の透過できる部分6の
頂部に達するところまで粒子状物質が詰めてあ
る。 陰極容器には粒状層10の高さより高い部位
に、水素排出用の1個以上の排出口17が設けて
あり、その下部には陰極液排出用の可調節グーズ
ネツク型排出口18が設けてある。 陰極物質10の上面より上部に散水管すなわち
スプレー管24が容器の全長に亘つて水平に伸長
していて、この管には一連の孔が設けてあり陰極
室内に生じた水酸化アルカリ金属の濃度を希釈調
節するため陰極容器に水を加えるようにしてあ
る。 陰極に生じた水酸化物を希釈し電解槽から流出
する陰極液中の水酸化物濃度を25(重量)%ない
し43(重量)%内に保つために散水管24を経て
陰極室内に水を絶えず添加することが望ましい。 管状陽極4の各々の頂部は電解槽容器1の上部
全体に亘つて伸長する長四角形のタンク19に接
続してある。タンク19内の電解液の液位は電解
液排出用グーズネツク型排出管20で一定に維持
される。管20から排出される電解液は電解液導
入管14を経て電解槽内に再循環される前に再飽
和系装置に送られる。 陽極に生じたハロゲンはタンク19内の電解液
から分離した出口21を経て排出する。 管状陽極4が溶着されている板すなわちカバー
2は接続部材22で電源の正の端子に直結してあ
り、陰極容器1は接続部材23で負の端子に接続
してある。 第2図は第1図の線1−1についての断面図で
第1図について述べた電解槽の諸要素が同じ符号
で示してある。散水管24の位置は陰極容器1の
陰極物質の粒子10の高さより高いところに破線
で示してある。 図面に示してある電解槽は長四角形のケーシン
グ内に6本の管状陽極を具備しているが、陽極の
本数は横方向に変えることができ、多数列のもの
を使用することができ、また電解槽の形状と陽極
とを図面に示すものと異ならせることもできる。 管状陽極4の円筒表面は容器1の容積に比較し
て頗る広いもので、一般市場で用いられている電
解槽とくらべるとき、電解槽についての電流密度
が等しいのに、小型の電解槽で高率の生産高を上
げられる。作動に当つて、たとえばNaClの濃ブ
ライン(120〜310g/)を導入口14を経て分
配箱12に送り、管状陽極4の各々を通つて上昇
してその陽極の電気触媒被覆面上に塩素が生成す
る。ナトリウムイオンはカチオン交換膜を通過
し、水の電解により陰極にできる水酸化イオンと
結合して水酸化ナトリウムをつくる。塩素は管状
陽極4内の電解液中を上昇してタンク19内に入
り、そこで液体と分離して排出口21を経て排出
する。上昇する塩素気泡が管状陽極4内の電解液
を急速に上方へ流動させる。 塩素が除かれたブラインは定液位の排出口20
を通り、入口14を経て電解槽中に再導入される
に前に再飽和系装置へ再循環される。 膜8に隣接する陰極物質の表面上でできた水素
は粒状床10を経て陰極容器の上面に集まり、そ
こから排出口17を経て排出される。水酸化ナト
リウム溶液は可調節グーズネツク型排出口18を
経て排出される。可調節グーズネツク型排出口1
8は陰極液の液位を陰極ベツド10の頂部と同じ
高さに維持する。 陰極液は電解槽の外部に配設されている水酸化
ナトリウムの回収装置を経て循環され、流出する
希釈水酸化ナトリウム溶液は散水管24を経て陰
極室に再導入される。 作動温度は30℃と100℃の間で変更することが
できるが、約85℃に保つことが好ましい。陽極液
のPH値は1と6の間で変えることができ、電流密
度は1000ないし5000A/m2の間とすることが出来
る。 以上に説明した第1図および第2図とに従つ
て、実験用電解槽を構成し、これに多孔チタン板
をRuとTiとの酸化物を用いて活性化して製した
2本の管状陽極4を設けた。2本の管状陽極は陽
極総表面積約19000mm2、直径20mm、作用高さ150mm
とした。断面が長四角形の陰極容器をステンレス
鋼で作成し、その内法を70mm×40mmとした。 2枚の管状膜は、米国デユポン社製の「ナフイ
オン(R)315〔Nafion(R)315〕」(商品名)の
シートの端縁を重ね合わせて加熱して接合してつ
くつた。 膜をそれ自体の重量によつて押圧する陰極物質
は、直径2.5mmのニツケル製の小球と長さ不定の
直径0.25mmのニツケル線を圧縮したものとの2種
類とした。 これに対して、比較用の電解槽を実験用電解槽
と同様に作成したが、この比較用電解槽では、陰
極充填物質を用いないで、多孔ニツケル板製の同
心管を用い、これを隔膜で被覆した陽極のまわり
に取り付け、陰極容器にボルト締めして、電解槽
の陰極の働きをさせた。陽極面と陰極面との間隔
をできるだけ一定にし、しかも最小間隔3mmから
最大間隔3.5mmの範囲のものとした。 この実験用電解槽と比較用電解槽とを次の条件
で実験した。 陽極液 塩化ナトリウム 200g/ 陰極液 水酸化ナトリウム 16wt% 電解温度 75〜85℃ PH(陽極液) 4〜4.5 電流密度(陽極面上) 3000A/m2 以上の実験による結果を示すと、次の表の通り
である。 【表】
DETAILED DESCRIPTION OF THE INVENTION This invention is capable of exchanging cations,
A method for the electrolysis of an aqueous alkali metal chloride solution in an electrolytic cell having a gas- and liquid-permeable anode and a gas- and liquid-permeable cathode separated by a membrane substantially impermeable to fluid flow, comprising: an alkali metal chloride aqueous solution is supplied to the anode, and water is supplied to the cathode, while maintaining the space between the surface of the anode and the surface of the cathode substantially at the thickness of the film. This invention relates to an electrolytic method. Recently, electrolytic cells using ion exchange membranes in place of traditional asbestos membranes have been developed, particularly for the electrolysis of brine. Cation exchange membranes are electrically conductive to electrolytes in the operating state, but are impermeable to fluids such as liquids and gases. In operation,
When an alkali metal halide is introduced into the anode, gaseous halogen is generated on the surface of the anode. Alkali metal ions selectively pass through the cation exchange membrane,
Alkali metal ions are combined with hydroxide ions generated at the cathode by electrolysis of water to form alkali metal hydroxide. Electrolysers with cation exchange membranes offer many benefits over conventional diaphragm electrolysers. Electrolysers with cation exchange membranes produce relatively pure solutions of alkali metal hydroxides that, as with porous diaphragms, must be diluted with brine and the hydroxides subsequently separated and purified. There is no problem, and it can be performed more effectively and easily than electrolysis. In order to fully utilize the characteristics of non-porous diaphragms,
It is desirable to minimize the distance between the electrodes (ie, the electrode gap); such a reduction has a significant effect on the operating voltage and, ultimately, the energy efficiency of the electrolytic process. Commercial cation exchange membranes are sensitive to current density, which must be kept within certain desirable limits for their effective operation. The current density should be approximately constant over the entire surface to avoid creating mechanical and electrical stresses that would damage the membrane. In the well-known diaphragm type electrolytic cell, the parameters listed above are largely influenced by structural tolerance limits, and considering the dimensions of the electrode surface of commercially available electrolytic cells, the electrode space (on the order of a few millimeters) )
For very small, unavoidable deviations from the strict parallelism of the anode and cathode surfaces will lead to some fluctuations in the current density across the surface of the diaphragm. As a result, previous attempts to correct current density locally in various regions of the diaphragm have been unsuccessful. According to this invention, the electrolysis of an aqueous solution of an alkali metal halide is carried out using a cation exchange membrane electrolytic cell, and the electrode space in the electrolytic cell is much smaller than that of a known electrolytic cell. However, the electrode space is constant over the entire electrode surface, and the conventional strict mechanical intersection is not considered. It is an object of this invention to maintain a substantially constant current density in an electrolytic cell equipped with an ion-selective cation exchange membrane between an anode and a cathode, and to avoid mechanical and An object of the present invention is to provide a method for effectively electrolyzing alkali metal chlorides using an electrolytic cell that reduces electrical stress. Other objects and benefits of the invention will be further elucidated as follows. Preferred electrolytic cells for carrying out the method of the invention consist of a cathode vessel made of steel or other conductive material that does not corrode in the catholyte environment, the top of the vessel being made of titanium, which is passive under conditions of anodic polarization. occluded by other valve metal plates or covers;
The titanium cover plate is provided with an aperture into which at least one, preferably a series of tubular anodes are welded, extending substantially the entire height of the vessel;
The tube wall of the tubular anode is perforated (except at the top of the tube wall near where it is welded to the titanium plate) to permit liquid and gas permeation. The anode is dimensionally stable, typically made of titanium or other valve metal, with at least a portion of its active surface coated with a conductive electrocatalyst that can withstand the anodic conditions and is non-passive, preferably platinum, palladium, rhodium or ruthenium. and iridium, or its oxide or mixed oxide coating. The lower end of the tubular anode is closed with a plug of inert material, preferably plastic, and is provided with a concentric threaded hole.
The permeable wall of the tubular anode is covered on the outside with a cationic membrane, forming an anode chamber on the inside of the tubular anode. The lower end of the cathode vessel is closed with a plate, preferably an inert plastic plate, and a device for supplying brine or other anolyte to the interior of the numerous tubular anodes, primarily plastic inlet tubes, is provided. , the flange of this tube is provided with a flange for sealing against the bottom plate of the container. The anolyte is delivered through a tubular fitting threaded into a threaded hole in the plug of the tubular anode. A preferred vessel for carrying out the method of the invention has an outlet in its upper part for discharging the catholyte gas and an outlet in its lower part for discharging the catholyte and for recycling the diluted catholyte or water into the cathode chamber. An introduction tube is provided. The anode welded to the cover of the container communicates with the upper chamber of the container through the hole in the cover, and the anode gas is separated from the electrolyte in this upper chamber, escapes from the outlet, is sent to the gas recovery system, and is removed from the electrolyte. is recycled to the resaturation system before being fed back into the electrolyzer. The cathode of an electrolytic cell consists of a cathode container and cathode material contained therein, such as pieces, globules, balls, cylinders, Raschig rings, metal wool, or other particulate, loose conductive material. These particles are packed tightly into the cathode container to at least the height of the permeable wall of the tubular anode coated with a cation exchange membrane. The cathode material is in contact with the inner wall of the vessel and the outer surface of the cation exchange membranes on the numerous tubular anodes, pressing against the membranes by the weight of the packing. The conductive cathode material is graphite, lead, iron, nickel, cobalt, vanadium, molybdenum, or its alloys, intermetallic compounds, metal hydrides, carbides, and nitrides, or has good conductivity and can withstand cathode conditions. It can be any other substance. Materials exhibiting low hydrogen overpotentials such as iron, nickel and their alloys are particularly suitable for brine electrolysis.
On the other hand, for example, Fe
Particulate matter with high hydrogen overvoltage, such as lead and lead alloys, is preferred for the ring reduction of () to Fe().
The cathode material can also include plastic, ceramic, or other non-conductive material coated with a layer of conductive, cathodic resistant material. The titanium plate or cover to which the tubular anode is welded is insulated from the cathode chamber by an insulating gasket. It is connected to the positive terminal of the current distribution network and the cathode chamber is connected to the negative terminal of the current distribution network. The cathode material is polarized to the cathode side and functions as a cathode, and the porosity of the cathode material helps the cathode gas to be discharged rapidly and contributes to cathodically protecting the inner wall of the cathode container. There is. Electrode spacing occurs at the geometrically indeterminate surface of the cathode material adjacent to the surface of the cation exchange membrane and in the geometrically indeterminate surface of the mesh of the permeable wall of the tubular anode to which the cation exchange membrane is attached. The local deflection of the electrolyte flux line narrows it almost as much as the thickness of the cation exchange membrane. The space between the cathode material and the anode is essentially the thickness of the cation exchange membrane during the electrolytic process. The above configuration of the electrolytic cell does not cause sudden local current density differences that could cause mechanical and electrical stresses that could destroy the cation exchange membrane.
Produces a uniform current density over the entire electrode area. Although the electrolytic cell implementing the method of the present invention having a plurality of tubular anodes has a much larger ratio of the electrode surface to the volume occupied by the electrolytic cell than conventional commercially available diaphragm electrolytic cells, First, it has the advantage of being extremely small. In the drawings showing an electrolytic cell for carrying out the method of the present invention, a rectangular container and a circular tube anode are shown. However, the anode tube can be of other shapes, such as oval, hexagonal, or other polygonal shapes, and these shapes fall within the scope of the term "tube" in this specification, and the container may also be rectangular. ,
It can be cylindrical or other shape. Although a single concentric cylindrical anode housed within a cylindrical container is not preferred for practicing the invention, the desired capacity can still be achieved using a large number of cells. As shown in FIG. 1, the electrolytic cell consists of a rectangular cathode vessel 1 made of steel or nickel, or alloys thereof, or other conductive and cathodically durable metals. A cover 2 made of titanium or other anodic passive valve metal bolted to the vessel 1
closes the container at the top. An insulating gasket 3 is provided between the cathode vessel 1 and the titanium cover 2. A titanium tubular anode 4 is welded to a hole in the cover 2 and projects above the cover as shown in the drawing. The tube wall of the tubular anode 4 is provided with holes and other perforations, which are provided in the bottom of the anode 4 from slightly below the cover 2. The perforations 6 of the anode can be formed by welding a reticular or expanded titanium plate to the solid top 5 or can be constructed integrally with the top. The surface of the perforated portion 6 of the tubular anode 4 is suitably coated with an electrocatalytic coating. The coating is one that resists anodic conditions in a non-passive manner and primarily contains noble metals or oxides of noble metals. The tubular anode 4 may be closed at its lower end by welding a titanium stopper or closure 7, or may be made of a chemical-resistant plastic such as PVC with a concentric threaded hole 7a, as shown in FIG. It is preferable that A preferably tubular cation exchange membrane 8 is placed over the anode 4 and fastened to the unperforated top of the anode and to the cylindrical outer surface of the plug 7 with a plastic band 9. This mounting method easily and completely achieves a fluid seal between the cation exchange membrane and the perforated portion of the anode 4, which is troublesome in ordinary filter press electrolyzers. Preferably, the cation exchange membrane 8 is permeable to cations and impermeable to fluids such as liquids and gases. Suitable membrane materials are fluoride polymers or copolymers containing sulfonic acid groups. This type of material is extremely flexible and can be made into tubular shapes by injection or by hot gluing flat sheets. The thickness of this seed film is about one-tenth of a millimeter. The container 1 is rotated 180° to facilitate filling and filled with cathode material 10. The vessel is then closed with a rectangular plate 11 having a perforation at the base of each of the anodes 4. Preferably, this plate is made of inert plastic. A rectangular brine distribution box 12 made of inert plastic is also welded to the plate 11 and closed by a closing plate 13 with an opening 14 for introducing brine. Board 11 and rectangular container 1
A gasket can be provided between the bottoms of the flanges 27. The flange 27 of the plate 11 can be bolted to the bottom flange of the container 1 and the closure plate 1
3 can be bolted to the bottom of the distribution box 12. The brine distribution box has an anode 4 with a tubular connector 15.
is connected inside. One end of this connector has a flange and is screwed into the screw hole 7a of the plug 7. A seal or gasket is provided between the flange of connector 15 and brine distribution box 12. The cathode container is filled with particulate matter up to the top of the permeable portion 6 of the tubular anode 4. The cathode vessel is provided with one or more outlets 17 for discharging hydrogen above the level of the granular layer 10, and below it is provided with an adjustable gooseneck outlet 18 for discharging the catholyte. . Above the top surface of the cathode material 10, a water sprinkler or spray tube 24 extends horizontally the length of the vessel and is provided with a series of holes to control the concentration of alkali metal hydroxide formed within the cathode chamber. Water is added to the cathode container to adjust the dilution. In order to dilute the hydroxide generated at the cathode and maintain the hydroxide concentration in the catholyte flowing out from the electrolytic cell within 25% (by weight) to 43% (by weight), water is introduced into the cathode chamber through the water sprinkler pipe 24. It is advisable to add constantly. The top of each tubular anode 4 is connected to a rectangular tank 19 extending over the entire top of the electrolyzer vessel 1 . The level of the electrolyte in the tank 19 is maintained constant by a gooseneck type discharge pipe 20 for discharging the electrolyte. The electrolyte discharged from tube 20 is sent to a resaturation system before being recycled into the electrolytic cell via electrolyte inlet tube 14. The halogen generated at the anode is discharged through an outlet 21 separated from the electrolyte in the tank 19. The plate or cover 2 to which the tubular anode 4 is welded is directly connected to the positive terminal of the power source by a connecting member 22, and the cathode container 1 is connected to the negative terminal by a connecting member 23. FIG. 2 is a cross-sectional view taken along line 1--1 of FIG. 1, and the elements of the electrolytic cell described with respect to FIG. 1 are designated by the same reference numerals. The location of the water sprinkler tube 24 is indicated by a broken line at a location higher than the level of the particles 10 of cathode material in the cathode vessel 1 . The electrolytic cell shown in the drawing has six tubular anodes in a rectangular casing, but the number of anodes can be varied laterally, multiple rows can be used, and The shape of the electrolytic cell and the anode can also be different from those shown in the drawings. The cylindrical surface of the tubular anode 4 is much wider than the volume of the container 1, and when compared with electrolytic cells used in the general market, although the current density for the electrolytic cells is the same, a small electrolytic cell has a high current density. You can increase the rate of output. In operation, a concentrated brine (120-310 g/) of, for example, NaCl is delivered through the inlet 14 to the distribution box 12 and rises through each of the tubular anodes 4 to deposit chlorine on the electrocatalyst coated surface of that anode. generate. Sodium ions pass through a cation exchange membrane and combine with hydroxide ions produced at the cathode by water electrolysis to form sodium hydroxide. The chlorine rises through the electrolyte in the tubular anode 4 and enters the tank 19, where it is separated from the liquid and discharged through the outlet 21. The rising chlorine bubbles cause the electrolyte within the tubular anode 4 to rapidly flow upwards. The brine from which chlorine has been removed is discharged from the outlet 20 at a constant level.
and is recycled to the resaturation system before being reintroduced into the cell via inlet 14. The hydrogen produced on the surface of the cathode material adjacent to the membrane 8 passes through the granular bed 10 and collects on the upper surface of the cathode vessel, from where it is discharged via the outlet 17. The sodium hydroxide solution is discharged via an adjustable gooseneck outlet 18. Adjustable gooseneck outlet 1
8 maintains the catholyte level at the same level as the top of the cathode bed 10. The catholyte is circulated through a sodium hydroxide recovery device located outside the electrolytic cell, and the diluted sodium hydroxide solution that flows out is reintroduced into the cathode chamber via the sprinkler pipe 24. The operating temperature can vary between 30°C and 100°C, but is preferably kept at about 85°C. The PH value of the anolyte can be varied between 1 and 6, and the current density can be between 1000 and 5000 A/ m2 . According to Figures 1 and 2 explained above, an experimental electrolytic cell was constructed, and two tubular anodes made by activating a porous titanium plate with oxides of Ru and Ti were attached to it. 4 was established. The two tubular anodes have a total anode surface area of approximately 19000mm 2 , a diameter of 20mm, and a working height of 150mm.
And so. A cathode container with a rectangular cross section was made of stainless steel, and its internal dimensions were 70 mm x 40 mm. The two tubular membranes were made by overlapping the edges of sheets of "Nafion (R) 315" (trade name) manufactured by DuPont, USA and joining them by heating. The cathode material that presses the membrane with its own weight was of two types: a nickel ball with a diameter of 2.5 mm and a compressed nickel wire with an indeterminate length and a diameter of 0.25 mm. In contrast, a comparative electrolytic cell was created in the same manner as the experimental electrolytic cell, but in this comparative electrolytic cell, a concentric tube made of porous nickel plate was used, without using a cathode filling material, and a diaphragm was used. It was mounted around an anode coated with chlorine and bolted to the cathode vessel to act as the cathode of the electrolytic cell. The distance between the anode surface and the cathode surface was kept as constant as possible, and the minimum distance was 3 mm to the maximum distance 3.5 mm. This experimental electrolytic cell and comparative electrolytic cell were tested under the following conditions. Anolyte Sodium chloride 200g / Cathode solution Sodium hydroxide 16wt% Electrolysis temperature 75-85℃ PH (Anolyte) 4-4.5 Current density (on the anode surface) 3000A/m 2 The results of experiments over 2 are shown in the table below. It is as follows. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法を実施する電解槽の断
面図で、第2図は第1図の線−に沿う断面図
で、断面上の諸部分は点線で示してある。図面に
おいて主要部分は次の符号で示してある。 1……陰極容器、2……カバー、3……ガスケ
ツト、4……管状陽極、6……陽極の穿孔部、8
……カチオン交換膜、10……陰極粒子状充填物
質、19……タンク、27……フランジ。
FIG. 1 is a sectional view of an electrolytic cell in which the method of the invention is carried out, and FIG. 2 is a sectional view taken along the line - in FIG. 1, with various parts on the cross section indicated by dotted lines. In the drawings, main parts are indicated by the following symbols. DESCRIPTION OF SYMBOLS 1... Cathode container, 2... Cover, 3... Gasket, 4... Tubular anode, 6... Perforation part of anode, 8
... Cation exchange membrane, 10 ... Cathode particulate filling material, 19 ... Tank, 27 ... Flange.

Claims (1)

【特許請求の範囲】 1 カチオンを交換することができ、かつ流体流
れに対して実質的に不透過性である膜によつて分
離されたガスおよび液体透過性陽極およびガスお
よび液体透過性陰極を有する電解槽におけるアル
カリ金属塩化物水溶液の電解方法において、 電解時に該陽極の表面と該陰極の表面との間の
空間を実質的に該膜の厚さに維持し、陰極の重量
によつて該膜を押しつけており、アルカリ金属塩
化物水溶液を該陽極に供給し、かつ水を陰極に供
給することを特徴とする電解方法。
Claims: 1. A gas- and liquid-permeable anode and a gas- and liquid-permeable cathode separated by a membrane capable of exchanging cations and substantially impermeable to fluid flow. In a method for electrolyzing an aqueous alkali metal chloride solution in an electrolytic cell, the space between the surface of the anode and the surface of the cathode is maintained at substantially the thickness of the membrane during electrolysis, and the space between the surface of the anode and the surface of the cathode is maintained substantially at the thickness of the membrane, and the space between the surface of the anode and the surface of the cathode is An electrolysis method characterized in that a membrane is pressed, an aqueous alkali metal chloride solution is supplied to the anode, and water is supplied to the cathode.
JP59062084A 1977-06-30 1984-03-29 Electrolysis of alkali metal chloride aqueous solution Granted JPS6036683A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT25251/77A IT1114820B (en) 1977-06-30 1977-06-30 ELECTROLYTIC MONOPOLAR MEMBRANE CELL
IT25251-A/77 1977-06-30

Publications (2)

Publication Number Publication Date
JPS6036683A JPS6036683A (en) 1985-02-25
JPH0153355B2 true JPH0153355B2 (en) 1989-11-14

Family

ID=11216133

Family Applications (4)

Application Number Title Priority Date Filing Date
JP53073311A Expired JPS58756B2 (en) 1977-06-30 1978-06-19 electrolytic cell
JP56203825A Granted JPS57126984A (en) 1977-06-30 1981-12-18 Shortening of gap between electrodes of electrolytic tank
JP59062083A Expired JPS6053115B2 (en) 1977-06-30 1984-03-29 electrolytic cell
JP59062084A Granted JPS6036683A (en) 1977-06-30 1984-03-29 Electrolysis of alkali metal chloride aqueous solution

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP53073311A Expired JPS58756B2 (en) 1977-06-30 1978-06-19 electrolytic cell
JP56203825A Granted JPS57126984A (en) 1977-06-30 1981-12-18 Shortening of gap between electrodes of electrolytic tank
JP59062083A Expired JPS6053115B2 (en) 1977-06-30 1984-03-29 electrolytic cell

Country Status (9)

Country Link
JP (4) JPS58756B2 (en)
CA (1) CA1106312A (en)
DE (1) DE2828621A1 (en)
GB (1) GB2002032B (en)
IT (1) IT1114820B (en)
NL (1) NL179926C (en)
SE (3) SE446104B (en)
SU (1) SU1286109A3 (en)
UA (1) UA6325A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1114820B (en) * 1977-06-30 1986-01-27 Oronzio De Nora Impianti ELECTROLYTIC MONOPOLAR MEMBRANE CELL
US4337127A (en) * 1980-03-07 1982-06-29 E. I. Du Pont De Nemours And Company Method for making a cathode, and method for lowering hydrogen overvoltage in a chlor-alkali cell
US4298447A (en) * 1980-03-07 1981-11-03 E. I. Du Pont De Nemours And Company Cathode and cell for lowering hydrogen overvoltage in a chlor-akali cell
JPS5941484A (en) * 1982-08-30 1984-03-07 Toagosei Chem Ind Co Ltd Electrolytic tank for electrolysis of aqueous alkali chloride solution
JPS59164976A (en) * 1983-03-10 1984-09-18 Fuji Electric Corp Res & Dev Ltd Measurement of tritium concentration
JPS6241530U (en) * 1985-08-29 1987-03-12
JPS62284095A (en) * 1986-06-02 1987-12-09 Permelec Electrode Ltd Durable electrolytic electrode and its production
JPH01201225A (en) * 1988-02-04 1989-08-14 Nippon Patent Electric Kk Floor surface grinder
JPH0611227U (en) * 1992-07-15 1994-02-10 東海ゴム工業株式会社 Metal laminated sheath cable
RU2636483C2 (en) 2012-09-21 2017-11-23 Реоксин Дискавериз Груп, Инк. Cell for liquid electrolysis

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1194181A (en) * 1966-05-24 1970-06-10 Nat Res Dev Improvements relating to Electrode Arrangements for Electrochemical Cells.
US3674676A (en) * 1970-02-26 1972-07-04 Diamond Shamrock Corp Expandable electrodes
DE2244244C3 (en) * 1972-09-15 1981-07-02 Dart Industries Inc., 90048 Los Angeles, Calif. Electrolytic process for removing a contaminant dissolved in an aqueous spent solution and regenerative electrolytic cell which can be used for this purpose
GB1423369A (en) * 1973-09-24 1976-02-04 Electricity Council Electrolytic cells
DE2503652A1 (en) * 1974-02-04 1975-08-07 Diamond Shamrock Corp CELL FOR CHLORAL CALCIUM ELECTROLYSIS
GB1497542A (en) * 1974-05-30 1978-01-12 Parel Sa Electrochemical apparatus
US3969201A (en) * 1975-01-13 1976-07-13 Canadian Patents And Development Limited Electrolytic production of alkaline peroxide solutions
US3984303A (en) * 1975-07-02 1976-10-05 Diamond Shamrock Corporation Membrane electrolytic cell with concentric electrodes
IT1114820B (en) * 1977-06-30 1986-01-27 Oronzio De Nora Impianti ELECTROLYTIC MONOPOLAR MEMBRANE CELL

Also Published As

Publication number Publication date
JPS58756B2 (en) 1983-01-07
JPS59182984A (en) 1984-10-17
JPS5417375A (en) 1979-02-08
JPS57126984A (en) 1982-08-06
GB2002032B (en) 1982-07-14
SE446104B (en) 1986-08-11
DE2828621A1 (en) 1979-01-11
SE7805927L (en) 1978-12-31
SE445562B (en) 1986-06-30
SE8207131D0 (en) 1982-12-14
JPH0124867B2 (en) 1989-05-15
IT1114820B (en) 1986-01-27
NL179926B (en) 1986-07-01
DE2828621C2 (en) 1989-11-09
GB2002032A (en) 1979-02-14
SU1286109A3 (en) 1987-01-23
NL179926C (en) 1986-12-01
UA6325A1 (en) 1994-12-29
NL7807036A (en) 1979-01-03
SE8207131L (en) 1982-12-14
SE8205353L (en) 1982-09-20
SE445471B (en) 1986-06-23
SE8205353D0 (en) 1982-09-20
JPS6036683A (en) 1985-02-25
JPS6053115B2 (en) 1985-11-22
CA1106312A (en) 1981-08-04

Similar Documents

Publication Publication Date Title
US4177116A (en) Electrolytic cell with membrane and method of operation
US3984303A (en) Membrane electrolytic cell with concentric electrodes
US5082543A (en) Filter press electrolysis cell
USRE32077E (en) Electrolytic cell with membrane and method of operation
JPS6341992B2 (en)
CA1094017A (en) Hollow bipolar electrolytic cell anode-cathode connecting device
JPS6315354B2 (en)
US4784735A (en) Concentric tube membrane electrolytic cell with an internal recycle device
JPS60501114A (en) Single central cell element for filter press cell construction
US4584080A (en) Bipolar electrolysis apparatus with gas diffusion cathode
JPS5815547B2 (en) electrolytic cell
JPS607710B2 (en) Electrolysis method of alkali metal chloride using diaphragm electrolyzer
JPS629674B2 (en)
KR890002061B1 (en) A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series
JPH0153355B2 (en)
MXPA01011385A (en) Electrode structure.
US3948750A (en) Hollow bipolar electrode
US4790914A (en) Electrolysis process using concentric tube membrane electrolytic cell
JP2926272B2 (en) Target electrode for corrosion prevention of electrochemical tank
US4046654A (en) Process for desalination with chlor-alkali production in a mercury diaphragm cell
US4236989A (en) Electrolytic cell
US4248689A (en) Electrolytic cell
US4271004A (en) Synthetic separator electrolytic cell
US4981563A (en) Electrolysis cell and method of producing chlorine
JPH08325772A (en) Spiral type cell for electrolysis