JP3750802B2 - Water electrolyzer and its operation method - Google Patents

Water electrolyzer and its operation method Download PDF

Info

Publication number
JP3750802B2
JP3750802B2 JP2002075371A JP2002075371A JP3750802B2 JP 3750802 B2 JP3750802 B2 JP 3750802B2 JP 2002075371 A JP2002075371 A JP 2002075371A JP 2002075371 A JP2002075371 A JP 2002075371A JP 3750802 B2 JP3750802 B2 JP 3750802B2
Authority
JP
Japan
Prior art keywords
water
anode
gas
pure water
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002075371A
Other languages
Japanese (ja)
Other versions
JP2003268585A (en
Inventor
道子 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002075371A priority Critical patent/JP3750802B2/en
Publication of JP2003268585A publication Critical patent/JP2003268585A/en
Application granted granted Critical
Publication of JP3750802B2 publication Critical patent/JP3750802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

【0001】
【発明の属する技術分野】
この発明は、固体高分子等の電解質膜を用いた水電解装置とその運転方法に関する。
【0002】
【従来の技術】
固体高分子等の電解質膜を隔膜として陽極(アノード)側と陰極(カソード)側とに分離し、陽極側に純水、又はイオンを含む水を供給しながら電気分解して、陽極側から酸素ガスを、陰極側から水素ガスをそれぞれ発生するように構成した水電解装置の開発が、近年進められ、そのシステム構成,スタックの構造,運転方法等々に関して、種々の提案が行なわれている(例えば、実開平2−51263号の全文明細書、特開平7−252682号公報、特開平8−311676号公報、特開平9−143779号公報、特開2000−54175号公報など参照)。
【0003】
前記特開2000−54175号公報には、模式的なシステム構成が記載されており、また、前記特開平9−143779号公報や実開平2−51263号の全文明細書には、供給水入口にイオン交換樹脂槽を設けることにより、電解される水に含まれる不純物イオンが、固体高分子電解質膜に付着蓄積して電解性能が低下するのを防止するシステム構成が記載されている。
【0004】
図2は、前記先行技術を参照して模式的に記載した従来の固体高分子電解質膜を用いた水電解装置のシステム系統図を示す。図2において、水電解セル1は固体高分子電解質膜により陰極室と陽極室とに内部が区画されている。前記陰極室と陽極室は、それぞれ、図示しない触媒電極と多孔質給電体とを備える。
【0005】
前記固体高分子電解質膜は工業用として広く用いられており、代表的な例として、ペルフルオロカーボンスルホン酸膜が上げられる。給電体としてはチタン繊維やステンレス繊維焼結板等の導電性の高い材料が用いられる。陽極側に供給された水は、2H20→02+4H++4e-の反応により分解され、酸素を発生する。H+は電解質膜のスルホン基を経由し、陰極側で、4H++4e-→2H2の反応が起こり水素ガスが発生する。
【0006】
図2において、水電解セル(以下、単に電解セルともいう。)1のアノ−ド側には、外部から、純水装置2を経由した純水が供給ポンプ3により供給配管4を経由して供給される。電解セルの各極内の純水は、アノード側循環ポンプ5、カソード側循環ポンプ6により電解セル入り口配管7,8、電解セル出口配管11,12、及び戻り配管9,10を経由して循環される。電解セルの出口配管11,12は気液分離器13,14に接続される。
【0007】
気液分離器13,14からは、電解セル入り口への戻り配管9,10の他に、分離した発生ガス(水素・酸素)を取り出す配管15,16が設置され、ガス冷却器17,18に接続される。ガス冷却器17,18には、凝縮水を気液分離器13,14に戻す配管19,20と、ガスを水電解装置から取り出す配管21,22が接続される。アノード側の入り口配管7には純水中の不純物の濃縮を避けるために、純水の一部を系外に排出するブローダウン配管23が接続される。又、図示しないが、電解セル1には電気分解の電力を供給する配線リードが接続されている。
【0008】
次に、上記装置の運転動作について以下に述べる。図2のような構成の装置において、図示しない配線リードから電力を供給すると、電解セル1で水の電気分解がおこり、配管11,12を経由して、純水と発生ガスの混合流が気液分離器13,14に流入する。気液分離器13,14では、純水と発生ガスが分離され、純水は循環ポンプ5,6により配管9,10を経由して再び電解セル1に戻される。電解で発生したガスは、気液分離器13,14で分離されたのち、がス冷却器17,18で冷却され、凝縮水とガスに分離される。凝縮水は配管19,20を介して気液分離器13,14に戻される。冷却されたガスは、配管21,22を介して水電解装置の外部に送出される。
【0009】
また、電気分解反応に要する純水は、電解質膜などを汚染して電解セルの特性を低下させる(電解電圧を上昇させる)要因となる水中の不純物質を除去するために、イオン交換樹脂筒等の純水装置2を経由してアノード側に供給される。電解セル内は、電気分解温度を一定(例えば、80℃)に保つためと発生したガスを電解セル外部に速やかに排出するために、両極ともに電解用純水供給量の数十倍の水量が循環されている。
【0010】
さらに、運転に伴いアノード側からは、電解用純水供給量の数倍の水量が電解質膜を通してカソード側に移動する。その要因は、電解質膜の中をイオンが通過する際に水が同伴することにあり、実験結果の一例によれば、約7倍から9倍の水量が電解質膜を通してアノード側からカソード側に移動する。上記により、カソード側の純水は増加することとなるため、カソード側の純水は前記移動水水量を装置系外に排出するか、アノード側に戻す等の方法で、カソード側の水量を一定に調節する必要がある。この水量の調節は、通常、気液分離器等に設置した液面計等を監視して行なわれる。
【0011】
また、純水装置を通しても純水中から不純物質は完全には除去することはできずに微量成分が残る。この不純物質は電極質膜を純水が通過する際に電解質膜に補足され、電解質膜が汚染して電解セルの特性低下を引き起こす要因となる。一方、電解質膜を通過したカソード側の純水は、アノード側の純水よりも清浄となって電気比抵抗が向上する。この向上する比率は、装置内の純水の水質が低下した場合に顕著となり、カソード側純水の電気比抵抗はアノード側電気比抵抗の2倍以上となる場合もある。
【0012】
【発明が解決しようとする課題】
ところで、装置に供給される電解用純水は電気分解により装置外部に発生ガスや発生ガス中の水蒸気として排出されるが、微量の不純物(アルカリ金属イオン等)はガスや水蒸気には同伴されないため、装置内の水は運転を継続するに従い濃縮されていく。この濃縮が進むと、電解セルの特性低下を招くため、水電解装置では、装置外部に適量の水を、前記ブローダウン配管23から排出して、不純物の過度の濃縮を抑止している。しかし、不純物濃度を、完全にゼロとすることは不可能であり、水質が低下し、長期間の運転では、例えば、セル電圧が上昇する等、水電解セルの電気的特性は徐々に低下する。。
【0013】
この発明は、上記のような問題点に鑑みてなされたもので、本発明の課題は、長期間の連続運転において、水電解セルが所定の電気的特性を維持できるように、水質電解セルの水質管理が可能な水電解装置とその運転方法を提供することにある。
【0014】
【課題を解決するための手段】
前述の課題を解決するため、この発明においては、固体高分子等の電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、前記陽極室と陰極室とにそれぞれ個別に接続した気液分離器を含む陽極側(アノード側)および陰極側(カソード側)のそれぞれ個別の純水循環回路と、外部から水電解セルに純水を供給する外部純水供給ラインとを備えた水電解装置の運転方法において、前記アノード側の気液分離器からのブローダウン水の比抵抗値が低下した際に、前記ブローダウン水の排出水量を増加し、これに伴って前記アノード側の気液分離器に純水を補給してアノード側の水質を調節する(請求項1の発明)。
【0016】
ブローダウン水の水質測定方法としては、比抵抗の測定の他に、例えば、pH値を測定し、pH値と陽イオン濃度との予め求めた相関により、ブローダウン水の水質を把握する方法もあるが、比抵抗値の方が、直接的でかつ簡便である。
【0017】
また、前記運転方法を実施するための装置としては、下記請求項ないしの発明が好適である。即ち、固体高分子等の電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、前記陽極室と陰極室とにそれぞれ個別に接続した気液分離器を含む陽極側(アノード側)および陰極側(カソード側)のそれぞれ個別の純水循環回路と、外部から水電解セルに純水を供給する外部純水供給ラインとを備えた水電解装置において、前記アノード側の気液分離器に純水を補給する水位調節器と、前記アノード側の気液分離器に接続して設けたブローダウン用配管を介して前記アノード側の気液分離器からのブローダウン水を導入する貯水槽と、この貯水槽内の水をイオン交換樹脂筒等の純水装置により純化して前記水位調節器に純水を導入する純水供給ラインと、前記ブローダウン用配管上に設けた水の比抵抗測定器と、この比抵抗測定器により計測された比抵抗値が低下して所定値に到達した際に、前記ブローダウン水の排出水量を増加し、これに伴って、前記アノード側の気液分離器に純水を補給する制御装置とを備えるものとする(請求項の発明)。
【0018】
上記請求項の発明の水電解装置によれば、アノード側の気液分離器から水を少量ずつ排出し、その排出する水の水質を管理し、かつ排出する水を純化して再利用することができる。
【0019】
さらに、請求項に記載の水電解装置において、前記アノード側の気液分離器に純水を補給する水位調節器は、カソード側の気液分離器内の水と連通する接続配管を備えるものとする(請求項の発明)。この構成によれば、前述のように、約7倍から9倍の水量が電解質膜を通してアノード側からカソード側に移動した場合に、カソード側で増加した純水を、水位調節器に戻すことによりカソード側の水量を一定に調節することができる。この戻される水は、電解質膜において純化されるので、システム全体として合理的な構成となる。
【0020】
【発明の実施の形態】
図1に基づき、この発明の実施の形態について以下に述べる。なお、図1に示す水電解装置において、図2に示す部材と同一機能を有する部材には、同一番号を付して詳細説明を省略する。
【0021】
図1の水電解装置の系統において、図2と異なる点は、アノード側の気液分離器13に純水を補給する水位調節器30と、前記アノード側の気液分離器13に接続して設けたブローダウン用配管38を介して前記アノード側の気液分離器13からのブローダウン水を導入する貯水槽32と、この貯水槽内の水をイオン交換樹脂筒34等の純水装置により純化して前記水位調節器30に純水を導入する純水供給ライン37と、前記ブローダウン用配管38上に設けた水の比抵抗測定器40と、この比抵抗測定器40により計測された比抵抗値が低下して所定値に到達した際に、前記ブローダウン水の排出水量を増加し、これに伴って、前記アノード側の気液分離器に純水を補給する制御装置41とを備える点である。
【0022】
なお、図1において、41aおよび41bは排水制御弁および純水補給制御弁を示し、36は純水補給ポンプを示す。また、39は、前記請求項4の発明に係る接続配管を示す。
【0023】
図1に示す装置によれば、アノード側の気液分離器13から水を少量ずつブローダウン用配管38を介して排出し、その排出する水の水質を、比抵抗測定器40と制御装置41等により管理しつつ、かつ排出された水をイオン交換樹脂筒34により純化して水位調節器30に戻して再利用することができる。
【0024】
【実施例】
図1に示す装置により、アノード側の気液分離器13から10m1/minの水を排出し、その水の比抵抗値が80℃で1.5MΩ・cm以上を維持するようにし、1.5MΩ・cmを下回った場合、水量を45m1/minに増やし、水位調節器30から通常の状態よりも多くの新しい水がセルと気液分離器に供給されるようにして系内の水質を調整した。
【0025】
この調整により、水電解セル1の電解特性は、80℃、常圧、電極面積50 cm2において、電流密度1A/cm2の場合のセル電圧が初期に1.533Vを示し、50h後は1.68Vに上昇したが、試験開始後500hにおいても1.65V±0.02Vを維持した。
【0026】
上記装置において、水の水質管理を行わない場合には、水電解セル1の電解特性は、80℃、常圧、電極面積50 cm2において、電流密度1A/cm2の場合のセル電圧が初期に1.535Vを示し、50h後は1.69Vに上昇し、その後も徐々に上がり続け、試験開始後150hでは1.770Vとなった。これらの結果から、アノード側から排出される水の水質管理を行い、装置系内の水質を保つことにより、セル電圧上昇を抑え、長期間の安定した性能を得ることができた。
【0027】
【発明の効果】
前述のように、この発明によれば、固体高分子等の電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、前記陽極室と陰極室とにそれぞれ個別に接続した気液分離器を含む陽極側(アノード側)および陰極側(カソード側)のそれぞれ個別の純水循環回路と、外部から水電解セルに純水を供給する外部純水供給ラインとを備えた水電解装置において、前記アノード側の気液分離器に純水を補給する水位調節器と、前記アノード側の気液分離器に接続して設けたブローダウン用配管を介して前記アノード側の気液分離器からのブローダウン水を導入する貯水槽と、この貯水槽内の水をイオン交換樹脂筒等の純水装置により純化して前記水位調節器に純水を導入する純水供給ラインと、前記ブローダウン用配管上に設けた水の比抵抗測定器と、この比抵抗測定器により計測された比抵抗値が低下して所定値に到達した際に、前記ブローダウン水の排出水量を増加し、これに伴って、前記アノード側の気液分離器に純水を補給する制御装置とを備えるものとし、アノード側の気液分離器から水を少量ずつ排出し、その排出する水の水質を、比抵抗測定器と制御装置等により管理するようにしたので、水電解セルの電気的特性を所定値に維持しつつ、かつ排出された水をイオン交換樹脂筒等により純化して水位調節器に戻して再利用することができる。
【図面の簡単な説明】
【図1】この発明の水電解装置の実施例の系統図
【図2】従来の水電解装置の一例を示す系統図
【符号の説明】
1:電解セル、5:アノード側循環ポンプ、6:カソード側循環ポンプ、7,8:電解セル入りロ配管、11,12:電解セル出口配管、13,14:気液分離器、17,18:ガス冷却器、30:水位調節器、32:貯水槽、34:イオン交換樹脂筒、37:純水供給ライン、38:ブローダウン用配管、39:接続配管、40:比抵抗測定器、41:制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water electrolysis apparatus using an electrolyte membrane such as a solid polymer and an operation method thereof.
[0002]
[Prior art]
An electrolyte membrane such as a solid polymer is separated into an anode (anode) side and a cathode (cathode) side using an electrolyte membrane, and electrolysis is performed while supplying pure water or water containing ions to the anode side, and oxygen is supplied from the anode side. In recent years, development of water electrolyzers configured to generate hydrogen gas from the cathode side has been advanced, and various proposals have been made regarding the system configuration, stack structure, operation method, and the like (for example, JP-A-2-512263, Japanese Patent Application Laid-Open No. 7-252682, Japanese Patent Application Laid-Open No. 8-31676, Japanese Patent Application Laid-Open No. 9-14379, Japanese Patent Application Laid-Open No. 2000-54175, and the like.
[0003]
The above Japanese Patent Laid-Open No. 2000-54175 describes a schematic system configuration, and the full texts of the above Japanese Patent Laid-Open No. 9-14379 and Japanese Utility Model Laid-Open No. 2-51263 include a feed water inlet. A system configuration is described in which, by providing an ion exchange resin tank, impurity ions contained in water to be electrolyzed are prevented from adhering and accumulating on the solid polymer electrolyte membrane to deteriorate electrolytic performance.
[0004]
FIG. 2 shows a system diagram of a water electrolysis apparatus using a conventional solid polymer electrolyte membrane schematically described with reference to the prior art. In FIG. 2, the water electrolysis cell 1 is divided into a cathode chamber and an anode chamber by a solid polymer electrolyte membrane. Each of the cathode chamber and the anode chamber includes a catalyst electrode and a porous power feeder (not shown).
[0005]
The solid polymer electrolyte membrane is widely used for industrial purposes, and a typical example is a perfluorocarbon sulfonic acid membrane. A highly conductive material such as a titanium fiber or a stainless fiber sintered plate is used as the power feeder. The water supplied to the anode side is decomposed by the reaction of 2H 2 0 → 0 2 + 4H + + 4e to generate oxygen. H + undergoes a reaction of 4H + + 4e → 2H 2 on the cathode side via the sulfone group of the electrolyte membrane, and hydrogen gas is generated.
[0006]
In FIG. 2, on the anode side of a water electrolysis cell (hereinafter also simply referred to as an electrolysis cell) 1, pure water that has passed through a pure water device 2 is supplied from the outside via a supply pipe 4 by a supply pump 3. Supplied. Pure water in each electrode of the electrolysis cell is circulated by the anode side circulation pump 5 and the cathode side circulation pump 6 via the electrolysis cell inlet pipes 7 and 8, the electrolysis cell outlet pipes 11 and 12, and the return pipes 9 and 10. Is done. The outlet pipes 11 and 12 of the electrolysis cell are connected to gas-liquid separators 13 and 14.
[0007]
From the gas-liquid separators 13 and 14, pipes 15 and 16 for taking out the separated generated gas (hydrogen / oxygen) are installed in addition to the return pipes 9 and 10 to the electrolysis cell inlet, and the gas coolers 17 and 18 are connected to the gas coolers 17 and 18. Connected. Connected to the gas coolers 17 and 18 are pipes 19 and 20 for returning condensed water to the gas-liquid separators 13 and 14 and pipes 21 and 22 for extracting gas from the water electrolysis apparatus. In order to avoid the concentration of impurities in pure water, a blow-down pipe 23 for discharging a part of pure water out of the system is connected to the inlet pipe 7 on the anode side. Although not shown, the electrolysis cell 1 is connected to a wiring lead for supplying electrolysis power.
[0008]
Next, the operation of the above apparatus will be described below. In the apparatus configured as shown in FIG. 2, when electric power is supplied from a wiring lead (not shown), water is electrolyzed in the electrolytic cell 1, and a mixed flow of pure water and generated gas is gasified via the pipes 11 and 12. It flows into the liquid separators 13 and 14. In the gas-liquid separators 13 and 14, the pure water and the generated gas are separated, and the pure water is returned again to the electrolysis cell 1 via the pipes 9 and 10 by the circulation pumps 5 and 6. The gas generated by electrolysis is separated by the gas-liquid separators 13 and 14 and then cooled by the coolers 17 and 18 to be separated into condensed water and gas. The condensed water is returned to the gas-liquid separators 13 and 14 via the pipes 19 and 20. The cooled gas is sent to the outside of the water electrolysis apparatus via the pipes 21 and 22.
[0009]
The pure water required for the electrolysis reaction is contaminated with electrolyte membranes and the like, and ion exchange resin cylinders, etc. are used to remove impurities in the water that cause the characteristics of the electrolysis cell to deteriorate (raise the electrolysis voltage). Is supplied to the anode side via the pure water device 2. In the electrolysis cell, in order to keep the electrolysis temperature constant (for example, 80 ° C.) and to quickly discharge the generated gas to the outside of the electrolysis cell, the amount of water is several tens of times the supply amount of pure water for electrolysis at both electrodes. It is circulating.
[0010]
Furthermore, with the operation, the amount of water several times the supply amount of pure water for electrolysis moves from the anode side to the cathode side through the electrolyte membrane. The reason is that water is entrained when ions pass through the electrolyte membrane. According to an example of the experimental results, about 7 to 9 times as much water moves from the anode side to the cathode side through the electrolyte membrane. To do. As a result, the amount of pure water on the cathode side increases, so that the amount of water on the cathode side is constant by discharging the amount of moving water out of the system or returning it to the anode side. It is necessary to adjust to. This adjustment of the amount of water is usually performed by monitoring a liquid level gauge installed in a gas-liquid separator or the like.
[0011]
In addition, the impurities cannot be completely removed from the pure water even through the pure water apparatus, and trace components remain. This impurity is captured by the electrolyte membrane when pure water passes through the electrode membrane, causing the electrolyte membrane to be contaminated and causing deterioration of the characteristics of the electrolytic cell. On the other hand, the pure water on the cathode side that has passed through the electrolyte membrane is cleaner than the pure water on the anode side, and the electrical resistivity is improved. This increasing ratio becomes remarkable when the quality of the pure water in the apparatus is lowered, and the electrical resistivity of the cathode-side pure water may be twice or more the anode-side electrical resistivity.
[0012]
[Problems to be solved by the invention]
By the way, the pure water for electrolysis supplied to the apparatus is discharged as generated gas or water vapor in the generated gas by electrolysis, but a small amount of impurities (alkali metal ions, etc.) are not accompanied by gas or water vapor. The water in the device is concentrated as the operation continues. When this concentration progresses, the characteristics of the electrolysis cell are deteriorated. Therefore, in the water electrolysis apparatus, an appropriate amount of water is discharged from the blow-down pipe 23 to suppress excessive concentration of impurities. However, it is impossible to make the impurity concentration completely zero, the water quality is lowered, and the electrical characteristics of the water electrolysis cell gradually decline, for example, the cell voltage rises during long-term operation. . .
[0013]
The present invention has been made in view of the above problems, and an object of the present invention is to improve the water electrolysis cell so that the water electrolysis cell can maintain predetermined electrical characteristics in a long-term continuous operation. It is to provide a water electrolysis apparatus capable of managing water quality and an operation method thereof.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, a water electrolysis cell whose interior is divided into an anode chamber and a cathode chamber by an electrolyte membrane such as a solid polymer, and the anode chamber and the cathode chamber are individually connected to each other. Each of the anode side (anode side) and cathode side (cathode side) pure water circulation circuit including the gas-liquid separator and an external pure water supply line for supplying pure water to the water electrolysis cell from the outside In the operation method of the water electrolysis apparatus, when the specific resistance value of the blowdown water from the gas-liquid separator on the anode side decreases , the discharge amount of the blowdown water is increased. Pure water is supplied to the gas-liquid separator to adjust the water quality on the anode side (invention of claim 1).
[0016]
As a method for measuring the water quality of blowdown water, in addition to the measurement of specific resistance, for example, there is a method of measuring the pH value and grasping the water quality of the blowdown water based on the correlation obtained in advance between the pH value and the cation concentration. However, the specific resistance value is more direct and simple.
[0017]
Further, as an apparatus for carrying out the operation method, the inventions of the following claims 2 to 3 are suitable. That is, a water electrolysis cell whose interior is divided into an anode chamber and a cathode chamber by an electrolyte membrane such as a solid polymer, and an anode side (anode) including a gas-liquid separator individually connected to the anode chamber and the cathode chamber. Side) and cathode side (cathode side), respectively, and a water electrolysis apparatus comprising an external pure water supply line for supplying pure water to the water electrolysis cell from the outside. Blow-down water from the gas-liquid separator on the anode side is introduced through a water level regulator for supplying pure water to the separator and a blow-down pipe connected to the gas-liquid separator on the anode side. A water storage tank, a pure water supply line that purifies the water in the water storage tank with a pure water device such as an ion exchange resin cylinder and introduces pure water to the water level regulator, and water provided on the blowdown pipe Specific resistance measuring instrument and this specific resistance measurement When the specific resistance value measured by the vessel decreases and reaches a predetermined value, the amount of discharged water of the blowdown water is increased, and along with this, pure water is supplied to the gas-liquid separator on the anode side. And a control device (invention of claim 2 ).
[0018]
According to the water electrolysis apparatus of the second aspect of the invention, water is discharged little by little from the gas-liquid separator on the anode side, the quality of the discharged water is managed, and the discharged water is purified and reused. be able to.
[0019]
3. The water electrolysis apparatus according to claim 2 , wherein the water level regulator for replenishing the anode-side gas-liquid separator with pure water includes a connection pipe communicating with the water in the cathode-side gas-liquid separator. (Invention of claim 3 ) According to this configuration, as described above, when about 7 to 9 times the amount of water moves from the anode side to the cathode side through the electrolyte membrane, the pure water increased on the cathode side is returned to the water level regulator. The amount of water on the cathode side can be adjusted to be constant. Since the returned water is purified in the electrolyte membrane, the entire system has a rational configuration.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to FIG. In the water electrolysis apparatus shown in FIG. 1, members having the same functions as those shown in FIG.
[0021]
1 is different from FIG. 2 in that it is connected to a water level regulator 30 for supplying pure water to the anode-side gas-liquid separator 13 and the anode-side gas-liquid separator 13. A water storage tank 32 for introducing blowdown water from the anode-side gas-liquid separator 13 through a provided blowdown pipe 38 and water in the water storage tank by a pure water device such as an ion exchange resin cylinder 34. The pure water supply line 37 for purifying and introducing pure water into the water level adjuster 30, the specific resistance measuring device 40 for water provided on the blowdown pipe 38, and the specific resistance measuring device 40 When the specific resistance value decreases and reaches a predetermined value, the controller 41 increases the discharge amount of the blow-down water and, along with this, supplies pure water to the gas-liquid separator on the anode side. It is a point to prepare.
[0022]
In FIG. 1, 41a and 41b indicate drainage control valves and pure water supply control valves, and 36 indicates a pure water supply pump. Reference numeral 39 denotes a connection pipe according to the invention of claim 4.
[0023]
According to the apparatus shown in FIG. 1, water is discharged little by little from the anode-side gas-liquid separator 13 through the blowdown pipe 38, and the quality of the discharged water is determined by the specific resistance measuring device 40 and the control device 41. The discharged water can be purified by the ion exchange resin cylinder 34 and returned to the water level adjuster 30 for reuse.
[0024]
【Example】
With the apparatus shown in FIG. 1, 10 m1 / min of water is discharged from the gas-liquid separator 13 on the anode side, and the specific resistance of the water is maintained at 1.5 MΩ · cm or more at 80 ° C. When the water level was lower than, the amount of water was increased to 45 m1 / min, and the water quality in the system was adjusted so that more water was supplied from the water level adjuster 30 to the cell and the gas-liquid separator.
[0025]
With this adjustment, the electrolysis characteristics of the water electrolysis cell 1 showed an initial cell voltage of 1.533 V at a current density of 1 A / cm 2 at 80 ° C., normal pressure and an electrode area of 50 cm 2 , and 1.68 V after 50 h. However, 1.65 V ± 0.02 V was maintained even after 500 hours from the start of the test.
[0026]
In the above apparatus, when water quality control is not performed, the electrolysis characteristics of the water electrolysis cell 1 are the initial cell voltage when the current density is 1 A / cm 2 at 80 ° C., normal pressure, and electrode area 50 cm 2 . 1.535V, increased to 1.69V after 50h, continued to increase gradually thereafter, and reached 1.770V 150h after the start of the test. From these results, it was possible to control the quality of the water discharged from the anode side and maintain the quality of the water in the system, thereby suppressing the cell voltage rise and obtaining stable performance for a long period of time.
[0027]
【The invention's effect】
As described above, according to the present invention, a water electrolysis cell whose interior is divided into an anode chamber and a cathode chamber by an electrolyte membrane such as a solid polymer, and a gas connected individually to the anode chamber and the cathode chamber, respectively. Water electrolysis comprising an individual pure water circulation circuit on the anode side (anode side) and the cathode side (cathode side) including a liquid separator, and an external pure water supply line for supplying pure water to the water electrolysis cell from the outside In the apparatus, the anode-side gas-liquid separation is performed via a water level regulator that supplies pure water to the anode-side gas-liquid separator and a blow-down pipe connected to the anode-side gas-liquid separator. A water storage tank for introducing blowdown water from the vessel, a pure water supply line for purifying the water in the water storage tank with a pure water device such as an ion exchange resin cylinder and introducing pure water to the water level regulator; Ratio of water provided on blowdown piping When the specific resistance value measured by the anti-measurement device and the specific resistance measurement device decreases and reaches a predetermined value, the discharge amount of the blow-down water is increased. It is assumed that the liquid separator is equipped with a control device that supplies pure water, and water is discharged little by little from the gas-liquid separator on the anode side, and the quality of the discharged water is managed by a specific resistance measuring device and a control device. Thus, while maintaining the electrical characteristics of the water electrolysis cell at a predetermined value, the discharged water can be purified by the ion exchange resin cylinder and returned to the water level regulator for reuse.
[Brief description of the drawings]
FIG. 1 is a system diagram of an embodiment of a water electrolysis apparatus according to the present invention. FIG. 2 is a system diagram showing an example of a conventional water electrolysis apparatus.
1: Electrolytic cell, 5: Anode-side circulation pump, 6: Cathode-side circulation pump, 7, 8: Electrolytic cell-containing piping, 11, 12: Electrolytic cell outlet piping, 13, 14: Gas-liquid separator, 17, 18 : Gas cooler, 30: Water level adjuster, 32: Water tank, 34: Ion exchange resin cylinder, 37: Pure water supply line, 38: Pipe for blowdown, 39: Connection pipe, 40: Resistivity measuring instrument, 41 :Control device.

Claims (3)

固体高分子等の電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、前記陽極室と陰極室とにそれぞれ個別に接続した気液分離器を含む陽極側(アノード側)および陰極側(カソード側)のそれぞれ個別の純水循環回路と、外部から水電解セルに純水を供給する外部純水供給ラインとを備えた水電解装置の運転方法において、
前記アノード側の気液分離器からのブローダウン水の比抵抗値が低下した際に、前記ブローダウン水の排出水量を増加し、これに伴って前記アノード側の気液分離器に純水を補給してアノード側の水質を調節することを特徴とする水電解装置の運転方法。
A water electrolysis cell whose interior is divided into an anode chamber and a cathode chamber by an electrolyte membrane such as a solid polymer, and an anode side (anode side) including a gas-liquid separator individually connected to the anode chamber and the cathode chamber And a method for operating a water electrolysis apparatus comprising an individual pure water circulation circuit on each of the cathode side (cathode side) and an external pure water supply line for supplying pure water to the water electrolysis cell from the outside.
When the specific resistance value of the blowdown water from the gas-liquid separator on the anode side decreases , the discharge amount of the blow-down water is increased, and accordingly, pure water is supplied to the gas-liquid separator on the anode side. A method for operating a water electrolysis apparatus, comprising replenishing and adjusting water quality on the anode side.
固体高分子等の電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、前記陽極室と陰極室とにそれぞれ個別に接続した気液分離器を含む陽極側(アノード側)および陰極側(カソード側)のそれぞれ個別の純水循環回路と、外部から水電解セルに純水を供給する外部純水供給ラインとを備えた水電解装置において、
前記アノード側の気液分離器に純水を補給する水位調節器と、前記アノード側の気液分離器に接続して設けたブローダウン用配管を介して前記アノード側の気液分離器からのブローダウン水を導入する貯水槽と、この貯水槽内の水をイオン交換樹脂筒等の純水装置により純化して前記水位調節器に純水を導入する純水供給ラインと、前記ブローダウン用配管上に設けた水の比抵抗測定器と、この比抵抗測定器により計測された比抵抗値が低下して所定値に到達した際に、前記ブローダウン水の排出水量を増加し、これに伴って、前記アノード側の気液分離器に純水を補給する制御装置とを備えることを特徴とする水電解装置。
A water electrolysis cell whose interior is divided into an anode chamber and a cathode chamber by an electrolyte membrane such as a solid polymer, and an anode side (anode side) including a gas-liquid separator individually connected to the anode chamber and the cathode chamber And a water electrolysis apparatus provided with an individual pure water circulation circuit on each of the cathode side (cathode side) and an external pure water supply line for supplying pure water to the water electrolysis cell from the outside,
A water level controller for supplying pure water to the anode-side gas-liquid separator, and a blow-down pipe connected to the anode-side gas-liquid separator from the anode-side gas-liquid separator. A water storage tank for introducing blowdown water, a pure water supply line for purifying water in the water storage tank by a pure water device such as an ion exchange resin cylinder and introducing pure water to the water level regulator, and for the blowdown When the specific resistance measuring device for water provided on the pipe and the specific resistance value measured by the specific resistance measuring device decrease and reach a predetermined value, the discharge amount of the blowdown water is increased. In addition, a water electrolysis apparatus comprising: a control device that supplies pure water to the gas-liquid separator on the anode side.
前記アノード側の気液分離器に純水を補給する水位調節器は、カソード側の気液分離器内の水と連通する接続配管を備えることを特徴とする請求項に記載の水電解装置。 3. The water electrolysis apparatus according to claim 2 , wherein the water level regulator for replenishing the anode-side gas-liquid separator with pure water includes a connection pipe communicating with water in the cathode-side gas-liquid separator. .
JP2002075371A 2002-03-19 2002-03-19 Water electrolyzer and its operation method Expired - Fee Related JP3750802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075371A JP3750802B2 (en) 2002-03-19 2002-03-19 Water electrolyzer and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075371A JP3750802B2 (en) 2002-03-19 2002-03-19 Water electrolyzer and its operation method

Publications (2)

Publication Number Publication Date
JP2003268585A JP2003268585A (en) 2003-09-25
JP3750802B2 true JP3750802B2 (en) 2006-03-01

Family

ID=29204460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075371A Expired - Fee Related JP3750802B2 (en) 2002-03-19 2002-03-19 Water electrolyzer and its operation method

Country Status (1)

Country Link
JP (1) JP3750802B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958541B2 (en) * 2006-12-27 2012-06-20 株式会社ササクラ Ozone generator
JP5394458B2 (en) * 2011-09-13 2014-01-22 本田技研工業株式会社 How to stop water electrolysis system
CN114622219A (en) * 2022-03-24 2022-06-14 阳光氢能科技有限公司 Pure water circulation system for hydrogen production device, control method of pure water circulation system and hydrogen production device

Also Published As

Publication number Publication date
JP2003268585A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
US5796799A (en) Control apparatus for oxygen concentration of water in atomic reactor
US7353085B2 (en) Electrolyzer cell stack system
US9487874B2 (en) Method for operating the water electrolysis system
EP1243671B1 (en) Water electrolyzing device
JP7136919B2 (en) Hydrogen production method
JP5394458B2 (en) How to stop water electrolysis system
WO2018168876A1 (en) Organic substance generation system and method for producing organic substance
TWI822978B (en) Function recovery method of water electrolysis device and water electrolysis device
JP2021085081A (en) Water electrolysis system
JP5341547B2 (en) Water electrolysis system
KR20130077164A (en) Water treatment apparatus for fuel cell
JP3750802B2 (en) Water electrolyzer and its operation method
JP2004107775A (en) Water electrolysis device and operation method thereof
JP5376152B2 (en) Sulfuric acid electrolysis method
JP3991146B2 (en) Solid polymer water electrolyzer
JP6587061B2 (en) Hydrogen water production equipment
AU2019385031B2 (en) Hydrogen production method
JP2005248246A (en) Apparatus for generating hydrogen by water electrolysis accommodated in high-pressure vessel
JP2004277870A (en) Method for operating water electrolyzer
JP4240834B2 (en) Solid polymer membrane water electrolyzer
JP2007059196A (en) Power generating system
EP4170068A1 (en) Water electrolyzer and control method of water electrolysis cell
JP2004256911A (en) Water electrolyzing apparatus, and method for operating the same
JP2003293179A (en) Water electrolyzer and method for operating the same
WO2022210578A1 (en) Method for producing hydrogen gas, method for stopping operation of apparatus for producing hydrogen gas, and hydrogen gas production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees