JP2004107775A - Water electrolysis device and operation method thereof - Google Patents

Water electrolysis device and operation method thereof Download PDF

Info

Publication number
JP2004107775A
JP2004107775A JP2002275330A JP2002275330A JP2004107775A JP 2004107775 A JP2004107775 A JP 2004107775A JP 2002275330 A JP2002275330 A JP 2002275330A JP 2002275330 A JP2002275330 A JP 2002275330A JP 2004107775 A JP2004107775 A JP 2004107775A
Authority
JP
Japan
Prior art keywords
water
gas
electrolysis
pure water
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002275330A
Other languages
Japanese (ja)
Inventor
Takashi Harada
原田 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002275330A priority Critical patent/JP2004107775A/en
Publication of JP2004107775A publication Critical patent/JP2004107775A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water electrolysis device and an operation method thereof for maintaining a moist state without exposing an electrolytic membrane in gas and adequately maintaining water quality even when the device is fully stopped. <P>SOLUTION: An electrolytic cell outlet side piping system which has control valves (24 and 25) to close circulation of pure water when a pump is stopped between inlet manifolds (101a and 101b) and water discharge sides of pumps (5 and 6) and which connects an anode chamber and a cathode chamber to vapor-liquid separators (13 and 14) comprises: outlet manifolds (102a and 102b) provided adjacent to and above electrolytic membranes (100a and 100b); and electrolytic cell outlet pipes (11 and 12) connected to the upper side portions of the vapor-liquid separators from the upper portions of the outlet manifolds. The volume of the electrolytic cell outlet side piping system from the upper ends of the electrolytic membranes to the highest point (the position F) of the electrolytic cell outlet side piping system is not less than the preliminarily calculated volume of the gas including the gas generated during the electrolytic operation in a water electrolysis cell 1 and the gas generated in the system from the upper ends of the electrolytic membranes to the highest position (the position F) of the electrolytic cell outlet side piping system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、固体高分子等の電解質膜を用いた水電解装置とその運転方法に関する。
【0002】
【従来の技術】
固体高分子等の電解質膜を隔膜として陽極(アノード)側と陰極(カソード)側とに分離し、陽極側に純水、又はイオンを含む水を供給しながら電気分解して、陽極側から酸素ガスを、陰極側から水素ガスをそれぞれ発生するように構成した水電解装置の開発が、近年進められ、そのシステム構成,スタックの構造,運転方法等々に関して、種々の提案が行なわれている(例えば、特許文献1および2など参照)。
【0003】
前記特許文献1には、一般的な基本システム構成が記載されており、また、前記特許文献2には、供給水入口にイオン交換樹脂槽を設けることにより、電解される水に含まれる不純物イオンが、固体高分子電解質膜に付着蓄積して電解性能が低下するのを防止するシステム構成が記載されている。
【0004】
図4は、前記先行技術を参照して模式的に記載した従来の固体高分子電解質膜を用いた水電解装置のシステム系統図を示す。図4において、水電解セル1は固体高分子電解質膜により陰極室と陽極室とに内部が区画されている。前記陰極室と陽極室は、それぞれ、図示しない触媒電極と多孔質給電体とを備える。
【0005】
前記固体高分子電解質膜は工業用として広く用いられており、代表的な例として、ペルフルオロカーボンスルホン酸膜が上げられる。給電体としてはチタン繊維やステンレス繊維焼結板等の導電性の高い材料が用いられる。陽極側に供給された水は、2H0→0+4H+4eの反応により分解され、酸素を発生する。Hは電解質膜のスルホン基を経由し、陰極側で、4H+4e→2Hの反応が起こり水素ガスが発生する。
【0006】
図4において、水電解セル(以下、単に電解セルともいう。)1のアノ−ド側には、外部から、純水装置2を経由した純水が供給ポンプ3により外部純水供給ライン4を経由して供給される。電解セルの各極内の純水は、アノード側循環ポンプ5、カソード側循環ポンプ6により電解セル入り口配管7,8、電解セル出口配管11,12、及び戻り配管9,10を経由して循環される。電解セルの出口配管11,12は気液分離器13,14に接続される。
【0007】
気液分離器13,14からは、電解セル入り口への戻り配管9,10の他に、分離した発生ガス(水素・酸素)を取り出す配管15,16が設置され、ガス冷却器17,18に接続される。ガス冷却器17,18には、凝縮水を気液分離器13,14に戻す配管19,20と、ガスを水電解装置から取り出す配管21,22が接続される。アノード側の入り口配管7には純水中の不純物の濃縮を避けるために、純水の一部を系外に排出するブローダウン配管23が接続される。又、図示しないが、電解セル1には電気分解の電力を供給する配線リードが接続されている。
【0008】
次に、上記装置の運転動作について以下に述べる。図4のような構成の装置において、図示しない配線リードから電力を供給すると、電解セル1で水の電気分解がおこり、配管11,12を経由して、純水と発生ガスの混合流が気液分離器13,14に流入する。気液分離器13,14では、純水と発生ガスが分離され、純水は循環ポンプ5,6により配管9,10を経由して再び電解セル1に戻される。電解で発生したガスは、気液分離器13,14で分離されたのち、がス冷却器17,18で冷却され、凝縮水とガスに分離される。凝縮水は配管19,20を介して気液分離器13,14に戻される。冷却されたガスは、配管21,22を介して水電解装置の外部に送出される。
【0009】
また、電気分解反応に要する純水は、電解質膜などを汚染して電解セルの特性を低下させる(電解電圧を上昇させる)要因となる水中の不純物質を除去するために、イオン交換樹脂筒等の純水装置2を経由してアノード側に供給される。電解セル内は、電気分解温度を一定(例えば、80℃)に保つためと発生したガスを電解セル外部に速やかに排出するために、両極ともに電解用純水供給量の数十倍の水量が循環されている。
【0010】
さらに、運転に伴いアノード側からは、電解される水量の数倍の水量が電解質膜を通してカソード側に移動する。その要因は、電解質膜の中をイオンが通過する際に水が同伴することにあり、実験結果の一例によれば、約7倍から9倍の水量が電解質膜を通してアノード側からカソード側に移動する。上記により、カソード側の純水は増加することとなるため、カソード側の純水は前記移動水水量を装置系外に排出するか、アノード側に戻す等の方法で、カソード側の水量を一定に調節する必要がある。図4において、ポンプ27は、各気液分離器の間を接続するライン上に設けた前記移動水をアノード側に戻すためのポンプである。この水量の調節は、通常、気液分離器等に設置した液面計等を監視して行なわれる。
【0011】
また、純水装置を通しても純水中から不純物質は完全には除去することはできずに微量成分が残る。この不純物質は電極質膜を純水が通過する際に電解質膜に補足され、電解質膜が汚染して電解セルの特性低下を引き起こす要因となる。一方、電解質膜を通過したカソード側の純水は、アノード側の純水よりも清浄となって電気比抵抗が向上する。この向上する比率は、装置内の純水の水質が低下した場合に顕著となり、カソ−ド側純水の電気比抵抗はアノード側電気比抵抗の2倍以上となる場合もある。
【0012】
さらに、装置に供給される電解用純水は電気分解により装置外部に発生ガスや発生ガス中の水蒸気として排出されるが、微量の不純物(アルカリ金属イオン等)はガスや水蒸気には同伴されないため、装置内の水は運転を継続するに従い濃縮されていく。この濃縮が進むと、電解セルの特性低下を招くため、水電解装置では、装置外部に適量の水を、前記ブローダウン配管23から排出して、不純物の過度の濃縮を抑止している。
【0013】
【特許文献1】
特開2000−54175号公報(第2頁、図2)
【特許文献2】
実開平2−51263号の全文明細書(第16〜23頁、第1図)
【0014】
【発明が解決しようとする課題】
ところで、従来の水電解装置においては、電解運転の起動・停止時等においても必要とされる電解質膜の湿潤維持に関係して、下記のような問題があった。
【0015】
電解セルの電解質膜は乾燥すると電解質膜としての特性を維持できなくなること、および、乾燥−湿潤で寸法変化を起こし膜の破損の危険がある等の理由により、通常、電解セルのいずれの部位においても電解質膜の湿潤を保つように、電解質膜周囲が生成ガスのみとならずに生成ガスと純水の混合流を維持できる純水が循環・供給されている。
【0016】
カソード側は外部からの補給がなくても、前述のようにアノード側からの移動水量のみで電解室膜の湿潤を保つことが可能である。これに対してアノード側は、適正な純水を供給・循環する装置が必要となる。アノード側には系外への廃棄水量及び生成ガスに含まれて系外に排出する水蒸気量、電気分解によりガスに変わる水分量が補給される。系外への廃棄水量としては、前述のように、系内の純水の不純物の濃縮を防止するためのブローダウン水も含まれる。これら系内の水量は、気液分離器等に設置された水位計により適正範囲に制御されている。
【0017】
ところで、運転中の電解セル内及び電解セルから気液分離器までの配管内はガスと純水の気液混合流となっており、系内の見かけ状の液相容積を増加させている。このような運転状態にある水電解装置において、運転停止指令や異常による制御電源の喪失等により、電解運転を含む装置の全機器が停止した場合には、電解停止と共に水循環用のポンプも停止して、系内の混合流中のガスは系内の上方に集合することになる。このとき、電解セルの電解質膜より上方の容積が系内に含まれるガスの容積以下であると、装置の運転が回復するまで電解質膜の上方がガス中に放置され、湿潤状態を保てなくなる危険がある。
【0018】
また、水電解装置の電解電流が急激に増減(起動・停止を含む)した場合、系内の見かけ上の液体容積が変化し、制御水位を変化させて制御幅から逸脱する危険がある。電解運転が停止した場合でも、電解セル部の水質を維持し、電解セルのダメージ(不純物質の付着等)を低減するためには、純水循環用のポンプや外部純水供給用のポンプの運転は継続したほうが好ましい。
【0019】
しかしながら、前述のように水位が制御範囲を逸脱した場合に、装置の緊急停止を妨げるような制御を行なうことは装置の安全上好ましくない。
【0020】
この発明は、上記のような問題点を解消するためになされたもので、本発明の課題は、電解運転中に制御電源の喪失等により装置が全停止を起こした場合でも、循環水中のガスが電解セルや配管内の上方に集合することにより電解質膜がガス中に露出・乾燥することを防止可能な水電解装置を提供することにある。さらに、前記電解質膜露出・乾燥防止機能に加えて、電解運転中の電解電流変化(投入、遮断、増加、現象)に伴う水位変動により、電解運転以外の装置停止を起こさない、即ち、純水循環用のポンプや外部純水供給用のポンプの運転は継続可能な水電解装置とその運転方法を提供することにある。
【0021】
【課題を解決するための手段】
前述の課題を解決するため、この発明は、固体高分子等の電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、純水循環用のポンプを有し前記陽極室と陰極室とにそれぞれ個別に接続した気液分離器を含む陽極側(アノード側)および陰極側(カソード側)のそれぞれ個別の純水循環回路と、外部から水電解セルに純水を供給する外部純水供給ラインとを備えた水電解装置において、前記陽極室および陰極室の各入口マニホールドと前記ポンプの水吐出側との間にそれぞれ、ポンプ停止時に純水の循環を閉止する開閉弁もしくは逆止弁を備え、前記陽極室および陰極室と前記各気液分離器とを接続する電解セル出側配管系は、前記電解質膜に隣接して陽極室および陰極室の上方に設けた各出口マニホールドと、この出口マニホールドの上方から前記気液分離器の上方側部に接続した電解セル出口配管とからなり、かつ、前記電解質膜の上端から前記電解セル出側配管系の最高位点までの電解セル出側配管系内の容積を、電解運転中に発生し水電解セル内と前記電解質膜の上端から電解セル出側配管系の最高位点までの系内とに含有する予め求めたガス容積以上としたものとする(請求項1の発明)。
【0022】
前記構成によれば、詳細は後述するように、装置が全停止を起こした場合でも、循環水中のガスが電解セルや配管内の上方に集合することにより電解質膜がガス中に露出することがなく、電解質膜の湿潤状態を維持できる。なお、前記ガス容積は、以下のようにして予め演算で求めることができ、これに基づいて系内容積の設定を行なう。
【0023】
ガス容積は、運転最大電解電流から計算できる理論ガス量(ノルマルガス量)を装置の設計運転圧力、設計運転温度で補正した値に若干の余裕率を見込んで求める。ここで、余裕率は、系内圧力、系内温度の運転過渡時における変化分によるズレ分と、設計上の安全率とを考慮して定める。
【0024】
また、前記課題は、下記請求項2の発明によっても解決できる。即ち、固体高分子等の電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、純水循環用のポンプを有し前記陽極室と陰極室とにそれぞれ個別に接続した気液分離器を含む陽極側(アノード側)および陰極側(カソード側)のそれぞれ個別の純水循環回路と、外部から水電解セルに純水を供給する外部純水供給ラインとを備えた水電解装置において、前記陽極室および陰極室と前記各気液分離器とを接続する電解セル出側配管系は、前記電解質膜に隣接して陽極室および陰極室の上方に設けた各出口マニホールドと、この出口マニホールドの上方から前記気液分離器の上方側部に接続した電解セル出口配管とからなり、かつ、前記電解質膜の上端から気液分離器最上部迄の、前記電解セル出側配管系および循環水の戻り配管系を含む前記純水循環回路内の容積は、電解運転中に発生し水電解セル内と前記電解セル出側配管系および気液分離器内とに含有する予め求めたガス容積以上としたものとする。
【0025】
さらに、前記発明の実施態様としては、電解セル部の水質維持の観点から下記請求項3の発明が好ましい。即ち、前記請求項1または2に記載の水電解装置において、前記気液分離器は、電解運転中の水位制御を行なう高位レベルHと低位レベルLと、かつ前記HおよびLよりはさらに高位および低位の最高位レベルHHおよび最低位レベルLLとを有する4位置(HH,H,L,LL)の水位制御を行なう水位調整装置を備え、前記HH−H間の水位差は最大電解電流を投入した際に起こる水位変動以上に設定し、かつ前記LL−L間の水位差は最大電解電流を遮断した際に起こる水位変動以上に設定したものとする。
【0026】
さらにまた、前記請求項3に記載の水電解装置の運転方法であって、電解電流の投入、遮断、増加、減少を行なった際に、水位が前記HH−LL間にある場合には、前記純水循環回路および外部純水供給ラインの水循環および水供給の運転を継続する制御を行なうこととする(請求項4の発明)。
【0027】
前記水電解装置とその運転方法によれば、電解運転停止や電解電流の急激な変動により気液分離器等の水位の変動が起こっても、装置全停止にいたる他の要因による水位異常とは区分して検知し、純水の補給・循環系統の制御を継続できる。従って、電解運転停止中の水質を適正な状態に維持する運転(電解無しの待機運転)を行なうことが可能となる。
【0028】
【発明の実施の形態】
図1ないし図3に基づき、この発明の実施例について以下に述べる。図1および図2は、この発明の水電解装置のそれぞれ異なる実施例の系統図を示し、図3は気液分離器の実施例の詳細を示す。なお、図1ないし図3において、図4に示す部材と同一機能を有する部材には、同一番号を付してその詳細説明ならびに装置の基本的な動作説明を省略する。
【0029】
まず、図1の実施例について述べる。図1の水電解装置の系統図において、図4と異なる系統図上の主な点は、陽極室および陰極室の各入口マニホールド(101a,101b)とポンプ(5,6)の水吐出側との間にそれぞれ、ポンプ停止時に純水の循環を閉止する開閉弁(もしくは逆止弁)(24,25)を備え、また、陽極室および陰極室と各気液分離器(13,14)とを接続する電解セル出側配管系は、電解質膜(および触媒敷設部位)(100a,100b)に隣接して陽極室および陰極室の上方に設けた各出口マニホールド(102a,102b)と、この出口マニホールドの上方から気液分離器(13,14)の上方側部に接続した電解セル出口配管(11,12)とからなる構成とした点である。
【0030】
なお、図1において、28はカソード側からアノード側へ水を戻す配管の開閉弁を示し、また、30は純水供給配管の開閉弁を示す。
【0031】
上記構成において、電解質膜(100a,100b)の上端から前記電解セル出側配管系の最高位点(図のF)までの電解セル出側配管系内の容積を、電解運転中に発生し水電解セル1内と前記電解質膜の上端から電解セル出側配管系の最高位点(位置F)までの系内とに含有する予め演算で求めたガス容積以上とするが、この理由に関して以下に述べる。
【0032】
図1の構成において、水電解セル1、各気液分離器(13,14)および純水循環回路の系内各配管内の水の相状態は図5のようになっている。
【0033】
電解運転中に停止指令や何らかの異常検知により、電解停止と循環ポンプ(5,6)の停止が起こり、開閉弁(24,25)がポンプ停止に伴い閉止した場合、系内の純水は系内の最高点Fを分岐位置として、電解セル側と戻し配管側に分かれる。このとき、電解セル側のC〜F間に気液混合相に混合していたガスが分離し、上方に集まる。ここで、水電解セル1の電解質膜(100a,100b)より上方に位置する電解セル出口マニホールド(102a,102b)及び電解セル出側配管(11,12)のE〜F間の容積を、電解セル側のC〜F間に混合していたガス容積以上とすることにより、電解質膜(100a、100b)はガス中に露出しない。なお、開閉弁(24,25)はポンプ停止に伴い自動的に水流を閉める逆止弁でも良い。
【0034】
次に、図2の実施例について述べる。図2は、本発明の図1とは異なる実施例を示す系統図で、図1と異なる点は、電解セルの入り口配管(7,8)に開閉弁(24,25)を設置していない点である。
【0035】
図2の実施例の場合、電解停止と循環ポンプ(5,6)の停止がおきた場合には、系内の純水は全体一体となり、系内の下方に集まる。このとき、水電解セル1の電解質膜(100a,100b)の上方より上部の全容積、即ちD及びLより上方の容積を、電解セル側のC〜F間に混合していたガス容積と気液分離器内のガス容積の和以上とすることにより、電解質膜(100a,100b)はガス中に露出しない。
【0036】
次に、図3の実施例について述べる。図3は、図1および図2の水電解装置に用いられる気液分離器の詳細図を示すもので、水位計29が気液分離器に設置されている。水位計29には4点の設定値HH,H,L,LLが設けられている。通常の電解運転中には、水位がH〜L間に調整されるように制御を行なう。
【0037】
このとき、電解運転が停止し、循環ポンプ(5,6)の動作が継続すると、水電解セル1の電解質膜(100a,100b)の下端Cから気液分離器(13,14)の入り口Gまでの間のガスは気液分離器内に押し出され、見かけ上の液相容積が減少し、気液分離器内の水位が急激に低下する。
【0038】
この低下量が水位計のLレベルよりも低下すると、制御範囲を逸脱してしまう。電解装置内の水量を適正量に保つためには、通常、気液分離器内水位の低レベルでの警報が必要であるが、Lレベルでの警報で装置停止にいたることは好ましくない。そこで、前記Lレベルの下方に、電解運転停止によりおこる水位変動幅よりも大きい幅をもたせたLLレベルを設定し、この位置まで水位が下がらない場合には、電解運転以外の装置の運転、即ち純水循環用のポンプや外部純水供給用のポンプの運転を継続させる制御を行なう。
【0039】
前記見かけ上の液相容積が変化する現象は電解運転停止のみならず、電解電流の急峻な減少の際にも同様な現象が発生する。水位計のLL〜L間の幅は、発生しうる運転最大負荷電流から電流ゼロ(電解停止)への変化に対応可能な幅を持たせることにより、どのような電解電流の急減にも対応可能となる。また、電解運転の開始時や電解電流の増加には、前記動作とは逆の現象が起こり、気液分離器の水位が急激に上昇する。これに対しては、考えうる電流増加の最大幅に対しておこる水位変動幅以上の幅を水位計のHH〜H間に持たせることで対応可能となる。
【0040】
【発明の効果】
前述のように、この発明の前記構成によれば、装置が全停止を起こした場合でも、循環水中のガスが電解セルや配管内の上方に集合することにより電解質膜がガス中に露出することがなく、電解質膜の湿潤状態を維持できる。
【0041】
また、前記4位置(HH,H,L,LL)の水位制御を行なう水位調整装置を備えた構成と運転方法を実施することにより、電解運転停止や電解電流の急激な変動により気液分離器等の水位の変動が起こっても、装置全停止にいたる他の要因による水位異常とは区分して検知し、純水の補給・循環系統の制御を継続でき、電解運転停止中の水質を適正な状態に維持する運転を行なうことが可能となる。
【図面の簡単な説明】
【図1】この発明の水電解装置の実施例の系統図
【図2】この発明の水電解装置の図1とは異なる実施例の系統図
【図3】この発明の水電解装置に用いられる気液分離器の詳細図
【図4】従来の水電解装置の一例を示す系統図
【図5】図1の水電解装置における各装置および配管系の水の相状態を説明する図
【符号の説明】
1:水電解セル、2:純水装置、3:供給ポンプ、4:外部純水供給ライン、5,6:循環ポンプ、7,8:電解セル入りロ配管、9,10:循環水戻り配管、11,12:電解セル出口配管、13,14:気液分離器、15,16:発生ガス(水素・酸素)を取り出す配管、17,18:ガス冷却器、19,20:凝縮水の戻り配管、21,22:発生ガスを水電解装置から取り出す配管、23:プローダウン配管、24,25:電解セル入口配管の開閉弁、26:カソード側からアノード側へ水を戻す配管、27:カソード側からアノード側へ水を戻すポンプ、28:カソード側からアノード側へ水を戻す配管の開閉弁、29:気液分離器の水位計、30:純水供給配管の開閉弁、100a,100b:電解質膜、101a,101b:入口マニホールド、102a,102b:出口マニホールド。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water electrolysis apparatus using an electrolyte membrane such as a solid polymer and a method of operating the same.
[0002]
[Prior art]
Separation into an anode (anode) side and a cathode (cathode) side using an electrolyte membrane of a solid polymer or the like as a membrane, electrolysis while supplying pure water or water containing ions to the anode side, and oxygen from the anode side In recent years, development of a water electrolysis apparatus configured to generate gas from the cathode side to generate hydrogen gas has been advanced, and various proposals have been made regarding the system configuration, stack structure, operation method, and the like (for example, And Patent Documents 1 and 2).
[0003]
Patent Literature 1 describes a general basic system configuration, and Patent Literature 2 discloses that an ion exchange resin tank is provided at a feed water inlet so that an impurity ion contained in water to be electrolyzed is provided. However, there is described a system configuration for preventing adhesion and accumulation on a solid polymer electrolyte membrane to lower the electrolytic performance.
[0004]
FIG. 4 shows a system diagram of a conventional water electrolysis apparatus using a solid polymer electrolyte membrane described with reference to the prior art. In FIG. 4, the interior of the water electrolysis cell 1 is divided into a cathode chamber and an anode chamber by a solid polymer electrolyte membrane. Each of the cathode chamber and the anode chamber includes a catalyst electrode and a porous power supply (not shown).
[0005]
The solid polymer electrolyte membrane is widely used for industrial purposes, and a typical example is a perfluorocarbon sulfonic acid membrane. A material having high conductivity such as a titanium fiber or a stainless fiber sintered plate is used as the power supply. Supplied to the anode side water, 2H 2 0 → 0 2 + 4H + + 4e - is decomposed by reaction with, for generating oxygen. H + passes through the sulfone group of the electrolyte membrane, a reaction of 4H + + 4e → 2H 2 occurs on the cathode side, and hydrogen gas is generated.
[0006]
In FIG. 4, on the anode side of a water electrolysis cell (hereinafter, also simply referred to as electrolysis cell) 1, pure water passing through a pure water device 2 is supplied from an external to an external pure water supply line 4 by a supply pump 3. Supplied via Pure water in each electrode of the electrolytic cell is circulated by the anode-side circulation pump 5 and the cathode-side circulation pump 6 via the electrolytic cell inlet pipes 7 and 8, the electrolytic cell outlet pipes 11 and 12, and the return pipes 9 and 10. Is done. The outlet pipes 11, 12 of the electrolytic cell are connected to gas-liquid separators 13, 14.
[0007]
From the gas-liquid separators 13 and 14, in addition to return pipes 9 and 10 to the entrance of the electrolytic cell, pipes 15 and 16 for extracting separated generated gas (hydrogen and oxygen) are provided. Connected. The gas coolers 17 and 18 are connected to pipes 19 and 20 for returning condensed water to the gas-liquid separators 13 and 14, and pipes 21 and 22 for extracting gas from the water electrolysis device. In order to avoid concentration of impurities in the pure water, a blowdown pipe 23 for discharging a part of the pure water out of the system is connected to the inlet pipe 7 on the anode side. Although not shown, a wiring lead for supplying electric power for electrolysis is connected to the electrolytic cell 1.
[0008]
Next, the operation of the above device will be described below. When power is supplied from a wiring lead (not shown) in an apparatus having a configuration as shown in FIG. 4, electrolysis of water occurs in the electrolytic cell 1, and a mixed flow of pure water and generated gas flows through pipes 11 and 12. The liquid flows into the liquid separators 13 and 14. In the gas-liquid separators 13 and 14, pure water and generated gas are separated, and the pure water is returned to the electrolytic cell 1 again by the circulation pumps 5 and 6 via the pipes 9 and 10. After the gas generated by the electrolysis is separated by the gas-liquid separators 13 and 14, it is cooled by the water coolers 17 and 18 and separated into condensed water and gas. The condensed water is returned to the gas-liquid separators 13 and 14 via the pipes 19 and 20. The cooled gas is sent out of the water electrolysis device via the pipes 21 and 22.
[0009]
In addition, pure water required for the electrolysis reaction is used to remove impurities in the water, which may contaminate the electrolyte membrane or the like and lower the characteristics of the electrolytic cell (increase the electrolysis voltage). Is supplied to the anode side via the pure water apparatus 2 of the above. In order to maintain the electrolysis temperature at a constant level (for example, 80 ° C.) and to quickly discharge generated gas to the outside of the electrolytic cell, the amount of water in both the electrodes is several tens of times the supply amount of pure water for electrolysis. Is circulating.
[0010]
Further, with the operation, the amount of water several times the amount of water to be electrolyzed moves from the anode side to the cathode side through the electrolyte membrane. This is due to the entrainment of water when ions pass through the electrolyte membrane. According to an example of experimental results, about 7 to 9 times the amount of water moves from the anode side to the cathode side through the electrolyte membrane. I do. As described above, since the pure water on the cathode side is increased, the pure water on the cathode side is kept constant by discharging the moving water amount to the outside of the apparatus system or returning it to the anode side. Need to be adjusted. In FIG. 4, a pump 27 is a pump provided on a line connecting between the gas-liquid separators for returning the moving water to the anode side. The adjustment of the amount of water is usually performed by monitoring a liquid level gauge or the like installed in a gas-liquid separator or the like.
[0011]
Further, even through a pure water apparatus, impurities cannot be completely removed from pure water, and trace components remain. The impurities are captured by the electrolyte membrane when pure water passes through the electrode membrane, and become a factor that causes the contamination of the electrolyte membrane and the deterioration of the characteristics of the electrolytic cell. On the other hand, pure water on the cathode side that has passed through the electrolyte membrane is cleaner than pure water on the anode side, and the electrical resistivity is improved. This improvement ratio becomes remarkable when the quality of pure water in the apparatus is reduced, and the electrical resistivity of the cathode-side pure water may be twice or more the electrical resistivity of the anode.
[0012]
Furthermore, the pure water for electrolysis supplied to the device is discharged to the outside of the device as a generated gas or water vapor in the generated gas by electrolysis, but trace impurities (such as alkali metal ions) are not entrained in the gas or water vapor. Then, the water in the apparatus is concentrated as the operation is continued. As the concentration progresses, the characteristics of the electrolytic cell deteriorate. Therefore, in the water electrolysis apparatus, an appropriate amount of water is discharged from the blowdown pipe 23 to the outside of the apparatus to suppress the excessive concentration of impurities.
[0013]
[Patent Document 1]
JP-A-2000-54175 (page 2, FIG. 2)
[Patent Document 2]
Full-text specification of Japanese Utility Model Laid-Open No. 2-51263 (pages 16 to 23, Fig. 1)
[0014]
[Problems to be solved by the invention]
By the way, the conventional water electrolysis apparatus has the following problems related to the maintenance of the electrolyte membrane which is required even when starting and stopping the electrolysis operation.
[0015]
The electrolyte membrane of the electrolytic cell is generally unable to maintain its properties as an electrolyte membrane when dried, and because of the risk of damage to the membrane due to dimensional change due to dry-wet, usually at any part of the electrolytic cell. In order to keep the electrolyte membrane wet, pure water that can maintain a mixed flow of the generated gas and pure water as well as the generated gas around the electrolyte membrane is circulated and supplied.
[0016]
As described above, the cathode side can maintain the wetness of the electrolytic chamber membrane only by the moving water amount from the anode side without external supply. On the other hand, on the anode side, a device for supplying and circulating appropriate pure water is required. The anode side is replenished with the amount of waste water to the outside of the system, the amount of water vapor contained in the generated gas and discharged to the outside of the system, and the amount of water converted into gas by electrolysis. As described above, the amount of wastewater discharged outside the system includes blowdown water for preventing the concentration of impurities in pure water in the system. The amount of water in these systems is controlled to an appropriate range by a water level gauge installed in a gas-liquid separator or the like.
[0017]
Incidentally, a gas-liquid mixed flow of gas and pure water in the electrolysis cell during operation and in the pipe from the electrolysis cell to the gas-liquid separator increases the apparent liquid phase volume in the system. In a water electrolysis apparatus in such an operating state, when all devices of the apparatus including the electrolysis operation are stopped due to an operation stop command or loss of control power due to an abnormality, the pump for water circulation is stopped together with the electrolysis stop. Thus, the gas in the mixed flow in the system will be gathered upward in the system. At this time, if the volume above the electrolyte membrane of the electrolytic cell is equal to or less than the volume of the gas contained in the system, the upper portion of the electrolyte membrane is left in the gas until the operation of the apparatus is recovered, and the wet state cannot be maintained. There is danger.
[0018]
Also, when the electrolysis current of the water electrolysis device rapidly increases and decreases (including start / stop), the apparent liquid volume in the system changes, and there is a risk that the control water level changes and deviates from the control width. Even when the electrolysis operation is stopped, in order to maintain the water quality of the electrolysis cell and reduce the damage of the electrolysis cell (adhesion of impurities, etc.), it is necessary to use a pump for circulating pure water or a pump for supplying external pure water. It is preferable that the operation be continued.
[0019]
However, as described above, when the water level deviates from the control range, it is not preferable in terms of safety of the apparatus to perform control to prevent an emergency stop of the apparatus.
[0020]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a method for controlling the presence of gas in circulating water even when the system is completely stopped due to loss of control power during electrolysis operation. It is an object of the present invention to provide a water electrolysis apparatus capable of preventing an electrolyte membrane from being exposed to gas and dried by gathering above in an electrolytic cell or a pipe. Furthermore, in addition to the electrolyte membrane exposure / drying prevention function, a water level fluctuation accompanying an electrolytic current change (input, cut-off, increase, phenomenon) during the electrolytic operation does not cause any stop of the apparatus other than the electrolytic operation, ie, pure water. The operation of the circulation pump and the pump for supplying external pure water is to provide a continuous water electrolysis apparatus and an operation method thereof.
[0021]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a water electrolysis cell in which an interior is partitioned into an anode chamber and a cathode chamber by an electrolyte membrane such as a solid polymer, and a pump for pure water circulation, the anode chamber having Separate pure water circulation circuits on the anode side (anode side) and cathode side (cathode side) each including a gas-liquid separator individually connected to the cathode chamber, and an external supply of pure water from the outside to the water electrolysis cell In a water electrolysis apparatus provided with a pure water supply line, an on-off valve or a reverse valve for closing the circulation of pure water when the pump is stopped is provided between each inlet manifold of the anode chamber and the cathode chamber and the water discharge side of the pump. An electrolytic cell outlet piping system that includes a stop valve and connects the anode chamber and the cathode chamber to each of the gas-liquid separators is provided with an outlet manifold provided above the anode chamber and the cathode chamber adjacent to the electrolyte membrane. And this exit mani And an electrolytic cell outlet pipe connected to the upper side of the gas-liquid separator from above the fuel cell, and an electrolytic cell outlet pipe from the upper end of the electrolyte membrane to the highest point of the electrolytic cell outlet pipe system. The volume in the system is equal to or larger than a predetermined gas volume generated during the electrolysis operation and contained in the water electrolysis cell and in the system from the upper end of the electrolyte membrane to the highest point of the piping system on the outlet side of the electrolytic cell. (The invention of claim 1).
[0022]
According to the configuration, as described in detail below, even when the apparatus is completely stopped, the electrolyte membrane can be exposed to the gas by the gas in the circulating water gathering above the electrolytic cell and the piping. Therefore, the wet state of the electrolyte membrane can be maintained. The gas volume can be obtained in advance by calculation as follows, and the internal volume is set based on this.
[0023]
The gas volume is determined by correcting a theoretical gas amount (normal gas amount) that can be calculated from the operation maximum electrolysis current by a design operation pressure and a design operation temperature of the apparatus with a slight margin. Here, the margin is determined in consideration of a deviation due to a change in the system pressure and the system temperature during operation transition, and a design safety factor.
[0024]
Further, the above problem can be solved by the invention of claim 2 described below. That is, a water electrolysis cell whose interior is partitioned into an anode chamber and a cathode chamber by an electrolyte membrane such as a solid polymer, and a gas having a pump for pure water circulation and individually connected to the anode chamber and the cathode chamber. A water electrolysis system having separate pure water circulation circuits on the anode side (anode side) and the cathode side (cathode side) each including a liquid separator, and an external pure water supply line for supplying pure water to the water electrolysis cell from outside. In the device, an electrolytic cell outlet piping system for connecting the anode chamber and the cathode chamber to each of the gas-liquid separators, and each outlet manifold provided above the anode chamber and the cathode chamber adjacent to the electrolyte membrane, An electrolytic cell outlet pipe connected from above the outlet manifold to an upper side of the gas-liquid separator, and the electrolytic cell outlet pipe system from the upper end of the electrolyte membrane to the top of the gas-liquid separator. And circulating water return piping system The volume in the pure water circulation circuit including the gas volume generated during the electrolysis operation and contained in the water electrolysis cell and the outlet piping system of the electrolysis cell and the gas-liquid separator should be equal to or larger than a predetermined gas volume. .
[0025]
Further, as an embodiment of the invention, the invention of the following claim 3 is preferable from the viewpoint of maintaining the water quality of the electrolytic cell section. That is, in the water electrolysis apparatus according to claim 1 or 2, the gas-liquid separator includes a high level H and a low level L for controlling a water level during the electrolysis operation, and a higher level than the H and L. A water level adjusting device is provided for controlling the water level at four positions (HH, H, L, LL) having a lower highest level HH and a lowest level LL, and the water level difference between HH-H is applied to the maximum electrolytic current. And the water level difference between LL and L is set to be equal to or greater than the water level fluctuation that occurs when the maximum electrolytic current is cut off.
[0026]
Furthermore, in the operation method of the water electrolysis device according to claim 3, when the input, cutoff, increase, and decrease of the electrolysis current are performed, when the water level is between the HH-LL, Control for continuing the operation of the water circulation and the water supply of the pure water circulation circuit and the external pure water supply line is performed (the invention of claim 4).
[0027]
According to the water electrolysis apparatus and the operation method thereof, even if the water level of the gas-liquid separator or the like changes due to the stoppage of the electrolysis operation or the rapid fluctuation of the electrolysis current, the water level abnormality due to other factors leading to the total stoppage of the apparatus is Detection can be performed separately, and control of the pure water supply / circulation system can be continued. Therefore, it is possible to perform an operation (standby operation without electrolysis) to maintain the water quality during the electrolysis operation in an appropriate state.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 show system diagrams of different embodiments of the water electrolysis apparatus of the present invention, and FIG. 3 shows details of an embodiment of the gas-liquid separator. 1 to 3, members having the same functions as those shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof and basic operation of the device will be omitted.
[0029]
First, the embodiment of FIG. 1 will be described. In the system diagram of the water electrolyzer of FIG. 1, the main points on the system diagram different from FIG. 4 are the inlet manifolds (101a, 101b) of the anode chamber and the cathode chamber and the water discharge sides of the pumps (5, 6). And an on-off valve (or a check valve) (24, 25) for closing the circulation of pure water when the pump is stopped, and an anode chamber and a cathode chamber, and each gas-liquid separator (13, 14). Is connected to the outlet manifolds (102a, 102b) provided above the anode chamber and the cathode chamber adjacent to the electrolyte membrane (and the catalyst laying part) (100a, 100b), and the outlets thereof. It is configured to have an electrolytic cell outlet pipe (11, 12) connected to the upper side of the gas-liquid separator (13, 14) from above the manifold.
[0030]
In FIG. 1, reference numeral 28 denotes an on-off valve of a pipe for returning water from the cathode side to the anode side, and reference numeral 30 denotes an on-off valve of a pure water supply pipe.
[0031]
In the above configuration, the volume in the electrolytic cell outlet piping system from the upper end of the electrolyte membrane (100a, 100b) to the highest point (F in the figure) of the electrolytic cell outlet piping system is generated during the electrolysis operation. The gas volume contained in the electrolytic cell 1 and the system from the upper end of the electrolyte membrane to the highest point (position F) of the piping system on the outlet side of the electrolytic cell should be equal to or larger than the gas volume calculated in advance. State.
[0032]
In the configuration of FIG. 1, the water phase state in the water electrolysis cell 1, each gas-liquid separator (13, 14), and each pipe in the system of the pure water circulation circuit is as shown in FIG.
[0033]
When a stop command or some abnormality is detected during the electrolysis operation, electrolysis stops and the circulation pumps (5, 6) stop, and the on-off valves (24, 25) are closed due to the pump stop, pure water in the system is discharged. Is divided into an electrolytic cell side and a return pipe side with the highest point F in the inside as a branch position. At this time, the gas mixed in the gas-liquid mixed phase between C and F on the electrolytic cell side is separated and gathers upward. Here, the volume between E and F of the electrolytic cell outlet manifolds (102a, 102b) and the electrolytic cell outlet pipes (11, 12) located above the electrolyte membranes (100a, 100b) of the water electrolysis cell 1 is determined by electrolysis. The electrolyte membrane (100a, 100b) is not exposed to the gas by setting the volume of the gas mixed between C and F on the cell side to be equal to or larger than the gas volume. The on-off valves (24, 25) may be check valves that automatically close the water flow when the pump stops.
[0034]
Next, the embodiment of FIG. 2 will be described. FIG. 2 is a system diagram showing an embodiment different from FIG. 1 of the present invention. The difference from FIG. 1 is that the on-off valves (24, 25) are not installed in the inlet pipes (7, 8) of the electrolytic cell. Is a point.
[0035]
In the case of the embodiment shown in FIG. 2, when the electrolysis is stopped and the circulation pumps (5, 6) are stopped, the pure water in the system is integrated as a whole and collects below the system. At this time, the total volume above the electrolyte membrane (100a, 100b) of the water electrolysis cell 1, that is, the volume above D and L, is equal to the gas volume mixed between C and F on the electrolysis cell side. The electrolyte membrane (100a, 100b) is not exposed to the gas by setting the gas volume in the liquid separator equal to or larger than the sum of the gas volumes.
[0036]
Next, the embodiment of FIG. 3 will be described. FIG. 3 shows a detailed view of the gas-liquid separator used in the water electrolysis device shown in FIGS. 1 and 2, and a water level gauge 29 is installed in the gas-liquid separator. The water level gauge 29 is provided with four set values HH, H, L, and LL. During normal electrolytic operation, control is performed so that the water level is adjusted between H and L.
[0037]
At this time, when the electrolysis operation is stopped and the operation of the circulation pumps (5, 6) is continued, the inlet G of the gas-liquid separator (13, 14) from the lower end C of the electrolyte membrane (100a, 100b) of the water electrolysis cell 1. During this time, the gas is pushed out into the gas-liquid separator, the apparent liquid phase volume decreases, and the water level in the gas-liquid separator drops sharply.
[0038]
If the amount of the decrease is lower than the L level of the water level gauge, it will deviate from the control range. In order to keep the amount of water in the electrolyzer at an appropriate level, a low-level alarm of the water level in the gas-liquid separator is usually required. However, it is not preferable that the L-level alarm causes the device to stop. Therefore, below the L level, an LL level having a width larger than the fluctuation range of the water level caused by the stop of the electrolysis operation is set. If the water level does not drop to this position, the operation of the device other than the electrolysis operation, that is, Control is performed to continue the operation of the pure water circulation pump and the external pure water supply pump.
[0039]
The phenomenon that the apparent liquid phase volume changes occurs not only when the electrolysis operation is stopped but also when the electrolysis current sharply decreases. The width between LL and L of the water level gauge can respond to any sudden decrease in the electrolytic current by providing a width that can cope with the change from the maximum possible operating load current to zero current (electrolysis stop). It becomes. At the start of the electrolysis operation or when the electrolysis current increases, a phenomenon opposite to the above-described operation occurs, and the water level of the gas-liquid separator rises sharply. This can be dealt with by providing a width equal to or greater than the fluctuation range of the water level occurring with respect to the maximum width of the conceivable current increase between HH and H of the water level meter.
[0040]
【The invention's effect】
As described above, according to the configuration of the present invention, even when the apparatus is completely shut down, the electrolyte membrane is exposed to the gas by the gas in the circulating water gathering above the electrolytic cells and pipes. And the wet state of the electrolyte membrane can be maintained.
[0041]
Further, by implementing the configuration and the operation method including the water level adjusting device for controlling the water level at the four positions (HH, H, L, LL), the gas-liquid separator is stopped due to the stop of the electrolysis operation or the rapid fluctuation of the electrolysis current. Even if the water level fluctuates, it can be detected separately from water level anomalies due to other causes, such as a total stoppage of the equipment, and the control of the pure water replenishment and circulation system can be continued, and the water quality during electrolysis operation suspension can be adjusted appropriately It is possible to perform an operation for maintaining the state.
[Brief description of the drawings]
FIG. 1 is a system diagram of an embodiment of a water electrolysis device of the present invention; FIG. 2 is a system diagram of an embodiment different from FIG. 1 of the water electrolysis device of the present invention; FIG. FIG. 4 is a system diagram showing an example of a conventional water electrolysis device. FIG. 5 is a diagram illustrating a water phase state of each device and a piping system in the water electrolysis device of FIG. Description】
1: water electrolysis cell, 2: pure water device, 3: supply pump, 4: external pure water supply line, 5, 6: circulation pump, 7, 8: piping with electrolytic cell, 9, 10: circulation water return piping , 11, 12: Electrolyte cell outlet pipe, 13, 14: Gas-liquid separator, 15, 16: Pipe for taking out generated gas (hydrogen / oxygen), 17, 18: Gas cooler, 19, 20: Return of condensed water Piping, 21, 22: Piping for taking out generated gas from water electrolysis device, 23: Plow-down piping, 24, 25: Opening / closing valve of electrolytic cell inlet piping, 26: Piping returning water from cathode side to anode side, 27: Cathode Pump for returning water from the side to the anode side, 28: an on-off valve for piping for returning water from the cathode side to the anode side, 29: a water level gauge for the gas-liquid separator, 30: an on-off valve for pure water supply piping, 100a, 100b: Electrolyte membrane, 101a, 101b: Mouth manifold, 102a, 102b: outlet manifold.

Claims (4)

固体高分子等の電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、純水循環用のポンプを有し前記陽極室と陰極室とにそれぞれ個別に接続した気液分離器を含む陽極側(アノード側)および陰極側(カソード側)のそれぞれ個別の純水循環回路と、外部から水電解セルに純水を供給する外部純水供給ラインとを備えた水電解装置において、
前記陽極室および陰極室の各入口マニホールドと前記ポンプの水吐出側との間にそれぞれ、ポンプ停止時に純水の循環を閉止する開閉弁もしくは逆止弁を備え、
前記陽極室および陰極室と前記各気液分離器とを接続する電解セル出側配管系は、前記電解質膜に隣接して陽極室および陰極室の上方に設けた各出口マニホールドと、この出口マニホールドの上方から前記気液分離器の上方側部に接続した電解セル出口配管とからなり、
かつ、前記電解質膜の上端から前記電解セル出側配管系の最高位点までの電解セル出側配管系内の容積を、電解運転中に発生し水電解セル内と前記電解質膜の上端から電解セル出側配管系の最高位点までの系内とに含有する予め求めたガス容積以上としたことを特徴とする水電解装置。
A water electrolysis cell in which the interior is partitioned into an anode chamber and a cathode chamber by an electrolyte membrane such as a solid polymer, and gas-liquid separation having a pump for circulating pure water and individually connected to the anode chamber and the cathode chamber, respectively. In a water electrolysis apparatus provided with separate pure water circulation circuits on the anode side (anode side) and the cathode side (cathode side) each including a vessel, and an external pure water supply line for supplying pure water to the water electrolysis cell from outside. ,
Each of the anode chamber and the cathode chamber between each inlet manifold and the water discharge side of the pump, provided with an on-off valve or a check valve for closing the circulation of pure water when the pump is stopped,
An electrolytic cell outlet piping system for connecting the anode chamber and the cathode chamber with each of the gas-liquid separators includes an outlet manifold provided above the anode chamber and the cathode chamber adjacent to the electrolyte membrane, and the outlet manifold. And an electrolytic cell outlet pipe connected to the upper side of the gas-liquid separator from above,
In addition, the volume in the electrolytic cell outlet piping system from the upper end of the electrolyte membrane to the highest point of the electrolytic cell outlet piping system is generated during the electrolysis operation, and the volume of the electrolytic cell from the water electrolysis cell and from the upper end of the electrolyte membrane is increased. A water electrolysis apparatus wherein the gas volume contained in the system up to the highest point of the cell outlet piping system is not less than a predetermined gas volume.
固体高分子等の電解質膜によって内部が陽極室と陰極室とに区画された水電解セルと、純水循環用のポンプを有し前記陽極室と陰極室とにそれぞれ個別に接続した気液分離器を含む陽極側(アノード側)および陰極側(カソード側)のそれぞれ個別の純水循環回路と、外部から水電解セルに純水を供給する外部純水供給ラインとを備えた水電解装置において、
前記陽極室および陰極室と前記各気液分離器とを接続する電解セル出側配管系は、前記電解質膜に隣接して陽極室および陰極室の上方に設けた各出口マニホールドと、この出口マニホールドの上方から前記気液分離器の上方側部に接続した電解セル出口配管とからなり、
かつ、前記電解質膜の上端から気液分離器最上部迄の、前記電解セル出側配管系および循環水の戻り配管系を含む前記純水循環回路内の容積は、電解運転中に発生し水電解セル内と前記電解セル出側配管系および気液分離器内とに含有する予め求めたガス容積以上としたことを特徴とする水電解装置。
A water electrolysis cell in which the interior is partitioned into an anode chamber and a cathode chamber by an electrolyte membrane such as a solid polymer, and gas-liquid separation having a pump for circulating pure water and individually connected to the anode chamber and the cathode chamber, respectively. In a water electrolysis apparatus provided with separate pure water circulation circuits on the anode side (anode side) and the cathode side (cathode side) each including a vessel, and an external pure water supply line for supplying pure water to the water electrolysis cell from outside. ,
An electrolytic cell outlet piping system for connecting the anode chamber and the cathode chamber with each of the gas-liquid separators includes an outlet manifold provided above the anode chamber and the cathode chamber adjacent to the electrolyte membrane, and the outlet manifold. And an electrolytic cell outlet pipe connected to the upper side of the gas-liquid separator from above,
In addition, the volume in the pure water circulation circuit including the electrolytic cell outlet piping system and the circulating water return piping system from the upper end of the electrolyte membrane to the top of the gas-liquid separator is generated during the electrolysis operation. A water electrolysis apparatus characterized in that the gas volume contained in an electrolysis cell, the outlet pipe system of the electrolysis cell and the gas-liquid separator is not less than a predetermined gas volume.
請求項1または2に記載の水電解装置において、前記気液分離器は、電解運転中の水位制御を行なう高位レベルHと低位レベルLと、かつ前記HおよびLよりはさらに高位および低位の最高位レベルHHおよび最低位レベルLLとを有する4位置(HH,H,L,LL)の水位制御を行なう水位調整装置を備え、前記HH−H間の水位差は最大電解電流を投入した際に起こる水位変動以上に設定し、かつ前記LL−L間の水位差は最大電解電流を遮断した際に起こる水位変動以上に設定したことを特徴とする水電解装置。3. The water electrolysis device according to claim 1, wherein the gas-liquid separator includes a high level H and a low level L for controlling a water level during the electrolysis operation, and a higher level and a lower level higher than H and L. 4. A water level control device for controlling the water level at four positions (HH, H, L, LL) having a lower level HH and a lower level LL, and the water level difference between HH-H is determined when the maximum electrolytic current is applied. A water electrolysis apparatus characterized in that the water level fluctuation is set to be equal to or higher than the water level fluctuation that occurs and the water level difference between LL and L is set to be equal to or higher than the water level fluctuation that occurs when the maximum electrolytic current is cut off. 請求項3に記載の水電解装置の運転方法であって、電解電流の投入、遮断、増加、減少を行なった際に、水位が前記HH−LL間にある場合には、前記純水循環回路および外部純水供給ラインの水循環および水供給の運転を継続する制御を行なうことを特徴とする水電解装置の運転方法。4. The method for operating a water electrolysis apparatus according to claim 3, wherein when turning on / off, increasing, or decreasing an electrolysis current, when a water level is between the HH and the LL, the pure water circulation circuit. A method for operating a water electrolysis apparatus, characterized by performing control for continuing operation of water circulation and water supply of an external pure water supply line.
JP2002275330A 2002-09-20 2002-09-20 Water electrolysis device and operation method thereof Pending JP2004107775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275330A JP2004107775A (en) 2002-09-20 2002-09-20 Water electrolysis device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275330A JP2004107775A (en) 2002-09-20 2002-09-20 Water electrolysis device and operation method thereof

Publications (1)

Publication Number Publication Date
JP2004107775A true JP2004107775A (en) 2004-04-08

Family

ID=32271560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275330A Pending JP2004107775A (en) 2002-09-20 2002-09-20 Water electrolysis device and operation method thereof

Country Status (1)

Country Link
JP (1) JP2004107775A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082496A (en) * 2010-10-14 2012-04-26 Honda Motor Co Ltd Water electrolysis system
CN102465310A (en) * 2010-10-28 2012-05-23 本田技研工业株式会社 Water electrolysis system
JP2012219292A (en) * 2011-04-05 2012-11-12 Honda Motor Co Ltd Water electrolysis system and method for operating the same
KR101211478B1 (en) 2009-09-29 2012-12-12 스미도모쥬기가이 마린 엔지니어링 가부시키가이샤 Ballast water treating apparatus
JP2015048507A (en) * 2013-08-30 2015-03-16 本田技研工業株式会社 Difference pressure type water electrolysis system control method
JP2015148010A (en) * 2014-01-10 2015-08-20 パナソニックIpマネジメント株式会社 Method for generating oxygen and water electrolysis device
JP2015175037A (en) * 2014-03-17 2015-10-05 本田技研工業株式会社 High pressure water electrolysis system, and control method thereof
JP2017136578A (en) * 2016-02-05 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water
JP2017136573A (en) * 2016-02-05 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water, and electrolysis water server provided with the same
JP2018069188A (en) * 2016-11-01 2018-05-10 株式会社日本トリム Electrolyzed water server

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211478B1 (en) 2009-09-29 2012-12-12 스미도모쥬기가이 마린 엔지니어링 가부시키가이샤 Ballast water treating apparatus
JP2012082496A (en) * 2010-10-14 2012-04-26 Honda Motor Co Ltd Water electrolysis system
CN102453923A (en) * 2010-10-14 2012-05-16 本田技研工业株式会社 Water electrolysis system
US8961748B2 (en) 2010-10-14 2015-02-24 Honda Motor Co., Ltd. Water electrolysis system
CN102465310A (en) * 2010-10-28 2012-05-23 本田技研工业株式会社 Water electrolysis system
CN102465310B (en) * 2010-10-28 2014-02-26 本田技研工业株式会社 Water electrolysis system
JP2012219292A (en) * 2011-04-05 2012-11-12 Honda Motor Co Ltd Water electrolysis system and method for operating the same
JP2015048507A (en) * 2013-08-30 2015-03-16 本田技研工業株式会社 Difference pressure type water electrolysis system control method
JP2015148010A (en) * 2014-01-10 2015-08-20 パナソニックIpマネジメント株式会社 Method for generating oxygen and water electrolysis device
JP2015175037A (en) * 2014-03-17 2015-10-05 本田技研工業株式会社 High pressure water electrolysis system, and control method thereof
JP2017136578A (en) * 2016-02-05 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water
WO2017135209A1 (en) * 2016-02-05 2017-08-10 株式会社日本トリム Electrolyzed water generation device
JP2017136573A (en) * 2016-02-05 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water, and electrolysis water server provided with the same
WO2017135208A1 (en) * 2016-02-05 2017-08-10 株式会社日本トリム Electrolyzed water generation device and electrolyzed water server comprising same
CN108541251A (en) * 2016-02-05 2018-09-14 日本多宁股份有限公司 Electrolytic water generating device
CN108541251B (en) * 2016-02-05 2021-07-30 日本多宁股份有限公司 Electrolyzed water generation device
JP2018069188A (en) * 2016-11-01 2018-05-10 株式会社日本トリム Electrolyzed water server
WO2018084117A1 (en) * 2016-11-01 2018-05-11 株式会社日本トリム Electrolyzed water server

Similar Documents

Publication Publication Date Title
US7353085B2 (en) Electrolyzer cell stack system
US8419910B2 (en) Electrolyzer cell stack system
KR101640806B1 (en) Fuel cell cooling
US9487874B2 (en) Method for operating the water electrolysis system
JP2022180308A (en) Solid oxide type electrolytic tank system including hydrogen pump, and method of operating solid oxide type electrolytic tank system
US7201980B2 (en) Fuel cell apparatus and method for feeding a fuel for fuel cell
JP7363419B2 (en) water electrolysis system
JP2004107775A (en) Water electrolysis device and operation method thereof
JP7288346B2 (en) Hydrogen/oxygen generator
US20050211567A1 (en) Apparatus and method for integrated hypochlorite and hydrogen fuel production and electrochemical power generation
JP5960464B2 (en) Charging / discharging system and its operation method
JP3717424B2 (en) Hydrogen and oxygen supply system
JP2021088734A (en) Hydrogen compressing device
US11811109B2 (en) Method of operating water electrolysis and electricity generating system
US20220311024A1 (en) Water electrolysis and electricity generating system
JP2023058306A (en) Water electrolysis apparatus and control method of water electrolytic cell
JP3750802B2 (en) Water electrolyzer and its operation method
JP2008251491A (en) Fuel cell system
JP2010272253A (en) Fuel cell system
JP2004277870A (en) Method for operating water electrolyzer
JP2007287545A (en) Fuel cell system
JP2003293179A (en) Water electrolyzer and method for operating the same
JP2003277964A (en) Water electrolysis apparatus and method for operating the same
US11764374B2 (en) Water electrolysis and electricity generating system
JP2024099995A (en) Water electrolysis device