WO2018084117A1 - Electrolyzed water server - Google Patents

Electrolyzed water server Download PDF

Info

Publication number
WO2018084117A1
WO2018084117A1 PCT/JP2017/039169 JP2017039169W WO2018084117A1 WO 2018084117 A1 WO2018084117 A1 WO 2018084117A1 JP 2017039169 W JP2017039169 W JP 2017039169W WO 2018084117 A1 WO2018084117 A1 WO 2018084117A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
electrode chamber
channel
electrolyzed
Prior art date
Application number
PCT/JP2017/039169
Other languages
French (fr)
Japanese (ja)
Inventor
悠平 山内
Original Assignee
株式会社日本トリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本トリム filed Critical 株式会社日本トリム
Publication of WO2018084117A1 publication Critical patent/WO2018084117A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrolyzed water server that provides electrolyzed water generated by electrolysis.
  • an electrolyzed water generating apparatus that generates alkaline ionized water by electrolysis is known (for example, see Patent Document 1).
  • the alkaline ionized water is also referred to as hydrogen water because hydrogen produced by electrolysis dissolves.
  • the electrolyzed water generator disclosed in Patent Document 1 is configured to electrolyze water according to a user's request and supply the generated hydrogen water. For this reason, it may be necessary to wait until hydrogen water with a stable dissolved hydrogen concentration is provided. Therefore, it has been studied to shorten the waiting time.
  • the inventors of the present application have studied a hydrogen water server in which the electrolyzed water generated in the electrolyzer is stored in a tank and can be provided as needed.
  • this hydrogen water server when the hydrogen water in the tank is consumed, the raw water before electrolysis is replenished to the tank. Then, an electrolysis current for electrolysis is supplied to the electrolysis means into which the water in the tank flows, and hydrogen water is generated. By continuing the electrolysis while circulating the electrolyzed water between the electrolyzer and the tank, the dissolved hydrogen concentration of the water in the tank is increased.
  • the electrolytic cell is divided by a diaphragm into a first electrode chamber in which the first power feeder is arranged and a second electrode chamber in which the second power feeder is arranged.
  • hydrogen is generated in one of the polar chambers along with electrolysis, and oxygen is generated in the other polar chamber (hereinafter referred to as the second polar chamber).
  • oxygen generated in the second electrode chamber may hinder the increase in the dissolved hydrogen concentration of water in the tank, it is desirable that oxygen be quickly discharged from the circulation path of the electrolyzed water.
  • the inventors have considered connecting an exhaust path to the second electrode chamber and providing a gas vent valve for exhausting oxygen at the tip of the exhaust path.
  • FIG. 8 shows a main part of the hydrogen water server provided with the tank, the electrolytic cell, the exhaust passage, and the gas vent valve.
  • the exhaust path 12e extends upward from the second electrode chamber 40B and discharges the gas generated by the electrolysis from the second electrode chamber 40B.
  • the gas vent valve 24 separates and discharges only the gas from the water in the exhaust passage 12e.
  • the hydrogen water server 500 is provided with a return water passage 12f that connects the exhaust passage 12e and the tank 3 and guides the water in the exhaust passage 12e to the tank 3, and water between the tank 3 and the second electrode chamber 40B. Is configured to circulate.
  • FIG. 9 shows the gas vent valve 24. Due to the structure of the gas vent valve 24, the air pressure between the valve body 24b and the exhaust port 24c is maintained by maintaining the water pressure of the exhaust passage 12e to which the main body 24a is connected above atmospheric pressure.
  • the venturi effect is obtained in the exhaust channel 12e and the return channel 12f having a smaller channel cross-sectional area (cross-sectional area perpendicular to the direction in which water flows) than the electrolytic cell 4.
  • the pressure of water increases and the water flow rate decreases.
  • the water pressure in the exhaust passage 12e drops below atmospheric pressure, air is sucked from the outside of the gas vent valve 24 and flows into the circulation passage 12 as indicated by an arrow A2. If a part of the air that has flowed into the circulation path 12 is dissolved in the water in the tank 3, there is a possibility that the increase in the dissolved hydrogen concentration of the water is hindered.
  • the present invention has been devised in view of the actual situation as described above, and has as its main object to provide an electrolyzed water server capable of suppressing air from flowing into the circulation path from the outside of the gas vent valve.
  • the electrolyzed water server of the present invention is divided into a tank for storing water, a first electrode chamber in which a first power feeding body is disposed by a diaphragm, and a second electrode chamber in which a second power feeding body is disposed, and is supplied from the tank.
  • An electrolyzer that produces electrolyzed water by electrolyzing the water that has been electrolyzed, a first water supply that connects the tank and the first electrode chamber and supplies the water to be electrolyzed to the first electrode chamber
  • a second water supply path that connects the channel, the tank, and the second electrode chamber to supply the water to be electrolyzed into the second electrode chamber; and the electrolyzed water in the first electrode chamber.
  • a water discharge passage that discharges from the polar chamber to the outside, an exhaust passage that extends upward from the second polar chamber and discharges the gas generated by electrolysis from the second polar chamber, and is provided at the tip of the exhaust passage, A vent valve that separates and discharges only the gas from the fluid in the exhaust passage, and the second electrode chamber and the front And a return water passage that is connected to the exhaust passage between the degassing valve and guides the water in the exhaust passage to the tank, and the degassing valve is disposed below the water surface in the tank. It is characterized by.
  • the gas vent valve is disposed below the inner bottom surface of the tank.
  • the exhaust path extends from an upper end portion of the second electrode chamber.
  • the electrolyzed water server further includes heating means for heating the water in the tank.
  • the electrolyzed water server further includes heating means for heating the water in the first water supply channel and the second water supply channel.
  • a gas vent valve that is provided at the tip of the exhaust passage and separates and discharges only the gas from the fluid in the exhaust passage and between the second electrode chamber and the gas vent valve is provided in the exhaust passage.
  • a return water channel is provided that guides the water in the exhaust channel to the tank.
  • the gas vent valve is distribute
  • FIG. 1 It is a block diagram which shows schematic structure of the hydrogen water server which is one Embodiment of the electrolyzed water server of this invention. It is a block diagram which shows the electrical structure of the hydrogen water server of FIG. It is a figure which shows the operation
  • FIG. 1 shows a schematic configuration of an example of a hydrogen water server 1 which is an embodiment of the electrolyzed water server of the present invention.
  • the hydrogen water server 1 is a device that stores hydrogen water in which hydrogen is dissolved so that it can be provided as needed.
  • the hydrogen water provided by the hydrogen water server 1 can be used as drinking or cooking water.
  • the hydrogen water server 1 includes a water purification filter 2, a tank 3, and an electrolytic cell 4.
  • the water filter 2 purifies the water supplied to the tank 3.
  • the water purification filter 2 is configured to be replaceable by attaching to and detaching from the main body of the hydrogen water server 1.
  • the water purification filter 2 is provided in the water inlet 11 on the upstream side of the tank 3.
  • Raw water is supplied to the inlet channel 11.
  • As the raw water tap water is generally used, but well water, ground water, and the like can be used.
  • the water inlet 11 has a water inlet valve 21.
  • the water inlet valve 21 controls the amount of water flow to the hydrogen water server 1.
  • the water purification filter 2 of the present embodiment includes a prefilter 2A, a carbon (activated carbon) filter 2B, and a hollow fiber membrane filter 2C.
  • the pre-filter 2A is arranged on the most upstream side, and removes a material of 0.5 ⁇ m or more contained in raw water, for example.
  • the carbon filter 2B is disposed on the downstream side of the prefilter 2A, and removes the substance that has passed through the prefilter 2A by adsorption.
  • the hollow fiber membrane filter 2C is disposed on the downstream side of the carbon filter 2B, and removes, for example, a 0.1 ⁇ m or more substance that has passed through the prefilter 2A and the carbon filter 2B.
  • Tank 3 stores the water that has passed through the water purification filter 2. By appropriately controlling the opening and closing of the water inlet valve 21, the amount of water stored in the tank 3 is optimized.
  • a circulation path 12 is provided between the tank 3 and the electrolytic cell 4.
  • the circulation path 12 is a flow path for circulating water between the tank 3 and the electrolytic cell 4.
  • the water stored in the tank 3 is supplied to the electrolytic cell 4 through the circulation path 12 and electrolyzed, and then returns to the tank 3 through the circulation path 12. Thereby, the dissolved hydrogen concentration of the water in the tank 3 is raised.
  • the electrolytic cell 4 functions as an electrolysis means.
  • the electrolytic cell 4 generates hydrogen water by electrolyzing the water supplied from the tank 3.
  • the electrolytic cell 4 includes an electrolysis chamber 40, a first power feeding body 41, a second power feeding body 42, and a diaphragm 43.
  • the electrolytic chamber 40 is divided by a diaphragm 43 into a first electrode chamber 40A on the first power feeder 41 side and a second electrode chamber 40B on the second power feeder 42 side.
  • first power supply body 41 and the second power supply body 42 for example, a surface in which a platinum plating layer is formed on a surface of a net-like metal such as an expanded metal made of titanium or the like is applied.
  • a net-like first power supply body 41 and second power supply body 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40.
  • One of the first power supply 41 and the second power supply 42 is applied as an anode power supply, and the other is applied as a cathode power supply. Water is supplied to both the first electrode chamber 40 ⁇ / b> A and the second electrode chamber 40 ⁇ / b> B of the electrolysis chamber 40, and a direct current voltage is applied to the first power supply body 41 and the second power supply body 42. Electrolysis occurs.
  • the diaphragm 43 for example, a solid polymer film made of a fluorine-based resin having a sulfonic acid group is appropriately used. On both surfaces of the diaphragm 43, plating layers made of platinum are formed. The plating layer of the diaphragm 43 is in contact with and electrically connected to the first power feeding body 41 and the second power feeding body 42. The diaphragm 43 allows ions generated by electrolysis to pass through. The first power supply body 41 and the second power supply body 42 are electrically connected via the diaphragm 43.
  • Electrolysis of water in the electrolysis chamber 40 generates hydrogen gas and oxygen gas.
  • the first power supply 41 when the first power supply 41 is applied as a cathode power supply, hydrogen gas is generated in the first electrode chamber 40A, and hydrogen water in which the hydrogen gas is dissolved is generated.
  • the hydrogen water generated with such electrolysis is referred to as “electrolytic hydrogen water”.
  • the second electrode chamber 40B oxygen gas is generated, and “electrolytic oxygen water” in which the oxygen gas is dissolved is generated.
  • the first power supply body 41 is applied as an anode power supply body, oxygen gas is generated in the first electrode chamber 40A, and electrolytic oxygen water in which the oxygen gas is dissolved is generated.
  • the second electrode chamber 40B hydrogen gas is generated, and electrolytic hydrogen water in which the hydrogen gas is dissolved is generated.
  • the circulation path 12 includes water paths 12 a, 12 b and 12 c disposed on the upstream side of the electrolytic cell 4, a water path 12 d, an exhaust path 12 e and a return water path 12 f disposed on the downstream side of the electrolytic tank 4.
  • the water channel 12a is connected to the tank 3 at one upstream end and branches to the water channels 12b and 12c at the other downstream end.
  • a pump 22 is provided in the water channel 12a. The pump 22 drives the water in the circulation path 12 to circulate in the circulation path 12.
  • the water channel 12b is connected to the first electrode chamber 40A on the downstream side, and the water channel 12c is connected to the second electrode chamber 40B on the downstream side.
  • a first water supply channel is configured by the water channels 12a and 12b. The first water supply channel connects the tank 3 and the first electrode chamber 40A, and supplies water to be electrolyzed to the first electrode chamber 40A.
  • a second water supply channel is configured by the water channels 12a and 12c. The second water supply channel connects the tank 3 and the second electrode chamber 40B, and supplies water to be electrolyzed to the second electrode chamber 40B.
  • the water channel 12b is provided with a flow rate sensor 27A
  • the water channel 12c is provided with a flow rate sensor 27B.
  • the flow rate sensor 27A detects the flow rate of water flowing into the first electrode chamber 40A.
  • the flow sensor 27B detects the flow rate of water flowing into the second electrode chamber 40B.
  • the water channel 12d is connected to the first pole chamber 40A at one upstream end and is connected to the tank 3 at the other downstream end.
  • the first power supply body 41 is applied as a cathode power supply body, the cathode 3, the circulation path 12 on the cathode side is constituted by the tank 3, the water channels 12a and 12b, the first electrode chamber 40A, and the water channel 12d.
  • the exhaust passage 12e extends upward from the second electrode chamber 40B.
  • the exhaust path 12e discharges gas generated by electrolysis in the second electrode chamber 40B from the second electrode chamber 40B.
  • the exhaust passage 12e is connected to the upper end of the second pole chamber 40B. Thereby, the gas produced
  • a gas vent valve 24 is provided at the tip of the exhaust passage 12e. The gas vent valve 24 separates and discharges only the gas from the fluid in the exhaust passage 12e. When the 2nd electric power feeder 42 is applied as an anode electric power feeder, the gas vent valve 24 isolate
  • the return water channel 12 f connects the exhaust channel 12 e and the tank 3, and guides the electrolyzed water in the exhaust channel 12 e to the tank 3.
  • the return water passage 12f is connected to the exhaust passage 12e between the second pole chamber 40B and the gas vent valve 24.
  • the circulation path 12 is configured by the tank 3, the water paths 12a and 12c, the second pole chamber 40B, the exhaust path 12e, and the return water path 12f.
  • the hydrogen water server 1 includes a water discharge channel 13 connected to the first electrode chamber 40A.
  • the water discharge path 13 is a flow path for discharging the electrolyzed water generated in the first electrode chamber 40A.
  • the water discharge channel 13 of the present embodiment is connected to the first pole chamber 40A via the water channel 12d. Thereby, the structure of the hydrogen water server 1 is simplified.
  • the water discharge path 13 may be directly connected to the first pole chamber 40A.
  • a flow path switching valve 23 is disposed in the water channel 12d.
  • a so-called three-way valve can be applied to the flow path switching valve 23.
  • the flow path switching valve 23 is controlled by the control means 6 (see FIG. 2) to be described later according to the operation mode of the hydrogen water server 1, and a part or all of the flow path downstream of the flow path switching valve 23 is a water path. Switch to 12d or water discharge channel 13. That is, in the mode in which the electrolytic hydrogen water is generated, the entire flow path downstream of the flow path switching valve 23 is the water path 12d on the tank 3 side. In the mode in which the electrolytic hydrogen water is discharged, a part or all of the flow path downstream of the flow path switching valve 23 is switched to the water discharge path 13. Thereby, switching of a flow path can be realized with a simple configuration.
  • a water outlet 13 a is provided at the front end side of the water discharge path 13.
  • a space in which the cup 100 or the like can be placed is formed below the water discharge port 13a, and a tray 13b for collecting water spilled from the cup 100 is provided.
  • the hydrogen water server 1 of this embodiment stores the hydrogen water circulating in the circulation path 12 in the tank 3 while increasing the dissolved hydrogen concentration of the hydrogen water by electrolyzing the water in the electrolytic cell 4.
  • the hydrogen water generated in this way can be provided to the user via the water discharge channel 13. Therefore, it is possible to provide hydrogen water with a high dissolved hydrogen concentration at any time according to the user's request.
  • FIG. 2 shows the electrical configuration of the hydrogen water server 1.
  • the hydrogen water server 1 includes an operation unit 5 that is operated by a user, a control unit 6 that controls each part of the water inlet valve 21, the first power feeding body 41, the second power feeding body 42, the first power feeding body 41, and the first power feeding body 41.
  • Current supply means 61 for supplying an electrolytic current to the two power feeders 42 is provided.
  • the current supply unit 61 may be integrated with the control unit 6.
  • the operation unit 5 includes a switch operated by a user or a touch panel for detecting capacitance (not shown).
  • the user can set, for example, an operation mode of the hydrogen water server 1 described later by operating the operation unit 5.
  • the operation unit 5 When the operation unit 5 is operated by the user, the operation unit 5 outputs a corresponding electrical signal to the control means 6.
  • the control means 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, and a memory that stores various information.
  • a current detection unit 44 is provided on the current supply line between the first power feeder 41 and the current supply unit 61.
  • the current detection unit 44 may be provided on a current supply line between the second power feeder 42 and the current supply unit 61.
  • the current detection means 44 detects the electrolysis current I supplied to the first power supply body 41 and the second power supply body 42 and outputs an electric signal corresponding to the value to the control means 6.
  • the control means 6 controls the DC voltage applied by the current supply means 61 to the first power supply body 41 and the second power supply body 42 based on the electrical signal output from the current detection means 44, for example. More specifically, the control means 6 determines that the current supply means 61 performs the first power supply so that the electrolysis current I detected by the current detection means 44 becomes a desired value in accordance with a preset dissolved hydrogen concentration.
  • the DC voltage applied to the body 41 and the second power feeding body 42 is feedback controlled. For example, when the electrolysis current I is excessive, the control unit 6 decreases the voltage, and when the electrolysis current I is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current I supplied from the current supply means 61 to the first power supply body 41 and the second power supply body 42 is appropriately controlled.
  • the control means 6 may be configured to control the polarities of the first power feeding body 41 and the second power feeding body 42. By changing the polarities of the first power supply body 41 and the second power supply body 42 to each other, desired electrolyzed water out of the electrolytic hydrogen water or the electrolytic oxygen water can be discharged from the water discharge path 13.
  • the first power feeding body 41 is applied as a cathode power feeding body will be described unless otherwise specified, but the same applies to the case where the first power feeding body 41 is applied as an anode power feeding body.
  • the control means 6 controls the opening / closing of the water inlet valve 21 based on the electrical signal output from the water amount sensor 31.
  • the water intake valve 21 is disposed upstream of the water purification filter 2 and functions as raw water supply means for supplying raw water before electrolysis to the water purification filter 2 and the tank 3.
  • the water amount sensor 31 of the present embodiment is provided in the tank 3.
  • the water amount sensor 31 outputs an electrical signal corresponding to the amount of water stored in the tank 3 to the control means 6.
  • the control means 6 controls the water inlet valve 21 according to the electric signal input from the water amount sensor 31. For example, when the hydrogen water stored in the tank 3 is consumed and the water level in the tank 3 is lowered, the control means 6 opens the water inlet valve 21 based on the electrical signal output from the water amount sensor 31 and enters the water inlet channel.
  • the tank 3 is replenished with water from 11. Thereby, the tank 3 is appropriately replenished with water, and the amount of stored water is maintained appropriately.
  • the control means 6 controls the drive voltage of the pump 22. At this time, the control means 6 controls the drive voltage of the pump 22 while monitoring the flow rates detected by the flow rate sensors 27A and 27B. Thereby, the hydrogen water stored in the tank 3 circulates through the circulation path 12 between the tank 3 and the electrolytic cell 4, and the first electrode chamber 40A and the second electrode chamber 40B are filled with the electrolyzed water. Further, the control means 6 applies an electrolytic voltage to the first power supply body 41 and the second power supply body 42. Thereby, the electrolyzed water supplied to the electrolytic cell 4 is further electrolyzed, and the dissolved hydrogen concentration of the hydrogen water stored in the tank 3 can be maintained high.
  • FIG. 3 shows the main part of the hydrogen water server 1.
  • the gas vent valve 24 is disposed below the water surface h ⁇ b> 1 in the tank 3.
  • the control means 6 controls the water inlet valve 21 so that the water surface h1 in the tank 3 is located above the gas vent valve 24. As a result, the pressure of water in the tank 3 is applied to the gas vent valve 24.
  • FIG. 4 shows the configuration of the gas vent valve 24.
  • the gas vent valve 24 of the present embodiment includes a main body 24a, a spherical valve body 24b accommodated in the main body 24a, and an exhaust port 24c that is disposed at the upper part of the main body 24a and has an upper end opened.
  • the gas vent valve 24 in a state where the main body 24a is filled with water is shown.
  • the valve body 24b is formed of a material having a specific gravity smaller than that of the water in the exhaust passage 12e and the return water passage 12f.
  • FIG. 5 shows a state in which the gas in the main body 24 a is discharged by the gas vent valve 24.
  • the flow path cross-sectional area of the exhaust path 12e and the return water path 12f is smaller than the flow path cross-sectional area of the second pole chamber 40B. Therefore, when water flows through the circulation path 12 including the second pole chamber 40B, the exhaust path 12e, and the return water path 12f, a venturi effect occurs in the exhaust path 12e and the return water path 12f, and the water pressure tends to decrease.
  • the gas vent valve 24 since the gas vent valve 24 is disposed below the water surface h1 in the tank 3, the main body 24a and the valve body 24b of the gas vent valve 24 have The pressure of the water in the tank 3 is applied. Therefore, it is suppressed that the water pressure of the exhaust passage 12e and the return water passage 12f falls below atmospheric pressure, and the sealed state of the gas vent valve 24 is maintained. Thereby, it is suppressed that air is sucked from the outside of the gas vent valve 24 and flows into the circulation path 12, and an increase in the dissolved hydrogen concentration of water in the tank 3 is not hindered.
  • the hydrogen water server 1 since the inflow of air into the exhaust passage 12e is suppressed without requiring a check valve, the hydrogen water server 1 can be reduced in size and cost.
  • the lower end of the gas vent valve 24 is preferably disposed below the inner bottom surface 35 of the tank 3.
  • the water pressure applied to the gas vent valve 24 can be easily increased.
  • the water pressure remaining above the inner bottom surface 35 of the tank 3 is applied to the gas vent valve 24 and the sealed state of the gas vent valve 24 is maintained, except when the water in the tank 3 is completely consumed. Is done.
  • a parallel water channel 14 may be provided along the second pole chamber 40B.
  • the parallel water channel 14 communicates the exhaust channel 12e and the lower end of the second electrode chamber 40B.
  • the parallel water channel 14 is connected to the return water channel 12f and the water channel 12c. That is, the parallel water channel 14 is connected to the exhaust channel 12e through the return channel 12f, and is connected to the second pole chamber 40B through the water channel 12c.
  • the parallel water channel 14 may be directly connected to the exhaust channel 12e and the second electrode chamber 40B.
  • the oxygen gas O generated by electrolysis in the second electrode chamber 40B is discharged from the second electrode chamber 40B through the exhaust passage 12e.
  • the oxygen gas O in the second electrode chamber 40B is pushed upward by the pressure of the water filled in the parallel channel 14 that connects the exhaust channel 12e and the lower end of the second electrode chamber 40B, and the exhaust channel 12e. Move to.
  • the oxygen gas O generated in the second electrode chamber 40B is supplied to the second electrode chamber 40B without supplying water to the second electrode chamber 40B being electrolyzed (that is, without generating a water flow in the second electrode chamber 40B). It is discharged from the polar chamber 40B.
  • the water channel 12c may be provided with a water supply control valve 25 for controlling water supply from the water channel 12c to the second electrode chamber 40B.
  • a water supply control valve 25 for controlling water supply from the water channel 12c to the second electrode chamber 40B.
  • an electromagnetic valve that opens and closes using electromagnetic force as a driving force can be applied to the water supply control valve 25.
  • the operation of the water supply control valve 25 is controlled by the control means 6.
  • the control means 6 For example, when electrolysis is performed in the electrolytic cell 4, the water supply control valve 25 is closed. Thereby, the water supply to the 2nd pole chamber 40B is stopped, and the utilization efficiency of water is raised to the limit. Even in this case, the oxygen gas generated in the second electrode chamber 40B is discharged by the water pressure in the parallel water channel 14 described above, so that the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the first electrode chamber 40A is increased. .
  • the water supply control valve 25 is provided below the location where the parallel water channel 14 communicates with the water channel 12c. Thereby, water is replenished to the 2nd polar chamber 40B from the parallel water channel 14 according to consumption of the water in the 2nd polar chamber 40B accompanying electrolysis.
  • the control means 6 opens the water supply control valve 25 after stopping the electrolysis in the electrolytic cell 4. Thereby, the water supply from the water channel 12c to the second electrode chamber 40B is resumed, and the water surface h2 in the exhaust channel 12e returns to the original height.
  • the water level detection means 28 for detecting the water level in the gas exhaust path 12e may be provided in the gas exhaust path 12e.
  • the water level detection means 28 detects a drop in the water level in the exhaust passage 12e due to the water in the second electrode chamber 40B being decomposed and consumed by oxygen, and outputs an electrical signal to that effect to the control means 6. Since the water level in the exhaust passage 12e and the water level in the parallel water passage 14 are equivalent, the water level detection means 28 may be provided in the parallel water passage 14. In this case, the water level detection means 28 detects the water level in the parallel water channel 14.
  • the control means 6 controls the operation of the electrolytic cell 4 based on the electrical signal output from the water level detection means 28. For example, when the water level in the exhaust passage 12 e is lower than the detection region of the water level detection means 28, the control means 6 stops supplying the electrolytic current I to the first power supply body 41 and the second power supply body 42. Thereby, the electrolysis in the electrolysis chamber 40 is stopped, further lowering of the water level in the exhaust passage 12e can be suppressed, and damage to the diaphragm 43 can be suppressed.
  • the control means 6 controls the drive voltage of the pump 22. At this time, the control means 6 controls the driving voltage of the pump 22 while monitoring the flow rate detected by the flow rate sensor 27A. Thereby, the hydrogen water stored in the tank 3 circulates in the circulation path 12 between the tank 3 and the first pole chamber 40A. Further, the control means 6 applies an electrolytic voltage to the first power supply body 41 and the second power supply body 42. Thereby, the electrolyzed water supplied to the electrolysis chamber 40 is further electrolyzed, and the dissolved hydrogen concentration of the hydrogen water stored in the tank 3 can be maintained high.
  • the control means 6 stops applying the electrolytic voltage to the first power supply body 41 and the second power supply body 42. Thereby, the application of the electrolysis voltage in a state where the electrolyzed water is not sufficiently supplied to the electrolysis chamber 40 can be prevented.
  • the control means 6 When the hydrogen water stored in the tank 3 is consumed, based on the electrical signal output from the water amount sensor 31, the control means 6 opens the water inlet valve 21 and water is replenished from the water inlet 11 to the tank 3. The At this time, since the concentration of dissolved hydrogen in the hydrogen water stored in the tank 3 decreases, the control means 6 uses the hydrogen water stored in the tank 3 in the circulation path 12 between the tank 3 and the first pole chamber 40A. While circulating again, electrolysis is performed in the electrolysis chamber 40 to increase the dissolved hydrogen concentration.
  • a cooling device 7 is connected to the tank 3.
  • the cooling device 7 cools the tank 3 by cooling the refrigerant and supplying it to the outer wall of the tank 3.
  • the operation of the cooling device 7 is controlled by the control means 6.
  • the hydrogen water stored in the tank 3 is cooled to a desired temperature by the cooling device 7. Therefore, it becomes possible to provide cooled hydrogen water as needed according to the user's request, and the commercial value of the hydrogen water server 1 is increased.
  • the hydrogen water stored in the tank 3 is periodically replaced under the control of the control means 6.
  • the replacement of the hydrogen water first, the hydrogen water stored in the tank 3 is discharged, and then new water is supplied from the water inlet 11 to the tank 3.
  • the drain 3 for discharging the hydrogen water is connected to the tank 3.
  • the tank 3 and the drainage channel 17 are connected via a part of the water channel 12a.
  • the tank 3 and the drainage channel 17 may be configured to be directly connected.
  • the drainage channel 17 is provided with a drainage valve 26.
  • the drain valve 26 is controlled by the control means 6 to open and close. When the drain valve 26 is opened, the hydrogen water stored in the tank 3 is discharged from the drain port 17a.
  • the receiving tray 13b is connected to the drainage channel 17 through the water channel 13c.
  • the water collected by the tray part 13b is discharged from the drainage channel 17 via the water channel 13c.
  • the tank 3 is provided with a heater (heating means) 8 for heating water.
  • the heater 8 generates heat due to Joule heat, and heats the water stored in the tank 3.
  • a heater (heating means) 8 ⁇ / b> A is provided between the tank 3 and the pump 22 in the circulation path 12.
  • the heater 8 ⁇ / b> A is provided in a part of the pipe constituting the circulation path 12.
  • the heater 8A generates heat due to Joule heat and heats water in the circulation path 12.
  • the heaters 8 and 8A are controlled by the control means 6. Only one of the heaters 8 and 8A may be applied as the heating means.
  • the control means 6 controls the heaters 8 and 8A to heat the water stored in the tank 3 and the water in the circulation path 12. Thereby, hot water is generated in the tank 3 and the circulation path 12, the inside of the tank 3 and the circulation path 12 is sterilized by the hot water, and the growth of bacteria and the like is suppressed.
  • the hydrogen water server 1 has, as operation modes, an “electrolyzed water generation mode” for generating hydrogen water by electrolysis and storing it in the tank 3 and a “water discharge mode” for discharging the hydrogen water stored in the tank 3.
  • FIGS. 3 and 6 show the operation of each part of the hydrogen water server 1 and the flow of water in the “electrolyzed water generation mode”.
  • the area filled with water is indicated by hatching (hereinafter, the same applies to FIGS. 7 to 9).
  • the flow path on the tank 3 side of the flow path switching valve 23 is opened, and the flow path on the water discharge path 13 side is closed. Moreover, the water supply control valve 25 of the water channel 12c is closed. Further, the drain valve 26 is closed, and the water inlet valve 21 is appropriately opened and closed according to the amount of water stored in the tank 3.
  • the height of the water surface h2 in the exhaust passage 12e is equal to the height of the water surface h1 of the tank 3.
  • electrolysis occurs in the first electrode chamber 40A and the second electrode chamber 40B.
  • the hydrogen gas generated in the first electrode chamber 40A is collected in the tank 3 while being dissolved in the electrolyzed water, and the dissolved hydrogen concentration in the water in the tank 3 is increased.
  • the oxygen gas O generated in the second electrode chamber 40B becomes bubbles and is discharged through the exhaust passage 12e and the gas vent valve 24.
  • the oxygen gas O in the second electrode chamber 40B is pushed upward by the pressure of the water filled in the parallel water passage 14, and moves to the exhaust passage 12e.
  • the oxygen gas O generated in the second electrode chamber 40B is discharged from the second electrode chamber 40B without supplying water to the second electrode chamber 40B being electrolyzed. Therefore, sufficient water is supplied to the surface of the second power feeder 42, and electrolysis in the electrolysis chamber 40 is efficiently performed.
  • the water in the second electrode chamber 40B does not return to the tank 3 via the exhaust passage 12e and the return water passage 12f. Therefore, the increase in the dissolved hydrogen concentration of the water in the tank 3 is not hindered by the inflow of water in the second electrode chamber 40B, and the dissolved hydrogen concentration of the electrolytic hydrogen water can be easily increased.
  • the control means 6 stops the pump 22, and the first power feeding body 41 and the second power supply 41.
  • Application of the electrolytic voltage to the power supply 42 is stopped.
  • the control means 6 opens the water supply control valve 25 to supply water from the water channel 12c to the second pole chamber 40B and the parallel water channel 14, and the water level of the exhaust channel 12e returns to the initial state shown in FIG. .
  • driving of the pump 22 may be used in combination. In this case, the water level of the exhaust passage 12e returns to the initial state in a shorter time.
  • the application of the electrolysis voltage to the 1st electric power feeder 41 and the 2nd electric power feeder 42 may be continued.
  • FIG. 7 shows the operation of each part of the hydrogen water server 1 and the flow of water in the “water discharge mode”.
  • the flow path of the electrolytic hydrogen water that has passed through the first electrode chamber 40A is switched by the flow path switching valve 23 from the state of the electrolyzed water generation mode shown in FIGS. That is, in the water discharge mode, the flow path on the tank 3 side is closed and the flow path on the water discharge path 13 side is opened.
  • the control means 6 may be configured to apply an electrolytic voltage to the first power supply body 41 and the second power supply body 42.
  • the electrolyzed water generation server includes at least a tank 3 for storing water, a first electrode chamber 40A in which the first power supply body 41 is disposed by a diaphragm 43, and a second electrode chamber 40B in which the second power supply body 42 is disposed.
  • the electrolytic cell 4 that generates electrolyzed water by electrolyzing the water supplied from the tank 3 is connected to the tank 3 and the first electrode chamber 40A, and is electrolyzed to the first electrode chamber 40A.
  • a first water supply channel for supplying water, a tank 3 and the second electrode chamber 40B are connected, a second water supply channel for supplying water to be electrolyzed into the second electrode chamber 40B, and a first electrode chamber 40A.
  • a water discharge passage 13 that discharges electrolyzed water from the first electrode chamber 40A to the outside, an exhaust passage 12e that extends upward from the second electrode chamber 40B and discharges gas generated by electrolysis from the second electrode chamber 40B, and an exhaust passage.
  • the gas from the fluid in the exhaust passage 12e is provided at the tip of the 12e.
  • a gas vent valve 24 that separates and discharges only the gas, and a return water channel 12f that is connected to the exhaust passage 12e between the second pole chamber 40B and the gas vent valve 24 and guides the water in the exhaust passage 12e to the tank 3.
  • the gas vent valve 24 only needs to be disposed below the water surface h1 in the tank 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A hydrogen water server 1, which is an electrolyzed water server, is provided with: a tank 3 for storing water; an electrolysis vessel 4 in which a first pole chamber 40A and a second pole chamber 40B are partitioned by a barrier membrane 43, which is a solid polymer membrane; a first water supply channel connecting the tank 3 and the first pole chamber 40A; a second water supply channel connecting the tank 3 and the second pole chamber 40B; a water discharge channel 13 for discharging electrolyzed water in the first pole chamber 40A; an exhaust channel 12e extending upward from the second pole chamber 40B, for exhausting gas generated by electrolysis from the second pole chamber 40B; a gas release valve 24 provided at the tip of the air discharge channel 12e, for discharging only gas; and a water return channel 12f for guiding water in the exhaust channel 12e to the tank 3, the water return channel being connected to the exhaust channel 12e between the second pole chamber 40B and the gas release valve 24. The gas release valve 24 is arranged below the water surface h1 in the tank 3.

Description

電解水サーバーElectrolyzed water server
 本発明は、電気分解によって生成された電解水を提供する電解水サーバーに関する。 The present invention relates to an electrolyzed water server that provides electrolyzed water generated by electrolysis.
 従来、電気分解によってアルカリイオン水を生成する電解水生成装置が知られている(例えば、特許文献1参照)。近年、上記アルカリイオン水は、電気分解に伴って生成された水素が溶け込むことから水素水とも称されている。 Conventionally, an electrolyzed water generating apparatus that generates alkaline ionized water by electrolysis is known (for example, see Patent Document 1). In recent years, the alkaline ionized water is also referred to as hydrogen water because hydrogen produced by electrolysis dissolves.
 上記特許文献1に開示されている電解水生成装置は、ユーザーの要求に応じて水を電気分解し、生成された水素水を供給する構成である。このため、溶存水素濃度の安定した水素水が提供されるまで待機することが必要な場合がある。従って、上記待機の時間を短くすることが検討されている。 The electrolyzed water generator disclosed in Patent Document 1 is configured to electrolyze water according to a user's request and supply the generated hydrogen water. For this reason, it may be necessary to wait until hydrogen water with a stable dissolved hydrogen concentration is provided. Therefore, it has been studied to shorten the waiting time.
 そこで、電解槽で生成された電解水をタンクに貯え、随時提供可能とした水素水サーバーが本願発明者らによって検討されている。この水素水サーバーでは、タンク内の水素水が消費されると、電気分解前の原水がタンクに補充される。そして、タンク内の水が流入する電解手段には電気分解のための電解電流が供給され、水素水が生成される。電解槽及びタンク間で電解水を循環させながら、電気分解を継続することにより、タンク内の水の溶存水素濃度が高められる。 Therefore, the inventors of the present application have studied a hydrogen water server in which the electrolyzed water generated in the electrolyzer is stored in a tank and can be provided as needed. In this hydrogen water server, when the hydrogen water in the tank is consumed, the raw water before electrolysis is replenished to the tank. Then, an electrolysis current for electrolysis is supplied to the electrolysis means into which the water in the tank flows, and hydrogen water is generated. By continuing the electrolysis while circulating the electrolyzed water between the electrolyzer and the tank, the dissolved hydrogen concentration of the water in the tank is increased.
 電解槽は、隔膜によって第1給電体が配された第1極室と第2給電体が配された第2極室とに区切られている。このうち、電気分解に伴って一方の極室では水素が生成され、他方の極室(以下、第2極室と記す)では酸素が生成される。第2極室で生成される酸素は、タンク内の水の溶存水素濃度の上昇を妨げるおそれがあるため、電解水の循環経路から速やかに排出されるのが望ましい。そこで、発明者らは、第2極室に排気路を接続し、その先端部に酸素を排出するためのガス抜き弁を設けることを検討している。 The electrolytic cell is divided by a diaphragm into a first electrode chamber in which the first power feeder is arranged and a second electrode chamber in which the second power feeder is arranged. Among these, hydrogen is generated in one of the polar chambers along with electrolysis, and oxygen is generated in the other polar chamber (hereinafter referred to as the second polar chamber). Since oxygen generated in the second electrode chamber may hinder the increase in the dissolved hydrogen concentration of water in the tank, it is desirable that oxygen be quickly discharged from the circulation path of the electrolyzed water. In view of this, the inventors have considered connecting an exhaust path to the second electrode chamber and providing a gas vent valve for exhausting oxygen at the tip of the exhaust path.
 図8は、上記タンク、電解槽、排気路及びガス抜き弁を備えた水素水サーバーの要部を示している。この水素水サーバー500では、排気路12eは、第2極室40Bから上方にのび、電気分解によって生じた気体を第2極室40Bから排出する。ガス抜き弁24は、排気路12e内の水から気体のみを分離して排出する。さらに、水素水サーバー500は、排気路12eとタンク3とを接続し、排気路12e内の水をタンク3へと導く帰還水路12fを備え、タンク3と第2極室40Bとの間で水が循環するように構成されている。 FIG. 8 shows a main part of the hydrogen water server provided with the tank, the electrolytic cell, the exhaust passage, and the gas vent valve. In the hydrogen water server 500, the exhaust path 12e extends upward from the second electrode chamber 40B and discharges the gas generated by the electrolysis from the second electrode chamber 40B. The gas vent valve 24 separates and discharges only the gas from the water in the exhaust passage 12e. Further, the hydrogen water server 500 is provided with a return water passage 12f that connects the exhaust passage 12e and the tank 3 and guides the water in the exhaust passage 12e to the tank 3, and water between the tank 3 and the second electrode chamber 40B. Is configured to circulate.
 図9は、ガス抜き弁24を示している。ガス抜き弁24は、その構造上、本体24aが接続される排気路12eの水圧を大気圧以上に維持することにより、弁体24bと排気口24cとの気密性が保たれている。電解槽4及びタンク3を含む循環経路12に水が流れると、電解槽4よりも流路断面積(水が流れる方向に垂直な断面積)の小さい排気路12e及び帰還水路12fでは、ベンチュリー効果が生じて水の流速が高まることにより、水圧が低下する。排気路12eの水圧が大気圧未満に低下した場合、矢印A2で示されるように、ガス抜き弁24の外部から空気が吸い込まれ循環経路12に流入する。この循環経路12に流入した空気の一部がタンク3内の水に溶け込むと、上記水の溶存水素濃度の上昇が妨げられるおそれがある。 FIG. 9 shows the gas vent valve 24. Due to the structure of the gas vent valve 24, the air pressure between the valve body 24b and the exhaust port 24c is maintained by maintaining the water pressure of the exhaust passage 12e to which the main body 24a is connected above atmospheric pressure. When water flows through the circulation path 12 including the electrolytic cell 4 and the tank 3, the venturi effect is obtained in the exhaust channel 12e and the return channel 12f having a smaller channel cross-sectional area (cross-sectional area perpendicular to the direction in which water flows) than the electrolytic cell 4. The pressure of water increases and the water flow rate decreases. When the water pressure in the exhaust passage 12e drops below atmospheric pressure, air is sucked from the outside of the gas vent valve 24 and flows into the circulation passage 12 as indicated by an arrow A2. If a part of the air that has flowed into the circulation path 12 is dissolved in the water in the tank 3, there is a possibility that the increase in the dissolved hydrogen concentration of the water is hindered.
特開2003-275763号公報JP 2003-275663 A
 本発明は、以上のような実状に鑑み案出されたもので、ガス抜き弁の外部から循環経路に空気が流入することを抑制できる電解水サーバーを提供することを主たる目的としている。 The present invention has been devised in view of the actual situation as described above, and has as its main object to provide an electrolyzed water server capable of suppressing air from flowing into the circulation path from the outside of the gas vent valve.
 本発明の電解水サーバーは、水を貯えるタンクと、隔膜によって第1給電体が配された第1極室と第2給電体が配された第2極室とに区切られ、前記タンクから供給された前記水を電気分解することにより電解水を生成する電解槽と、前記タンクと前記第1極室とを接続し、前記第1極室に電気分解される前記水を供給する第1給水路と、前記タンクと前記第2極室とを接続し、前記第2極室に電気分解される前記水を供給する第2給水路と、前記第1極室内の前記電解水を前記第1極室から外部へ吐出する吐水路と、前記第2極室から上方にのび、電気分解によって生じた気体を前記第2極室から排出する排気路と、前記排気路の先端部に設けられ、前記排気路内の流体から気体のみを分離して排出するガス抜き弁と、前記第2極室と前記ガス抜き弁との間で前記排気路に接続され、前記排気路内の前記水を前記タンクへと導く帰還水路とを備え、前記ガス抜き弁は、前記タンク内の水面よりも下方に配されていることを特徴とする。 The electrolyzed water server of the present invention is divided into a tank for storing water, a first electrode chamber in which a first power feeding body is disposed by a diaphragm, and a second electrode chamber in which a second power feeding body is disposed, and is supplied from the tank. An electrolyzer that produces electrolyzed water by electrolyzing the water that has been electrolyzed, a first water supply that connects the tank and the first electrode chamber and supplies the water to be electrolyzed to the first electrode chamber A second water supply path that connects the channel, the tank, and the second electrode chamber to supply the water to be electrolyzed into the second electrode chamber; and the electrolyzed water in the first electrode chamber. A water discharge passage that discharges from the polar chamber to the outside, an exhaust passage that extends upward from the second polar chamber and discharges the gas generated by electrolysis from the second polar chamber, and is provided at the tip of the exhaust passage, A vent valve that separates and discharges only the gas from the fluid in the exhaust passage, and the second electrode chamber and the front And a return water passage that is connected to the exhaust passage between the degassing valve and guides the water in the exhaust passage to the tank, and the degassing valve is disposed below the water surface in the tank. It is characterized by.
 本発明に係る前記電解水サーバーにおいて、前記ガス抜き弁は、前記タンクの内底面よりも下方に配されていることが望ましい。 In the electrolyzed water server according to the present invention, it is preferable that the gas vent valve is disposed below the inner bottom surface of the tank.
 本発明に係る前記電解水サーバーにおいて、前記排気路は、前記第2極室の上端部からのびていることが望ましい。 In the electrolyzed water server according to the present invention, it is preferable that the exhaust path extends from an upper end portion of the second electrode chamber.
 本発明に係る前記電解水サーバーにおいて、前記タンク内の前記水を熱する加熱手段をさらに備えることが望ましい。 In the electrolyzed water server according to the present invention, it is preferable that the electrolyzed water server further includes heating means for heating the water in the tank.
 本発明に係る前記電解水サーバーにおいて、前記第1給水路及び前記第2給水路内の前記水を熱する加熱手段をさらに有することが望ましい。 In the electrolyzed water server according to the present invention, it is preferable that the electrolyzed water server further includes heating means for heating the water in the first water supply channel and the second water supply channel.
 本発明の電解水サーバーでは、排気路の先端部に設けられ、排気路内の流体から気体のみを分離して排出するガス抜き弁及び第2極室とガス抜き弁との間で排気路に接続され、排気路内の水をタンクへと導く帰還水路を備える。そして、ガス抜き弁は、タンク内の水面よりも下方に配されている。これにより、ガス抜き弁には、タンク内の水の圧力がかかり、ガス抜き弁の外部から排気路への空気の流入が抑制される。 In the electrolyzed water server of the present invention, a gas vent valve that is provided at the tip of the exhaust passage and separates and discharges only the gas from the fluid in the exhaust passage and between the second electrode chamber and the gas vent valve is provided in the exhaust passage. A return water channel is provided that guides the water in the exhaust channel to the tank. And the gas vent valve is distribute | arranged below rather than the water surface in a tank. Thereby, the pressure of water in the tank is applied to the gas vent valve, and the inflow of air from the outside of the gas vent valve to the exhaust passage is suppressed.
本発明の電解水サーバーの一実施形態である水素水サーバーの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the hydrogen water server which is one Embodiment of the electrolyzed water server of this invention. 図1の水素水サーバーの電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of the hydrogen water server of FIG. 図1の水素水サーバーの電解水生成モードでの要部の動作及び水の流れを示す図である。It is a figure which shows the operation | movement of the principal part in the electrolyzed water production | generation mode of the hydrogen water server of FIG. 1, and the flow of water. 図3のガス抜き弁の構成を示す図である。It is a figure which shows the structure of the degassing valve of FIG. 図4のガス抜き弁で、本体内の気体が排出される様子を示す図である。It is a figure which shows a mode that the gas in a main body is discharged | emitted with the degassing valve of FIG. 図3に続き、水素水サーバーの電解水生成モードでの要部の動作及び水の流れを示す図である。It is a figure which shows the operation | movement of the principal part in the electrolyzed water production | generation mode of a hydrogen water server, and the flow of water following FIG. 図1の水素水サーバーの吐水モードでの要部の動作及び水の流れを示す図である。It is a figure which shows the operation | movement of the principal part in the water discharge mode of the hydrogenous water server of FIG. 1, and the flow of water. 従来検討されている水素水サーバーの電解水生成モードでの要部の動作及び水の流れを示す図である。It is a figure which shows the operation | movement of the principal part in the electrolyzed water production | generation mode of the hydrogen water server currently examined, and the flow of water. 図8のガス抜き弁の動作及び水の流れを示す図である。It is a figure which shows the operation | movement of the degassing valve of FIG. 8, and the flow of water.
 以下、本発明の実施の一形態が図面に基づき説明される。
 図1は、本発明の電解水サーバーの一実施形態である水素水サーバー1の一例の概略構成を示している。水素水サーバー1は、水素が溶け込んだ水素水を随時提供可能に貯える装置である。水素水サーバー1によって提供された水素水は、飲用又は料理用等の水として用いることができる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of an example of a hydrogen water server 1 which is an embodiment of the electrolyzed water server of the present invention. The hydrogen water server 1 is a device that stores hydrogen water in which hydrogen is dissolved so that it can be provided as needed. The hydrogen water provided by the hydrogen water server 1 can be used as drinking or cooking water.
 水素水サーバー1は、浄水フィルター2と、タンク3と、電解槽4とを備えている。 The hydrogen water server 1 includes a water purification filter 2, a tank 3, and an electrolytic cell 4.
 浄水フィルター2は、タンク3に供給される水を浄化する。浄水フィルター2は、水素水サーバー1の本体部に対して着脱により交換可能に構成されている。浄水フィルター2は、タンク3の上流側の入水路11に設けられている。入水路11には、原水が供給される。原水には、一般的には水道水が利用されるが、その他、例えば、井戸水、地下水等を用いることができる。入水路11は、入水弁21を有する。入水弁21は、水素水サーバー1への通水量を制御する。 The water filter 2 purifies the water supplied to the tank 3. The water purification filter 2 is configured to be replaceable by attaching to and detaching from the main body of the hydrogen water server 1. The water purification filter 2 is provided in the water inlet 11 on the upstream side of the tank 3. Raw water is supplied to the inlet channel 11. As the raw water, tap water is generally used, but well water, ground water, and the like can be used. The water inlet 11 has a water inlet valve 21. The water inlet valve 21 controls the amount of water flow to the hydrogen water server 1.
 本実施形態の浄水フィルター2は、プレフィルター2A、カーボン(活性炭)フィルター2B及び中空糸膜フィルター2Cを含む。プレフィルター2Aは、最も上流側に配され、例えば、原水に含まれる0.5μm以上の物質を除去する。カーボンフィルター2Bは、プレフィルター2Aの下流側に配され、プレフィルター2Aを通過した物質を吸着によって除去する。中空糸膜フィルター2Cは、カーボンフィルター2Bの下流側に配され、プレフィルター2A及びカーボンフィルター2Bを通過した例えば0.1μm以上の物質を除去する。 The water purification filter 2 of the present embodiment includes a prefilter 2A, a carbon (activated carbon) filter 2B, and a hollow fiber membrane filter 2C. The pre-filter 2A is arranged on the most upstream side, and removes a material of 0.5 μm or more contained in raw water, for example. The carbon filter 2B is disposed on the downstream side of the prefilter 2A, and removes the substance that has passed through the prefilter 2A by adsorption. The hollow fiber membrane filter 2C is disposed on the downstream side of the carbon filter 2B, and removes, for example, a 0.1 μm or more substance that has passed through the prefilter 2A and the carbon filter 2B.
 タンク3は、浄水フィルター2を通過した水を貯える。入水弁21の開閉を適宜制御することにより、タンク3の貯水量が適正化される。 Tank 3 stores the water that has passed through the water purification filter 2. By appropriately controlling the opening and closing of the water inlet valve 21, the amount of water stored in the tank 3 is optimized.
 タンク3と電解槽4との間には、循環経路12が設けられている。循環経路12は、タンク3と電解槽4との間で水を循環させるための流路である。タンク3に貯えられた水は、循環経路12を介して電解槽4に供給され、電気分解された後、循環経路12を介してタンク3に戻る。これにより、タンク3内の水の溶存水素濃度が高められる。 A circulation path 12 is provided between the tank 3 and the electrolytic cell 4. The circulation path 12 is a flow path for circulating water between the tank 3 and the electrolytic cell 4. The water stored in the tank 3 is supplied to the electrolytic cell 4 through the circulation path 12 and electrolyzed, and then returns to the tank 3 through the circulation path 12. Thereby, the dissolved hydrogen concentration of the water in the tank 3 is raised.
 電解槽4は、電解手段として機能する。電解槽4は、タンク3から供給された水を電気分解することにより水素水を生成する。電解槽4は、電解室40と、第1給電体41と、第2給電体42と、隔膜43とを有している。電解室40は、隔膜43によって、第1給電体41側の第1極室40Aと、第2給電体42側の第2極室40Bとに区切られる。 The electrolytic cell 4 functions as an electrolysis means. The electrolytic cell 4 generates hydrogen water by electrolyzing the water supplied from the tank 3. The electrolytic cell 4 includes an electrolysis chamber 40, a first power feeding body 41, a second power feeding body 42, and a diaphragm 43. The electrolytic chamber 40 is divided by a diaphragm 43 into a first electrode chamber 40A on the first power feeder 41 side and a second electrode chamber 40B on the second power feeder 42 side.
 第1給電体41及び第2給電体42には、例えば、チタニウム等からなるエクスパンドメタル等の網状金属の表面に白金のめっき層が形成されたものが適用されている。このような網状の第1給電体41及び第2給電体42は、隔膜43を挟持しながら、隔膜43の表面に水を行き渡らせることができ、電解室40内での電気分解を促進する。 As the first power supply body 41 and the second power supply body 42, for example, a surface in which a platinum plating layer is formed on a surface of a net-like metal such as an expanded metal made of titanium or the like is applied. Such a net-like first power supply body 41 and second power supply body 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40.
 第1給電体41及び第2給電体42の一方は陽極給電体として適用され、他方は陰極給電体として適用される。電解室40の第1極室40A及び第2極室40Bの両方に水が供給され、第1給電体41及び第2給電体42に直流電圧が印加されることにより、電解室40内で水の電気分解が生ずる。 One of the first power supply 41 and the second power supply 42 is applied as an anode power supply, and the other is applied as a cathode power supply. Water is supplied to both the first electrode chamber 40 </ b> A and the second electrode chamber 40 </ b> B of the electrolysis chamber 40, and a direct current voltage is applied to the first power supply body 41 and the second power supply body 42. Electrolysis occurs.
 隔膜43には、例えば、スルホン酸基を有するフッ素系樹脂からなる固体高分子膜等が適宜用いられている。隔膜43の両面には、白金からなるめっき層が形成されている。隔膜43のめっき層と第1給電体41及び第2給電体42とは、当接し、電気的に接続される。隔膜43は、電気分解で生じたイオンを通過させる。隔膜43を介して第1給電体41と第2給電体42とが電気的に接続される。 For the diaphragm 43, for example, a solid polymer film made of a fluorine-based resin having a sulfonic acid group is appropriately used. On both surfaces of the diaphragm 43, plating layers made of platinum are formed. The plating layer of the diaphragm 43 is in contact with and electrically connected to the first power feeding body 41 and the second power feeding body 42. The diaphragm 43 allows ions generated by electrolysis to pass through. The first power supply body 41 and the second power supply body 42 are electrically connected via the diaphragm 43.
 電解室40内で水が電気分解されることにより、水素ガス及び酸素ガスが発生する。例えば、第1給電体41が陰極給電体として適用される場合、第1極室40Aでは、水素ガスが発生し、水素ガスが溶け込んだ水素水が生成される。このような電気分解を伴って生成された水素水は、「電解水素水」と称される。一方、第2極室40Bでは、酸素ガスが発生し、酸素ガスが溶け込んだ「電解酸素水」が生成される。第1給電体41が陽極給電体として適用される場合、第1極室40Aでは、酸素ガスが発生し、酸素ガスが溶け込んだ電解酸素水が生成される。一方、第2極室40Bでは、水素ガスが発生し、水素ガスが溶け込んだ電解水素水が生成される。 Electrolysis of water in the electrolysis chamber 40 generates hydrogen gas and oxygen gas. For example, when the first power supply 41 is applied as a cathode power supply, hydrogen gas is generated in the first electrode chamber 40A, and hydrogen water in which the hydrogen gas is dissolved is generated. The hydrogen water generated with such electrolysis is referred to as “electrolytic hydrogen water”. On the other hand, in the second electrode chamber 40B, oxygen gas is generated, and “electrolytic oxygen water” in which the oxygen gas is dissolved is generated. When the first power supply body 41 is applied as an anode power supply body, oxygen gas is generated in the first electrode chamber 40A, and electrolytic oxygen water in which the oxygen gas is dissolved is generated. On the other hand, in the second electrode chamber 40B, hydrogen gas is generated, and electrolytic hydrogen water in which the hydrogen gas is dissolved is generated.
 循環経路12は、電解槽4の上流側に配された水路12a、12b及び12cと、電解槽4の下流側に配された水路12d、排気路12e及び帰還水路12fとを含む。水路12aは、上流の一端側でタンク3に接続され、下流の他端側で水路12b及び12cに分岐する。水路12aには、ポンプ22が設けられている。ポンプ22は、循環経路12内の水を駆動して、循環経路12内を循環させる。 The circulation path 12 includes water paths 12 a, 12 b and 12 c disposed on the upstream side of the electrolytic cell 4, a water path 12 d, an exhaust path 12 e and a return water path 12 f disposed on the downstream side of the electrolytic tank 4. The water channel 12a is connected to the tank 3 at one upstream end and branches to the water channels 12b and 12c at the other downstream end. A pump 22 is provided in the water channel 12a. The pump 22 drives the water in the circulation path 12 to circulate in the circulation path 12.
 水路12bは、下流側で第1極室40Aに接続され、水路12cは、下流側で第2極室40Bに接続されている。水路12a、12bによって第1給水路が構成される。第1給水路は、タンク3と第1極室40Aとを接続し、第1極室40Aに電気分解される水を供給する。同様に、水路12a、12cによって第2給水路が構成される。第2給水路は、タンク3と第2極室40Bとを接続し、第2極室40Bに電気分解される水を供給する。 The water channel 12b is connected to the first electrode chamber 40A on the downstream side, and the water channel 12c is connected to the second electrode chamber 40B on the downstream side. A first water supply channel is configured by the water channels 12a and 12b. The first water supply channel connects the tank 3 and the first electrode chamber 40A, and supplies water to be electrolyzed to the first electrode chamber 40A. Similarly, a second water supply channel is configured by the water channels 12a and 12c. The second water supply channel connects the tank 3 and the second electrode chamber 40B, and supplies water to be electrolyzed to the second electrode chamber 40B.
 水路12bには流量センサー27Aが、水路12cには流量センサー27Bがそれぞれ設けられている。流量センサー27Aは、第1極室40Aに流れ込む水の流量を検出する。流量センサー27Bは、第2極室40Bに流れ込む水の流量を検出する。 The water channel 12b is provided with a flow rate sensor 27A, and the water channel 12c is provided with a flow rate sensor 27B. The flow rate sensor 27A detects the flow rate of water flowing into the first electrode chamber 40A. The flow sensor 27B detects the flow rate of water flowing into the second electrode chamber 40B.
 水路12dは、上流の一端側で第1極室40Aに接続され、下流の他端側でタンク3に接続されている。第1給電体41が陰極給電体として適用される場合、タンク3、水路12a、12b、第1極室40A及び水路12dによって、陰極側の循環経路12が構成される。 The water channel 12d is connected to the first pole chamber 40A at one upstream end and is connected to the tank 3 at the other downstream end. When the first power supply body 41 is applied as a cathode power supply body, the cathode 3, the circulation path 12 on the cathode side is constituted by the tank 3, the water channels 12a and 12b, the first electrode chamber 40A, and the water channel 12d.
 排気路12eは、第2極室40Bから上方にのびている。排気路12eは、第2極室40B内で電気分解によって生じた気体を第2極室40Bから排出する。本実施形態では、排気路12eは、第2極室40Bの上端に接続されている。これにより、第2極室40Bで生成された気体が、効率よく排出される。排気路12eの先端部には、ガス抜き弁24が設けられている。ガス抜き弁24は、排気路12e内の流体から気体のみを分離して排出する。第2給電体42が陽極給電体として適用される場合、ガス抜き弁24は、排気路12e内の電解水から酸素ガスのみを分離して排出する。 The exhaust passage 12e extends upward from the second electrode chamber 40B. The exhaust path 12e discharges gas generated by electrolysis in the second electrode chamber 40B from the second electrode chamber 40B. In the present embodiment, the exhaust passage 12e is connected to the upper end of the second pole chamber 40B. Thereby, the gas produced | generated in the 2nd pole chamber 40B is discharged | emitted efficiently. A gas vent valve 24 is provided at the tip of the exhaust passage 12e. The gas vent valve 24 separates and discharges only the gas from the fluid in the exhaust passage 12e. When the 2nd electric power feeder 42 is applied as an anode electric power feeder, the gas vent valve 24 isolate | separates and discharges | emits only oxygen gas from the electrolyzed water in the exhaust path 12e.
 帰還水路12fは、排気路12eとタンク3とを接続し、排気路12e内の電解水をタンク3へと導く。帰還水路12fは、第2極室40Bとガス抜き弁24との間で排気路12eに接続されている。第1給電体41が陰極給電体として適用される場合、タンク3、水路12a、12c、第2極室40B、排気路12e及び帰還水路12fによって、陽極側の循環経路12が構成される。 The return water channel 12 f connects the exhaust channel 12 e and the tank 3, and guides the electrolyzed water in the exhaust channel 12 e to the tank 3. The return water passage 12f is connected to the exhaust passage 12e between the second pole chamber 40B and the gas vent valve 24. When the first power supply body 41 is applied as a cathode power supply body, the anode 3, the circulation path 12 is configured by the tank 3, the water paths 12a and 12c, the second pole chamber 40B, the exhaust path 12e, and the return water path 12f.
 水素水サーバー1は、第1極室40Aに接続された吐水路13を備える。吐水路13は、第1極室40Aで生成された電解水を吐出するための流路である。本実施形態の吐水路13は、水路12dを介して第1極室40Aに接続されている。これにより、水素水サーバー1の構成が簡素化される。なお、吐水路13は、第1極室40Aに直接的に接続されていてもよい。 The hydrogen water server 1 includes a water discharge channel 13 connected to the first electrode chamber 40A. The water discharge path 13 is a flow path for discharging the electrolyzed water generated in the first electrode chamber 40A. The water discharge channel 13 of the present embodiment is connected to the first pole chamber 40A via the water channel 12d. Thereby, the structure of the hydrogen water server 1 is simplified. The water discharge path 13 may be directly connected to the first pole chamber 40A.
 水路12dには、流路切替弁23が配されている。流路切替弁23には、いわゆる三方弁が適用されうる。流路切替弁23は、水素水サーバー1の運転モードに応じて後述する制御手段6(図2参照)によって制御され、流路切替弁23よりも下流側の流路の一部又は全部を水路12d又は吐水路13に切り替える。すなわち、電解水素水を生成するモードでは、流路切替弁23よりも下流側の流路の全部がタンク3側の水路12dとされる。そして、電解水素水を吐出するモードでは、流路切替弁23よりも下流側の流路の一部又は全部が吐水路13へと切り替えられる。これにより、簡素な構成で流路の切替が実現可能となる。 A flow path switching valve 23 is disposed in the water channel 12d. A so-called three-way valve can be applied to the flow path switching valve 23. The flow path switching valve 23 is controlled by the control means 6 (see FIG. 2) to be described later according to the operation mode of the hydrogen water server 1, and a part or all of the flow path downstream of the flow path switching valve 23 is a water path. Switch to 12d or water discharge channel 13. That is, in the mode in which the electrolytic hydrogen water is generated, the entire flow path downstream of the flow path switching valve 23 is the water path 12d on the tank 3 side. In the mode in which the electrolytic hydrogen water is discharged, a part or all of the flow path downstream of the flow path switching valve 23 is switched to the water discharge path 13. Thereby, switching of a flow path can be realized with a simple configuration.
 吐水路13の先端側には、吐水口13aが設けられている。吐水口13aの下方には、カップ100等を載置可能な空間が形成され、カップ100からこぼれた水を収集するための受け皿部13bが設けられている。 A water outlet 13 a is provided at the front end side of the water discharge path 13. A space in which the cup 100 or the like can be placed is formed below the water discharge port 13a, and a tray 13b for collecting water spilled from the cup 100 is provided.
 本実施形態の水素水サーバー1は、循環経路12を循環する水素水を電解槽4で電気分解することにより、水素水の溶存水素濃度を高めつつタンク3に貯える。こうして生成された水素水は、吐水路13を介してユーザーに提供されうる。従って、ユーザーの要求に応じて、高い溶存水素濃度の水素水を随時提供することが可能となる。 The hydrogen water server 1 of this embodiment stores the hydrogen water circulating in the circulation path 12 in the tank 3 while increasing the dissolved hydrogen concentration of the hydrogen water by electrolyzing the water in the electrolytic cell 4. The hydrogen water generated in this way can be provided to the user via the water discharge channel 13. Therefore, it is possible to provide hydrogen water with a high dissolved hydrogen concentration at any time according to the user's request.
 図2は、水素水サーバー1の電気的構成を示している。水素水サーバー1は、ユーザーによって操作される操作部5と、入水弁21、第1給電体41、第2給電体42等の各部の制御を司る制御手段6と、第1給電体41及び第2給電体42に電解電流を供給する電流供給手段61とを備えている。電流供給手段61は、制御手段6に統合されていてもよい。 FIG. 2 shows the electrical configuration of the hydrogen water server 1. The hydrogen water server 1 includes an operation unit 5 that is operated by a user, a control unit 6 that controls each part of the water inlet valve 21, the first power feeding body 41, the second power feeding body 42, the first power feeding body 41, and the first power feeding body 41. Current supply means 61 for supplying an electrolytic current to the two power feeders 42 is provided. The current supply unit 61 may be integrated with the control unit 6.
 操作部5は、ユーザーによって操作されるスイッチ又は静電容量を検出するタッチパネル等(図示せず)を有する。ユーザーは、操作部5を操作することにより、例えば、後述する水素水サーバー1の運転モードを設定することができる。ユーザーによって操作部5が操作されると、操作部5は対応する電気信号を制御手段6に出力する。 The operation unit 5 includes a switch operated by a user or a touch panel for detecting capacitance (not shown). The user can set, for example, an operation mode of the hydrogen water server 1 described later by operating the operation unit 5. When the operation unit 5 is operated by the user, the operation unit 5 outputs a corresponding electrical signal to the control means 6.
 制御手段6は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。第1給電体41と電流供給手段61との間の電流供給ラインには、電流検出手段44が設けられている。電流検出手段44は、第2給電体42と電流供給手段61との間の電流供給ラインに設けられていてもよい。電流検出手段44は、第1給電体41、第2給電体42に供給する電解電流Iを検出し、その値に相当する電気信号を制御手段6に出力する。 The control means 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, and a memory that stores various information. A current detection unit 44 is provided on the current supply line between the first power feeder 41 and the current supply unit 61. The current detection unit 44 may be provided on a current supply line between the second power feeder 42 and the current supply unit 61. The current detection means 44 detects the electrolysis current I supplied to the first power supply body 41 and the second power supply body 42 and outputs an electric signal corresponding to the value to the control means 6.
 制御手段6は、例えば、電流検出手段44から出力された電気信号に基づいて、電流供給手段61が第1給電体41及び第2給電体42に印加する直流電圧を制御する。より具体的には、制御手段6は、予め設定された溶存水素濃度に応じて、電流検出手段44によって検出される電解電流Iが所望の値となるように、電流供給手段61が第1給電体41及び第2給電体42に印加する直流電圧をフィードバック制御する。例えば、電解電流Iが過大である場合、制御手段6は、上記電圧を減少させ、電解電流Iが過小である場合、制御手段6は、上記電圧を増加させる。これにより、電流供給手段61が第1給電体41及び第2給電体42に供給する電解電流Iが適切に制御される。 The control means 6 controls the DC voltage applied by the current supply means 61 to the first power supply body 41 and the second power supply body 42 based on the electrical signal output from the current detection means 44, for example. More specifically, the control means 6 determines that the current supply means 61 performs the first power supply so that the electrolysis current I detected by the current detection means 44 becomes a desired value in accordance with a preset dissolved hydrogen concentration. The DC voltage applied to the body 41 and the second power feeding body 42 is feedback controlled. For example, when the electrolysis current I is excessive, the control unit 6 decreases the voltage, and when the electrolysis current I is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current I supplied from the current supply means 61 to the first power supply body 41 and the second power supply body 42 is appropriately controlled.
 制御手段6は、第1給電体41及び第2給電体42の極性を制御するように構成されていてもよい。第1給電体41及び第2給電体42の極性を相互に変更することにより、電解水素水又は電解酸素水のうち所望の電解水が吐水路13から吐水されうる。以下、特に断りのない限り、第1給電体41が陰極給電体として適用される場合について説明するが、第1給電体41が陽極給電体として適用される場合についても同様である。 The control means 6 may be configured to control the polarities of the first power feeding body 41 and the second power feeding body 42. By changing the polarities of the first power supply body 41 and the second power supply body 42 to each other, desired electrolyzed water out of the electrolytic hydrogen water or the electrolytic oxygen water can be discharged from the water discharge path 13. Hereinafter, the case where the first power feeding body 41 is applied as a cathode power feeding body will be described unless otherwise specified, but the same applies to the case where the first power feeding body 41 is applied as an anode power feeding body.
 制御手段6は、水量センサー31から出力された電気信号に基づいて、入水弁21の開閉を制御する。入水弁21は、浄水フィルター2の上流に配され、浄水フィルター2及びタンク3に電気分解前の原水を供給する原水供給手段として機能する。図1に示されるように、本実施形態の水量センサー31は、タンク3に設けられている。水量センサー31は、タンク3内の貯水量に対応する電気信号を制御手段6に出力する。 The control means 6 controls the opening / closing of the water inlet valve 21 based on the electrical signal output from the water amount sensor 31. The water intake valve 21 is disposed upstream of the water purification filter 2 and functions as raw water supply means for supplying raw water before electrolysis to the water purification filter 2 and the tank 3. As shown in FIG. 1, the water amount sensor 31 of the present embodiment is provided in the tank 3. The water amount sensor 31 outputs an electrical signal corresponding to the amount of water stored in the tank 3 to the control means 6.
 制御手段6は、水量センサー31から入力される電気信号に応じて、入水弁21を制御する。例えば、タンク3に貯えられた水素水が消費され、タンク3内の水位が低下すると、制御手段6は、水量センサー31から出力された電気信号に基づいて、入水弁21を開放し、入水路11からタンク3に水が補充される。これにより、タンク3に水が適宜補充され、貯水量が適切に維持される。 The control means 6 controls the water inlet valve 21 according to the electric signal input from the water amount sensor 31. For example, when the hydrogen water stored in the tank 3 is consumed and the water level in the tank 3 is lowered, the control means 6 opens the water inlet valve 21 based on the electrical signal output from the water amount sensor 31 and enters the water inlet channel. The tank 3 is replenished with water from 11. Thereby, the tank 3 is appropriately replenished with water, and the amount of stored water is maintained appropriately.
 水素水の循環にあたって、制御手段6は、ポンプ22の駆動電圧を制御する。このとき、制御手段6は、流量センサー27A及び27Bによって検出された流量を監視しながら、ポンプ22の駆動電圧を制御する。これにより、タンク3に貯えられた水素水が、タンク3と電解槽4との間の循環経路12を循環し、第1極室40A及び第2極室40Bに電解水が満たされる。さらに制御手段6は、第1給電体41及び第2給電体42に電解電圧を印加する。これにより、電解槽4に供給された電解水がさらに電気分解され、タンク3内に貯えられた水素水の溶存水素濃度が高く維持されうる。 In circulating the hydrogen water, the control means 6 controls the drive voltage of the pump 22. At this time, the control means 6 controls the drive voltage of the pump 22 while monitoring the flow rates detected by the flow rate sensors 27A and 27B. Thereby, the hydrogen water stored in the tank 3 circulates through the circulation path 12 between the tank 3 and the electrolytic cell 4, and the first electrode chamber 40A and the second electrode chamber 40B are filled with the electrolyzed water. Further, the control means 6 applies an electrolytic voltage to the first power supply body 41 and the second power supply body 42. Thereby, the electrolyzed water supplied to the electrolytic cell 4 is further electrolyzed, and the dissolved hydrogen concentration of the hydrogen water stored in the tank 3 can be maintained high.
 図3は、水素水サーバー1の要部を示している。本発明では、ガス抜き弁24は、タンク3内の水面h1よりも下方に配されている。換言すると、制御手段6は、タンク3内の水面h1がガス抜き弁24よりも上方に位置するように、入水弁21を制御する。これにより、ガス抜き弁24には、タンク3内の水の圧力がかけられる。 FIG. 3 shows the main part of the hydrogen water server 1. In the present invention, the gas vent valve 24 is disposed below the water surface h <b> 1 in the tank 3. In other words, the control means 6 controls the water inlet valve 21 so that the water surface h1 in the tank 3 is located above the gas vent valve 24. As a result, the pressure of water in the tank 3 is applied to the gas vent valve 24.
 図4は、ガス抜き弁24の構成を示している。本実施形態のガス抜き弁24は、本体24aと、本体24aに収容される球状の弁体24bと、本体24aの上部に配された上端が開口された排気口24cとを有している。同図では、本体24aに水が満たされた状態のガス抜き弁24が示されている。弁体24bは、排気路12e及び帰還水路12f内の水よりも比重の小さい材料によって形成されている。ガス抜き弁24に水圧がかかり、本体24aに電解水が満たされている状態では、弁体24bに浮力が生じ、弁体24bは上方に移動し、排気口24cを閉じる。これにより、排気口24cからの電解水の流出が防止されると共に、ガス抜き弁24の外部から弁体24bへの空気の流入が抑制される。 FIG. 4 shows the configuration of the gas vent valve 24. The gas vent valve 24 of the present embodiment includes a main body 24a, a spherical valve body 24b accommodated in the main body 24a, and an exhaust port 24c that is disposed at the upper part of the main body 24a and has an upper end opened. In the figure, the gas vent valve 24 in a state where the main body 24a is filled with water is shown. The valve body 24b is formed of a material having a specific gravity smaller than that of the water in the exhaust passage 12e and the return water passage 12f. In a state where water pressure is applied to the gas vent valve 24 and the main body 24a is filled with electrolyzed water, buoyancy is generated in the valve body 24b, the valve body 24b moves upward, and the exhaust port 24c is closed. Thereby, the outflow of the electrolyzed water from the exhaust port 24c is prevented, and the inflow of air from the outside of the gas vent valve 24 to the valve body 24b is suppressed.
 図5は、ガス抜き弁24で、本体24a内の気体が排出される様子を示している。電解槽4での電気分解の進行に伴い、第2極室40Bで生成された酸素ガスOが排気路12eを介して本体24a内に侵入すると、本体24a内の水位が低下し、弁体24bは下降する。これに伴い、排気口24cが開放され、矢印A1で示されるように、本体24a内の酸素ガスOが排出され、図4に示す密封状態に復帰する。 FIG. 5 shows a state in which the gas in the main body 24 a is discharged by the gas vent valve 24. When the oxygen gas O generated in the second electrode chamber 40B enters the main body 24a through the exhaust passage 12e as the electrolysis proceeds in the electrolytic cell 4, the water level in the main body 24a decreases, and the valve body 24b. Descends. Along with this, the exhaust port 24c is opened, and the oxygen gas O in the main body 24a is discharged as shown by the arrow A1 to return to the sealed state shown in FIG.
 排気路12e及び帰還水路12fの流路断面積は、第2極室40Bの流路断面積よりも小さい。従って、第2極室40B、排気路12e及び帰還水路12fを含む循環経路12に水が流れると、排気路12e及び帰還水路12fでは、ベンチュリー効果が生じ、水圧が低下する傾向となる。 The flow path cross-sectional area of the exhaust path 12e and the return water path 12f is smaller than the flow path cross-sectional area of the second pole chamber 40B. Therefore, when water flows through the circulation path 12 including the second pole chamber 40B, the exhaust path 12e, and the return water path 12f, a venturi effect occurs in the exhaust path 12e and the return water path 12f, and the water pressure tends to decrease.
 しかしながら、本発明では、図1及び3に示されるように、ガス抜き弁24がタンク3内の水面h1よりも下方に配されているので、ガス抜き弁24の本体24a及び弁体24bには、タンク3内の水の圧力がかけられる。従って、排気路12e及び帰還水路12fの水圧が大気圧未満に低下することが抑制され、ガス抜き弁24の密封状態が維持される。これにより、ガス抜き弁24の外部から空気が吸い込まれて循環経路12に流入することが抑制され、タンク3内での水の溶存水素濃度の上昇が妨げられない。しかも、本発明によれば、逆止弁を必要とすることなく、排気路12eへの空気の流入が抑制されるため、水素水サーバー1の小型化及びコストダウンを図ることが可能となる。 However, in the present invention, as shown in FIGS. 1 and 3, since the gas vent valve 24 is disposed below the water surface h1 in the tank 3, the main body 24a and the valve body 24b of the gas vent valve 24 have The pressure of the water in the tank 3 is applied. Therefore, it is suppressed that the water pressure of the exhaust passage 12e and the return water passage 12f falls below atmospheric pressure, and the sealed state of the gas vent valve 24 is maintained. Thereby, it is suppressed that air is sucked from the outside of the gas vent valve 24 and flows into the circulation path 12, and an increase in the dissolved hydrogen concentration of water in the tank 3 is not hindered. In addition, according to the present invention, since the inflow of air into the exhaust passage 12e is suppressed without requiring a check valve, the hydrogen water server 1 can be reduced in size and cost.
 図3に示されるように、ガス抜き弁24の下端は、タンク3の内底面35よりも下方に配されているのが望ましい。このような形態では、ガス抜き弁24にかかる水圧を容易に高めることができる。また、タンク3内の水が完全に消費される場合を除き、タンク3の内底面35の上方に残留している水の水圧がガス抜き弁24にかかり、ガス抜き弁24の密封状態が維持される。 As shown in FIG. 3, the lower end of the gas vent valve 24 is preferably disposed below the inner bottom surface 35 of the tank 3. In such a form, the water pressure applied to the gas vent valve 24 can be easily increased. In addition, the water pressure remaining above the inner bottom surface 35 of the tank 3 is applied to the gas vent valve 24 and the sealed state of the gas vent valve 24 is maintained, except when the water in the tank 3 is completely consumed. Is done.
 図1及び3に示されるように、水素水サーバー1では、第2極室40Bに沿って並行水路14が設けられていてもよい。並行水路14は、排気路12eと第2極室40Bの下端部とを連通させる。本実施形態では、並行水路14は、帰還水路12f及び水路12cと接続されている。すなわち、並行水路14は、帰還水路12fを介して排気路12eに接続され、水路12cを介して第2極室40Bに接続されている。並行水路14は、排気路12e及び第2極室40Bに直接的に接続されていてもよい。 1 and 3, in the hydrogen water server 1, a parallel water channel 14 may be provided along the second pole chamber 40B. The parallel water channel 14 communicates the exhaust channel 12e and the lower end of the second electrode chamber 40B. In the present embodiment, the parallel water channel 14 is connected to the return water channel 12f and the water channel 12c. That is, the parallel water channel 14 is connected to the exhaust channel 12e through the return channel 12f, and is connected to the second pole chamber 40B through the water channel 12c. The parallel water channel 14 may be directly connected to the exhaust channel 12e and the second electrode chamber 40B.
 第2極室40Bで電気分解によって生成された酸素ガスOは、排気路12eを介して第2極室40Bから排出される。このとき、排気路12eと第2極室40Bの下端部とを連通させる並行水路14に充填された水の圧力によって、第2極室40B内の酸素ガスOが上方に押し上げられ、排気路12eに移動する。これにより、電気分解中の第2極室40Bに水を供給することなく(すなわち、第2極室40Bに水流を生じさせることなく)、第2極室40Bで生じた酸素ガスOが第2極室40Bから排出される。従って、第2給電体42の表面に十分な水が供給され、電解室40内での電気分解が効率よく実行される。これにより、水の利用効率が極限まで高められると共に、第1極室40Aで生成される電解水素水の溶存水素濃度が容易に高められる。 The oxygen gas O generated by electrolysis in the second electrode chamber 40B is discharged from the second electrode chamber 40B through the exhaust passage 12e. At this time, the oxygen gas O in the second electrode chamber 40B is pushed upward by the pressure of the water filled in the parallel channel 14 that connects the exhaust channel 12e and the lower end of the second electrode chamber 40B, and the exhaust channel 12e. Move to. As a result, the oxygen gas O generated in the second electrode chamber 40B is supplied to the second electrode chamber 40B without supplying water to the second electrode chamber 40B being electrolyzed (that is, without generating a water flow in the second electrode chamber 40B). It is discharged from the polar chamber 40B. Therefore, sufficient water is supplied to the surface of the second power feeder 42, and electrolysis in the electrolysis chamber 40 is efficiently performed. Thereby, the utilization efficiency of water is increased to the limit, and the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the first electrode chamber 40A is easily increased.
 水路12cには、水路12cから第2極室40Bへの給水を制御する給水制御弁25が設けられていてもよい。給水制御弁25には、例えば、電磁力を原動力として開閉動作する電磁弁が適用されうる。給水制御弁25の動作は、制御手段6によって制御される。例えば、電解槽4にて電気分解を行なっているとき、給水制御弁25は閉じられている。これにより、第2極室40Bへの給水が停止され、水の利用効率が極限まで高められる。この場合にあっても、第2極室40Bで発生した酸素ガスが上述した並行水路14の水圧によって排出されるので、第1極室40Aで生成される電解水素水の溶存水素濃度は高められる。 The water channel 12c may be provided with a water supply control valve 25 for controlling water supply from the water channel 12c to the second electrode chamber 40B. For example, an electromagnetic valve that opens and closes using electromagnetic force as a driving force can be applied to the water supply control valve 25. The operation of the water supply control valve 25 is controlled by the control means 6. For example, when electrolysis is performed in the electrolytic cell 4, the water supply control valve 25 is closed. Thereby, the water supply to the 2nd pole chamber 40B is stopped, and the utilization efficiency of water is raised to the limit. Even in this case, the oxygen gas generated in the second electrode chamber 40B is discharged by the water pressure in the parallel water channel 14 described above, so that the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the first electrode chamber 40A is increased. .
 給水制御弁25は、並行水路14が水路12cに連通する箇所よりも下方に設けられている。これにより、電気分解に伴う第2極室40B内の水の消費に応じて、並行水路14から第2極室40Bに水が補充される。 The water supply control valve 25 is provided below the location where the parallel water channel 14 communicates with the water channel 12c. Thereby, water is replenished to the 2nd polar chamber 40B from the parallel water channel 14 according to consumption of the water in the 2nd polar chamber 40B accompanying electrolysis.
 なお、制御手段6は、電解槽4での電気分解を停止した後、給水制御弁25を開く。これにより、水路12cから第2極室40Bへの給水が再開され、排気路12e内の水面h2が元の高さに復帰する。 The control means 6 opens the water supply control valve 25 after stopping the electrolysis in the electrolytic cell 4. Thereby, the water supply from the water channel 12c to the second electrode chamber 40B is resumed, and the water surface h2 in the exhaust channel 12e returns to the original height.
 排気路12eには、排気路12e内の水位を検出するための水位検出手段28が設けられていてもよい。水位検出手段28は、第2極室40B内の水が酸素に分解され消費されることによる排気路12e内の水位の低下を検出し、制御手段6にその旨の電気信号を出力する。排気路12e内の水位と並行水路14内の水位とは同等であるので、水位検出手段28は、並行水路14に設けられていてもよい。この場合、水位検出手段28は、並行水路14内の水位を検出する。 The water level detection means 28 for detecting the water level in the gas exhaust path 12e may be provided in the gas exhaust path 12e. The water level detection means 28 detects a drop in the water level in the exhaust passage 12e due to the water in the second electrode chamber 40B being decomposed and consumed by oxygen, and outputs an electrical signal to that effect to the control means 6. Since the water level in the exhaust passage 12e and the water level in the parallel water passage 14 are equivalent, the water level detection means 28 may be provided in the parallel water passage 14. In this case, the water level detection means 28 detects the water level in the parallel water channel 14.
 制御手段6は、水位検出手段28から出力された電気信号に基づいて、電解槽4の動作を制御する。例えば、排気路12e内の水位が、水位検出手段28の検出領域よりも低下した場合、制御手段6は、第1給電体41及び第2給電体42への電解電流Iの供給を停止する。これにより、電解室40での電気分解が停止され、排気路12e内の水位のさらなる低下が抑制され、隔膜43の損傷が抑制されうる。 The control means 6 controls the operation of the electrolytic cell 4 based on the electrical signal output from the water level detection means 28. For example, when the water level in the exhaust passage 12 e is lower than the detection region of the water level detection means 28, the control means 6 stops supplying the electrolytic current I to the first power supply body 41 and the second power supply body 42. Thereby, the electrolysis in the electrolysis chamber 40 is stopped, further lowering of the water level in the exhaust passage 12e can be suppressed, and damage to the diaphragm 43 can be suppressed.
 水素水の循環にあたって、制御手段6は、ポンプ22の駆動電圧を制御する。このとき、制御手段6は、流量センサー27Aによって検出された流量を監視しながら、ポンプ22の駆動電圧を制御する。これにより、タンク3に貯えられた水素水が、タンク3と第1極室40Aとの間の循環経路12を循環する。さらに制御手段6は、第1給電体41及び第2給電体42に電解電圧を印加する。これにより、電解室40に供給された電解水がさらに電気分解され、タンク3内に貯えられた水素水の溶存水素濃度が高く維持されうる。 In circulating the hydrogen water, the control means 6 controls the drive voltage of the pump 22. At this time, the control means 6 controls the driving voltage of the pump 22 while monitoring the flow rate detected by the flow rate sensor 27A. Thereby, the hydrogen water stored in the tank 3 circulates in the circulation path 12 between the tank 3 and the first pole chamber 40A. Further, the control means 6 applies an electrolytic voltage to the first power supply body 41 and the second power supply body 42. Thereby, the electrolyzed water supplied to the electrolysis chamber 40 is further electrolyzed, and the dissolved hydrogen concentration of the hydrogen water stored in the tank 3 can be maintained high.
 何らかの事情により、流量センサー27A及び27Bによって検出された流量が十分な値に満たない場合は、制御手段6は、第1給電体41及び第2給電体42への電解電圧の印加を停止する。これにより、電解室40に電解水が十分に供給されていない状態での電解電圧の印加が防止されうる。 If for some reason the flow rate detected by the flow sensors 27A and 27B is less than a sufficient value, the control means 6 stops applying the electrolytic voltage to the first power supply body 41 and the second power supply body 42. Thereby, the application of the electrolysis voltage in a state where the electrolyzed water is not sufficiently supplied to the electrolysis chamber 40 can be prevented.
 タンク3に貯えられた水素水が消費されると、水量センサー31から出力された電気信号に基づいて、制御手段6は、入水弁21を開放し、入水路11からタンク3に水が補充される。このとき、タンク3に貯えられた水素水の溶存水素濃度が低下するため、制御手段6は、タンク3と第1極室40Aとの間の循環経路12でタンク3に貯えられた水素水を再び循環させながら、電解室40で電気分解し、溶存水素濃度を高める。 When the hydrogen water stored in the tank 3 is consumed, based on the electrical signal output from the water amount sensor 31, the control means 6 opens the water inlet valve 21 and water is replenished from the water inlet 11 to the tank 3. The At this time, since the concentration of dissolved hydrogen in the hydrogen water stored in the tank 3 decreases, the control means 6 uses the hydrogen water stored in the tank 3 in the circulation path 12 between the tank 3 and the first pole chamber 40A. While circulating again, electrolysis is performed in the electrolysis chamber 40 to increase the dissolved hydrogen concentration.
 図1に示されるように、タンク3には、冷却装置7が接続されている。冷却装置7は、冷媒を冷却してタンク3の外壁に供給することにより、タンク3を冷却する。冷却装置7の動作は、制御手段6によって制御される。これにより、冷却装置7によってタンク3に貯えられた水素水が所望の温度に冷却される。従って、ユーザーの要求に応じて、冷却された水素水を随時提供することが可能となり、水素水サーバー1の商品価値が高められる。 1, a cooling device 7 is connected to the tank 3. The cooling device 7 cools the tank 3 by cooling the refrigerant and supplying it to the outer wall of the tank 3. The operation of the cooling device 7 is controlled by the control means 6. Thereby, the hydrogen water stored in the tank 3 is cooled to a desired temperature by the cooling device 7. Therefore, it becomes possible to provide cooled hydrogen water as needed according to the user's request, and the commercial value of the hydrogen water server 1 is increased.
 本実施形態では、制御手段6による管理の下で、タンク3に貯えられた水素水は、定期的に入れ替えられる。水素水の入れ替えにあたっては、まず、タンク3に貯えられた水素水が排出され、その後、入水路11から新たな水がタンク3に供給される。 In the present embodiment, the hydrogen water stored in the tank 3 is periodically replaced under the control of the control means 6. In the replacement of the hydrogen water, first, the hydrogen water stored in the tank 3 is discharged, and then new water is supplied from the water inlet 11 to the tank 3.
 タンク3には、水素水を排出するための排水路17が接続されている。本実施形態では、水路12aの一部を介してタンク3と排水路17とが接続されている。タンク3と排水路17とが直接的に接続される構成であってもよい。 The drain 3 for discharging the hydrogen water is connected to the tank 3. In the present embodiment, the tank 3 and the drainage channel 17 are connected via a part of the water channel 12a. The tank 3 and the drainage channel 17 may be configured to be directly connected.
 排水路17には、排水弁26が設けられている。排水弁26は、制御手段6によって制御され開閉動作する。排水弁26が開かれると、タンク3に貯えられた水素水が排水口17aから排出される。 The drainage channel 17 is provided with a drainage valve 26. The drain valve 26 is controlled by the control means 6 to open and close. When the drain valve 26 is opened, the hydrogen water stored in the tank 3 is discharged from the drain port 17a.
 上記受け皿部13bは、水路13cを介して排水路17に接続されている。受け皿部13bによって収集された水は、水路13cを経由して排水路17から排出される。 The receiving tray 13b is connected to the drainage channel 17 through the water channel 13c. The water collected by the tray part 13b is discharged from the drainage channel 17 via the water channel 13c.
 図1に示されるように、タンク3には、水を加熱するためのヒーター(加熱手段)8が設けられている。ヒーター8は、ジュール熱によって発熱し、タンク3に貯えられた水を加熱する。また、循環経路12のタンク3とポンプ22との間には、ヒーター(加熱手段)8Aが設けられている。ヒーター8Aは、循環経路12を構成する管の一部に設けられている。ヒーター8Aは、ジュール熱によって発熱し、循環経路12内の水を加熱する。ヒーター8及び8Aは、制御手段6によって制御される。ヒーター8又は8Aのうち、いずれか一方のみが加熱手段として適用されていてもよい。 As shown in FIG. 1, the tank 3 is provided with a heater (heating means) 8 for heating water. The heater 8 generates heat due to Joule heat, and heats the water stored in the tank 3. Further, a heater (heating means) 8 </ b> A is provided between the tank 3 and the pump 22 in the circulation path 12. The heater 8 </ b> A is provided in a part of the pipe constituting the circulation path 12. The heater 8A generates heat due to Joule heat and heats water in the circulation path 12. The heaters 8 and 8A are controlled by the control means 6. Only one of the heaters 8 and 8A may be applied as the heating means.
 制御手段6は、ヒーター8及び8Aを制御して、タンク3に貯えられた水及び循環経路12内の水を加熱させる。これにより、タンク3内及び循環経路12内で熱水が生成され、タンク3及び循環経路12内が熱水によって殺菌され、細菌等の繁殖が抑制される。 The control means 6 controls the heaters 8 and 8A to heat the water stored in the tank 3 and the water in the circulation path 12. Thereby, hot water is generated in the tank 3 and the circulation path 12, the inside of the tank 3 and the circulation path 12 is sterilized by the hot water, and the growth of bacteria and the like is suppressed.
 水素水サーバー1は、運転モードとして、電気分解によって水素水を生成し、タンク3に貯える「電解水生成モード」と、タンク3に貯えられた水素水を吐水する「吐水モード」とを有する。 The hydrogen water server 1 has, as operation modes, an “electrolyzed water generation mode” for generating hydrogen water by electrolysis and storing it in the tank 3 and a “water discharge mode” for discharging the hydrogen water stored in the tank 3.
 図3及び6は、「電解水生成モード」での水素水サーバー1の各部の動作及び水の流れを示している。図3乃至6では、水の満たされている領域がハッチングで示されている(以下、図7乃至9においても同様とする)。 3 and 6 show the operation of each part of the hydrogen water server 1 and the flow of water in the “electrolyzed water generation mode”. In FIGS. 3 to 6, the area filled with water is indicated by hatching (hereinafter, the same applies to FIGS. 7 to 9).
 電解水生成モードでは、流路切替弁23のタンク3側の流路は開かれ、吐水路13側の流路は閉じられている。また、水路12cの給水制御弁25は、閉じられている。さらに、排水弁26は閉じられ、入水弁21はタンク3の貯水量に応じて適宜開閉される。 In the electrolyzed water generation mode, the flow path on the tank 3 side of the flow path switching valve 23 is opened, and the flow path on the water discharge path 13 side is closed. Moreover, the water supply control valve 25 of the water channel 12c is closed. Further, the drain valve 26 is closed, and the water inlet valve 21 is appropriately opened and closed according to the amount of water stored in the tank 3.
 図3に示される初期状態では、排気路12e内の水面h2の高さは、タンク3の水面h1の高さと同等である。ポンプ22が駆動され、第1給電体41及び第2給電体42に電解電圧が印加されると、第1極室40A及び第2極室40Bで電気分解が生じる。第1極室40Aで発生した水素ガスは、電解水に溶け込んだ状態でタンク3に回収され、タンク3内の水の溶存水素濃度が高められる。 In the initial state shown in FIG. 3, the height of the water surface h2 in the exhaust passage 12e is equal to the height of the water surface h1 of the tank 3. When the pump 22 is driven and an electrolytic voltage is applied to the first power supply body 41 and the second power supply body 42, electrolysis occurs in the first electrode chamber 40A and the second electrode chamber 40B. The hydrogen gas generated in the first electrode chamber 40A is collected in the tank 3 while being dissolved in the electrolyzed water, and the dissolved hydrogen concentration in the water in the tank 3 is increased.
 一方、第2極室40Bで発生した酸素ガスOは、気泡となって、排気路12e及びガス抜き弁24を介して排出される。既に述べたように、本実施形態では、並行水路14に充填された水の圧力によって、第2極室40B内の酸素ガスOが上方に押し上げられ、排気路12eに移動する。これにより、電気分解中の第2極室40Bに水を供給することなく、第2極室40Bで生じた酸素ガスOが第2極室40Bから排出される。従って、第2給電体42の表面に十分な水が供給され、電解室40内での電気分解が効率よく実行される。 On the other hand, the oxygen gas O generated in the second electrode chamber 40B becomes bubbles and is discharged through the exhaust passage 12e and the gas vent valve 24. As already described, in the present embodiment, the oxygen gas O in the second electrode chamber 40B is pushed upward by the pressure of the water filled in the parallel water passage 14, and moves to the exhaust passage 12e. Thus, the oxygen gas O generated in the second electrode chamber 40B is discharged from the second electrode chamber 40B without supplying water to the second electrode chamber 40B being electrolyzed. Therefore, sufficient water is supplied to the surface of the second power feeder 42, and electrolysis in the electrolysis chamber 40 is efficiently performed.
 電解水生成モードでは、給水制御弁25が閉じられているので、第2極室40B内の水は、排気路12e及び帰還水路12fを介してタンク3に戻ることはない。従って、第2極室40B内の水の流入によって、タンク3内の水の溶存水素濃度の上昇が阻害されることがなく、電解水素水の溶存水素濃度を容易に高めることが可能となる。 In the electrolyzed water generation mode, since the water supply control valve 25 is closed, the water in the second electrode chamber 40B does not return to the tank 3 via the exhaust passage 12e and the return water passage 12f. Therefore, the increase in the dissolved hydrogen concentration of the water in the tank 3 is not hindered by the inflow of water in the second electrode chamber 40B, and the dissolved hydrogen concentration of the electrolytic hydrogen water can be easily increased.
 電解水生成モードでは、給水制御弁25が閉じられていることに伴い、第2極室40B内の水は消費され、排気路12e内及び並行水路14内の水位が徐々に低下する。 In the electrolyzed water generation mode, as the water supply control valve 25 is closed, the water in the second electrode chamber 40B is consumed, and the water levels in the exhaust passage 12e and the parallel water passage 14 gradually decrease.
 そして、図6に示されるように、排気路12e内で低下した水面h2が水位検出手段28によって検知されると、制御手段6は、ポンプ22を停止すると共に、第1給電体41及び第2給電体42への電解電圧の印加を停止する。これにより、電解室40での電気分解が停止される。そして、制御手段6は、給水制御弁25を開くことにより、水路12cから第2極室40B及び並行水路14に水が供給され、排気路12eの水位が図3に示される初期状態に復帰する。給水制御弁25を開いて排気路12eの水位を初期状態に復帰させる際には、ポンプ22の駆動が併用されてもよい。この場合、より短時間で排気路12eの水位が初期状態に復帰する。また、第1給電体41及び第2給電体42への電解電圧の印加が継続されていてもよい。 Then, as shown in FIG. 6, when the water level h <b> 2 lowered in the exhaust passage 12 e is detected by the water level detection means 28, the control means 6 stops the pump 22, and the first power feeding body 41 and the second power supply 41. Application of the electrolytic voltage to the power supply 42 is stopped. Thereby, the electrolysis in the electrolysis chamber 40 is stopped. Then, the control means 6 opens the water supply control valve 25 to supply water from the water channel 12c to the second pole chamber 40B and the parallel water channel 14, and the water level of the exhaust channel 12e returns to the initial state shown in FIG. . When the water supply control valve 25 is opened to return the water level of the exhaust passage 12e to the initial state, driving of the pump 22 may be used in combination. In this case, the water level of the exhaust passage 12e returns to the initial state in a shorter time. Moreover, the application of the electrolysis voltage to the 1st electric power feeder 41 and the 2nd electric power feeder 42 may be continued.
 図7は、「吐水モード」での水素水サーバー1の各部の動作及び水の流れを示している。吐水モードでは、図3、6に示される電解水生成モードの状態から、流路切替弁23によって、第1極室40Aを通過した電解水素水の流路が切り替えられる。すなわち、吐水モードでは、タンク3側の流路は閉じられ、吐水路13側の流路が開かれる。この状態でポンプ22が駆動することにより、第1極室40Aを通過した電解水素水は、吐水路13に流入し、吐水口13aから吐出される。このとき、制御手段6が、第1給電体41及び第2給電体42に電解電圧を印加するように、構成されていてもよい。 FIG. 7 shows the operation of each part of the hydrogen water server 1 and the flow of water in the “water discharge mode”. In the water discharge mode, the flow path of the electrolytic hydrogen water that has passed through the first electrode chamber 40A is switched by the flow path switching valve 23 from the state of the electrolyzed water generation mode shown in FIGS. That is, in the water discharge mode, the flow path on the tank 3 side is closed and the flow path on the water discharge path 13 side is opened. When the pump 22 is driven in this state, the electrolytic hydrogen water that has passed through the first electrode chamber 40A flows into the water discharge channel 13 and is discharged from the water discharge port 13a. At this time, the control means 6 may be configured to apply an electrolytic voltage to the first power supply body 41 and the second power supply body 42.
 以上、本実施形態の水素水サーバー1等が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、電解水生成サーバーは、少なくとも、水を貯えるタンク3と、隔膜43によって第1給電体41が配された第1極室40Aと第2給電体42が配された第2極室40Bとに区切られ、タンク3から供給された水を電気分解することにより電解水を生成する電解槽4と、タンク3と第1極室40Aとを接続し、第1極室40Aに電気分解される水を供給する第1給水路と、タンク3と第2極室40Bとを接続し、第2極室40Bに電気分解される水を供給する第2給水路と、第1極室40A内の電解水を第1極室40Aから外部へ吐出する吐水路13と、第2極室40Bから上方にのび、電気分解によって生じた気体を第2極室40Bから排出する排気路12eと、排気路12eの先端部に設けられ、排気路12e内の流体から気体のみを分離して排出するガス抜き弁24と、第2極室40Bとガス抜き弁24との間で排気路12eに接続され、排気路12e内の水をタンク3へと導く帰還水路12fとを備え、ガス抜き弁24は、タンク3内の水面h1よりも下方に配されていればよい。 As described above, the hydrogen water server 1 and the like of the present embodiment have been described in detail. However, the present invention is not limited to the specific embodiment described above, and can be implemented in various forms. That is, the electrolyzed water generation server includes at least a tank 3 for storing water, a first electrode chamber 40A in which the first power supply body 41 is disposed by a diaphragm 43, and a second electrode chamber 40B in which the second power supply body 42 is disposed. The electrolytic cell 4 that generates electrolyzed water by electrolyzing the water supplied from the tank 3 is connected to the tank 3 and the first electrode chamber 40A, and is electrolyzed to the first electrode chamber 40A. A first water supply channel for supplying water, a tank 3 and the second electrode chamber 40B are connected, a second water supply channel for supplying water to be electrolyzed into the second electrode chamber 40B, and a first electrode chamber 40A. A water discharge passage 13 that discharges electrolyzed water from the first electrode chamber 40A to the outside, an exhaust passage 12e that extends upward from the second electrode chamber 40B and discharges gas generated by electrolysis from the second electrode chamber 40B, and an exhaust passage. The gas from the fluid in the exhaust passage 12e is provided at the tip of the 12e. A gas vent valve 24 that separates and discharges only the gas, and a return water channel 12f that is connected to the exhaust passage 12e between the second pole chamber 40B and the gas vent valve 24 and guides the water in the exhaust passage 12e to the tank 3. The gas vent valve 24 only needs to be disposed below the water surface h1 in the tank 3.
  1  水素水サーバー(電解水サーバー)
  3  タンク
  4  電解槽
  8  ヒーター(加熱手段)
 12a 水路(第1給水路、第2給水路)
 12b 水路(第1給水路)
 12c 水路(第2給水路)
 12e 排気路
 12f 帰還水路
 13  吐水路
 14  並行水路
 15  循環経路
 24  ガス抜き弁
 35  内壁面
 40A 第1極室
 40B 第2極室
 41  第1給電体
 42  第2給電体
 43  隔膜
 h1  水面 
1 Hydrogen water server (electrolyzed water server)
3 Tank 4 Electrolyzer 8 Heater (heating means)
12a water channel (first water channel, second water channel)
12b Waterway (1st waterway)
12c waterway (second waterway)
12e Exhaust channel 12f Return channel 13 Drain channel 14 Parallel channel 15 Circulation channel 24 Degassing valve 35 Inner wall surface 40A First electrode chamber 40B Second electrode chamber 41 First power supply body 42 Second power supply body 43 Diaphragm h1 Water surface

Claims (5)

  1.  水を貯えるタンクと、
     隔膜によって第1給電体が配された第1極室と第2給電体が配された第2極室とに区切られ、前記タンクから供給された前記水を電気分解することにより電解水を生成する電解槽と、
     前記タンクと前記第1極室とを接続し、前記第1極室に電気分解される前記水を供給する第1給水路と、
     前記タンクと前記第2極室とを接続し、前記第2極室に電気分解される前記水を供給する第2給水路と、
     前記第1極室内の前記電解水を前記第1極室から外部へ吐出する吐水路と、
     前記第2極室から上方にのび、電気分解によって生じた気体を前記第2極室から排出する排気路と、
     前記排気路の先端部に設けられ、前記排気路内の流体から気体のみを分離して排出するガス抜き弁と、
     前記第2極室と前記ガス抜き弁との間で前記排気路に接続され、前記排気路内の前記水を前記タンクへと導く帰還水路とを備え、
     前記ガス抜き弁は、前記タンク内の水面よりも下方に配されていることを特徴とする電解水サーバー。
    A tank for storing water,
    The diaphragm is divided into a first electrode chamber in which the first power feeding body is disposed and a second electrode chamber in which the second power feeding body is disposed, and electrolyzed water is generated by electrolyzing the water supplied from the tank. An electrolytic cell,
    A first water supply channel connecting the tank and the first electrode chamber and supplying the water to be electrolyzed into the first electrode chamber;
    A second water supply path that connects the tank and the second electrode chamber and supplies the water to be electrolyzed into the second electrode chamber;
    A water discharge channel for discharging the electrolyzed water in the first electrode chamber from the first electrode chamber to the outside;
    An exhaust passage extending upward from the second electrode chamber and discharging gas generated by electrolysis from the second electrode chamber;
    A gas vent valve that is provided at the tip of the exhaust passage and separates and discharges only the gas from the fluid in the exhaust passage;
    A return water path connected to the exhaust path between the second electrode chamber and the vent valve, and leading the water in the exhaust path to the tank;
    The electrolyzed water server, wherein the gas vent valve is disposed below a water surface in the tank.
  2.  前記ガス抜き弁は、前記タンクの内底面よりも下方に配されている請求項1記載の電解水サーバー。 The electrolyzed water server according to claim 1, wherein the gas vent valve is disposed below the inner bottom surface of the tank.
  3.  前記排気路は、前記第2極室の上端部からのびている請求項1又は2に記載の電解水サーバー。 The electrolyzed water server according to claim 1 or 2, wherein the exhaust passage extends from an upper end portion of the second electrode chamber.
  4.  前記タンク内の前記水を熱する加熱手段をさらに備える請求項1乃至3のいずれかに記載の電解水サーバー。 The electrolyzed water server according to any one of claims 1 to 3, further comprising heating means for heating the water in the tank.
  5.  前記第1給水路及び前記第2給水路内の前記水を熱する加熱手段をさらに有する請求項1乃至4のいずれかに記載の電解水サーバー。  The electrolyzed water server according to any one of claims 1 to 4, further comprising heating means for heating the water in the first water supply channel and the second water supply channel.
PCT/JP2017/039169 2016-11-01 2017-10-30 Electrolyzed water server WO2018084117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016213997A JP6554086B2 (en) 2016-11-01 2016-11-01 Electrolyzed water server
JP2016-213997 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018084117A1 true WO2018084117A1 (en) 2018-05-11

Family

ID=62076113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039169 WO2018084117A1 (en) 2016-11-01 2017-10-30 Electrolyzed water server

Country Status (2)

Country Link
JP (1) JP6554086B2 (en)
WO (1) WO2018084117A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11648509B2 (en) 2019-10-04 2023-05-16 Hamilton Sundstrand Corporation Process water gas management of inert gas generation electrolyzer system with gas-activated valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506730B2 (en) * 2016-11-01 2019-04-24 株式会社日本トリム Electrolyzed water server
JP7482312B1 (en) 2023-12-13 2024-05-13 株式会社日本トリム Electrolyzed water generating device and its control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256254A (en) * 1994-03-22 1995-10-09 Hoshizaki Electric Co Ltd Apparatus for forming electrolytic ionic water
JPH09117605A (en) * 1995-10-27 1997-05-06 Suido Kiko Kaisha Ltd Method and device for separating hydrogen produced in sodium hypochlorite generating process
JP2004097854A (en) * 2002-09-04 2004-04-02 Sanyo Electric Co Ltd Water treatment equipment
JP2004107775A (en) * 2002-09-20 2004-04-08 Fuji Electric Holdings Co Ltd Water electrolysis device and operation method thereof
JP2015139475A (en) * 2014-01-27 2015-08-03 株式会社日本トリム Apparatus for manufacturing water for dialysis fluid preparation
WO2017135208A1 (en) * 2016-02-05 2017-08-10 株式会社日本トリム Electrolyzed water generation device and electrolyzed water server comprising same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944978A (en) * 1997-08-21 1999-08-31 Omco Co., Ltd. Cleaning method of an electrolyzed water forming apparatus and an electrolyzed water forming apparatus having mechanism for conducting the method
JP4678052B2 (en) * 2008-12-05 2011-04-27 パナソニック電工株式会社 Electrolyzed water generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256254A (en) * 1994-03-22 1995-10-09 Hoshizaki Electric Co Ltd Apparatus for forming electrolytic ionic water
JPH09117605A (en) * 1995-10-27 1997-05-06 Suido Kiko Kaisha Ltd Method and device for separating hydrogen produced in sodium hypochlorite generating process
JP2004097854A (en) * 2002-09-04 2004-04-02 Sanyo Electric Co Ltd Water treatment equipment
JP2004107775A (en) * 2002-09-20 2004-04-08 Fuji Electric Holdings Co Ltd Water electrolysis device and operation method thereof
JP2015139475A (en) * 2014-01-27 2015-08-03 株式会社日本トリム Apparatus for manufacturing water for dialysis fluid preparation
WO2017135208A1 (en) * 2016-02-05 2017-08-10 株式会社日本トリム Electrolyzed water generation device and electrolyzed water server comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11648509B2 (en) 2019-10-04 2023-05-16 Hamilton Sundstrand Corporation Process water gas management of inert gas generation electrolyzer system with gas-activated valve

Also Published As

Publication number Publication date
JP2018069188A (en) 2018-05-10
JP6554086B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6216361B2 (en) Hydrogen water server
JP6219358B2 (en) Hydrogen water server
JP6232087B2 (en) Electrolyzed water generating apparatus and electrolyzed water server equipped with the same
CN107635927B (en) Hydrogen rich water supplier
WO2018084117A1 (en) Electrolyzed water server
JP2010150630A (en) Ozone water producing apparatus
CN109715563B (en) Hydrogen water drinking machine
JP6098919B2 (en) Sterilization water generator
JP6506730B2 (en) Electrolyzed water server
JP2006167683A (en) Apparatus for producing hydrogen water
JP2013119054A (en) Electrolyzer and heat pump water heater including the same
JP6353594B2 (en) Hydrogen water server
JP6962709B2 (en) Electrolyzed water generator
JP2006150189A (en) Hydrogen water production device and method for warming electrolytic solution in the device
TW201302624A (en) Cooling water circulation apparatus
JP4442752B2 (en) Alkaline ion water conditioner
KR20170104323A (en) Hydrogen Water Generation Device Having A Rapid Cooling
JP2005279519A (en) Apparatus for producing electrolytic water
WO2017135209A1 (en) Electrolyzed water generation device
JP2018047402A (en) Hydrogen water supply apparatus
JP2005218908A (en) Strong electrolytic water generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867301

Country of ref document: EP

Kind code of ref document: A1