JP3771662B2 - 画像読み取り装置 - Google Patents

画像読み取り装置 Download PDF

Info

Publication number
JP3771662B2
JP3771662B2 JP05798497A JP5798497A JP3771662B2 JP 3771662 B2 JP3771662 B2 JP 3771662B2 JP 05798497 A JP05798497 A JP 05798497A JP 5798497 A JP5798497 A JP 5798497A JP 3771662 B2 JP3771662 B2 JP 3771662B2
Authority
JP
Japan
Prior art keywords
light
light source
reading
image reading
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05798497A
Other languages
English (en)
Other versions
JPH10257314A (ja
Inventor
克明 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP05798497A priority Critical patent/JP3771662B2/ja
Publication of JPH10257314A publication Critical patent/JPH10257314A/ja
Application granted granted Critical
Publication of JP3771662B2 publication Critical patent/JP3771662B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Input (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、たとえば、複写機やファクシミリなどに使用される画像読み取り装置に関し、より詳しくは、周囲温度等によって光量が変化する蛍光灯などの光源を用いて、大量の原稿を連続して読み取るような画像読み取り装置に関する。
【0002】
【従来の技術】
従来、この種の画像読み取り装置としては、光源の光量の変動を吸収するために、直接光量の変動を抑えるハード回路の他に、原稿を1ページ読み取る毎に、上記光源を保持しているスライダを原稿の読み取り位置と基準濃度板の読み取り位置との間で往復動作させて、上記基準濃度板の読み取りを行って調光制御を行っていた(特公平5−30102号公報)。また、上記画像読み取り装置は、光源の光量および配光の変動を吸収するために、シェーディング補正を行っていた。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の画像読み取り装置では、光量や配光の変動の有無にかかわらず、原稿を1ページ読み取るごとに、調光制御およびシェーディング補正を行っていたので、光量,配光の変動がない場合には、これらの調光制御およびシェーディング補正はむだなものとなっていた。したがって、生産性の低下を招いていた。逆に、もし、光源の特性が変化しているのに、上記調光制御およびシェーディング補正を行わないとすると、光源の特性の時間的な変化に起因して読み取り画像の画質が低下してしまう。
【0004】
そこで、この発明の目的は、最適なタイミングで調光制御を行うことによって、光量や配光補正のための時間を少なくして、生産性の低下を少なくし、かつ高画質の画像を得ることができる画像読み取り装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明の画像読み取り装置は、光源の特性変化に基づいて定められたタイミングで基準濃度板を読み取って、光量や配光の変動の補正を行う補正制御手段を備えたことを特徴としている。
【0006】
より詳しくは、請求項1の画像読み取り装置は、原稿を照射する光源と、
搬送されている上記原稿が読み取られる原稿読み取り位置とは異なる位置に配置された基準濃度板と、
上記原稿の画像と上記基準濃度板を光電的に読み取る読み取り手段と、
上記光源を保持して、上記光源が原稿読み取り位置と基準濃度板とを照射するように移動制御されるスライダ部と、
上記光源の時間経過に伴った特性変化が予め格納されている記憶部と、
上記記憶部に格納されている上記光源の時間経過に伴った特性変化に基づいたタイミングで上記スライダを制御して読み取り手段に基準濃度板を読み取らせて、読み取りデータを出力させて、この読み取りデータに基づいて、上記光源の特性変化を補償するように補正制御を行う補正制御手段とを備えていることを特徴としている。
【0007】
請求項1の発明によれば、上記記憶部に光源の時間的特性変化が予め格納されている。そして、上記補正制御手段は、上記光源の時間的な特性変化に基づいたタイミングで、上記スライダを制御して読み取り手段に基準濃度板を読み取らせて、読み取りデータを出力させて、この読み取りデータに基づいて、上記光源の特性変化を補償するように補正制御を行う。
【0008】
このように、請求項1の発明は、上記記憶部に格納された光源の時間的な特性変化に基づいて定めた最適なタイミングで上記基準濃度板の読み取りを実行して光源の特性変化を補償するので、生産性の低下の防止と高画質の維持とを簡単な構造で両立させることができる。
【0009】
また、請求項2の発明は、請求項1に記載の画像読み取り装置において、
上記光源の時間的な特性変化は、上記読み取り手段が複数の原稿を読み取っているときに連続点灯する光源の光量変化であることを特徴としている。
【0010】
この請求項2の発明によれば、上記記憶部は光源の時間的な光量変化を記憶し、補正制御手段は、その時間的な光量変化に基づいて、光源の光量変化を補償するように補正制御を行う。
【0011】
また、請求項3の発明は、請求項1に記載の画像読み取り装置において、
上記光源の時間的な特性変化は、上記読み取り手段が複数の原稿を読み取っているときに連続点灯する光源の配光変化であることを特徴としている。
【0012】
この請求項3の発明によれば、上記記憶部は光源の時間的な配光変化を記憶し、補正制御手段は、その時間的な配光変化に基づいて、光源の配光変化を補償するように補正制御を行う。
【0013】
また、請求項4の発明は、請求項1に記載の画像読み取り装置において、
上記補正制御手段が行う補正制御とは、上記光源の光量の制御を行う調光制御,上記読み取り手段の出力に対するゲイン調整,またはシェーディング補正用データを取り込むシェーディング補正制御のすくなくとも1つであることを特徴としている。
【0014】
この請求項4の発明によれば、上記補正制御手段は上記光源の時間的特性変化に基づいた最適なタイミングで、上記スライダを制御して読み取り手段に基準濃度板を読み取らせて、読み取りデータを出力させて、この読み取りデータに基づいて、上記光源の特性変化を補償するように、調光制御,ゲイン調整,シェーディグ補正の少なくとも1つを行う。
【0015】
また、請求項5の発明は、請求項4に記載の画像読み取り装置において、
上記補正制御手段が上記調光制御するタイミングは、上記読み取り手段による上記原稿の読み取りが終了してから、上記基準濃度板を光源が照射するための位置に上記スライダが達するまでの間に設定したことを特徴としている。
【0016】
この請求項5の発明によれば、上記補正制御手段は、上記原稿読み取りと上記基準濃度板の読み取りとの間の時間を利用して、光量を補正する。したがって、上記光量補正のみのために、特別の時間を使うことがないから、生産性が低下することなく、しかも、上記原稿および基準濃度板の読み取り中に光量の補正が行われないから、画質の劣化を招く読み取りデータの変動がなくなる。
【0017】
また、請求項6の発明は、請求項4に記載の画像読み取り装置において、
上記補正制御手段は、前回の調光制御を実行した際に使用した上記基準濃度板の読み取りデータに基づいて、今回の調光制御の制御値を決定することを特徴としている。
【0018】
この請求項6の発明によれば、前回の調光制御を実行した際に使用した上記基準濃度板の読み取りデータと上記予め記憶された光源の時間的特性変化に基づいて、今回の調光制御の制御値が決定される。したがって、請求項6によれば、調光制御の制御値が速やかに決定される。
【0019】
また、請求項7の発明は、請求項1に記載の画像読み取り装置において、
上記補正制御手段は、上記記憶部に格納されている光源の時間的な特性変化が大きなときに基準濃度板を読み取る頻度が高くなり、上記記憶部に格納されている光源の時間的な特性変化が小さなときに基準濃度板を読み取る頻度が低くなるようにしていることを特徴としている。
【0020】
この請求項7の発明によれば、上記補正制御手段は、光源の時間的な特性変化が大きなときに基準濃度板を読み取る頻度を高くして、光源の特性変化を確実に補償して、画質の劣化を防止する一方、光源の時間的な特性変化が小さなときに基準濃度板を読み取る頻度を低くして、生産性を高める。
【0021】
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて詳細に説明する。
【0022】
図1に、この発明の画像読み取り装置の実施の形態としての画像読み取り部IRを含んだデジタル複写機の全体構成を示す。このデジタル複写機は、原稿画像を読み取って画像データに変換する画像読み取り部IRと、この画像読み取り部IR部から出力される画像データを記憶するメモリ部8と、このメモリ部8から出力される画像データを印字して出力するプリンタ部2から構成されている。
【0023】
上記画像読み取り部IRは、原稿に光を照射する露光ランプ3と、原稿からの反射光を導く結像光学系5a,5b,5cと、入力光を電気信号に変換するイメージセンサ6を有し、イメージセンサ6の出力信号を量子化処理するアナログ処理部と、量子化された画像信号に各種画像処理・画像加工を施すデジタル画像処理部とを含む画像処理ユニット7を有している。上記イメージセンサ6は主にCCDからなる。また、上記画像読み取り部IRは、各種調整や画像処理等を行うために1ラインの画像データを記憶する記憶部と、そのデータをモニタするCPU(中央演算処理装置)を有している。このCPUは、ここでは詳しく説明しないが、スライダ制御や各種通信、各種画像処理の設定・処理等も行っている。この画像読み取り装置IRについては、後に図2を参照しながら詳しく説明する。
【0024】
また、このデジタル複写機は、自動原稿フィード装置FDHを備え、この自動原稿フィード装置FDHでもって原稿を原稿台10上の特定位置にフィードしながら、上記画像読み取り部IRで読み取ることができる(いわゆる流し取り)。
【0025】
上記メモリ部8を、以下に簡単に説明する。このメモリ部8は、図示しない画像メモリと圧縮部と符号メモリ(HDD(ハードディスクドライブ)等の大容量記憶手段)および伸長部から構成されている。上記画像読み取り部IRからの画像信号は、上記メモリ部8のリングバッファ等からなる第1の画像メモリに書き込まれた後に上記圧縮部で圧縮され、上記符号メモリに書き込まれる。上記符号メモリに書き込まれた画像データは、上記画像読み取り部IRが有するCPUあるいはデジタル複写機が有する他のCPUの指示によって読み出され、上記伸長部で伸長されてから、ページメモリ等からなる第2の画像メモリ部に書き込まれてから、プリンタ部2に出力される。
【0026】
図1に示すデジタル複写機によれば、原稿を上記画像読み取り部IRで1回、読み取り、その画像データを、メモリ部8に記憶させれば、メモリ部8から画像データを複数回読みだすことで複数枚のコピーが取れる。また、上記メモリ部8を制御することによって、画像の回転が可能である。また、2イン1(2枚の原稿を1枚の用紙にコピーする)等も可能である。
【0027】
特に、上記自動原稿フィード装置FDHの使用時には、メモリ部8の記憶容量の残りが無くなるまで何時間も連続して原稿を読み取ることができる。したがって、ユーザーはこれまでにない大量のコピーが採れる。
【0028】
また、図1のプリンタ部2を、以下に簡単に説明する。プリンタ部2は、メモリ部8から入力された画像データに基づいて半導体レーザ11を変調制御し、光学系12a,bに導かれたレーザビームを感光体ドラム13上に走査し、この感光体ドラム13上に形成された潜像の現像、転写等を行う電子写真プロセスにより用紙上に印字画像を得るものである。上記半導体レーザ11の変調制御とは、オンオフ制御、強度制御、PWM(パルス幅変調)制御等である。
【0029】
次に、図2を参照しながら、本発明にかかわる画像読み取り部IR(特に光学系を含めた読み取り処理およびデータ演算処理)について説明する。図2に示すように、原稿21を照らす光源3としては、安価で少ない消費電力で大光量が得られる蛍光灯22を用いている。この蛍光灯22は、一般に水銀ガスを封入した熱陰極管である。
【0030】
図6に示すように、上記蛍光灯22は管壁温度(周囲温度)により光量が大きく変動する。この光量の変動を抑えるため、蛍光灯22の周囲にヒータ23を巻き付け、このヒーター23を、管壁温度を検出するサーミスタ等の温度センサ25からの信号に基づいて管壁温度制御手段の一例である温度調整回路26で制御して、管壁温度を所定温度範囲内に保つようにしている。これにより、蛍光灯22の光量を安定させ、かつ、立ち上がりの特性を向上させている。
【0031】
, また、上記蛍光灯22の光量変動は、蛍光灯22の取り付け位置のばらつきや蛍光灯22の経時変化によっても生じる。また、蛍光灯22の部品毎に光量が異なる。したがって、市場においては、蛍光灯22のみならず、周辺のメカ部品を取り替えたときにも光量の調整を行う必要がある。
【0032】
なお、この実施の形態では、光源として蛍光灯22(熱陰極管)を使用したが、光源としてハロゲンランプや希ガスを用いた放電灯(冷陰極管)等を使用してもよい。この場合、光量変化の特性が蛍光灯22とは異なる。
【0033】
光量制御手段の一例である調光インバータ27は、ランプ電流値を変えることによって、蛍光灯22の光量を調節(つまり調光)する。なお、この調光の方式としては、他に点灯オンオフのデューティを可変する制御方式などを採用してもよい。
【0034】
上記調光インバータ27は、CPU28からのデジタル制御信号(調光値)によって制御されて、蛍光灯22に入力するランプ電流値を変える。上記デジタル制御信号は光量レベル値つまり調光値を表している。図7に示すように、上記調光値と蛍光灯22の相対光量との関係は非線形な関係である。上記曲線中の白丸から上下に延びる線分は、部品による相対光量のばらつきを表す。上記デジタル制御信号を、例えば、0〜255の範囲で変化させることによって、相対光量を25%〜100%の範囲で変化させることができる。この調光インバータ27による光量制御は、光量を概略調節するために用いられ、部品ばらつきや温度変化による光量変動を防ぐために用いられる。
【0035】
読み取り手段の一例であるCCD30は、レンズ31からの入射光に対してリニアに電圧を出力する光電変換素子である。図8(A)〜(C)に示すように、CCD30は、高速動作をさせるために、通常少なくとも2つの出力系統OS1とOS2を持っている。図8において、50は出力バッファであり、51はフォトダイオードであり、52,53,54,55は転送レジスタである。また、図8(A)は2レジスタ2出力の通常タイプを示し、図8(B)は4レジスタ4出力のタイプを示し、図8(C)は2レジスタ4出力のタイプを示している。
【0036】
CCDは部品による特性ばらつきが非常に大きいデバイスで、例えば、CCD30の感度は、たとえば部品により±20〜30%のばらつきがあって、ある一定のCCD出力電圧を得るためには、露光量を調節する必要がある。また、CCD30の飽和出力電圧の個体差によるばらつきは、図9に示すように20%以上存在する。
【0037】
その他にも、このCCD30は、たとえば、図9に示すように、電気的特性や信号出力の遅延量などのばらつきが大きいものである。また、CCD30の出力系統の違いによって発生する特性差、チップの反りに起因する特性差もある。さらには、MTF(モジュレーション・トランスファー・ファンクション)特性や分光感度特性のばらつき、パッケージに対する画素位置のばらつきも有る。したがって、あらかじめ測定したCCDの特性値や各種処理を行う際に参考とする値をCCDユニットや製品の組立時に、製品内の記憶手段へ格納しておくようにしている。
【0038】
上記読み取り処理部IRは、CDS(相関二重サンプリング)に代表されるサンプルホールド機能を持つCDS部32と、増幅機能を持つAMP(アンプリファイア)部33と、クランプ機能を持つクランプ部35とを有する。また、上記読み取り処理部IRは、後述する量子化機能、および出力合成機能等を有する。
【0039】
上記CDS部32は、入力される2つのサンプリングパルスによって、CCD30の1画素中の、黒出力を表す期間の信号と信号期間の信号との差分をとることによって、CCD30から出力された波形のうち駆動パルス(RS)により生じたノイズ部分を除いて、信号出力の安定部分のみを取り出す。ここで、CCD30自身の温度特性のばらつきを吸収する。なお、CDS部32でのばらつき要因としては、CDS32自身の利得ばらつき(±30%くらい)や入力信号振幅制限のばらつき(例えば1V)に加え、サンプリング位置の違いによる誤差等がある。
【0040】
高速動作を行う場合には、1画素の周期が非常に短いので、CCD出力波形に多くのノイズが生じる。したがって、正しいデータを保持するためには、サンプリングパルス幅をns(10-9秒)オーダーとし、さらに、サンプリング位置の調整もns(10-9秒)オーダーで行なう必要がある。したがって、図10に示すようなタイミング微調回路88が必要になる。このタイミング微調回路88は、上記サンプリングパルス幅やサンプリングのタイミングを微調整する回路である。
【0041】
このタイミング微調回路88は、図11に示すように、少なくとも1つ以上の基準パルスCKのタイミングを制御することで上記パルス幅や上記タイミングを調整する。そして、上記調整の制御値は、組立調整時に記憶手段に格納しておき、製品動作時は、CPU28が上記制御値を読み出して、上記タイミング調整回路88に設定するようにしている。なお、ここでは、CDS部32は、サンプルホールド機能として相関二重サンプリングを行うものとしたが、他のサンプルホールド機能を有するものであってもよい。
【0042】
また、上記AMP部33は、CDS部32でサンプルホールドされた信号をオペアンプで増幅する。ここで、上記オペアンプ自身の特性のばらつきや、増幅率を決定する素子(抵抗等)のばらつきによって、増幅率(利得ともいう)がばらつく。なお、ここでは、上記AMP部33の増幅率を固定(ばらつきや特性変化は除く)としたが、下に説明するクランプ部35と同様に、上記AMP部33の増幅率をD/A変換器等を用いて任意に可変制御しても良い。
【0043】
次に、上記クランプ部35は、D/A変換器を有し、CPU28からの設定信号を上記D/A変換器を介してA/D変換器37に入力し、CCD30の黒基準電圧がA/D変換器37の下限電圧レベルとなるように、CCD30の黒基準電圧を任意のレベルに可変する。これにより、CCD出力の最適な量子化を達成できる。このクランプ部35でのばらつき要因としては、クランプ部35自身のばらつきのほか、D/A変換器自身の利得のばらつきや変換誤差、さらには、基準電圧のばらつき等がある。ここで、CCD30の黒基準電圧とは、CCD30の画素を光学的に遮蔽した場合に出力される電圧をいう。このCCD30の黒基準電圧が、1ライン毎に設定されたレベルに合わせられることによって、CCD30をはじめとする素子,回路系の温度特性等における経時変化を吸収することができる。
【0044】
次に、上記A/D変換器37は、D/A変換器を介したCPU28からの信号でもって基準電圧(トップ側)を任意に可変して、上記クランプ部35からのCCD出力電圧が狙いの読み取り濃度範囲になるようにするものである。このA/D変換器37は上記CCD出力電圧を、例えば、256階調に量子化(デジタル信号化)するものである。また、高速動作時には1画素の周期が非常に短いので、A/D変換器37にはCDS部32と同様に(量子化)サンプリング位置を調整するための微調回路が必要となっている。このA/D変換器37は、CCD出力電圧,回路利得が最大値であっても飽和しないレベルで、最大の量子化範囲に設定できる。このA/D変換器37でのばらつき要因としては、クランプ部35と同様に、D/A変換器自身の利得や変換誤差、その基準電圧のばらつき等がある。また、サンプリング位置によっても量子化されるデータにばらつき(誤差)を生じる可能性がある。
【0045】
次に、出力合成部38は、CCD30の2出力に合わせてパラレル処理された2つのデジタル信号を、CCD30で読み取った画素の順番通りにシリアル信号に合成する。ここで、出力を合成するための合成クロックのタイミングが重要となる。特に、CCD30の動作が高速であったり、CCD30の出力が3出力以上になった場合には、合成時のタイミング余裕が一層少なくなるから、上記合成クロックの出力を、サンプルホールド部であるCDS部32やA/D変換器37等のタイミングに応じて微調する必要がある。もちろんそのタイミングは、固定であっても良いが、あらかじめ記憶されているCCD出力遅延時間に応じて可変する構成、あるいは、上記CDS部32等のサンプリングタイミングに連動して可変する構成としても良い。
【0046】
次に、シェーディング補正部40は、露光ランプ3つまり蛍光灯22の配光ムラ,レンズ31の周辺ダレ等による光学系のトータルな配光ムラ,CCD30の画素毎の感度ムラを、CCD30で図1に示される白色の基準濃度板41(シェーディング補正板)を読み取った1ラインのデータに基づいて演算処理を行って補正する。この実施の形態では、上記露光ランプ3が蛍光灯22で構成されているので、周辺部のダレ(光量低下)が大きい。なお、上記露光ランプ3をハロゲンランプで構成した場合にはフィラメントでの光量リップルが存在する。
【0047】
次に、画像モニタ部45は、CPU28に主走査方向の1ラインデータをハード的にモニタさせる機能を有している。このモニタ機能としては、以下のものがある。(1)1ラインの少なくとも1点(特定アドレス)のデータをCPU28がダイレクトにモニタする。(2)主走査方向の1ラインの画像データをメモリ46に格納し、メモリ46内の画像データをCPU28がモニタする。(3)1ラインまたは複数ラインのヒストグラムを作成し、その結果をCPU28がモニタする。(4)1ラインまたは複数ラインのエッジアドレスを検出して、その結果をCPUがモニタする。
【0048】
なお、この実施の形態では、基板配線パターンの工夫やGND(グランド)の強化に加えて、CCD30からA/D変換器37,出力合成部38までの処理回路を一枚の基板構成とした。これにより、外部からのノイズや放射ノイズを軽減して、高速動作でのノイズ増加によるS/Nの劣化を少なくしている。
【0049】
また、この実施の形態では、結像レンズ31と上記基板およびその保持部材を一つのユニット(以下、CCDユニットと呼ぶ)にしており、ユニット内でのピント位置等のメカ的な調整がなされている。これにより、市場にて部品を簡単に交換できる。
【0050】
さらに、上記基板には、前述したような読み取り特性を組み立て調整時に記憶するための電気的に読み書き可能な記憶手段を含むメモリ46を有している。この記憶手段としては、例えば、メモリ等の半導体であってもよく、読み出しのみであればディップスイッチや基板パターンのような半導体以外のものであっても良い。そして、上記メモリ46に記憶させる読み取り特性としては、次のようなものがある。まず、あらかじめ記憶させる情報としては、次の(i)〜(v)のものがある。
【0051】
(i) CCD読み取り特性、例えば、感度、飽和出力電圧、2以上の出力系統毎の特性の違い等の電気的特性の標準値に対するばらつき、
(ii) アナログトータルゲイン、例えば、S/H(サンプルホールド)利得,入力制限電圧、増幅処理部(AMP部33)の利得、クランプ部35の利得、量子化部(A/D変換器37)利得の標準値に対するばらつき、
(iii) サンプリングタイミング情報、つまり、S/H(サンプルホールド)部としてのCDS部32、量子化部としてのA/D変換器37、出力合成部38等のタイミング制御値、
(iv) 露光量や初期データ、つまり、組立時のランプ等の光学部品と上記CCDユニットの組み合わせで決まる調光値、基準白色板読み取り時のデジタル値や配光比を示す値など、
(v) 組立調整時に必要となる情報。
【0052】
また、組立調整時や製品動作時に書き換える可能性のある情報としては、次の(vi)〜(ix)のものがある。
【0053】
(vi) 各種調整において、その調整した値が明らかに異常と分かる場合に、仮の値として、設定するデフォルト値、
(vii) 上記異常時またはコーション,トラブルの発生箇所やその回数、
(viii) 手置きの場合、自動原稿フィードの場合、両面の場合等における読み取り回数、
(ix) ランプ点灯回数。
【0054】
次に、各種調整,補正項目について、以下に、(a)第1光量調整、(b)第2光量調整、(c)オフセット調整、(d)ゲイン調整の順に説明する。
【0055】
(a) 上記第1光量調整は、光量ピーク検出を伴うものであり、組立調整時や市場での部品交換時において、電源投入時またはソフト的なリセット時に行う。ここで、部品交換とは、蛍光灯22だけではなく、CCD30への入射光量を決める要因になるメカ部品(結像光学系5の反射鏡や蛍光灯保持部材等)、CCDユニットを含んでいる。上記CCDユニットとは、上述したように、レンズ31やCCD30から出力合成部38までの信号処理を行う1枚の基板とそれらの保持,位置出しのための構成ユニットであり、簡単に交換可能なものである。
【0056】
(b) 第2光量調整は、連続読み取りの際の光量低下を吸収するために行う。自動原稿フィード装置FDHによって大量の原稿を読み取る場合、蛍光灯22が何時間も連続点灯されることがある。ハードディスクからなる画像メモリ部1に格納できるだけの画像を読み取る場合や、画像出力が並列に処理される場合において蛍光灯22が連続点灯される。このような蛍光灯22の連続点灯時には、蛍光灯22の自己発熱やCCD30や基板等からの発熱によって、蛍光灯22の管壁温度(周囲温度)が上昇する。これにより、点灯直後の光量から30〜50%程度光量が低下する。そこで、次の項目(d)で述べるゲイン調整を行った際に採用した値に対して、CPU28は、上記第1光量調整と同様にCCD出力電圧を推測し、この推測したCCD出力電圧が画質保証に相当するCCD出力電圧の下限値を下回った場合に、次のゲイン調整タイミングの直前に、上記下限値を下回らないような調光値つまり光量レベル値を設定する。
【0057】
次の(c)オフセット調整および(d)ゲイン調整は、光量調整を量子化ステップ(256階調)の精度では行えないので、概略光量調整後の微調整機能という位置づけである。
【0058】
(c) オフセット調整は、少なくとも電源投入時に、CCD30の画素を光学的に遮蔽した状態でCCD出力電圧のデジタル値が“0"となるようにクランプ電圧を制御する。すなわち、読み取りの際の黒レベルを調整するものである。なお、上記光学的に遮蔽した状態でのCCD出力電圧のデジタル値はシステムにより異なる。
【0059】
(d) ゲイン調整は、蛍光灯22の光量変動が大きいため、基本的に原稿21の読み取りを開始する直前に行い、1ページ読み取り中に、最適な量子化を行えるように、A/D変換器37の基準電圧を制御するものである。
【0060】
〔トラブル・警告処理〕
次に、トラブル・警告処理について説明する。上記ゲイン調整の際に、基準濃度板41を読み取った光量モニタ値から、CCD出力電圧を推測し、画質保証の下限を下回った場合に、光源ランプ(蛍光灯22)の交換を意味する警告を出力したり、極端に光量が少ない場合には、トラブルの報知をする。この報知としては、操作パネル上に表示したり、電話回線等を用いてサービス拠点に知らせたり、機械を停止することとしても良い。
【0061】
次に、図12のフローチャートを参照しながら、この実施の形態での電源投入時の初期動作を説明する。この電源投入時の初期動作は、トラブルリセット等の電源投入と同等の動作を含むものとする。
【0062】
まず、電源が投入されると、ステップS1に進んで、タイマーをスタートさせて計時を始める。次に、図1のスライダー71を所定の基準位置へ移動させる。次に、上記スライダー71を基準濃度板41に対向する位置へ移動させる。次に、オフセット調整を行う。
【0063】
次に、ステップS2に進んで、管壁温度が所定温度範囲未満(例えば、40〜60℃)の場合、つまり温調情報が温調ウォームアップ中の場合には、ステップS3に進んで、CPU28は、調光値を調光信号として調光インバータ27に出力し、ランプ(蛍光灯22)を点灯してから、ステップS4に進む。(温調情報は図示しないプリンタ部2が有するCPUから出力される。)
【0064】
一方、ステップS2において、温調ウォームアップ中でないと判断された場合には、ステップS6に進む。
【0065】
上記ステップS4では、光量極値検出を行い、ステップS5で調光値を決定し、その調光値をバックアップデータとしてメモリ46に書き込み、次の処理(ステップS6)に移る。このステップS4,S5が第1光量調整(兼ウォームアップ兼調光イレギュラー排除)である。
【0066】
ステップS6では、温調情報が温調中(管壁温度が所定温度範囲内(例えば、40〜60℃))になるまで、ランプ(蛍光灯22)点灯のまま待機し、温調情報が温調中になれば、ランプ切れトラブル検出を行い、次のステップS7に進む。
【0067】
次に、ステップS7では、ランプ消灯、タイマーストップ、スライダーをホーム位置へ移動し、ウォームアップ完了とする。
【0068】
ここで、プリンタ部2が有するCPUから温調情報を受け取るようにして、蛍光灯22の温調用ヒータ23の電源の制御を定着部のヒータと同様にプリンタ部2で行っている。その理由は、ユーザにより待機時間の設定が可能な省エネルギーモードにおいて、画像読み取り部IRの電源をオフして、消費電力を必要最小限に抑え、かつ復帰時にプリンタ部2による定着と同時に直ぐに読み取りが開始できるようにするためである。
【0069】
また、ランプ(蛍光灯22)の点灯制御では、蛍光灯22の適正な予熱時間が経過した後に、点灯させる調光値に関わらず、一旦100%の調光値で点灯させ、所定時間後に調光値を目的の値に制御する。その理由は、蛍光灯22の長寿命化と低温かつ低調光値時の不点灯を防止するためである。
【0070】
また、光量調整を行う際には、組立調整時を除いて周囲温度や蛍光灯22が消灯されていた時間などの条件が不明であるから、以下の方法で光量変化カーブ(図3を参照)を推定し、調光値を決定する。この光量変化カーブの推定は光量の相対値で良いが、CCD出力が飽和しないような最適な調光値を決定するには絶対光量を知る必要がある。また、画質を重視する場合は、飽和防止と同様に最低必要光量の把握が必須である。また、読み取りモード(文字モード,写真モード等)に応じて最低必要光量を可変してもよい。
【0071】
上記図11のステップS4とS5で行われる第1光量調整については、次の(第1光量調整の詳細)の項で詳細に説明するが、ここで概要を述べる。この第1光量調整では、CPU28が、点灯のための調光値に基づいたあらかじめ発生しうる光量変化パターンに基づいてランプ点灯後の待機を行った後、光量変化のモニタを開始する。そして、ピーク光量と光量変化カーブを求め、このときの雰囲気温度による光量変動や再点灯時等の光量変動を吸収できるような最適な調光値を推定して設定する。
【0072】
次に、立ち上がりの光量変化の特徴を説明する。
【0073】
図3に示すように、蛍光灯22の点灯条件の違いによる3種類の立ち上がり光量変化カーブ1,2,3がある。この光量変化カーブ1,2,3は、周囲温度、前回点灯条件、待機時間等により時間推移やピーク値が変わる。
【0074】
図3の光量変化カーブ1は、標準カーブであり、一般的な立ち上がり特性曲線である。また、光量変化カーブ2は、ピーキータイプとも呼ばれる準標準タイプの特性曲線である。この準標準タイプの特性曲線は、蛍光灯22の管内温度条件によって発生することがある比較的まれな特性である。また、光量変化カーブ3は、瞬断タイプと呼ばれ、電源を短時間だけオフした後に電源を再投入したときの特性曲線である。したがって、この再投入前の電源オフの時間が長くなるほど、光量変化カーブ3は光量変化カーブ1に近づいて行く。
【0075】
また、図5に、もう1つの光量立ち上がり特性を示す。図5は、周囲温度および調光値を、それぞれ、10℃,25℃,35℃および40%,60%,80%,100%にした場合の光量立ち上がり特性曲線を示す。
【0076】
図5に示すように、調光範囲が大きいシステムの場合、光量と周囲温度がともに低い程、点灯直後の光量オーバーシュートが長く、低い光量での安定期間が長いという傾向がある。また、調光値毎に、発生したピークと安定時の光量比が異なるという傾向がある。
【0077】
次に、以下の(参考(1))の項に、ピークを検出するための待機時間の目安の一例を示す。つまり、この待機時間の間はピーク発生前の期間である。また、(参考(2))の項に、主な調光値毎でのピークと安定レベルの比を一例として示す。
【0078】
(参考(1)(周囲温度の変動を考慮している。))
調光値<30%のとき、 光量ピーク検出待機時間は、75秒
30%≦調光値<50%のとき、光量ピーク検出待機時間は、60秒
50%≦調光値<70%のとき、光量ピーク検出待機時間は、45秒
70%≦調光値<90%のとき、光量ピーク検出待機時間は、30秒
90%≦調光値のとき、 光量ピーク検出待機時間は、15秒
(参考(2))
調光値が40%のとき、(ピーク/安定)の比は、0.95
調光値が60%のとき、(ピーク/安定)の比は、1
調光値が80%のとき、(ピーク/安定)の比は、1.1
調光値が100%のとき、(ピーク/安定)の比は、1.2
(第1光量調整の詳細)
次に、この実施の形態の第1光量調整について、図13および図14の第2フローチャートを参照しながら詳細に説明する。
【0079】
0.まず、基準濃度板41の読み取りデータで、蛍光灯22の絶対光量の測定ができるよう各種初期設定を行う。すなわち、上記スライダー71を基準濃度板41へ移動させ、処理に用いる変数(最大値、各光量変化傾向の連続回数等)を初期化する。そして、蛍光灯22を点灯させて、タイマーによる計時を開始する。(ステップS11,S12)
1.次に、タイマー値を参照しながら、光量ピーク検出のための所定時間を待機する。たとえば、1分15秒間だけ待機する。(ステップS13)
2.次に、ランプ(蛍光灯22)の点灯後から1秒毎に特定点におけるデータをサンプリングする。上記データとは、基準濃度板41からCCD30で読み取った蛍光灯22の光量である。また、上記特定点はあらかじめ決められている光量安定時の主走査配光ピークを示す点である。そして、上記データのサンプリングは、1点でなく複数画素の平均値を用いて、データの精度を挙げている。また、最初の平均値データの内、CCD30の出力系統におけるODD/EVENの光量の大きい方のみを以降の処理でデータとして採用して、データ処理を簡素化している。(ステップS14)
3.次に、それらのデータの最大値を検出してメモリ46に記憶していく(ピークホールド)。一方、1秒毎に光量をサンプリングし、5秒間での光量変化量(差分・ベクトル)を求める。(ステップS15)
【0080】
すなわち、たとえば、サンプリングを、▲1▼(0秒目のデータ),▲2▼(1秒目のデータ),…▲6▼(5秒目のデータ)という様に行い、光量変化量としては、( ▲6▼−▲1▼)として求める。
【0081】
4.次に、上記のようにして求めた光量変化量から光量変化傾向を判断する(ステップS15)。具体的には、光量変化量(▲6▼−▲1▼)と許容範囲aとの比較を行う。すなわち、
|▲6▼−▲1▼|≦ a であれば、光量が安定した(変化なし)と判断する。
【0082】
▲6▼−▲1▼ > a であれば、光量が増加していると判断する。
【0083】
▲6▼−▲1▼ < a であれば、光量が減少していると判断する。
【0084】
なお、上記許容範囲aは固定値ではなく、データ(光量)の絶対値に応じて変化させる。その理由は、部品ばらつきによる出力データの絶対値のばらつきが大きく、また、回路系のデータのばらつきもあるので、上記許容範囲aを固定値としたのでは、光量の変化傾向を正しく判断できないからである。
【0085】
5.次に、ステップS16で、上記光量変化傾向の連続性に基づいて、光量ピークの検出を行い、光量ピークを検出したと判断すれば、以下の1〜3の処理を行い、光量変化カーブの判定を行う。
【0086】
[処理1](ステップS17) この処理1では、光量変化カーブが、図3に示した光量変化カーブ3であるのかないのかの判別を行う。すなわち、(光量減少連続回数≧10)のときに、光量変化カーブが、光量変化カーブ3すなわち瞬断タイプであると判断する。
【0087】
一方、(光量増加連続回数≧5)であるか、光量ピーク検出待機時間を経過した後に、(光量減少連続回数≧5)もしくは(光量安定連続回数≧5)ならば、光量変化カーブが、瞬断タイプ以外であると判断する。
【0088】
そして、ステップS17において、光量変化カーブが瞬断タイプであると判別した場合には、タイマーをストップして(S22)、図12の第1フローチャートの調光値決定処理(ステップS5)へ進む。一方、この処理1において、光量変化カーブが瞬断タイプでないと判別した場合には、次の処理2を行う。
【0089】
[処理2](ステップS18,S19,S20) この処理2では、光量変化カーブのタイプが図3の光量変化カーブ1か光量変化カーブ2か、すなわち、標準タイプか準標準タイプかの判別を行う。すなわち、光量減少連続回数≧10の場合に、光量変化カーブが準標準タイプであると判断する。
【0090】
一方、この処理2を初めてから20秒間経過しても、光量変化カーブを準標準タイプと判別できない場合は光量変化カーブが標準タイプであると判別する。
【0091】
そして、この処理2において、光量変化カーブが標準タイプであると判別した場合には、調光値決定処理(ステップS21)に進む。一方、この処理2において、光量変化カーブが準標準タイプであると判断した場合には、次の[処理3]、調光値決定処理(ステップS25)へ進む。
【0092】
[処理3](ステップS23,S24) この処理3では、準標準タイプである光量変化カーブ2の谷値を検出する。すなわち、光量増加または光量安定が5秒間連続したら現在の光量データ平均値を谷値とする。
【0093】
なお、光量ピーク値は、ここまでに記憶されている最大値とする。
【0094】
そして、上記項目2.3.4.5.の処理を、光量変化カーブのピークが求まるまで、データのサンプリング毎に繰り返す。図13,図14の上記第2フローチャートのステップS13,S14,S15が光量変化量検出手段を構成している。また、上記第2フローチャートのステップS16,S17,S18,S19,S20,S23,S24が光量変化パターン決定手段を構成している。
【0095】
6.次に、求められた光量変化カーブのピーク値(もしくは谷値)から、設定すべき最適な調光値を決定するとともに、図2の調光インバータ27に対して調光値を設定し、記憶手段(EEPROM)に格納する。ここでいう最適な調光値とは、設定後の読み取り時の連続点灯や環境の変動によって、光量ピークがCCD飽和レベルを越えないような調光値である。上記第2フローチャートのステップS21,S25が光量レベル設定手段を構成している。
【0096】
具体的には、上記光量変化カーブが標準タイプと判断したときには、上記最適な調光値を次の(1)の式で求め、上記光量変化カーブが準標準タイプと判断したときには、上記最適な調光値を次の(2)の式で求め、上記光量変化カーブが瞬断タイプであると判断した場合には、記憶手段(EEPROM)に格納されている前回の設定値をそのまま採用する。
【0097】
(1) 最適な調光値(標準タイプ) =
{(狙い値)×(トータルゲイン)/(ピーク値)×b}×(現調光値)
(2) 最適な調光値(準標準タイプ) =
{(狙い値)×(トータルゲイン)/(ピーク値×1.1)×b}×(現調光値)
上記(1)および(2)の式において、(狙い値)とは、CCD感度とアナログトータルゲインが標準値の時において、CCD出力が飽和しないような値である。この狙い値は、固定値でも良いし、あらかじめ記憶されているCCD飽和出力電圧に基づいて可変しても良い。また、(トータルゲイン)とは、CCD感度とアナログゲインの標準値に対するばらつきを示す。また、定数(b)は、調光値によって発生するピークと安定時の光量の比率である。
【0098】
なお、この実施の形態では、図13のフローチャートのステップS16で光量ピークを検出したと判断しなかったときに、ステップS26の判断を経由して、ステップS14に戻るようにしている。ここで、上記ステップS26では、タイマーの計時が3分を越えたか否かを判断し、3分を越えたと判断したときに、トラブルが発生したと判断して、表示パネルにトラブルが発生したことを表示する。上記トラブル内容の一例としては、ランプ切れ,ヒータ切れ、光軸ずれ、ハーネスの異常、電源の異常、CCD基板の故障、デジタル基板の故障などがある。また、CPU28は、電源投入時などに、あらかじめ、これらの情報、つまり(狙い値),(トータルゲイン),(定数(b))を記憶手段(メモリ46)から読み出して、上記許容範囲aや光量不足のトラブル判断値、および調光値計算式を決定しておいても良い。また、上記サンプリング時間、サンプリング回数や判断に用いる時間,定数等は、装置毎に数値を設定するようにすればよい。
【0099】
また、この実施の形態では、高速シテスムのために、電源投入時及び光量調整タイミング時に限定して光量ピーク検出を行っているが、時間的余裕のあるシテスムでは、読み取り直前(ゲイン調整前)に、毎回本方式の調光制御を行えば、より精度の高い調光が可能となり、常に、より高画質である装置を提供できる。
【0100】
また、この実施の形態では、一般的にプリンタ部2側のウォームアップ時間が画像読み取り部IRのウォームアップ時間(第1光量調整時間)よりも長いので、ピーク検出待機時間を固定値とした。しかし、光量立ち上がり特性は、点灯時の調光値によって変わる(雰囲気温度にも影響される)ので、調光値に応じてピーク検出待機時間を可変して、読み取り開始時間を少しでも早めるようにしてもよい。
【0101】
また、上記実施形態の「項目2.」におけるデータサンプリング処理の中で、サンプリングした光量データによって、蛍光灯22(ランプ)が飽和したかあるいは点灯していないことを検知したときに、表示パネルにトラブル表示を行うようにしてもよい。この場合のトラブル検出式を次式に示す。光量データがこのトラブル検出式を満足しないときに、飽和によるトラブルが発生したと判断する。
【0102】
光量データ<{(CCD飽和電圧×アナログゲイン値)/(量子化電圧範囲)}×255そして、上記光量データが飽和したと判断したときに、(i) 調光値を1ステップだけ減じて、この調光値をメモリに格納することなく、上記データサンプリング処理を最初からやり直す。これにより、調光制御不能により、誤った調光値を設定してしまうことを防ぐ。また、上記飽和と判断したときに、(ii)調光値が下限である場合には、蛍光ランプの異常な点灯による飽和トラブルと判断する。なお、サンプリングデータが所定期間不点灯レベル(極小)の場合には、ランプ切れトラブルと判断する。
【0103】
また、上記実施形態の「項目5.」における光量変化カーブ判定処理が複写機のプリンタ部2の最大ウォームアップ時間以上(たとえば5分間)経過しても判定処理が終わらないときに、タイムアウトトラブルとして、表示パネル等に表示するようにしてもよい。
【0104】
次に、この実施形態における上記第2光量調整およびゲイン調整について説明する。
【0105】
図4に示すように、蛍光灯22は、長時間連続点灯されると管壁温度(周囲温度)の上昇に起因して、点灯直後の光量に対して、+20%〜−40%程度まで光量が変動することが知られている。なお、この変動値は、システム構成や温調温度などにより変わる。特に、低温時は、点灯後の光量立ち上がり時に時間単位の光量変化が大きく、かつ、ピーク後の光量低下が小さい。一方、高温時は点灯後の光量立ち上がりは少ないが、ピーク後の光量立ち下がり時の時間単位の光量変化(低下する絶対光量)が大きいという傾向がある。
【0106】
そして、原稿読み取り時の管壁温度(周囲温度)を正確に把握することは難しいので、図4に示すような最も光量の変動が大きな光量変化カーブに基づいて、原稿読み取り中の光量変化が、画質保証上の許容内に常に入るように光量を補正する。この光量の補正は、調光インバータ27の出力を調節する調光制御と、増幅器の増幅率を調節するゲイン調整を含んでいる。
【0107】
次に、この実施の形態の上記第2光量調整とゲイン調整の動作を、図15,図16に示す第3フローチャートおよび図17に示す第4フローチャートを参照しながら説明する。上記第3フローチャートが補正制御手段を構成している。
【0108】
まず、CPU28は、あらかじめメモリ46に記憶している上記光量の時間的変化特性曲線(図4)にしたがって、操作パネル等から設定された原稿サイズや読み取りモード等の情報に基づいて、ゲイン調整実行タイミングを決定する(ステップS31)。上記CPU28は、上記光量時間変化特性からみて前回のゲイン調整後からの光量の変動が画質保証上で許容できなくなると予測される原稿読み取りタイミングの直前に上記ゲイン調整実行タイミングを決定する。
【0109】
次に、蛍光灯22を点灯し(ステップS32)、原稿21の1頁目を読み取る前に、図1のスライダ71を基準濃度板41への対向位置に移動させ(ステップS33)、基準濃度板41の主走査方向1ラインの読み取りデータを図2の画像モニタ部45に格納する。そして、CPU28は上記読み取りデータの最大値(光量モニタ値)を求め、最適な読み取りが行えるように光量補正(ゲイン調整)する(ステップS34)。そして、このゲイン調整によって、最適な量子化ダイナミックレンジを設定してから、配光補正のためのシェーディング補正用データを取り込み、自動原稿フィード装置FDHによる読み取り位置で画像読み取りを開始する(ステップS35,S36)。
【0110】
次に、ステップS37に進み、次の原稿があるかないかを判断し、次の原稿があると判断すれば、ステップS41に進み、次の原稿がないと判断すれば、ステップS38に進む。このステップS38では、ランプ(蛍光灯22)を消灯し、シェーディング補正を終了する。そして、ステップS39に進んで、警告もしくはトラブルが発生した場合か否かを判断して、警告やトラブルが発生していないと判断すれば、処理を終える。一方、警告やトラブルが発生した場合であると判断すれば、ステップS40に進んで、警告もしくはトラブルの表示を行い、かつ、それらに対する処理を実行する。
【0111】
一方、ステップS41では、ステップS31で設定した上記ゲイン調整実行タイミングになったと判断したときに、ステップS42に進み、調光値可変フラグがオンになっているか否かを判断する。一方、このステップS41で上記ゲイン調整実行タイミングになっていないと判断したときにはステップS36に戻って画像読み取りを行う。
【0112】
そして、上記ステップS42で、調光値可変フラグがオンになっていないと判断すれば、ステップS33に戻って、上記スライダ71を上記自動原稿フィード装置FDHによる読み取り位置4から上記基準濃度板41の対向位置に移動させ、ステップS34に進み、この対向位置で光量補正および配光補正を行う。調光値可変フラグは、図17,S57でオンされるフラグである。上記光量補正ではゲインの過不足に応じてゲインを減増させるゲイン調整を行い、上記配光補正ではシェーディング補正用データを取り込む。この後、上記スライダ71を上記連続原稿読み取りのための位置4に戻す。
【0113】
一方、上記ステップS42で、調光値可変フラグがオンになっていると判断すれば、ステップS43に進んで、調光値が100%であるかいなかを判断し、調光値が100%であると判断すれば、ステップS45に進んで警告フラグをオンにする。一方、上記ステップS43で調光値が100%ではないと判断すれば、ステップS44に進んで調光値を変え、ステップS33に戻る。
【0114】
次に、上記ステップS34でのゲイン調整を、図17のフローチャートに従って説明する。まず、ステップS51では、初期設定を行い、シェーディング補正をオフにする。次に、ステップS52に進んで、スライダ71が基準濃度板41の対向位置にあるか否かを判断し、上記対向位置にあると判断すれば、ステップS53に進んで光量モニタを行う。つまり、基準濃度板41の主走査方向1ラインの読み取りデータを画像モニタ部45に格納し、読み取りデータの最大値である光量モニタ値を求める。次にステップS54に進み、上記光量モニタ値が画質保証範囲内にあるか否かを判断し、光量モニタ値が画質保証範囲外の場合には、ステップS57に進み、光量モニタ値が画質保証範囲内の場合にはステップS55に進む。そして、ステップS57では、調光値決定可変フラグをたて、かつ、次回のゲイン調整時に最適光量が得られるように、調光値(つまり調光インバータ27の出力電流値)を決定しておく。
【0115】
このように、ステップS36での画像読み取りを開始して、原稿画像の出力が終了したときから、ステップS33における上記スライダ71を上記基準濃度板41の位置まで移動するまでの間に、ステップS37,S41,S42,S43,S44を経由し、このステップS44で、予め上記ステップS57で決定しておいた調光値に調光インバータ27を設定するのである。したがって、上記基準濃度板41に達するまでに調光値を変えたことによる読み取り中の光量変動がなくなるので、光量安定状態でゲイン調整処理を行うことができ、画質の劣化を防止できる。また、光量補正のみのために特別な時間を必要としないので、生産性を向上できる。
【0116】
次に、ステップS55に進んで、ゲイン調整値を決定し設定してから、ステップS56に進んで、シェーディング補正用基準データを取り込み、ゲイン調整処理を終える。
【0117】
なお、上記では、光量の変動について説明しているが、光量の変動よりも少ない割合で配光も変動している。このため、光量変動を補正する際に、ステップS35で同時にシェーディング補正用データの取り込みも実施して、配光も補正するようにすればよい。このことによって、スライダ71を基準濃度板41(シェーディング板)まで移動させてから原稿読み取り位置4まで戻すという往復移動回数を減らすことができる。したがって、生産性の低下を最小限に抑えつつ読み取り画質の向上を図れる。この場合、図4に示した光量変化カーブに加えて、配光の時間的変化特性カーブをメモリ46に記憶しておけばよい。また、場合によっては、上記光量補正に変えて配光補正だけを行うようにしてもよい。
【0118】
また、上記図4の時間軸に平行に延ばした破線上に記した×印は、上記ゲイン調整実行タイミングの一例を示す。上記×印と隣接する×印との間の破線の下に記した()内の数値は、上記×印と×印との間の時間に読み取る原稿枚数を表している。この例では、原稿1頁を読み取るときの画質についての光量変動の許容レベルを5%以内とし、1頁の読み取りに要する時間およびスライダ71を移動させて光量補正や配光補正を行う処理に要する時間とを考慮して、上記ゲイン調整実行タイミングを決めた。図4を参照すれば分かるように、点灯の初期はゲイン調整頻度が高く、時間経過に伴って光量の変化が徐々に小さくなって徐々にゲイン調整頻度が低くなっていることが分かる。
【0119】
ところで、上記基準濃度板41と原稿読み取り位置4との間の距離を50mmとし、スライダ71の移動速度を400mm/秒とすると、上記ゲイン調整の際に要する時間(すなわちスライダ71の往復動に要する時間)は、0.5秒以上になる。したがって、たとえば、60ppm(枚/分)の高速システムで1頁ごとにゲイン補正を行うと仮定すると、60枚コピーするのに、補正のための時間が約30秒かかることになる。したがって、上記読み取り途中のゲイン調整を実行した上で60ppmを達成するためには、上記読み取り途中のゲイン調整を実行しないシステムにおける90ppm相当の能力を達成する必要がある。このことは、機械的な信頼性や耐久性を達成するための難易度が格段に上がることを意味する。
【0120】
したがって、この発明の上記実施の形態のように、光量の時間的変化カーブに基づき、ゲイン調整のタイミングを設定することによって、ゲイン調整の実行回数を必要最小限に減らし、上記読み取り途中のゲイン調整を実行しないシステムにおける70ppm弱の機械能力でもって、読み取り途中のゲイン調整を実行する場合に60ppmのコピー能力を達成することが可能となる。
【0121】
【発明の効果】
以上より明らかなように、この請求項1の発明によれば、記憶部に光源の時間的な特性変化を格納して、この特性変化に基づいて定めた最適のタイミングで基準濃度板の読み取りを実行して光源の特性変化を補償するので、生産性と高画質とを両立させることができる。
【0122】
また、請求項2の発明によれば、上記光源の時間的な特性変化は、上記読み取り手段が複数の原稿を読み取っているときに連続点灯する光源の光量変化であるので、上記光源の光量変化を補償できる。
【0123】
また、請求項3の発明によれば、上記光源の時間的な特性変化は、上記読み取り手段が複数の原稿を読み取っているときに連続点灯する光源の配光変化であるので、上記光源の配光変化を補償できる。
【0124】
また、請求項4の発明によれば、上記補正制御手段が行う補正制御は、光源の光量の制御を行う調光制御,読み取り手段の出力に対するゲイン調整,シェーディング補正制御の少なくとも1つであるので、調光制御,ゲイン調整,シェーディグ補正の少なくとも1つでもって、光源の特性変化を補償できる。
【0125】
また、請求項5の発明によれば、補正制御手段が調光制御するタイミングは、読み取り手段による原稿の読み取りが終了してから、基準濃度板を光源が照射するための位置に上記スライダが達するまでの間に設定しているので、読み取り中に光量補正が行われないから、画質の劣化を防止でき、かつ、光量補正のみのために特別な時間を必要としないので、生産性を向上できる。
【0126】
また、請求項6の発明によれば、前回の調光制御を実行した際に使用した基準濃度板の読み取りデータと上記予め記憶された光源の時間的特性変化に基づいて、今回の調光制御の制御値が決定されるので、調光制御の制御値が速やかに決定される。
【0127】
また、請求項7の発明によれば、上記補正制御手段は、光源の時間的な特性変化が大きなときに基準濃度板を読み取る頻度を高くして、光源の特性変化を確実に補償するので、画質の劣化を防止でき、かつ、光源の時間的な特性変化が小さなときに基準濃度板を読み取る頻度を低くするので、生産性を高めることができる。
【図面の簡単な説明】
【図1】 本発明の画像読み取り装置の実施の形態を含むデジタル複写機の全体構成図である。
【図2】 上記実施の形態のブロック図である。
【図3】 上記実施の形態が含む蛍光灯の立ち上がり特性の3つの典型例を示す図である。
【図4】 上記蛍光灯の連続点灯特性を示す図である。
【図5】 各周囲温度,光量レベルにおける上記蛍光灯の立ち上がり特性を示す図である。
【図6】 蛍光灯の相対光出力が周囲温度によって変化する様子を示す温度特性図である。
【図7】 上記実施形態の調光インバータが出力する調光値(制御値)と蛍光灯の光量(調光値)との関係を示す図である。
【図8】 図8(A)は上記実施の形態のCCDの構成例としての2レジスタ2出力タイプを示す模式図であり、図8(B)は上記CCDの構成例としての4レジスタ4出力タイプを示す模式図であり、図8(C)は上記CCDの構成例としての2レジスタ4出力タイプを示す模式図である。
【図9】 上記実施の形態のCCDの電気的特性例を示す図表である。
【図10】 上記実施の形態のタイミング微調回路の一例を示すブロック図である。
【図11】 上記タイミング微調回路のタイミングチャートである。
【図12】 上記実施の形態のウォームアップ動作を説明する第1フローチャートである。
【図13】 上記実施の形態の蛍光灯の光量ピーク検出動作を説明する第2フローチャートの前半である。
【図14】 上記第2フローチャートの後半である。
【図15】 上記実施の形態の原稿連続読み取り時の光量補正を説明する第3フローチャートの前半である。
【図16】 上記第3フローチャートの後半である。
【図17】 上記実施の形態での光量補正(ゲイン調整)動作を説明する第4フローチャートである。
【符号の説明】
1…印字処理ユニット、2…プリンタ部、3…露光ランプ、5…結像光学系、
6…イメージセンサ、7…画像処理ユニット、8…メモリ部、
IR…画像処理部、FDH…自動原稿フィード装置、10…原稿台、
11…半導体レーザ、12…光学系、13…感光体ドラム、21…原稿、
22…蛍光灯、23…ヒーター、25…温度センサ、26…温度調整回路、
27…調光インバータ、28…CPU、30…CCD、31…レンズ、
32…CDS部、33…AMP部、35…クランプ部、
37…A/D変換器、38…出力合成部、41…基準濃度板、
45…画像モニタ部、46…メモリ。

Claims (7)

  1. 原稿を照射する光源と、
    搬送されている上記原稿が読み取られる原稿読み取り位置とは異なる位置に配置された基準濃度板と、
    上記原稿の画像と上記基準濃度板を光電的に読み取る読み取り手段と、
    上記光源を保持して、上記光源が原稿読み取り位置と基準濃度板とを照射するように移動制御されるスライダ部と、
    上記光源の時間経過に伴った特性変化が予め格納されている記憶部と、
    上記記憶部に格納されている上記光源の時間経過に伴った特性変化に基づいたタイミングで上記スライダを制御して読み取り手段に基準濃度板を読み取らせて、読み取りデータを出力させて、この読み取りデータに基づいて、上記光源の特性変化を補償するように補正制御を行う補正制御手段とを備えていることを特徴とする画像読み取り装置。
  2. 請求項1に記載の画像読み取り装置において、
    上記光源の時間的な特性変化は、上記読み取り手段が複数の原稿を読み取っているときに連続点灯する光源の光量変化であることを特徴とする画像読み取り装置。
  3. 請求項1に記載の画像読み取り装置において、
    上記光源の時間的な特性変化は、上記読み取り手段が複数の原稿を読み取っているときに連続点灯する光源の配光変化であることを特徴とする画像読み取り装置。
  4. 請求項1に記載の画像読み取り装置において、
    上記補正制御手段が行う補正制御とは、上記光源の光量の制御を行う調光制御,上記読み取り手段の出力に対するゲイン調整,またはシェーディング補正用データを取り込むシェーディング補正制御のすくなくとも1つであることを特徴とする画像読み取り装置。
  5. 請求項4に記載の画像読み取り装置において、
    上記補正制御手段が上記調光制御するタイミングは、上記読み取り手段による上記原稿の読み取りが終了してから、上記基準濃度板を光源が照射するための位置に上記スライダが達するまでの間に設定したことを特徴とする画像読み取り装置。
  6. 請求項4に記載の画像読み取り装置において、
    上記補正制御手段は、前回の調光制御を実行した際に使用した上記基準濃度板の読み取りデータに基づいて、今回の調光制御の制御値を決定することを特徴とする画像読み取り装置。
  7. 請求項1に記載の画像読み取り装置において、
    上記補正制御手段は、上記記憶部に格納されている光源の時間的な特性変化が大きなときに基準濃度板を読み取る頻度が高くなり、上記記憶部に格納されている光源の時間的な特性変化が小さなときに基準濃度板を読み取る頻度が低くなるようにしていることを特徴とする画像読み取り装置。
JP05798497A 1997-03-12 1997-03-12 画像読み取り装置 Expired - Fee Related JP3771662B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05798497A JP3771662B2 (ja) 1997-03-12 1997-03-12 画像読み取り装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05798497A JP3771662B2 (ja) 1997-03-12 1997-03-12 画像読み取り装置

Publications (2)

Publication Number Publication Date
JPH10257314A JPH10257314A (ja) 1998-09-25
JP3771662B2 true JP3771662B2 (ja) 2006-04-26

Family

ID=13071287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05798497A Expired - Fee Related JP3771662B2 (ja) 1997-03-12 1997-03-12 画像読み取り装置

Country Status (1)

Country Link
JP (1) JP3771662B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101608063B1 (ko) 2009-10-14 2016-03-31 삼성전자주식회사 화상을 독취하는 장치의 광원을 제어하는 방법 및 장치
JP2020107939A (ja) 2018-12-26 2020-07-09 セイコーエプソン株式会社 画像読取装置および画像読取方法

Also Published As

Publication number Publication date
JPH10257314A (ja) 1998-09-25

Similar Documents

Publication Publication Date Title
US6330083B1 (en) Image reading device performing light quantity detection and correction with timing corresponding to selected copying mode
US6900448B1 (en) Method and system for dynamic scanner calibration
CN112583993B (zh) 信号校正设备和方法、图像读取设备、图像处理装置
JP3643700B2 (ja) 画像読み取り装置
JP4197563B2 (ja) 画像読取装置
JP3771662B2 (ja) 画像読み取り装置
JP3552536B2 (ja) 画像読み取り装置
US5331433A (en) Image reader
JPH10257249A (ja) 画像読み取り装置
JP5803387B2 (ja) 画像読取装置、画像形成装置、光量調整方法およびプログラム
JPH11177772A (ja) 画像読み取り装置
JPS6010872A (ja) 原稿読取装置
JPH11112745A (ja) 画像読取装置
JP2002112027A (ja) 画像読み取り装置、画像処理装置及び調整値設定方法
JP3778402B2 (ja) 画像読取装置
JP4001218B2 (ja) 画像読み取り装置、画像処理装置、画像信号処理特性の調整方法
JPH10336380A (ja) 画像読み取り装置
US20030193700A1 (en) Image reading apparatus and light source stability determination method
JP2004112048A (ja) 画像読取装置
JP2024072576A (ja) 画像読取装置
JP2002237928A (ja) 画像入力装置、その制御方法、及び記憶媒体、プログラム
JPH07312697A (ja) 画像読取装置
JP2001292281A (ja) 画像入力装置、画像形成装置、画像入力方法及び画像形成方法
JP2000165609A (ja) 画像読取装置
JPH11234517A (ja) 画像読取り装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees