JP3766950B2 - Apdバイアス回路 - Google Patents

Apdバイアス回路 Download PDF

Info

Publication number
JP3766950B2
JP3766950B2 JP04178299A JP4178299A JP3766950B2 JP 3766950 B2 JP3766950 B2 JP 3766950B2 JP 04178299 A JP04178299 A JP 04178299A JP 4178299 A JP4178299 A JP 4178299A JP 3766950 B2 JP3766950 B2 JP 3766950B2
Authority
JP
Japan
Prior art keywords
apd
voltage
resistor
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04178299A
Other languages
English (en)
Other versions
JP2000244419A (ja
Inventor
久弥 坂本
哲也 清永
隆士 黒岡
暁光 宮崎
暢啓 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP04178299A priority Critical patent/JP3766950B2/ja
Priority to US09/506,702 priority patent/US6643472B1/en
Publication of JP2000244419A publication Critical patent/JP2000244419A/ja
Application granted granted Critical
Publication of JP3766950B2 publication Critical patent/JP3766950B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Amplifiers (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光信号を受信するAPD(Avalanche Photodiode ;アバランシェ・フォト・ダイオード)を安定動作させるバイアス制御を行うAPDバイアス回路に関する。
APDは、バイアス電流によって増倍率を制御することができるものであり、従って、光入力レベルに対応してバイアス電圧を制御し、所定レベルの光受信信号を維持することができる。
【0002】
【従来の技術】
図21は光受信器の説明図であり、光受信器100は、APD101と、バイアス回路102と、等化増幅器103と、タイミング抽出部104と、識別器105とを含む構成を有し、光伝送路等からの光信号OPTinをAPD101に入力する。この光信号OPTinのレベルに対応してAPD101の増倍率をバイアス回路102によって制御するものである。
【0003】
このAPD101の出力信号を、等化増幅器103によって等化増幅し、タイミング抽出部104に於いてデータのビットレートに対応したタイミング信号を抽出し、これをクロック信号CLKoutとして出力すると共に、識別器105に於ける識別タイミング信号として入力し、レベル識別によりデータDATAoutを再生して出力する。
【0004】
図22は従来例のAPDバイアス回路の説明図であり、図21のAPD101と、バイアス回路102と、等化増幅器103とに関連する構成を示す。即ち、APD101に、直列の抵抗R1a,R2aを介して電圧VDDを印加し、APD101に入力光レベルに対応して流れる電流IAPD を等化増幅器103に入力する。又抵抗R1a,R2aの接続点に、V0 制御回路111と、V0 モニタ回路112と、内部安定化電源113と、MOPT 調整部114と、温度センサ115と、温度制御回路116とを含むバイアス制御回路を接続し、温度変化及び入力光信号に対応して電流IAPD が変化しても、抵抗R1a,R2aの接続点の電圧V0 を一定化するように、V0 制御回路111により電流ICONTを制御する。
【0005】
電源電圧VDDは例えば85V、バイアス設定電圧V0 は例えば30Vとするもので、抵抗R1aに流れる電流を制御することによってバイアス設定電圧V0 を一定化することができる。即ち、
0 =VDD−I0 ・R1a
0 =ICONT+IAPD
となるから、光入力パワーが変化し、それに従って電流IAPD が変化しても、電流ICONTを制御することによって、電流I0 を一定とすることにより、バイアス設定電圧V0 を一定化することができる。
【0006】
又APD101に印加されるバイアス電圧VAPD 及び電流IAPD は、次の連立方程式の解として得られる。
APD =(e・λ/h・c)・η・M・Pin …(1)
APD =(V0 −Vin)−R2a・IAPD …(2)
M=1/〔1−(VAPD /VB n 〕 …(3)
なお、e=電子の電荷、λ=入力光波長、h=プランク定数、c=光速、η=量子効率、M=増倍率、Pin=平均入力光パワー、VAPD =APDのバイアス電圧、V0 =バイアス設定電圧、IAPD =APDの光電流、VB =APDの降伏電圧、n=APDの物性で決まる値(フィッテング係数)である。
【0007】
従って、入力光パワーPinが増加すると、APD101の電流IAPD が増加し、抵抗R2aによる電圧降下が大きくなり、バイアス電圧VAPD が低下し、増倍率Mが低下する。反対に、入力光パワーPinが減少すると、バイアス電圧VAPD が上昇し、増倍率Mが上昇する。それによって、入力光パワーPinの変動に対応して増倍率Mが制御されて、APD101による受光出力信号レベルを一定に維持することができる。
【0008】
図23はAPDの光入力レベルと増倍率との説明図であり、光受信器としてのダイナミックレンジを大きくする為に、最小受光レベルでは増倍率Mを高く(例えば、10〜20程度)、最大受光レベルでは増倍率Mを低く(例えば、1〜3程度)なるように制御する方法が採用されている。このような入力光パワーPinの変動許容範囲が、光受信器としてのダイナミックレンジとなる。
【0009】
又図22に於いて、光入力パワーの変動に対して安定化を図る為に、図24に示すように、抵抗R2aとAPD101との接続点とアースとの間にコンデンサC2aを接続した構成が提案されている。この場合、バイアス制御回路110の時定数をτ0、バイアス設定電圧V0 の時定数をτ1、抵抗R2aとコンデンサC2aとによる時定数をτ2とすると、バイアス設定電圧V0 の時定数τ1は、バイアス制御回路110の時定数τ0に反比例する。
【0010】
この場合の時定数τ1,τ2は、次の条件▲1▼,▲2▼を満足するように設定することが必要である。即ち、条件▲1▼は、最大受光レベルから光入力断となった時、APD101のバイアス電圧VAPD が降伏電圧VB を超えないようにする。又条件▲2▼は、光入力断から最大受光レベルとなった時、或いは光サージが入力された時に、APD電流IAPD が、APD及び等化増幅器の最大定格電流を超えないようにする。
【0011】
図25は最大受光レベルから光入力断の時の説明図であり、(A)は光入力パワーの変化、(B)はバイアス電圧の変化、(C)はAPD電流の変化を示す。(A)に示すように、光入力パワーが光伝送路の断線や送信側の異常により、最大受光レベルから数μs〜数100μsの短時間に光入力断レベルに低下すると、APD101に流れる電流IAPD は光入力パワーに対応して減少する。それによって、(B)に示すように、バイアス設定電圧V0 はバイアス制御回路110の時定数τ0に対応して上昇する。この時定数τ0は、光入力パワーの変化に追従できない値であることが一般的であるから、点線で示すバイアス電圧VAPD は上昇し、降伏電圧VB を超えることがある。
【0012】
又(C)に示すように、APD電流IAPD は、受光レベルの低下に対応して減少するが、バイアス電圧VAPD が上昇して降伏電圧VB を超えることによるブレークダウン電流が流れる。
【0013】
図26は光入力断から最大受光レベルの時の説明図であり、(A)は光入力パワーの変化、(B)はバイアス電圧の変化、(C)はAPD電流の変化を示す。(A)に示すように、光入力断の状態から数μs〜数100μsの短時間に最大受光レベルに上昇した場合、バイアス設定電圧V0 は実線で示すように所定の値に維持され、それに対応してバイアス電圧VAPD は(B)も前の値に維持されることになる。或いは、点線で示すように、徐々に低下する。
【0014】
従って、(C)に示すように、APD電流IAPD は、光入力パワーが増大したにも拘らず、増倍率Mが大きい状態となるから、絶対最大定格電流を超えて上昇することになる。それによって、APD101の劣化や等化増幅器103の障害等の原因となる。
【0015】
【発明が解決しようとする課題】
前述の従来例に於いて、バイアス制御回路111により電圧V0 を安定化し、光入力レベルに対応してAPD101の増倍率Mを所望の値に制御することができるものであるが、光入力レベルの急変に対しては、図25及び図26に示すように、APD101の降伏電圧VB を超えるバイアス電圧の印加や、最大定格電流を超える電流IAPD が流れて、APD101の劣化が生じる問題があった。
【0016】
そこで、バイアス制御回路111の応答速度を増大して、APD電流IAPD の変化に高速で追従して電圧V0 を一定となるように制御することが考えられる。しかし、バイアス制御回路111は、演算増幅器等により構成していることと、安定な制御動作を行わせる為とにより、応答速度を増大させるにも限度があり、前述のように、最大受光レベルから光入力断、又は光入力断から最大受光レベルへの急変時には、電圧V0 を一定化することは困難であった。
【0017】
又抵抗R2a,コンデンサC2aによる時定数τ2の選定に於いて、最大受光レベルから光入力断となった場合のバイアス電圧VAPD の上昇を抑制する為には、時定数τ2を大きくすることが望ましい。しかし、反対に、光入力断から最大受光レベルに増加した場合のAPD電流IAPD の増加を抑制する為には、時定数τ2を小さくすることが望ましいことになる。
【0018】
従って、最大受光レベルから光入力断又はその反対の光入力断から最大受光レベルとなった場合の何れに対しても安定な制御を行わせることができないものであった。又前述のような問題を回避する為に、バイアス制御回路111の構成素子に高速トランジスタを用いて応答速度を上げることが考えられるが、不経済な構成となり、実用化には問題がある。
本発明は、簡単な構成を付加することにより、光入力パワーの急変に対しても安定動作を行わせることを目的とする。
【0019】
【課題を解決するための手段】
本発明のAPDバイアス回路は、(1)光信号を入力するAPD1と、このAPD1の出力信号を入力する等化増幅器2とを含む光受信器のAPDバイアス回路であって、APD1と直列に第1,第2,第3の抵抗R1,R2,R3を接続してAPDバイアス電圧VDDを印加し、前記第1,第2の抵抗R1,R2の接続点に、の接続点の電圧Vを一定に維持するように電流を分流させる時定数τ1のバイアス制御回路3を接続し、第2,第3の抵抗R2,R3の接続点とアースとの間に第1のコンデンサC2を接続し、且つ第3の抵抗R3とAPD1のカソードとの接続点とアースとの間に第2のコンデンサC3を接続し、第2の抵抗R2と第1のコンデンサC2とによる時定数τ2及び第3の抵抗R3と第2のコンデンサC2とによる時定数τ3を、時定数τ1より小さく設定し、且つ時定数τ2を時定数τ3より大きく設定する。
【0020】
又(2)第2の抵抗R2と第1のコンデンサC2とによる時定数τ2を、光入力断の時定数より大きく設定する。又第3の抵抗R3と第2のコンデンサC3とによる時定数τ3を、光サージの立上り時定数より小さく設定する。即ち、APD1に入力される光信号の急峻な立上り及び立下りに対して、APD1の電流が最大定格電流を超えないようにし、又APD1のバイアス電圧が降伏電圧を超えないように制御することができる。
【0021】
又(3)APDと並列的にトランジスタからなる電流リミット回路を接続し、APD電流増大時に、そのAPD電流をトランジスタによって電流を分流する。又は直列的に電界効果トランジスタを接続し、APD電流増大時に、電界効果トランジスタのインピーダンスを増大して、バイアス電圧を低下する。
【0022】
又(4)APD電流をAPDに直列に接続した抵抗により検出し、APD電流が設定値を超えた時に、APDに流れる電流を分流する電圧制御回路を含む電流リミット回路を接続する。
【0023】
又(5)APDと直列にインダクタンスを接続して、光サージ入力時のAPD電流が最大定格電流を超えないように制御する。又このような光サージ入力に伴うAPD電流の急峻な変化を検出して、APD電流を分流する電圧制御回路を含む電流リミット回路を接続する。又この場合、APD電流の検出値のピークホールドを行って電圧制御回路を制御する。
【0024】
【発明の実施の形態】
図1は本発明の第1の実施の形態の要部説明図であり、1はAPD、2は等化増幅器、3はバイアス制御回路、R1,R2,R3は第1〜第3の抵抗、C2,C3は第1,第2のコンデンサである。APD1に対して第1〜第3の抵抗R1〜R3を直列に接続して電圧VDDを印加し、光入力パワーPinに対応して流れる電流を等化増幅器2に入力する。
【0025】
又第1の抵抗R1と第2の抵抗R2との接続点に、時定数τ1を有するバイアス制御回路3を接続する。このバイアス制御回路3は、例えば、図22に示す従来例の構成を適用することができる。即ち、第1の抵抗R1と第2の抵抗R2との接続点のバイアス設定電圧V0 を一定化する為に、第1の抵抗R1に流れる電流を一定化するように、電流を分流制御する構成を有するものである。又等化増幅器2の出力信号は、例えば、図21に示すタイミング抽出部104と識別器105とに入力する構成とすることができる。
【0026】
又第2の抵抗R2と第3の抵抗R3との接続点とアースとの間に第1のコンデンサC2を接続し、第3の抵抗R3とAPD1との接続点とアースとの間に第2のコンデンサC3を接続し、第2の抵抗R2と第1のコンデンサC2とによる時定数τ2と、第3の抵抗R3と第2のコンデンサC3とによる時定数τ3とを、τ2>τ3の関係となるように選定する。
【0027】
この場合、例えば、時定数τ3を数μs以上に設定し、時定数τ2を数100μs以下に設定する。又バイアス制御回路3の時定数τ1を従来例と同様に設定する。光伝送路等を介して入力される光入力パワーPinは、APD1に入力されて、電流に変換される。又バイアス制御回路3は、第1の抵抗R1を介して流れる電流を一定化するように分流制御して、バイアス設定電圧V0 を時定数τ1に従った応答速度で一定化することになる。
【0028】
即ち、定常時は、バイアス設定電圧V0 が一定に維持されており、光入力パワーPinが小さい時、APD1に流れる電流も小さいから、抵抗R2,R3による電圧降下が小さく、バイアス電圧VAPD は高くなり、増倍率Mは大きくなる。従って、出力信号は所定のレベルとなる。反対に、光入力パワーPinが大きい時は、APD1に流れる電流も大きくなるから、抵抗R2,R3による電圧降下が大きくなり、バイアス電圧VAPD は低くなって、増倍率Mは小さくなる。従って、出力信号は所定のレベルとなる。
【0029】
この場合の抵抗R2,R3の直列合成値は、従来例の抵抗R2aと同一とすることになる。なお、厳密には、コンデンサC2,C3を含む時定数回路を構成しているから、それらの容量に従って微調整することが必要となる。又APD電流を最大定格電流より低く制限する為に、そのリミット電流をILIM とすると、
R2+R3=(V0 −Vin)/ILIM …(4)
C2=τ2/R2 …(5)
C3=τ3/R3 …(6)
の関係となるように、第2,第3の抵抗R2,R3と第1,第2のコンデンサC2,C3とを選定する。又時定数τ2,τ3は、前述の関係とする。
【0030】
図2は本発明の第1の実施の形態の光入力パワー変化時の説明図であり、光入力パワーが、最大受光レベルから光入力断の状態に低下した場合を示し、(A)に示すように、最大受光レベルから数μs〜数100μsのような短時間で光入力断の状態に変化すると、(B)に示すように、電圧V1 (抵抗R2,R3の接続点の電圧)は、時定数τ2に従って変化し、バイアス電圧VAPD は、電流の減少に従って上昇する方向に向かう。
【0031】
その時、バイアス制御回路3より制御されるバイアス設定電圧V0 は、光入力パワーの急峻な変化に追従できないものである。そして、抵抗R2,R3の接続点の電圧V1 は、時定数τ2に従って徐々に上昇するから、それに追従した状態でバイアス電圧VAPD が上昇する。従って、バイアス電圧VAPD が降伏電圧VB を超えるように上昇することはない。又APD電流IAPD は、(C)に示すように、最大受光レベルから光入力断に対応した光入力パワーに従って減少することになる。
【0032】
図3は本発明の第1の実施の形態の光入力パワー変化時の説明図であり、図2と反対に、光入力パワーが断状態から最大受光レベルに上昇した場合を示す。光入力パワーが(A)に示すように、数μs〜数100μsのような短時間で光入力断レベルから最大受光レベルまで上昇した時、バイアス制御回路3は、この光入力パワーの急峻な立下りに対応して、電圧V0 を一定化できないものであり、従って、(B)に示すように、電圧V0 はほぼ一定に維持されている。又抵抗R2,R3の接続点の電圧V1 は、APD1に流れる電流が急上昇しても、時定数τ2に従って減少する。
【0033】
従って、抵抗R2,R3による電圧降下によってバイアス電圧VAPD は、0V近くに低下する。それにより、(C)に示すように、APD電流IAPD は、リミット電流ILIM を超えないように制御することができる。即ち、異なる時定数τ2,τ3の時定数回路をAPD1に対して直列に設け、APD1側の時定数回路の時定数τ3を、バイアス設定電圧V0 側の時定数回路の時定数τ2より小さく選定したことにより、光入力パワーの急変時に於いても、バイアス電圧VAPD が降伏電圧VB を超えることがなく、又APD電流IAPD が最大定格電流を超えることがなくなる。
【0034】
図4は本発明の第2の実施の形態の要部説明図であり、図1と同一符号は同一部分を示し、Q1はpnpトランジスタ、R4は抵抗である。この場合、抵抗R1,R2,R3,R4をAPD1に対して直列に接続して電圧VDDを印加する構成とする。又抵抗R2,R3,R4の直列合成抵抗値は、従来例の抵抗R2aの抵抗値と同一又は近似した値とする。又抵抗R1,R2の接続点にバイアス制御回路3を接続し、抵抗R2,R3の接続点とアースとの間にコンデンサC2を接続する。このトランジスタQ1はAPD1に対する電流リミット回路を構成するものである。
【0035】
そして、抵抗R4の両端を、トランジスタQ1のエミッタとベースとに接続し、このトランジスタQ1のコレクタを接地し、トランジスタQ1のベースとアースとの間にコンデンサC3を接続する。従って、抵抗R2とコンデンサC2とによる時定数回路(τ2)と、抵抗R3,R4とコンデンサC3とによる時定数回路(τ3)とがAPD1に直列に接続されることになる。この実施の形態は、第1の実施の形態に対して、トランジスタQ1を含む電流リミット回路を設けた場合に相当し、時定数τ3を第1の実施の形態と同一とする場合、抵抗R3,R4の直列合成抵抗値を、図1に示す第1の実施の形態に於ける第3の抵抗R3と同一の値とすることになる。
【0036】
図5はトランジスタの特性説明図であり、トランジスタQ1のエミッタ電流は、トランジスタQ1のベース・エミッタ間電圧に従ったものとなる。即ち、抵抗R4の両端の電圧ΔVに従ったものとなり、ΔV<VONの場合、トランジスタQ1はオフであるが、この電圧ΔVが電圧VONを超えると、トランジスタQ1はオンとなって、APD1に流れる電流をバイパスすることになる。
【0037】
例えば、APD1に対する光入力レベルが低く、APD1の電流が少ない時は、抵抗R4の両端の電圧ΔVが小さいから、トランジスタQ1はオフ状態となっている。そして、光入力レベルが増大すると、APD1の電流が増大し、それに伴って電圧ΔVが大きくなり、トランジスタQ1の閾値電圧を超えると、トランジスタQ1はオンとなり、APD1に流れる電流をトランジスタQ1によってバイパスする状態となる。それによって、電圧制御点として示す点の電圧をほぼ0Vとし、結果的にはバイアス電圧VAPD を0Vに近づけてAPD電流をリミットすることができる。
【0038】
図6は本発明の第3の実施の形態の要部説明図であり、図1と同一符号は同一部分を示す。この実施の形態は、抵抗R2,R3の間にデプレッション型FET(電界効果トランジスタ)Q2のドレインとソースとを接続した電流リミット回路を設けた場合に相当する。
【0039】
この構成に於いて、トランジスタQ2は、抵抗R3の両端の電圧ΔVがソース・ゲート間電圧となり、例えば、図7に示す特性に従って、リミット電流値に、APD電流が制限される。即ち、APD1に対する光入力レベルが大きくなると、大きなAPD電流が流れて、抵抗R3の両端の電圧ΔVが増大し、トランジスタQ2の等価インピーダンスが大きくなる。それによって、APD電流が制限されることになる。この場合、トランジスタQ2の耐圧が所望の値でない場合、複数のトランジスタQ2を直列に接続することにより、各トランジスタQ2によって電圧を分担することもできる。なお、抵抗R3とトランジスタQ3の等価インピーダンスとにより、時定数τ3は変化する。
【0040】
図8はAPD電流モニタ点の説明図であり、APD1に直列に接続した抵抗R1,R2,R3,R4の抵抗R4の両端の電圧ΔVMON を検出する。即ち、APD1に流れる電流IAPD は、IAPD =ΔVMON /R4となるから、電圧ΔVMON が所定値以上とならないように制御することによって、APD電流IAPD を制限することができる。
【0041】
図9は本発明の第4の実施の形態の説明図であり、1はAPD、2は等化増幅器、3はバイアス制御回路、R1〜R4は抵抗、C2,C3はコンデンサ、21は差電圧検出回路、22は基準電圧発生回路、23は比較回路、24は電圧制御回路を示し、差電圧検出回路21と基準電圧発生回路22と比較回路23と電圧制御回路24とにより電流リミット回路を構成している。
【0042】
又抵抗R4は、前述のように、APD電流モニタ用の抵抗であり、この抵抗R4の両端の電圧を差電圧検出回路21に入力する。差電圧検出回路21は、抵抗R4の抵抗R3側の電圧と、APD1側の電圧との差分を求めるもので、結果的には、抵抗R4の両端の電圧を検出することになる。そして、基準電圧発生回路22からの基準電圧と比較回路23に於いて比較し、検出電圧が基準電圧を超えている場合、電圧制御回路24に流れる込む電流を大きくして、抵抗R2,R3によりドロップする電圧を大きくし、バイアス電圧VAPD を低下させ、それによって、APD1の電流を制限するものである。
【0043】
図10はAPD電流と検出電圧との説明図であり、検出電圧の特性曲線を示し、APD電流IAPD と抵抗R4との積が検出電圧となる。従って、その傾斜は、抵抗R4の値によって定まることになる。又この検出電圧と基準電圧設定レベルとの関係を図11に示す。即ち、APD電流IAPD として示す値にリミットをかける場合、検出電圧の特性曲線との交点を基準電圧設定レベルとし、この検出電圧が基準電圧設定レベルを超えると、電圧制御回路24(図9参照)に流れ込む電流を増大して、バイアス電圧VAPD を低下させ、結果的にAPD電流を制限することができる。
【0044】
図12は電圧制御回路の説明図であり、Q3はトランジスタ、R11は抵抗であり、図9に於ける電圧制御回路24と、抵抗R3,R4及び比較回路23とに関連した構成を示している。そして、比較回路23からの制御信号によりトランジスタQ3が制御されるもので、このトランジスタQ3のコレクタは、抵抗R3,R4の接続点に接続され、エミッタは、抵抗R11を介して電圧VEEに接続される。
【0045】
前述のように、検出電圧が基準電圧を超えると、比較回路23からの制御信号によってトランジスタQ3がオンとなり、抵抗R3,R4を介して流れるAPD電流は、トランジスタQ3と抵抗R11とを介してバイパスされる電流ICONTとなる。従って、電圧制御点(抵抗R3,R4の接続点)の電圧を低下させて、APD電流を制限することができる。
【0046】
図13は電圧制御回路の特性説明図であり、VBEはトランジスタQ3のベース・エミッタ間の電圧を示し、これをトランジスタQ3のオン電圧とすると、VEE+VBE以下の制御信号の場合、トランジスタQ3はオフ状態を維持する。従って、電流ICONTは0Aである。又比較回路23からの制御信号が、電圧VEE+VBEを超えると、それに対応してトランジスタQ3を介して電流ICONTが流れて、前述のAPD電流IAPD を制限することができる。
【0047】
図14は本発明の第5の実施の形態の説明図であり、図9に示す実施の形態の具体的な構成を示し、図9と同一符号は同一部分を示す。又C1はコンデンサ、R100〜R110は抵抗、IC1〜IC4は例えば集積回路化した演算増幅器を示す。
【0048】
差電圧検出回路21は、抵抗R100〜R107と演算増幅器IC1〜IC3とにより構成し、基準電圧発生回路22は、電圧VREG を抵抗R108,R109により分圧して基準電圧Vref を出力する構成を有する。又比較回路23は、演算増幅器IC4により構成されている。又電圧制御回路24は、トランジスタQ3と抵抗R110とにより構成されている。この抵抗R110は、図12に於ける抵抗R11に相当するものである。
【0049】
APD1は、抵抗R1,R2,R3,R4を介して電圧VDDが印加され、光入力パワーに対応したAPD電流IAPD が流れる。又抵抗R2とコンデンサC2とにより前述の時定数τ2の時定数回路が構成され、抵抗R3,R4とコンデンサC3とにより前述の時定数τ3の時定数回路が構成されている。そして、APD電流IAPD を抵抗R4によって検出し、この抵抗R4の両端の電圧を、それぞれ抵抗R100,R101と抵抗R102,R103により分圧し、電圧V101,V102として、ボルテージ・フォロワの演算増幅器IC1,IC2に入力する。この場合、抵抗R100〜R103に流れる電流によって誤差が含まれるので、これらの抵抗R100〜R103は、電流検出用の抵抗R4に比較して充分に大きい値とする。
【0050】
そして、演算増幅器IC1,IC2の出力信号を演算増幅器IC3に入力し、差分を求めて、APD電流IAPD を検出した電圧VCONTとして比較回路23に入力する。この場合、抵抗R104〜R107を同一抵抗値とすると、電圧VCONTは、電圧VREG により正規化される。即ち、
CONT=(V101−V102)+VREG
の関係となる。
【0051】
比較回路23は、基準電圧発生回路22からの基準電圧Vref と、差電圧回路21からの差電圧VCONTとを演算増幅器IC4により比較し、基準電圧Vref を差電圧VCONTが超えて増加するようなAPD電流IAPD の増加時に、電圧制御回路24のトランジスタQ3をオンとする。それによって、抵抗R3を介してAPD1側に流れる電流IAPD の一部が、トランジスタQ3側に流れるから、APD電流IAPD を設定した値を超えないように制限することができる。
【0052】
図15は光サージの説明図であり、光増幅器の特性等によって光サージが発生する場合がある。例えば、希土類ドープの光ファイバ増幅器に於いて、出力光レベルを一定化制御する制御回路を含む場合、励起光が残存している状態で光信号が入力された時、フィードバック制御を行っていても、光信号は余分に増幅されることによって、光サージが出力される場合がある。このような光サージが光受信器に入力されると、APD電流が急変し、バイアス電圧の制御が追従しない場合に、従来例のように、バイアス電圧が降伏電圧を超えたり、又はAPD電流が最大定格電流を超えることがある。
【0053】
図16は本発明の第6の実施の形態の要部説明図であり、図1と同一符号は同一部分を示し、L1はインダクタンス、R5は抵抗である。このインダクタンスL1のインピーダンスをZL 、光サージの立上りの時定数をτ、リミット電流をILIM とすると、
L =(V0 −Vin)/ILIM
L =2π・L1/τ
となるから、
L1=τ・(V0 −Vin)/(2π・ILIM
として求めることができる。又抵抗R5は、コンデンサC3とインダクタンスL1とによる共振を防止する為のものであり、数Ω程度とすることができる。
【0054】
APD1に光サージが入力されると、APD電流IAPD が光サージに対応して流れることになるが、そのAPD電流IAPD の急峻な立上りが、インダクタンスL1によって抑制されるから、過大な電流によるAPD1の特性劣化を回避することができる。
【0055】
図17は本発明の第7の実施の形態の説明図であり、図1と同一符号は同一部分を示し、C100は結合コンデンサ、31は増幅器、32は電圧制御回路である。この実施の形態は、光サージがAPD1に入力された時のAPD電流IAPD の急激な変化をコンデンサC100を介して増幅器31に入力し、光サージによるAPD電流IAPD の増加を検出した時に、電圧制御回路32により電流を分流して、APDバイアス電圧を低減し、APD電流IAPD が最大定格電流を超えないように制御する電流リミット回路を設けた場合を示す。なお、この場合の電圧制御回路32は、光サージによるAPD電流IAPD 増加時にのみ、APD1に流れる電流を分流して、バイアス電圧を低減するように動作し、光入力断の変化時には動作しない構成とするものである。
【0056】
図18は本発明の第8の実施の形態の説明図であり、図17と同一符号は同一部分を示し、33はピークホールド回路である。このピークホールド回路33は、光サージがAPD1に入力された時、コンデンサC100を介して変化成分を増幅器31により増幅し、その時のピーク値をホールドして、電圧制御回路32を制御するものである。それにより、光サージ入力時に、APDバイアス電圧を所定時間継続して低減することができるから、各種の時定数の光サージに対しても、APD1を保護することができる。
【0057】
図19はピークホールド回路を含む動作説明図であり、(A)は光サージ入力、(B)は増幅器入力、(C)は増幅器31を反転増幅器とした時の電圧制御回路入力、(D)はAPDバイアス電圧を示す。即ち、(A)に示すような光サージがAPDに入力されると、それに対応してAPD電流が流れる。その変化分がコンデンサC100を介して、(B)に示すように増幅器31に入力される。そして、ピークホールド回路33によってホールドされる。
【0058】
ピークホールド回路33を設けない場合は、(C)の点線で示すように、電圧制御回路32への入力信号は、光サージ波形に類似したものとなるが、ピークホールド回路33を設けた場合、実線で示すように、所定期間にわたってピークホールド動作を行う。従って、電圧制御回路32により、APDバイアス電圧は、(D)の実線で示すように、所定期間にわたって低減し、APD電流を抑制することができる。従って、各種の時定数の光サージが入力された場合でも、APD電流が最大定格電流を超えないように制限することができる。又ピークホールド回路33を設けない場合は、(D)の点線で示すように、APDバイアス電圧は、光サージ入力の短期間のみ低減し、APD電流を抑制することになる。
【0059】
図20は本発明の第8の実施の形態の回路図であり、図18の各部の回路を示し、図18と同一符号は同一部分を示す。又C100,C101,C200はコンデンサ、R100〜R104,R200〜R202,R300は抵抗、D1,D100はダイオード、Q11〜Q13はトランジスタを示す。又電圧VDD,VEE及びVREG は、例えば、図14に於ける電圧VDD,VEE及びVREG に対応するものである。なお、電圧VREG は、APD1に順方向バイアスが印加されないように、等化増幅器2に入力される電圧Vinと等しい値に設定する。
【0060】
増幅器31は、結合コンデンサC100とトランジスタQ11,Q12とを含む反転増幅器を構成しており、トランジスタQ11のベースに接続されたダイオードD100は保護用のダイオードである。又ピークホールド回路33は、ダイオードD1と抵抗R202とコンデンサC200とを含み、ピークホールドの時定数は抵抗R202とコンデンサC200とにより設定されて、コンデンサC200によりピークホールドするものである。又電圧制御回路32は、ピークホールド回路33の出力信号をベースに加えるトランジスタQ13を有し、このトランジスタQ13によってAPD1に流れる電流をバイパスし、APDのバイアス電圧VAPD を低減して、光サージ入力時のAPD電流を制限する。
【0061】
本発明は、前述の各実施の形態にのみ限定されるものではなく、種々付加変更することが可能であり、又各実施の形態の組合せによるAPDバイアス回路を構成することもできる。又APDに直列に接続する時定数回路は、時定数τ2,τ3の場合を示すが、更に多数の時定数回路に分割した構成とすることも可能である。又APDに並列に保護用のツェナーダイオードを設けることも可能である。その場合、高速の光信号に悪影響を与えない構成とすることが必要となる。又APDに順方向電圧が印加された場合の保護用としてダイオードを並列的に接続することもできる。
【0062】
【発明の効果】
以上説明したように、本発明は、APD1に直列に第1〜第3の抵抗R1〜R3を接続し、第1,第2の抵抗R1,R2の接続点にバイアス制御回路3を接続し、APD1に等化増幅器2を接続し、抵抗R2とコンデンサC2とによる時定数τ2と、抵抗R3とコンデンサC3とによる時定数τ3とについて、τ2>τ3の関係に選定したことにより、APD1に対する光入力パワーPinの急峻な立上り又は立下りに於いて、APD1のバイアス電圧VAPD が降伏電圧を超えることなく、又APD電流IAPD が最大定格電流を超えることなく制御可能となり、APD1を安定に動作させることが可能となる利点がある。
【0063】
又APD電流を検出して動作するトランジスタや電圧制御回路等を含む電流リミット回路を設けたことにより、APD電流の急峻な増大時に於いても、最大定格電流を超えないように制御することができる。従って、光サージが入力された場合でも、APD1を安定に動作させることができる利点がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の要部説明図である。
【図2】本発明の第1の実施の形態の光入力パワー変化時の説明図である。
【図3】本発明の第1の実施の形態の光入力パワー変化時の説明図である。
【図4】本発明の第2の実施の形態の要部説明図である。
【図5】トランジスタの特性説明図である。
【図6】本発明の第3の実施の形態の要部説明図である。
【図7】リミット電流の説明図である。
【図8】APD電流モニタ点の説明図である。
【図9】本発明の第4の実施の形態の説明図である。
【図10】APD電流と検出電圧との説明図である。
【図11】基準電圧設定説明図である。
【図12】電圧制御回路の説明図である。
【図13】電圧制御回路の特性説明図である。
【図14】本発明の第5の実施の形態の説明図である。
【図15】光サージの説明図である。
【図16】本発明の第6の実施の形態の要部説明図である。
【図17】本発明の第7の実施の形態の説明図である。
【図18】本発明の第8の実施の形態の説明図である。
【図19】ピークホールド回路を含む動作説明図である。
【図20】本発明の第8の実施の形態の回路図である。
【図21】光受信器の説明図である。
【図22】従来例のAPDバイアス回路の説明図である。
【図23】APDの光入力レベルと増倍率との説明図である。
【図24】従来例の時定数関係の説明図である。
【図25】最大受光レベルから光入力断の時の説明図である。
【図26】光入力断から最大受光レベルの時の説明図である。
【符号の説明】
1 APD
2 等化増幅器
3 バイアス制御回路
R1〜R3 第1〜第3の抵抗
C2,C3 第2,第3のコンデンサ

Claims (8)

  1. 光信号を入力するAPDと、該APDの出力信号を入力する等化増幅器とを含む光受信器のAPDバイアス回路に於いて、
    前記APDと直列に第1,第2,第3の抵抗を接続してAPDバイアス電圧を印加し、前記第1,第2の抵抗の接続点に、該接続点の電圧を一定に維持するように電流を分流させる時定数τ1のバイアス制御回路を接続し、
    前記第2,第3の抵抗の接続点とアースとの間に第1のコンデンサを接続し、且つ前記第3の抵抗と前記APDのカソードとの接続点とアースとの間に第2のコンデンサを接続し、
    前記第2の抵抗と前記第1のコンデンサとによる時定数τ2及び前記第3の抵抗と前記第2のコンデンサとによる時定数τ3を、前記時定数τ1より小さく設定し、且つ前記時定数τ2を前記時定数τ3より大きく設定した
    ことを特徴とするAPDバイアス回路。
  2. 前記第2の抵抗と前記第1のコンデンサとによる時定数を、光入力断の時定数より大きく設定したことを特徴とする請求項1記載のAPDバイアス回路。
  3. 前記第3の抵抗と前記第2のコンデンサとによる時定数を、光サージの立上り時定数より小さく設定したことを特徴とする請求項1又は2記載のAPDバイアス回路。
  4. 前記APDのカソードと直列に前記第1,第2,第3の抵抗と、第4の抵抗とを接続し、前記第2,第3の抵抗の接続点とアースとの間に前記第1のコンデンサを接続し、前記第4の抵抗と前記APDのカソードとの接続点とアースとの間に第2のコンデンサを接続し、前記第4の抵抗と前記APDカソードとの接続点をベースに、前記第3,第4の抵抗の接続点をエミッタにそれぞれ接続し、コレクタをアースに接続したトランジスタを前記APDの電流リミット回路とした構成を有することを特徴とする請求項1乃至3の何れか1項記載のAPDバイアス回路。
  5. 前記APDのカソードと直列に前記第1,第2,第3の抵抗を接続し、前記第2の抵抗と前記第3の抵抗との間にドレインとソースとを直列接続し、且つ前記第3の抵抗をゲート・ソース間に接続したディプレッション型電界効果トランジスタを前記APDの電流リミット回路とした構成を有することを特徴とする請求項1乃至3の何れか1項記載のAPDバイアス回路。
  6. 前記APDのカソードと直列に前記第1,第2,第3の抵抗と、第4の抵抗を接続し、前記第4の抵抗の両端の電圧を検出する差電圧検出回路と、該差電圧検出回路の検出電圧と基準電圧とを比較する比較回路と、前記第3の抵抗と前記第4の抵抗との間に接続し、前記検出電圧が基準電圧を超えた時の前記比較回路の出力信号により、前記APDに流れる電流を分流する電圧制御回路を含む電流リミット回路を設けたことを特徴とする請求項1乃至3の何れか1項記載のAPDバイアス回路。
  7. 前記APDに印加されるバイアス電圧の急峻な変化分を検出して増幅する増幅器と、該増幅器の出力信号によって前記バイアス電圧の急峻な立上り時に前記APDに流れる電流を分流する電圧制御回路とを含む電流リミット回路を前記APDのカソードに接続したことを特徴とする請求項1乃至3の何れか1項記載のAPDバイアス回路。
  8. 前記増幅器と前記電圧制御回路との間にピークホールド回路を接続したことを特徴とする請求項7記載のAPDバイアス回路。
JP04178299A 1999-02-19 1999-02-19 Apdバイアス回路 Expired - Fee Related JP3766950B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04178299A JP3766950B2 (ja) 1999-02-19 1999-02-19 Apdバイアス回路
US09/506,702 US6643472B1 (en) 1999-02-19 2000-02-18 APD bias circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04178299A JP3766950B2 (ja) 1999-02-19 1999-02-19 Apdバイアス回路

Publications (2)

Publication Number Publication Date
JP2000244419A JP2000244419A (ja) 2000-09-08
JP3766950B2 true JP3766950B2 (ja) 2006-04-19

Family

ID=12617945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04178299A Expired - Fee Related JP3766950B2 (ja) 1999-02-19 1999-02-19 Apdバイアス回路

Country Status (2)

Country Link
US (1) US6643472B1 (ja)
JP (1) JP3766950B2 (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525305B2 (en) * 2000-09-11 2003-02-25 Perkinelmer Canada, Inc. Large current watchdog circuit for a photodetector
US6975642B2 (en) 2001-09-17 2005-12-13 Finisar Corporation Optoelectronic device capable of participating in in-band traffic
US7155133B2 (en) * 2002-02-12 2006-12-26 Finisar Corporation Avalanche photodiode controller circuit for fiber optics transceiver
US6862302B2 (en) * 2002-02-12 2005-03-01 Finisar Corporation Maintaining desirable performance of optical emitters over temperature variations
CN1192521C (zh) * 2002-03-08 2005-03-09 华为技术有限公司 数字调节光接收模块及其调节方法
US7561855B2 (en) 2002-06-25 2009-07-14 Finisar Corporation Transceiver module and integrated circuit with clock and data recovery clock diplexing
US7486894B2 (en) 2002-06-25 2009-02-03 Finisar Corporation Transceiver module and integrated circuit with dual eye openers
US7437079B1 (en) 2002-06-25 2008-10-14 Finisar Corporation Automatic selection of data rate for optoelectronic devices
US7664401B2 (en) 2002-06-25 2010-02-16 Finisar Corporation Apparatus, system and methods for modifying operating characteristics of optoelectronic devices
US7809275B2 (en) 2002-06-25 2010-10-05 Finisar Corporation XFP transceiver with 8.5G CDR bypass
JP3920289B2 (ja) * 2002-07-23 2007-05-30 富士通株式会社 光受信装置
US7477847B2 (en) 2002-09-13 2009-01-13 Finisar Corporation Optical and electrical channel feedback in optical transceiver module
US6970794B2 (en) * 2002-09-19 2005-11-29 Marvell International Ltd. Semiconductor having reduced configuration pins and method thereof
US7512504B2 (en) * 2002-09-19 2009-03-31 Marvell World Trade Ltd. Testing system using configurable integrated circuit
US6852966B1 (en) * 2002-09-27 2005-02-08 Finisar Corporation Method and apparatus for compensating a photo-detector
US7230961B2 (en) 2002-11-08 2007-06-12 Finisar Corporation Temperature and jitter compensation controller circuit and method for fiber optics device
US7317743B2 (en) * 2002-11-08 2008-01-08 Finisar Corporation Temperature and jitter compensation controller circuit and method for fiber optics device
GB0307721D0 (en) * 2003-04-03 2003-05-07 Texas Instruments Ltd Improvements in or relating to photodetection
US7426586B2 (en) * 2003-12-15 2008-09-16 Finisar Corporation Configurable input/output terminals
US7630631B2 (en) * 2004-04-14 2009-12-08 Finisar Corporation Out-of-band data communication between network transceivers
US8639122B2 (en) * 2004-07-02 2014-01-28 Finisar Corporation Filtering digital diagnostics information in an optical transceiver prior to reporting to host
US7447438B2 (en) * 2004-07-02 2008-11-04 Finisar Corporation Calibration of digital diagnostics information in an optical transceiver prior to reporting to host
JP2006041628A (ja) * 2004-07-22 2006-02-09 Sumitomo Electric Ind Ltd 光受信回路
JP4501612B2 (ja) * 2004-09-15 2010-07-14 住友電気工業株式会社 バイアス制御回路
US7532820B2 (en) 2004-10-29 2009-05-12 Finisar Corporation Systems and methods for providing diagnostic information using EDC transceivers
JP2007019119A (ja) * 2005-07-06 2007-01-25 Opnext Japan Inc 光送受信モジュール
JP4773905B2 (ja) * 2006-07-19 2011-09-14 日本オプネクスト株式会社 Apdバイアス回路
JP4679498B2 (ja) * 2006-12-11 2011-04-27 富士通株式会社 アバランシェフォトダイオードのバイアス制御回路
WO2008099507A1 (ja) * 2007-02-16 2008-08-21 Fujitsu Limited 光受信装置
JP2008300726A (ja) * 2007-06-01 2008-12-11 Ntt Electornics Corp 光受信装置
JP2009260300A (ja) * 2008-03-24 2009-11-05 Fujitsu Ltd Apdを用いた光受信装置およびapdバイアス制御方法
EP2313929A1 (en) * 2008-08-20 2011-04-27 Telefonaktiebolaget L M Ericsson (PUBL) Avalanche photodiode circuits
KR101148335B1 (ko) * 2009-07-23 2012-05-21 삼성전기주식회사 실리콘 반도체를 이용한 광전자 증배관 및 그 구조 셀
EP2288053A1 (de) * 2009-08-19 2011-02-23 Mechaless Systems GmbH Optischer Empfänger zum Empfangen von Licht
DE102010012433B4 (de) 2010-03-23 2013-01-24 Northrop Grumman Litef Gmbh Verstärkerschaltung und Verfahren zur Konditionierung eines Ausgangsstromsignals eines Detektorelements
JP5421313B2 (ja) * 2011-03-09 2014-02-19 日本電信電話株式会社 光電変換増幅装置
US8878433B1 (en) 2012-09-14 2014-11-04 The United States Of America As Represented By The Secretary Of The Air Force High efficiency, low voltage, low L-band, mega-watt class magnetron
US9203356B2 (en) * 2012-10-21 2015-12-01 Apple Inc. Overload protection for amplifier of photodiode signal
CN104995835B (zh) * 2013-02-19 2017-12-05 三菱电机株式会社 突发光接收器、突发光接收器的雪崩光电二极管的偏置电压控制方法
JP6191348B2 (ja) 2013-09-10 2017-09-06 富士通株式会社 光受信モジュール
JP6528587B2 (ja) * 2015-08-05 2019-06-12 三菱電機株式会社 光モジュール
CN106533552B (zh) * 2016-10-27 2019-03-19 武汉光迅科技股份有限公司 一种光放大器突发模式下的光功率和增益探测装置和方法
CN112219330A (zh) * 2018-12-07 2021-01-12 深圳市大疆创新科技有限公司 一种激光接收电路及测距装置、移动平台
US11029205B2 (en) * 2019-07-16 2021-06-08 Intel Corporation Integrated circuit comprising multiple channels with integrated bypass capacitors and photodiodes
JP7383980B2 (ja) * 2019-10-24 2023-11-21 住友電気工業株式会社 光受信器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3905547A1 (de) * 1989-02-23 1990-09-06 Standard Elektrik Lorenz Ag Eingangsstufe fuer einen optischen breitbandempfaenger
US5347388A (en) * 1989-12-01 1994-09-13 Scientific-Atlanta, Inc. Push-pull optical receiver having gain control
JP2600480B2 (ja) * 1990-11-15 1997-04-16 日本電気株式会社 受光回路
JP3058922B2 (ja) * 1990-12-26 2000-07-04 株式会社東芝 広ダイナミックレンジ光受信器
US5194979A (en) * 1991-06-07 1993-03-16 Gte Laboratories Incorporated Wideband optical amplifier-receiver system
US5532474A (en) * 1993-12-17 1996-07-02 Eg&G Limited Active quench circuit and reset circuit for avalanche photodiode
JPH07245540A (ja) * 1994-01-12 1995-09-19 Fujitsu Ltd 光ディジタル通信用の光受信装置
JPH10200342A (ja) * 1997-01-07 1998-07-31 Nec Corp バイアス電圧供給回路
US6052190A (en) * 1997-09-09 2000-04-18 Utoptics, Inc. Highly accurate three-dimensional surface digitizing system and methods
US5953109A (en) * 1997-12-08 1999-09-14 Asia Optical Co., Inc. Method and apparatus for improving the accuracy of laser range finding

Also Published As

Publication number Publication date
US6643472B1 (en) 2003-11-04
JP2000244419A (ja) 2000-09-08

Similar Documents

Publication Publication Date Title
JP3766950B2 (ja) Apdバイアス回路
JP2503837B2 (ja) ディジタル光受信回路とディジタル光受信回路におけるプリアンプ回路
US6788152B2 (en) Amplification circuit and optical communication apparatus provided with the amplification circuit
US7573299B2 (en) Semiconductor integrated circuit including output circuit
JP4896547B2 (ja) 電力信号の調節を実行する信号増幅回路を備えるトランスインピーダンスアンプ
US5844445A (en) Feedback type pre-amplifier
US8841972B2 (en) Electronic device, fiber-optic communication system comprising the electronic device and method of operating the electronic device
EP0191784B1 (en) Optical receiver circuit
US4724315A (en) Optical receiver
KR102307585B1 (ko) 선형 버스트 모드 트랜스임피던스 증폭기에서의 폐루프 자동 이득 제어
US10355655B2 (en) Transimpedance amplifier (TIA) circuit having reduced power consumption, improved linearization and reduced peaking
JPH06310937A (ja) ディジタル受信器の自動オフセット制御回路
JP4503624B2 (ja) 電子回路
US6879217B2 (en) Triode region MOSFET current source to bias a transimpedance amplifier
JP5161252B2 (ja) 増幅回路
US5065456A (en) Method and apparatus for enhancing the enable response of a laser diode used in an optical communication system
US10027286B2 (en) Systems and methods to control transimpedance amplifier
JPWO2005055416A1 (ja) 光受信用前置増幅器
US6798282B1 (en) Method and system for transimpedance amplifiers with high current input while maintaining high transimpedance gain and bandwidth
SE467131B (sv) Ingaangssteg foer optomottagare
US8195107B2 (en) Signal transmission system and signal transmission method thereof
US7808759B2 (en) Methods and apparatuses for performing common mode pulse compensation in an opto-isolator
US20040240892A1 (en) Method and apparatus for detecting interruption of an input signal
JPS6318891B2 (ja)
JPH05110346A (ja) 光受信器用前置増幅器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees