JP3765313B2 - 楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体 - Google Patents

楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
JP3765313B2
JP3765313B2 JP2004061745A JP2004061745A JP3765313B2 JP 3765313 B2 JP3765313 B2 JP 3765313B2 JP 2004061745 A JP2004061745 A JP 2004061745A JP 2004061745 A JP2004061745 A JP 2004061745A JP 3765313 B2 JP3765313 B2 JP 3765313B2
Authority
JP
Japan
Prior art keywords
signal
loop
output
unit
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004061745A
Other languages
English (en)
Other versions
JP2004157575A (ja
Inventor
徹 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2004061745A priority Critical patent/JP3765313B2/ja
Publication of JP2004157575A publication Critical patent/JP2004157575A/ja
Application granted granted Critical
Publication of JP3765313B2 publication Critical patent/JP3765313B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrophonic Musical Instruments (AREA)

Description

本発明は、自然楽器の発音機構をモデリングした物理モデル音源による楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体に関するものである。特に、バイオリンなどの擦弦楽器の発音機構に着目した楽音合成装置に関するものである。
自然楽器の発音機構をモデリングして、自然楽器の音や実在しない仮想楽器の楽音信号を合成する物理モデル音源が知られている。擦弦楽器をモデリングした場合、ピッチ情報と弓圧,弓速度等の演奏情報を、キーボード,マウス等のポインティングデバイス,その他の操作子等を用いて入力する。これらの入力に応じて物理モデル音源のパラメータが変化し、自然楽器と同様な、あるいは、これを超えた音色および時間経過変化をする楽音信号を合成することができる。
図13は、従来の擦弦楽器をモデリングした楽音合成装置のブロック構成図であり、図13(a)は全体構成図、図13(b)は非線形部133の内部ブロック構成図である。図中、10,14,16は加算器、131,132は遅延フィルタ、133は非線形部、134は割り算器、135は非線形関数部、136は乗算器である。
図13(a)において、加算器10,14は擦弦点に対応し、遅延フィルタ131は、擦弦点から弦の左端に到達しここで反射して再び擦弦点に戻る伝搬特性をモデル化したものである。一方、遅延フィルタ132は、擦弦点から弦の右端に到達しここで反射して、再び擦弦点に戻る伝搬特性をモデル化したものである。遅延フィルタ131,132によって閉ループが構成され、この閉ループの遅延時間に応じて弦の共振周波数が決まる。以上が線形部を構成する。これに対し、非線形部133は弓による弦の摩擦駆動をモデル化したものである。擦弦点における左右両方向に伝搬する振動に対応する信号を加算器16で合成し、これをループ出力信号loopとする。演奏パラメータとして、弓速度Vb,弓圧Pbを制御入力として、これらに応じてループ出力信号loopを変更して、再び、加算器10,14において線形部に戻している。
図13(b)に示す非線形部133の内部構成において、線形部からのループ出力信号loopは、加算器5において弓速度Vbと減算され、割り算器134において弓圧Pbで割り算された後、非線形関数部135に入力される。非線形関数部135の出力は乗算器136において弓圧Pbと乗算されて線形部に出力される。
図14は、図13に示した非線形関数部135の入出力特性を説明する線図である。横軸は、割り算器134の入力、すなわち、線形部からのループ出力信号loopと弓速度Vbとの相対速度(loop−Vb)である。縦軸は、割り算器136の出力である。基本的な特性は、非線形関数135で決まる。0入力レベルを中心とする所定入力範囲Bは、弓毛と弦との間の摩擦によって、弓毛の動きに応じた駆動力が弦に与えられている状態である。したがって、弦は静摩擦係数によって支配される動きをする。
ところが、この入力範囲を超える入力範囲Aの速度で弓毛が動くと、両者の間ですべりが生じる。その結果、弦は静摩擦係数よりも小さな動摩擦係数によって支配される動きをすることとなり、弦に加わる駆動力が急速に低下する。このとき、弦は、弓毛の動きに応じて変位している状態から、急速に戻る方向の動きをしようとする。したがって、静摩擦係数で動く入力範囲Bから、動摩擦係数で動く入力範囲Aに移行する時点の間隔が、弦に与える振動の駆動力の周期と関連を有する。上述した入力範囲Bおよび入力範囲Aの境界は、弓圧Pbによって異なる。すなわち、弓圧Pbが大きければすべりを起こす相対速度が大きくなる。割り算器134および乗算器136は対となって、この弓圧Pbによる特性変化点の移動をモデル化している。
一方、バイオリンに代表される擦弦楽器は、演奏者の弓操作によっては、弓を弾いている途中で、弓圧の加減,弓の動かし方などにより、意図せずに音が引っ繰り返って調子外れの音が発生することがある。これは、人の声でいう裏声に対応し、基本振動モードから2次(倍音)以上の高次の振動モードに弦振動が移行する現象である。換言すれば、擦弦楽器で安定に所望のピッチの楽音を持続して発音させるには、相当な熟練を要するということである。これは、上述した弓毛と弦との間のすべりなど、摩擦関係の動的変化に起因するものである。
例えば、すべりがなく静摩擦関係であるべきなのが、すべりが発生して動摩擦関係に移行する頻度が大きくなると、上述した現象が発生する。そして、擦弦楽器の発音機構をモデリングした物理モデル音源でも、原理的にこのような高次の振動モードに移行する現象が起こりうる。実際、パラメータの設定によっては、この現象が発生する。
この現象は、上述した図14において、静摩擦係数で動く入力範囲Bから、動摩擦係数で動く入力範囲Aに移行する時点相互の間の期間(周期)が、本来のピッチ周期よりも短くなってしまうことに対応する。
また、バイオリンでは、弓に馬の尾毛を束ねた弓毛を張っており、その表面あるいは弦のそれぞれの微細な凹凸等によって、楽音にざらついた揺らぎが発生する。したがって、擦弦楽器の音色を忠実に再現させるためには、この揺らぎを楽音に与える必要がある。このような揺らぎを与える楽音合成装置として、乱数信号に応じて弓圧に相当する楽音パラメータを変化させるものが、特許文献1等で知られている。しかし、弦の振動等によって揺らぎを制御していなかったため、弓毛の表面状態等による楽音の揺らぎを十分にはモデル化できていなかった。
特開平4−306698号公報
本発明は、上述した問題点を解決するためになされたもので、楽音に揺らぎを与えることができる楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体を提供することを目的とするものである。
本発明においては、少なくとも遅延手段を含むループ手段、前記ループ手段から取り出されたループ出力信号を第1の演奏パラメータに応じて変更することにより駆動信号を生成し前記ループ手段に供給する駆動信号生成手段、および、前記ループ出力信号の大きさまたは前記ループ出力信号および前記第1の演奏パラメータに応じた信号の大きさに応じて変化の時間幅が変わる揺らぎ信号を生成し該揺らぎ信号と第2の演奏パラメータとを演算して前記ループ手段に供給する揺らぎ信号生成手段、を有するものである。
また、上述した各手段としてコンピュータを機能させるための楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体である。
したがって、第2の演奏パラメータおよびループ出力信号の大きさに応じた揺らぎをループ出力信号に与えることができる。特に、擦弦楽器をモデリングした楽音合成装置の場合に、弓毛および弦の表面のざらつきなどによる楽音の揺らぎをループ出力信号に与えることができる。
本発明の楽音合成装置によれば、楽音にループ出力信号の大きさに応じた揺らぎを与えることができるという効果がある。特に、擦弦楽器をモデル化した場合、擦弦楽器の弓毛および弦の表面のざらつきなどによる楽音のランダム揺らぎのより忠実なモデリングが可能になる。
図1は、本発明の楽音合成装置の実施の一形態を説明するためのブロック構成図である。図中、図13と同様な部分には同じ符号を付して説明を省略する。1は演奏情報出力部、2は制御部、3は線形部、4は非線形変換部、5は加算器、6は演算器、7はざらつき効果信号発生部、8は左終端フィルタ、9,11,13,15は信号遅延部、12は右終端フィルタ、17は干渉部、18,19は加算器である。
この実施の形態の楽音合成装置においては、少なくとも信号遅延部9,11,13,15を含むループ部、および、このループ部から取り出されたループ出力信号loopを、弓速度Vb等の演奏パラメータとの差に応じて変更することにより駆動信号を生成し、ループ部に供給する駆動信号発生部を有する楽音合成装置である。この駆動信号発生部は、ループ出力信号loopと弓速度Vb等の演奏パラメータとの差に応じた入力信号に対し、この入力信号に基づく信号の大きさに応じて、小入力信号時における入出力特性と大入力信号時の入出力特性とに変化する非線形変換を行うとともに、入出力特性が前記小入力信号時の入出力特性から前記大入力信号時の入出力特性に変化する周期がループ出力信号loopのピッチ周期よりも短くなることを抑制する非線形変換部4を有するものである。
図14に示した従来例の擦弦楽器の発音機構の入出力特性においては、小入力信号時における入出力特性とは、入力範囲Bにおけるように、入力信号の大きさ(絶対値)に応じて出力の大きさ(絶対値)が増加する静摩擦特性である。大入力信号時の入出力特性とは、入力範囲Aにおけるように、入力信号の大きさ(絶対値)の増加に対して出力信号の大きさ(絶対値)が減少する動摩擦特性である。
また、ざらつき効果信号発生部7においてループ出力信号loopの大きさに応じて変化の時間幅が変わる揺らぎ信号を生成し、この揺らぎ信号を弓圧Pb等の演奏パラメータと演算して、その演算結果を、演算部6において、前記ループ手段に供給する。
演奏情報出力部1は、キーボードや操作子等により入力される、音色TC,音高PITCH,弓速度Vb,弓圧Pb等の内、音色TC,音高PITCH等を制御部2に出力し、弓速度Vb,弓圧Pb等を非線形変換部4,ざらつき効果信号発生部7に出力する。制御部2は、音色TC,音高PITCHに基づいた制御パラメータを線形部3および非線形変換部4に出力し、音色TCに基づいた制御パラメータをざらつき効果信号発生部7に出力する。
線形部3は、弦をシミュレートする部分であり、ここにおいて、信号遅延部11,右終端フィルタ12,信号遅延部13の直列接続は、図13における遅延フィルタ132に対応し、信号遅延部15,左終端フィルタ12,信号遅延部9の直列接続は、図13における遅延フィルタ131に対応する。原則的には、信号遅延部11,13の遅延量DR1,DR2は等しく、信号遅延部15,9の遅延量DL1,DL2も等しい。遅延量DL1+DL2と遅延量DR1+DR2の配分は、弦の駆動点位置に対応させる。左終端フィルタTFL,右終端フィルタTFRの特性は、振動体である弦の支持点での信号減衰や反射による位相反転,位相変化などによって決まる。
干渉部17は、上述した線形部3と後述する駆動信号発生部との間に設けられるものであるが、必ずしも必要なものではない。干渉部17における加算器19は、線形部3の加算器16の出力と加算器18の出力とを加算したループ出力信号loopを駆動信号発生側の非線形変換部4,加算器5,ざらつき効果信号発生部7に出力する。一方、加算器18は、駆動信号発生側の演算器6の出力と線形部3の加算器16の出力とを加算して線形部の加算器10,14に出力する。干渉部17を設けない場合、線形部の加算器16からの入力は、ループ出力信号loopとして、直接、駆動信号発生側に出力されるとともに、駆動信号発生側の出力は、直接、線形部3の加算器10,14に出力される。
次に、駆動信号発生側について説明する。非線形変換部4は、図13に示した非線形部133に対応する。しかし、単に、弓速度Vbに対する線形部3からのループ出力信号loopの大きさ(演算式としては、loop−Vbを用いている)を出力する加算器5の出力を弓圧Pbに応じて変更するだけでなく、入力信号によって、変更特性が制御される。
ざらつき効果信号発生部7は、線形部3からのループ出力信号loopを入力して、これに応じて揺らぎ信号を発生し、演算器6において非線形変換部4の出力と演算することにより、ざらつき感を楽音に与える。
図2は、図1に示した干渉部17の変形例の説明図である。入出力特性は、図1に示した干渉部17の構成と等価である。図中、21、23は加算器、22は乗算器である。線形部の加算器16からの入力は、乗算器22において2倍されて加算器23に出力されるとともに、加算器21に入力され、加算器23において、駆動信号発生側の出力と加算されて駆動信号発生側に出力される。駆動信号発生側の出力は、加算器21において線形部の加算器16からの入力と加算されて線形部の加算器10,14に出力される。
図3は、図1に示した演算器6の具体例の説明図である。図3(a)に示す例では、非線形変換部4の出力とざらつき効果信号発生部7の出力とを加算器31で加算して線形部3側に出力する。図3(b)に示す例では、図3(a)の加算器31に代えて乗算器32を用いる。図3(c)に示す例では、非線形変換部4の出力とざらつき効果信号発生部7の出力とを乗算器32で乗算した出力を、加算器31において非線形変換部4の出力と加算して線形部3に出力する。演算器6としては、上述した具体例に限らず、非線形変換部4の出力とざらつき効果信号発生部7の出力に対して、種々の演算を行うことができる。
図4は、図1に示した非線形変換部4の内部構成を説明するためのブロック構成図である。加算器5を含めて図示している。図中、41は第1の変換特性テーブル、42は第2の変換特性テーブル、43は信号処理部、44は係数発生部、45は切替部、46,47,49,51は乗算器、48,50,52は加算器である。ループ出力信号loopは、加算器5において弓速度Vbを減算され、相対速度が第1の変換特性テーブル41および第2の変換特性テーブル42に入力される。なお、加算器50は後述する変形例において用いる。
第1の変換特性テーブル41は、図14に示した入出力特性における入力範囲Aにおける動摩擦係数で駆動されるときの特性を実現するための変換特性テーブルであり、第2の変換特性テーブル42は、入力範囲Bにおける静摩擦係数で駆動されるときの特性を実現するための変換特性テーブルである。両変換テーブルの出力は、切替部45の乗算器46,47において、それぞれ係数発生部44から出力される重み係数を乗算されて、加算器48において合成されて、図1の非線形変換部4の出力となり、演算器6に出力される。したがって、図示の例は、厳密にいえば、第1,第2の変換特性テーブル41,42の特性に係数発生部44の重み付け係数が乗算されたもので、入力範囲A,Bにおける変換特性を実現している。
切替部45および係数発生部44は、加算器5の入力を入力信号とする。信号処理部43の制御出力によって第1,第2の変換特性テーブル41,42の出力を切り替える機能を有するものであるが、切替の遷移領域を滑らかにするため、切替の前後で重み付けを行っている。なお、加算器52は、後述する変形例において用いる。係数発生部44は、図示のように、切替の閾値で交差する係数を出力する。切替の閾値よりも小さな入力レベルでは、第2の変換特性テーブル42に対する重み係数の方が第1の変換特性テーブル41に対する重み係数よりも大きく、切替の閾値を超えると逆転した関係となる。第1,第2の変換特性テーブル41,42の出力の切替は、弓圧Pbの大きさによっても制御することが望ましいが、ここでは、説明を簡単にするために弓圧Pbの大きさによる制御は説明を省略している。簡単に制御するには、例えば、係数発生部の切替の閾値を弓圧Pbに応じて変化させればよい。
図示の例では、第1の変換特性テーブル41は、入力信号が正方向に増加するにつれ負の出力信号の上昇率が減少して負の一定レベルに近づき、入力信号が負方向に増加するにつれ正の出力信号の下降率が減少して正の一定レベルに近づくような特性としている。
図5は、図4に示した信号処理部43の第1の具体例を説明するためのブロック構成図である。図中、61はフィルタ部、62は絶対値変換部、63はバンドパスフィルタ部、64,67は加算器、65,66は乗算器である。
概要を説明すると、加算器5の出力信号のピッチ周期(基本振動モードの周期)に等しい周期成分を通過させ、2倍ピッチ以上の高次振動成分は抑圧される特性を有するバンドパスフィルタ63を用い、加算器5の出力信号をこのバンドパスフィルタに通した上で、係数発生部44に出力する。
図6は、図1,図4,図5に示したブロック構成の動作を説明するための波形図である。図中、71はループ出力信号がピッチ周期tpの2倍の振動モードにあるときの加算器5の出力信号である。入力範囲Bから入力範囲Aに切り替わる入力レベルを入力閾値と名付ける。物理モデル音源が高次の振動モードにはまりこんでしまうと、加算器5の出力信号が入力閾値を超える時点(1),(2),(3)が1ピッチの周期内において、常時、次数に対応して複数回起こるようになったり、複数回起こる頻度が高くなる。そこで、加算器5の出力信号をバンドパスフィルタ部63に通した上で、係数発生部44に入力する。
この第1の具体例においては、この加算器5の出力信号のピッチ周期の信号を通過させる帯域通過フィルタ63に、この加算器5の出力信号を通した信号に基づいて制御信号を生成し、この制御信号と切替の閾値とを比較することにより非線形変換部4の入出力特性を変化させることにより、高次振動モードの移行を抑制するものである。
図7は、図4に示したバンドパスフィルタ63の周波数特性の一例の説明図である。図中、81は加算器5の出力信号の周波数スペクトル、82はバンドパスフィルタ63の周波数特性である。この例では、バンドパスフィルタ63として、ピッチ周波数(基本周波数)にピークを有するフィルタを用いている。加算器5の出力信号をこのような特性を有するバンドパスフィルタ63に通すことにより、ピッチ周波数成分が強調され、図6に示したような2倍ピッチ以上の高次周波数成分が減衰された信号で切替部45を切り替えることになる。
したがって、入力範囲Bから入力範囲Aに切り替わる時点として、時点(2)が消失し、時点(1)と時点(2)の時間間隔が時点(3)まで延長されたような駆動信号が演算器6に出力されることになる。その結果、ループ出力信号loopが2倍ピッチのために加算器5の出力が2倍ピッチになる場合でも、駆動がピッチ周期で行われる結果、ループ出力信号loopがピッチ周期に安定する方向に変更される。また、基本周波数モードから高次の振動モードへの移行も抑制される。
図5に再び戻って詳細を説明する。フィルタ部61のバンドパスフィルタ63の特性は、制御部2を介して演奏情報として与えられるループ出力信号loopのピッチPITCHによって変化させるだけでなく、音色TCごとに設定された振幅強度AMP(TC)および共振特性のキューQ(TC)によっても変化させる。ディジタルフィルタを使用する場合には、フィルタ係数をこれらの値に基づいて決定してフィルタ演算を行う。
一方、弓速度Vbおよび弓圧Pbの関数B(Vb,Pb)の絶対値に、加算器64においてオフセット値BowOffset(TC)を加算する。この加算値に乗算器65において感度値BowSense(TC)を乗算する。さらに、この乗算値に乗算器66においてバンドパスフィルタ63の出力を乗算し、加算器67においてバイパスされた加算器5の出力信号を加算し、絶対値変換部ABS62に出力する。この絶対値変換部ABS62の出力は、図4の係数発生部44に出力される。オフセット値BowOffset(TC)および感度値BowSense(TC)も音色TCごとに決められる。係数発生部44が正負の入力に対して係数を出力するものであれば、絶対値変換部ABS62は不要である。
なお、上述した例では、バンドパスフィルタ63の出力に応じた信号とバイパスされたループ出力信号loopの和を取っているが、まとめて、等価な特性を有するフィルタに置き換えてもよい。また、バンドパスフィルタ63の入力信号として、図4に示した加算器5の出力信号と非線形変換部の出力となる加算器48の出力信号との和に応じた信号を用いるなど、各部の信号またはその組み合わせ信号を用いてもよい。
図8は、図4に示した信号処理部43の第2の具体例の説明図である。図中、91は絶対値変換部、92は制御波形パラメータ生成部、93は制御波形発生部、94は演算器、95はランダム信号発生部、96は信号加工部である。
図9は、図8に示した第2の具体例における信号処理部の動作を説明するための波形図である。図9(a)は加算器5の出力信号、図9(b)は補正信号、図9(c)は信号処理部の出力信号の波形図である。
この第2の具体例においては、加算器5の出力信号に基づいて制御信号を生成し、この制御信号と切替の閾値とを比較することにより非線形変換部4の入出力特性を変化させるとともに、この制御信号が切替の閾値を超えたときを制御波形パラメータ生成部92において検出する。検出後の次のピッチ周期tpの期間内において制御信号が切替の閾値を超えることを抑制するように、制御波形発生部93、加算器97等により、制御信号の大きさが所定の変化特性に従うように変更することにより、高次振動モードの移行を抑制する。
ピッチ周期tpの2倍の振動モードにある加算器5の出力信号の波形を範囲Bの領域に押し込めるような補正信号CW101を発生させることにより、図4に示した第2の変換特性テーブル42から第1の変換特性テーブル41への切替が、倍ピッチ以上で行われるのを抑制している。
図9(a)に示すループ出力信号loopがピッチ周期tpの2倍の振動モードにあるときの加算器5の出力信号71は、図8の絶対値変換部ABS91に入力され、絶対値化されて制御波形パラメータ生成部92に入力される。図9(a),図9(b)に示すように、ここでは、加算器5の出力信号71が切替の入力閾値を超えた時点start(1)と、次に加算器5の出力信号71が切替の閾値より下がった時点(4)とを検出し、両時点間の時間長t1を検出する。さらにループ出力信号loopのピッチ周期tpからt1を減算した時間長t2を出力する。ループ出力信号loopのピッチ周期tpは、図1に示した演奏情報部1から制御部2を介して得られる音高PITCH情報に基づいて決定される。また、加算器5の出力信号71の絶対値を常時継続的に監視し、この絶対値の振幅範囲等に基づいて、深さdepthを設定して出力する。なお、depthは、一定値としてもよい。
制御波形発生部93においては、基本的な変化特性を数値テーブルに記憶しており、図9(b)に示すように、上述したstart時点のタイミング情報と、時間長t2,深さdepthに応じた、時間幅t2および振幅depthであって、下に凸の形状の負の補正信号CW101を発生する。数値テーブルの代わりに演算によって同様な変化特性を実現してもよい。補正信号CW101は、加算器97において、絶対値変換された、ピッチ周期tpの2倍の振動モードにある加算器5の出力信号71のバイパス信号と加算されて、図9(c)に示した信号処理部の出力信号NLCW102となり、図4に示した係数発生部44に出力され、第1,第2の変換特性テーブル41,42の切替を行う。
なお、図9(b)に示した補正信号は、2倍ピッチの加算器5の出力信号71に対して時点(2)の発生を抑圧することを考えて変化特性が決められている。抑制したい振動モードの次数に応じて波形形状を決めることができる。
図9(c)から明らかなように、切替を行う信号処理部の出力信号NLCW102は、時点(4)から時点(3)までの時間長t2の期間において切替の閾値を超えにくくなり、図9(a)において存在していた、時点(2)が消失する。したがって、1ピッチ周期tp内において切替の閾値を2回以上超えることが抑制される。
図示のように、ランダム信号発生部95の出力を、信号加工部96において、弓速度Vb,弓圧Vp,その他、音色TC,ピッチPITCHに応じた信号で加工して、演算器94において制御波形発生部93の出力と、図3に示した演算器6と同様に、加算,乗算等の演算を行った上で、加算器97に出力してもよい。このように音色に応じて高次振動モードの抑制の度合いを変えることによって、音色に適した制御を行うことができる。また、ランダム信号を加えることによって、規則的な抑制を避けて不自然さを少なくしている。
また、制御パラメータ生成部92の入力信号として、図4に示した加算器5の出力信号と非線形変換部の出力となる加算器48の出力信号との和に応じた信号を絶対値変換したものを用いるなど、各部の信号またはその組み合わせ信号を絶対値変換して用いてもよい。
図10は、図4に示した信号処理部43の第3の具体例の概要を説明するための波形図である。ブロック構成は図示を省略する。図中、111は切替の入力閾値である。
この第3の具体例では、加算器5の出力信号に応じた制御信号が閾値を超えたときを検出した後、次のピッチ周期tpの期間内において、制御信号が切替の閾値を超えることを抑制するために、制御信号を変更する代わりに、切替の入力閾値111の方を所定の変化特性に従うように変更する。
結果的には、図4に示した第2の変換特性テーブル42から第1の変換特性テーブル41への切替が、倍ピッチ以上の周期で行われるのを抑制することにより、高次振動モードの移行を抑制する。切替の入力閾値は、図8,図9において説明した補正信号の作成方法と同様であり説明は省略する。
この他、図4の信号処理部43の第4の具体例として、加算器5の出力信号に基づいて制御信号を生成し、この制御信号と切替の閾値とを比較することにより非線形変換部4の入出力特性を変化させるとともに、この制御信号が切替の閾値を超えたとき、ループ出力信号loopのピッチ周期に相当する期間内において制御信号が再び切替の閾値を超えても入出力特性を切り替えないようにしてもよい。ループ出力信号loopの1ピッチ周期tp内で、1回だけ第2の変換特性テーブル42から第1の変換特性テーブル41への切替を行うように、ロジック的に切替時点を間引くようにすることができる。ただし、規則性が強いと合成される楽音に不自然さが残る。
なお、図4において、非線形変換部出力を乗算器49においてFEEDBACK(TC)値を乗算し、加算器50において加算器5の出力に加算して第1,第2の変換特性テーブル41,42に入力するようにしたときには、ヒステリシスを持った非線形変換出力を発生させることができる。正帰還量は、FEEDBACK(TC)値を音色TCに応じて設定することにより制御できる。このようにすれば、加算器5の出力が上昇するときと下降するときとで、非線形変換部の出力とその変化に差を持たせることができる。あるいは、乗算器51において、係数発生部44から乗算器46への出力係数にFEEDBACK(TC)値を乗算し、加算器52において信号処理部43の出力に加算して係数発生部44に入力するようにフィードバックをさせてもよい。
また、図4においては、弓速度Vbとの相対速度である加算器5の出力信号を信号処理部43に入力したが、信号処理部43にループ出力信号loopを直接に入力するようにしてもよい。相対速度である加算器5の出力信号、ループ出力信号loopのいずれを用いるかによって、一時的には制御状態が異なるが、結局いずれも相互に影響し合って値が決まるものであるから、時間がたてば、いずれを用いても制御状態が大きく異なることはない。
図11は、図1に示したざらつき効果信号発生部7の第1の具体例を説明するためのブロック構成図である。図中、121は絶対値変換部、122は乗算器、123は加算器、124は遅延部、125はセレクタ、126はノイズ発生部、127は遅延部、128は信号加工部、129は乗算器である。
図12は、図11に示したセレクタ125の出力を説明する波形図である。図12(a),図12(b)は、入力信号の大きさに比例した信号SFの大きさによる違いを示す。
この具体例のざらつき効果信号発生部7は、ループ出力信号loopの大きさに応じて変化の時間幅が変わる揺らぎ信号を生成するものであって、乗算器129において弓圧Pb等の演奏パラメータを変調し、図1に示した演算器6において線形部3に供給している。揺らぎ信号は、ノイズ発生部126から出力されるランダム信号をループ出力信号loopの大きさに応じた周期でサンプルホールドすることにより生成している。
ループ出力信号loopは絶対値変換部121において絶対値化され、乗算器122において音色TCに応じて設定される重み係数SMPadj(TC)を乗算されて信号SFとなり、加算器123において、遅延部124で遅延された1サンプル前の加算値と加算される。その結果、加算器123は累算値を出力し、累算値が所定値を超えるとオーバフロー信号overflowを出力する。このオーバフロー信号はセレクタ125の制御入力となる。2値あるいは多値のノイズ発生部126は、音色TCに応じて設定されるパラメータPARnoise(TC)によりランダム信号の特性が適宜設定され、ランダムな振幅の信号を、セレクタ125の第1の入力端子に出力する。
ノイズ発生部126としては、ROM(Read Only Memory)を用いてもよいし、M系列のランダム信号発生器、あるいはノイズ信号を発生する素子の出力をA/D変換したものを用いてもよい。ノイズ発生部126は所定のクロックでランダム信号を出力する。セレクタ125の第2の入力端子は、遅延部127で遅延された1サンプル前のセレクタ125の出力が入力される。
したがって、セレクタ125は、ノイズ発生部126の出力をサンプルホールドし、図12に示すように、ループ出力信号loopの大きさに比例した変化の時間幅でノイズ発生部126のランダム信号を出力する
セレクタ125の出力は、音色に応じて設定されるフィルタパラメータPARflt(TC)によって制御される信号加工部128に入力され、ここでフィルタ処理を行なう。信号加工部128は直流成分をカットし、ざらつき感を強調するために高域通過フィルタとすると好適である。信号加工部128の出力である揺らぎ信号は、乗算器129において弓圧Pbと乗算され、揺らぎ信号で変調された弓圧Pbをざらつき効果信号BOWNOISEとして出力する。このざらつき効果信号BOWNOISEは、図1に示したように、線形部3に対して駆動信号を出力する演算器6に入力され、線形部3を巡回する信号に対して揺らぎを与える。
なお、乗算器129は、弓圧Pbと揺らぎ信号の乗算出力に弓圧Pbを加算する加算器に代えてもよい。あるいは、弓圧Pbと揺らぎ信号の和を出力する加算器に代えてもよい。このように、揺らぎ信号は、物理的なイメージに合うように弓圧Pbを変調するだけでなく、弓圧とともに任意の演算を行って線形部3に供給してもよい。
ノイズ発生部126の出力波形は、弓毛の表面のパターンをモデル化したものである。そして、弦の振動が速いほど変化が激しくなるように、ループ出力信号loopの大きさに応じて変化の時間幅を変えている。ループ出力信号loopを用いる代わりに、弓速度Vbとの相対速度である図1における加算器5の出力を絶対値変換部121に入力してもよい。この他、線形部3の信号路の任意の点の入力信号を種々組み合わせて入力信号としてもよい。また、ざらつき効果信号BOWNOISEは、非線形変換部4の出力点とは異なる入力点から線形部3に入力するようにしてもよい。
図11,図12においては、弓毛の表面のパターンをノイズ信号でモデル化した。この他、図示を省略するが、第2の具体例として、ループ出力信号loopに応じて周期が制御される正弦波などの周期信号を用いてもよい。さらには、第3の具体例として、弦と弓毛の表面との接触状態による変動パターンを記憶しておき、ループ出力信号の大きさおよび弓速度Vb,弓圧Pb等に応じた読み出し周期で波形メモリを読み出し、これに基づいてざらつき効果信号BOWNOISEを生成するようにしてもよい。このように、弦の振動状態や弓毛と弦の相対速度などに応じた周期で変調された信号を線形部3に供給することにより楽音にざらつき感を与えることができる。
なお、上述した揺らぎ信号の生成手段は、ループ出力信号loopの大きさに依存しない変化の時間幅を有する揺らぎ信号を生成する場合にも適用できる。この場合は、セレクタ125がノイズ発生部126の出力をサンプルホールドする周期を一定にすればよい。波形メモリを読み出す場合には、読み出し周期を一定にすればよい。
上述した説明では、線形部3のループ出力信号loopとして弦の速度に対応する信号を用いることを前提に、弓速度Vbとの相対速度を求めたが、ループ出力信号loopとして弦の変位など他の振動を表現する変数でもよく、この変数に応じて演算式を変更すればよい。
また、上述した説明では、ループ出力信号loopのピッチ周期として、演奏情報として設定される音高PITCH情報によるピッチ周期tpを使用したが、ループ出力信号loopのピッチ周期を常時測定しておき、その短期間平均値を用いてピッチ周期としてもよい。
上述した説明では、擦弦楽器の発音機構をモデリングしたときの非線形変換特性について説明した。しかし、異なる発音機構をモデリングした場合でも、小入力信号時の入出力特性に対し、大入力信号時の入出力特性が図14に示したように異なるような特性を有する場合に、同様な手法で高次振動モードを抑制することができる。
また、擦弦楽器の発音機構とは異なるが、図1、図4に示した加算器5において、線形部3のループ信号loopと弓速度Vbとの和をとり、この和信号に基づいて非線形変換を行い駆動信号を線形部3に供給するようにしてもよい。
上述したブロック構成は、ハードウエアロジック構成のみでも実現できるが、乗算機能を有し、フィルタ演算に適したDSP(ディジタル信号プロセッサ:Digital Signal Processor)を用いて実行することにより、楽音合成アルゴリズムの構成変更やパラメータの変更等に対し、このDSPを制御するプログラムを変更するだけで柔軟に対応することができる。このプログラムは、例えば、ROM(Read Only Memory)あるいはRAM(Random Access Memory)等の記録媒体に記録される。
また、DSPの代わりに、汎用のCPU(Central Processsing Unit)、ROM,RAM、D/A変換器等を備えたパーソナルコンピュータにおいて、オペレーティングシステムの下で実行されるソフトウエア音源のプログラムとして実行させることもできる。このプログラムは、例えば、CD−ROM(Compact Disk-Read Only Memory)、あるいはフレキシブル磁気ディスク(FD)に記録された形で配布され、パーソナルコンピュータのハード磁気ディスク(HD)に記録される。
本発明の楽音合成装置の実施の一形態を説明するためのブロック構成図である。 図1に示した干渉部の変形例の説明図である。 図1に示した演算器の具体例の説明図である。 図1に示した非線形変換部の内部構成を説明するためのブロック構成図である。 図4に示した信号処理部の第1の具体例を説明するためのブロック構成図である。 図1,図4,図5に示したブロック構成の動作を説明するための波形図である。 図4に示したバンドパスフィルタの周波数特性の一例の説明図である。 図4に示した信号処理部の第2の具体例の説明図である。 図8に示した第2の具体例における信号処理部の動作を説明するための波形図である。 図4に示した信号処理部の第3の具体例の概要を説明するための波形図である。 図1に示したざらつき効果信号発生部の第1の具体例を説明するためのブロック構成図である。 図11に示したセレクタの出力を説明する波形図である。 従来の擦弦楽器をモデリングした楽音合成装置のブロック構成図であり、図13(a)は全体構成図、図13(b)は非線形部の内部ブロック構成図である。 図13に示した非線形関数部の入出力特性を説明する線図である。
符号の説明
1 演奏情報出力部、2 制御部、3 線形部、4 非線形変換部、5,10,14,16,18,19 加算器、6 演算器、7 ざらつき効果信号発生部、8 左終端フィルタ、9,11,13,15 信号遅延部、12 右終端フィルタ、17 干渉部、41 第1の変換特性テーブル、42 第2の変換特性テーブル、43 信号処理部、44 係数発生部、45 切替部、46,47,49,51 乗算器、5,48,50,52 加算器、71 加算器5の出力信号、81 ループ出力信号loopの周波数スペクトル、82 バンドパスフィルタ63の周波数特性、101 補正信号CW、102 信号処理部の出力信号NLCW、111 切替の入力閾値

Claims (2)

  1. 少なくとも遅延手段を含むループ手段、
    前記ループ手段から取り出されたループ出力信号を第1の演奏パラメータに応じて変更することにより駆動信号を生成し前記ループ手段に供給する駆動信号生成手段、および、
    前記ループ出力信号の大きさまたは前記ループ出力信号および前記第1の演奏パラメータに応じた信号の大きさに応じて変化の時間幅が変わる揺らぎ信号を生成し該揺らぎ信号と第2の演奏パラメータとを演算して前記ループ手段に供給する揺らぎ信号生成手段、
    を有することを特徴とする楽音合成装置。
  2. 少なくとも遅延手段を含むループ手段、
    前記ループ手段から取り出されたループ出力信号を第1の演奏パラメータに応じて変更することにより駆動信号を生成し前記ループ手段に供給する駆動信号生成手段、および、
    前記ループ出力信号の大きさまたは前記ループ出力信号および前記第1の演奏パラメータに応じた信号の大きさに応じて変化の時間幅が変わる揺らぎ信号を生成し該揺らぎ信号と第2の演奏パラメータとを演算して前記ループ手段に供給する揺らぎ信号生成手段、
    としてコンピュータを機能させるための楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体。
JP2004061745A 2004-03-05 2004-03-05 楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体 Expired - Fee Related JP3765313B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061745A JP3765313B2 (ja) 2004-03-05 2004-03-05 楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061745A JP3765313B2 (ja) 2004-03-05 2004-03-05 楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21093698A Division JP3562330B2 (ja) 1998-07-27 1998-07-27 楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体

Publications (2)

Publication Number Publication Date
JP2004157575A JP2004157575A (ja) 2004-06-03
JP3765313B2 true JP3765313B2 (ja) 2006-04-12

Family

ID=32822215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061745A Expired - Fee Related JP3765313B2 (ja) 2004-03-05 2004-03-05 楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体

Country Status (1)

Country Link
JP (1) JP3765313B2 (ja)

Also Published As

Publication number Publication date
JP2004157575A (ja) 2004-06-03

Similar Documents

Publication Publication Date Title
JP2508324B2 (ja) 電子楽器
JPH0778679B2 (ja) 楽音波形信号形成装置
US5157218A (en) Musical tone signal forming apparatus
JPH0774955B2 (ja) 楽音合成装置
JP3765313B2 (ja) 楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体
JP3562330B2 (ja) 楽音合成装置および楽音合成用プログラムが記録されたコンピュータ読み取り可能な記録媒体
JP2591198B2 (ja) 電子楽器
JP2606791B2 (ja) 楽音発生用のディジタル信号処理装置
JPH0792668B2 (ja) 楽音合成装置
JP3775121B2 (ja) 楽音合成装置および楽音合成プログラムを記録した記録媒体
JPH0776877B2 (ja) 楽音合成装置
JP3788180B2 (ja) 楽音合成方法、楽音合成装置および記録媒体
JP2626211B2 (ja) 電子楽器
JP3489180B2 (ja) 楽音合成装置
JP3223683B2 (ja) 楽音波形信号合成装置
Rank A player model for midi control of synthetic bowed strings
JP2674595B2 (ja) 楽音波形信号形成装置
JP3799982B2 (ja) 楽音合成装置および楽音合成プログラムが記録された記録媒体
JP3617330B2 (ja) 楽音合成装置、楽音合成方法および記録媒体
JP2699689B2 (ja) 電子楽器
JP4155292B2 (ja) 楽音信号合成方法、楽音信号合成装置およびプログラム
JP2679393B2 (ja) 楽音合成装置
JP2679311B2 (ja) 楽音合成装置
JPH0358095A (ja) 楽音波形信号形成装置
JP2002006853A (ja) 共鳴装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees