JP3757329B2 - 有害化学物質監視装置およびその方法 - Google Patents
有害化学物質監視装置およびその方法 Download PDFInfo
- Publication number
- JP3757329B2 JP3757329B2 JP2000238543A JP2000238543A JP3757329B2 JP 3757329 B2 JP3757329 B2 JP 3757329B2 JP 2000238543 A JP2000238543 A JP 2000238543A JP 2000238543 A JP2000238543 A JP 2000238543A JP 3757329 B2 JP3757329 B2 JP 3757329B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction cell
- piezoelectric element
- antibody
- chemical substance
- chemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02809—Concentration of a compound, e.g. measured by a surface mass change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02818—Density, viscosity
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の属する技術分野】
本発明は、有害化学物質監視装置に係り、特に、測定環境中における有害化学物質の種類と濃度を同時に監視するに好適な有害化学物質監視装置に関する。
【0002】
【従来の技術】
廃棄物の質が多様化するのに伴い、廃棄物の焼却や処理行程において、種々の微量有害化学物質が発生し、また金属精錬の燃焼工程や化学製品の製造工程など様々な所でも有害化学物質が発生している。これら有害化学物質の中でも内分泌撹乱化学物質(環境ホルモン)は、人間のみならず野生生物に悪影響を及ぼすため、厳重な管理と制御が必要になっている。これらの有害化学物質の種類とその濃度を測定する手段としては、例えば、森田昌敏監修、1999年発行の環境ホルモンのモニタリング技術(株式会社シーエムシー出版)に記載されているように、ガスクロマトグラフ−質量分析法、液体クロマトグラフ−質量分析法、誘導結合プラズマ質量分析法、液体クロマトグラフ法が知られている。各種の測定法のうち簡便な方法としては、ダイオキシン類の分析を例にとると、例えば、特開平10−153590号公報、特開平10−153591号公報に記載されているように、ダイオキシン類の指標物質であるクロロベンゼン類やクロロフェノール類の濃度を測定し、この測定値を基にダイオキシン類の濃度を推定する方法が知られている。
【0003】
他の方法としては、森田昌敏監修、1999年発行の環境ホルモンのモニタリング技術(株式会社シーエムシー出版)に記載されているように、抗原・抗体反応の特異性を利用した免疫測定法が知られている。これは、抗原(測定対象物質)あるいは抗体をプレートや磁性ビーズ状の支持体に吸着させて抗体に結合させた抗原の量を酵素反応を介して測定する方法であり、酵素基質の反応生成物を検出するには、比色、蛍光あるいは化学発光法を用いて計測する方法である。
【0004】
【発明が解決しようとする課題】
前記ガスクロマトグラフ−質量分析法などの分析法により、有害物質の種類と濃度を正確に計測するためには、採取した試料を濃縮・クリーンアップなど煩雑な前処理により測定対象物を分離する必要があり、測定結果を得るのに1〜2週間程度の時間を必要とし、しかも高価な設備が必要であるという問題点がある。
【0005】
また、対象となる化学物質を間接的に測定する方法では、煩雑な前処理が省略できるため、測定に要する時間は短くできるが、測定対象となる化学物質の概略値しか推定できず、正確な測定値を得ることは難しいという問題点がある。
【0006】
一方、免疫測定法では、反応生成物を検出するための後処理、例えば反応物質を混合物から取り出す処理が必要あり、監視装置として自動化するのが困難である。
【0007】
本発明の目的は、測定環境中に存在する有害化学物質の種類と濃度を同時にかつ迅速に監視することができる有害化学物質監視装置およびその方法を提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明は、測定対象となる化学物質に特定的に結合する抗体が付着される圧電素子と、前記圧電素子に電気信号を印加して前記圧電素子を発振させる発振器と、前記発振器により発振した圧電素子の出力信号を取り込んでその周波数の時間的な変化を測定する周波数測定器と、前記周波数測定器の測定結果から測定環境中で前記抗体と反応した化学物質の質量の変化を求め、この質量の変化を基に前記測定環境中における前記化学物質の濃度を算出する濃度演算器とを備えてなる有害化学物質監視装置を構成したものである。
【0009】
前記有害化学物質監視装置を構成するに際しては、圧電素子を複数個設け、各圧電素子に、化学物質に特定的に結合する抗体として結合対象の化学物質が相異なる抗体をそれぞれ付着し、各圧電素子を発振器によって発振させ、各圧電素子の出力信号を周波数測定器に取り込んで各出力信号の周波数の時間的な変化をそれぞれ測定し、濃度演算器において、周波数測定器の各測定結果から測定環境中で各抗体と反応した化学物質の質量の変化をそれぞれ求め、各化学物質の質量の変化を基に測定環境中における各化学物質の濃度を算出する構成を採用することもできる。
【0010】
また、本発明は、間接的に化学物質の濃度を監視するものとして、測定対象となる化学物質または前記化学物質の誘導体であるハプテンが付着される圧電素子と、前記圧電素子に電気信号を印加して前記圧電素子を発振させる発振器と、流体導入口と流体排出口とを結ぶ流体流路を形成しこの流体流路中に前記圧電素子に付着された化学物質またはハプテンを収納する反応セルと、前記流体導入口から前記反応セル中に測定対象となる化学物質を含むガス状の検体およびこの検体中の化学物質に特定的に結合する抗体を導入する導入手段と、前記反応セルに導入された検体および抗体のうち前記圧電素子に付着された化学物質またはハプテンとの反応に伴って前記反応セル中に残留した前記圧電素子に付着していない検体および抗体を前記反応セルの流体排出口から排出する排出手段と、前記発振器により発振した圧電素子の出力信号を取り込み、前記反応セル中に検体および抗体が導入される前と前記反応セル中に残留した前記圧電素子に付着していない検体および抗体が前記反応セルから排出された後における出力信号の周波数の時間的な変化を測定する周波数測定器と、前記周波数測定器の測定結果から前記反応セル中で前記圧電素子に付着された前記化学物質または前記ハプテンと反応した抗体の質量の変化を求め、この質量の変化を基に前記反応セル中における前記検体中の化学物質の濃度を算出する濃度演算器とを備えてなる有害化学物質監視装置を構成したものである。
【0011】
前記有害化学物質監視装置を構成するに際して、圧電素子と反応セルをそれぞれ複数個設け、各圧電素子に、測定対象となる化学物質または化学物質の誘導体であるハプテンとして相異なるものを付着するとともに、発振器から各圧電素子に電気信号を印加して発振させ、各反応セル中に測定対象となる化学物質を含むガス状の検体およびこの検体中の化学物質に特定的に結合する抗体を導入手段によって導入し、各反応セルに導入された検体および抗体のうち各圧電素子に付着された化学物質またはハプテンとの反応に伴って各反応セル中に残留した圧電素子に付着していない検体および抗体を各反応セルの流体排出口から排出し、発振器により発振した各圧電素子の出力信号を周波数測定器に取り込み、この周波数測定器において各反応セル中に検体および抗体が導入される前と各反応セル中に残留した圧電素子に付着していない検体および抗体が各反応セルから排出された後における各出力信号の周波数の時間的な変化を測定し、濃度演算器において周波数測定器の各測定結果から各反応セル中で圧電素子に付着された化学物質またはハプテンと反応した抗体の質量の変化を求め、各抗体の質量の変化を基に各反応セル中における各検体中の化学物質の濃度を算出する構成を採用することもできる。
【0012】
前記各有害化学物質監視装置を構成するに際しては、以下の要素を付加することができる。
【0013】
(1)前記濃度演算器は、前記各化学物質の濃度から化学物質総濃度を算出してなる。
【0014】
(2)測定環境における温度と湿度のうち少なくとも一方を検出する環境センサを備えてなる。
【0015】
(3)前記圧電素子は、水晶振動子または表面弾性波デバイスで構成されてなる。
【0016】
(4)予め有害化学物質の種類と濃度について設定されたデータと前記周波数測定器の測定結果に基づいて測定環境中における化学物質の種類と濃度を推定する推定演算器と、前記推定演算器の演算結果を表示する表示器とを備えてなる。
【0017】
(5)前記推定演算器の推定演算値が限界値を超えたときに警報を発する警報器を備えてなる。
【0018】
また、本発明は、直接監視法として、圧電素子の表面に測定対象となる化学物質に特定的に結合する抗体を形成し、前記圧電素子を測定環境中に配置して前記圧電素子に発振器から電気信号を印加し、電気信号の印加により発振した圧電素子の出力信号のうち周波数の時間的変化を測定し、この測定結果から測定環境中で前記抗体と反応した化学物質の質量の変化を求め、この質量の変化を基に前記測定環境中における前記化学物質の濃度を算出する有害化学物質監視方法を採用したものである。
【0019】
またさらに、本発明は、間接監視方法として、圧電素子の表面に測定対象となる化学物質または前記化学物質の誘導体であるハプテンを形成し、流体流路を形成する反応セルの流体流路中に前記圧電素子に形成された化学物質またはハプテンを収納し、前記圧電素子に発振器から電気信号を印加し、電気信号の印加により前記圧電素子が発振しているときに、前記反応セル中に測定対象となる化学物質を含むガス状の検体およびこの検体中の化学物質に特定的に結合する抗体を導入して前記圧電素子に付着された化学物質またはハプテンと一定時間反応させた後、前記反応セル中に残留した前記圧電素子に付着していない検体および抗体を前記反応セルから排出し、かつ前記圧電素子の出力信号を監視して前記反応セル中に検体および抗体が導入される前と前記反応セル中に残留した前記圧電素子に付着していない検体および抗体が前記反応セルから排出された後における出力信号の周波数の時間的な変化を測定し、この測定結果から前記反応セル中で前記圧電素子に付着された前記化学物質または前記ハプテンと反応した抗体の質量の変化を算出し、この質量の変化を基に前記反応セル中における前記検体中の化学物質の濃度を算出する有害化学物質監視方法を採用したものである。
【0020】
前記した手段によれば、測定対象となる化学物質に特定的に結合する抗体が付着された圧電素子を発振させてその周波数の時間的な変化を測定し、この測定結果から測定環境中で抗体と反応した化学物質の質量の変化を求め、この質量の変化を基に測定環境中における化学物質の濃度を算出するとともに、どの抗体を用いるかによって化学物質の種類を特定するようにしたため、測定環境中に存在する有害化学物質の種類と濃度を同時にかつ迅速に監視することができる。
【0021】
具体的には、圧電素子として水晶振動子を用いた場合、測定対象となる化学物質(抗原)に特定的に結合する抗体を形成させた水晶振動子を発振回路によって発振させると、抗体の付着量(質量)に比例して、一定の周波数で水晶振動子が発振する。このとき抗体と抗原とが反応すると反応生成物により水晶振動子の質量が変化する。この質量の変化は、次の(1)式にしたがって、水晶振動子の周波数(振動数)の変化と関係付けられる。
【0022】
【数1】
Δf=kf0 2(Δw/A)・・・(1)
ここで、f0は水晶振動子の初期周波数、Δfは周波数変化量、Δwは質量変化量、Aは水晶振動子に形成された抗原の面積、kは定数である。
【0023】
(1)式にしたがって水晶振動子の質量の変化を測定するに際して、例えば、初期周波数9MHzの水晶振動子を用いると、抗原抗体反応による導電性薄膜の質量増加0.5ng/cm2を1Hzの感度で測定できる。
【0024】
この測定方法は、基本的には、水晶振動子の周波数をモニタリングするものであるため、水晶振動子の周波数をデータ記録装置で記録することによって水晶振動子の周波数の変化を容易に連続して計測することが可能になる。
【0025】
さらに、水晶振動子を複数個用い、各水晶振動子に異なる種類の抗体を形成させ、各水晶振動子の周波数の変化を求めることで、各水晶振動子に形成された抗体と反応する抗原の質量の変化を種類ごとに連続して計測することができる。
【0026】
また、前記した手段によれば、反応セル中に測定対象となる化学物質を含むガス状の検体およびこの検体中の化学物質に特定的に結合する抗体を導入して圧電素子に付着された化学物質またはハプテンと一定時間反応させた後、反応セル中に残留した圧電素子に付着していない検体および抗体を反応セルから排出し、各圧電素子の出力信号を監視して、反応セル中に検体および抗体が導入される前と反応セル中に残留した圧電素子に付着していない検体および抗体が反応セルから排出された後における出力信号の周波数の時間的な変化を測定し、この測定結果から反応セル中で圧電素子に付着された化学物質またはハプテンと反応した抗体の質量の変化を算出し、この質量の変化を基に反応セル中における検体中の化学物質の濃度を算出し、かつどの抗体を用いるかによって化学物質の種類を特定するようにしたため、反応セル中における検体中の化学物質の濃度と種類を同時にかつ迅速に監視することができる。
【0027】
具体的には、水晶振動子の表面に測定対象となる化学物質(抗原)または抗原の誘導体であるハプテン(以下、固相化抗原と称する。)を形成した場合、抗原抗体反応を利用した質量変化を直接測定することはできないので、以下の手順により抗原量を測定する。すなわち、固相化抗原が形成された水晶振動子を、流体流路を形成する反応セル中に配置し、反応セル内に測定対象となる化学物質とガスを含む検体とこの検体中の化学物質に特定的に結合する抗体を共に導入すると、反応セル内において抗体は固相化抗原と測定対象となる化学物質の両方に結合する。次に、導入した抗体を水晶振動子に付着された化学物質またはハプテンと一定時間反応させた後、反応セル中に残留した水晶振動子に付着していない検体および抗体を除去すると、固相化抗原と反応した抗体の質量だけ水晶振動子の発振周波数は変化する。この場合、固相化抗原と反応した抗体の量は、検体中の測定対象となる化学物質の濃度に反比例するので、予め水晶振動子の発振周波数の変化と測定対象となる化学物質の濃度との関係を求めておき、この関係に基づいて導入した検体中の測定対象となる化学物質の濃度を求めることができる。さらに複数の反応セル内に種類の異なる固相化抗原を形成した水晶振動子を配置し、各反応セル内に各固相化抗原に関連した抗体を検体と共に導入し、各水晶振動子の周波数の変化を求めることで、複数の測定対象となる化学物質の濃度を求めることができる。
【0028】
さらに、予め有害化学物質の種類と濃度について設定されたデータと周波数測定器の測定結果に基づいて測定環境中における化学物質の種類と濃度を推定する推定演算器と、推定演算器の推定演算値が限界値を超えたときに警報を発する警報器を設けることで、測定環境中における有害化学物質濃度の異常を報知することができる。
【0029】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示す有害化学物質監視装置のブロック構成図である。図1において、有害化学物質監視装置は、圧電素子としての水晶振動子10、発振器12、周波数カウンタ14、パーソナルコンピュータ(計算機)16、ディスプレイ18を備えて構成されている。
【0030】
水晶振動子10は、図2に示すように、円盤形状に形成された水晶基板20、一対の金属薄膜22、24を備えており、水晶基板20は直径8mmのもので構成されている。水晶基板20の両面には直径4.5mm×厚さ500nmで円盤状に形成された金属薄膜22、24が蒸着されている。各金属薄膜22、24の端部には電極26、28が接続されており、各電極26、28には銀分散電導性接着剤によってリード線30、32が接続されている。各リード線30、32はリード線支持部34の孔内に挿入されて支持された状態で発振器12に接続されている。そして各金属薄膜22、24には、測定対象となる化学物質として、例えば、ダイオキシンを監視する場合、ダイオキシンに特定的に結合する抗体として、例えば、PCB、DDT、ビスフェノールAなどの抗体が形成(付着)されるようになっている。
【0031】
発振器12は、例えば、10MHzの周波数で発振し、この発振に伴う電気信号をリード線30、32を介して水晶振動子10の金属薄膜22、24に印加するように構成されており、水晶振動子10は発振器12からの電気信号にしたがって発振するようになっている。抗体が付着された水晶振動子10が測定環境中で発振すると、水晶振動子10は、抗体の付着量(質量)に比例して、一定の周波数で発振する。このとき、測定対象となる化学物質(抗原)と抗体とが反応すると、反応生成物により水晶振動子10の質量が変化する。この質量の変化は、前記(1)式にしたがって、水晶振動子10の周波数の変化と関係付けられる。
【0032】
水晶振動子10の周波数の変化は、周波数カウンタ(周波数測定器)14によって測定されるようになっている。すなわち、周波数カウンタ14は発振器12の出力信号を取り込み、その信号の周波数の時間的な変化を測定し、その測定結果をパーソナルコンピュータ16に出力するようになっている。
【0033】
パーソナルコンピュータ16は、濃度演算器および推定演算器として構成されており、周波数カウンタ14の測定結果から測定環境中で抗体と反応した化学物質の質量の変化を前記(1)式にしたがって求め、この質量の変化を基に測定環境中における化学物質の濃度を算出するようになっている。さらに、この算出結果をディスプレイ(表示器)18の画面上に表示させるようになっている。測定対象となる化学物質、例えば、ダイオキシンの濃度を算出する場合、パーソナルコンピュータ16のメモリには、指定の抗体と反応する化学物質の質量の変化と濃度との関係を示す検量線に関するデータが格納されており、パーソナルコンピュータ16は、指定の抗体と反応した化学物質の質量の変化を求めた後、化学物質の質量の変化と検量線に関するデータに従って化学物質の濃度を算出することができる。さらに金属薄膜22、24に形成した抗体によって測定対象となる化学物質の種類を特定することができる。
【0034】
したがって、本実施形態によれば、測定環境中における化学物質の濃度と種類を同時にかつ迅速に監視することができる。
【0035】
また、パーソナルコンピュータ16のメモリに予め有害化学物質の種類と濃度についてのデータを予め格納しておき、メモリに格納されたデータと周波数カウンタ14の測定結果に基づいて、パーソナルコンピュータ16において測定環境中における化学物質の種類と濃度を推定し、推定結果をディスプレイ18の画面上に表示する構成を採用することもできる。
【0036】
さらにパーソナルコンピュータ16の推定演算による推定演算値が限界値を超えたときに警報器(図示省略)から警報を発生させて、操作員などに異常を報知することもできる。なお、周波数カウンタ14とパーソナルコンピュータ16との間は、GP−IBの規格に基づいたデータ転送が行われるようになっている。
【0037】
また、前記実施形態においては、圧電素子として水晶振動子10を用いたものについて述べたが、図3に示すように、圧電素子として、表面弾性波デバイス(表面弾性波フィルタ:SAW)34を用いることができる。
【0038】
表面弾性波デバイス34は、タンタル酸リチウムなどで構成された圧電基板36を備えており、圧電基板36の両側には入力用電極38と出力用電極40が形成されている。入力用電極38と出力用電極40との間の領域には測定対象となる化学物質に特定的に結合する抗体42が付着または形成されている。さらに入力用電極38は増幅器44の入力側に接続され、出力用電極40は増幅器44の出力側に接続されている。
【0039】
表面弾性波デバイス34の入力用電極38と出力用電極40に発振器12から電気信号を印加すると、圧電効果により入力用電極38と出力用電極40間に互いに逆位相のひずみが生じ表面波が励起されるようになっている。
【0040】
水晶振動子10の代わりに表面弾性波デバイス34を用いた場合、発振器12からは、例えば100MHz、1GHzの電気信号が印加されるため、水晶振動子10を用いたときよりも周波数の時間的な変化を高精度に測定することができ、測定環境中における化学物質の濃度を高精度に算出することが可能になる。
【0041】
次に、本発明の第2実施形態を図4にしたがって説明する。本実施形態は、水晶振動子10を5個設けるとともに、各水晶振動子10にそれぞれ発振器12を接続し、各発振器12の出力をシグナルスキャナ46を介して周波数カウンタ14に接続し、さらに、温度湿度計測計として、温度センサ48、湿度センサ50、温度計測器52、湿度計測器54、シグナルスキャナを内蔵した信号変換器56、ディジタルマルチメータ58を設け、信号変換器56とディジタルマルチメータ58をそれぞれパーソナルコンピュータ16に接続するようにしたものである。
【0042】
なお、図1と同一のものまたは相当するものには同一符号が附されているとともに、信号処理系とデータ処理系との間は、GP−IBの規格に基づいたデータ転送が行われるようになっている。
【0043】
また、本実施形態において、温度湿度計測計を省略した場合には、簡易な腐食監視装置を構成することになる。
【0044】
各水晶振動子10には、測定対象としての化学物質、例えば、ダイオキシンに特定的に結合する抗体として、結合対象の化学物質が相異なる抗体、例えば、ダイオキシン類の中で毒性の強い、2,3,7,8−TCDD、1,2,3,7,8−PeCDD、1,2,3,4,7,8−HxCDD、2,3,7,8−TCDF、2,3,4,7,8−PeCDFがそれぞれ形成されている。モノクローナル抗体が形成(付着)された水晶振動子10はそれぞれの発振器12によって発振し、この発振に伴う信号がシグナルスキャナ46によって順次切替られ、切替られた信号が順番に周波数カウンタ14に入力され、各水晶振動子10の発振に伴う周波数の時間的な変化が周波数カウンタ14によって順次測定され、測定結果がパーソナルコンピュータ16に出力されるようになっている。この場合、各水晶振動子10の発振による周波数が変化したときには、抗体抗原反応が生じたとして、抗体と反応した化学物質の質量の変化が求められ、化学物質の質量の変化を基に測定環境中における化学物質の濃度が算出されることになる。さらに周波数の変化した水晶振動子10に形成された抗体によって化学物質の種類が特定されることになる。
【0045】
一方、測定環境中における温度は温度センサ48によって検出され、湿度は湿度センサ54によって検出されるようになっている。温度センサ48は、例えば白金測温抵抗体で構成されており、温度センサ48の検出による温度は温度計測器52によって電気信号に変換されるようになっている。湿度センサ54は、例えば高分子フィルムを用いて構成されており、湿度センサ50の検出による湿度は湿度計測器54によって電気信号に変換されるようになっている。温度計測器52と湿度計測器54の出力信号は信号変換器56によって順次切替られ、切替られ信号は電圧に変換され、変換された電圧の信号が順番にディジタルマルチメータ58に入力されるようになっている。そしてディジタルマルチメータ58により測定環境中における温度と湿度が順次計測され、計測値が順次パーソナルコンピュータ16に出力されるようになっている。
【0046】
本実施形態においては、各水晶振動子10に、ダイオキシン類の中で毒性の強い5種類の化学物質にのみそれぞれ反応するモノクローナル抗体をそれぞれ水晶振動子10に形成し、周波数カウンタ14とディジタルマルチメー58の出力信号をパーソナルコンピュータ16で処理することで、2,3,7,8−TCDD、1,2,3,7,8−PeCDD、1,2,3,4,7,8−HxCDD、2,3,7,8−TCDF、2,3,4,7,8−PeCDFそれぞれの濃度を求めることができるとともに、各化学物質の濃度の合計からダイオキシン類総濃度を求めることができる。さらに各化学物質の濃度およびダイオキシン類総濃度を測定環境中における温度と湿度に関連づけてディスプレイ18の画面上に表示することができる。またこれらのデータをパーソナルコンピュータ16に接続されたハードディスク装置(図示省略)に記録することで、このデータを有効に利用することができる。
【0047】
次に、図4に示した有害化学物質監視装置を用いてデータ解析をするに際しては、図5に示すように、まず、各水晶振動子10の出力信号をシグナルスキャナ46を介して周波数カウンタ14に入力するとともに、温度センサ48、湿度センサ50の出力信号を温度計測器52、湿度計測器54、信号変換器56を介してディジタルマルチメータ58に入力し、周波数カウンタ14の出力信号とディジタルマルチメータ58の出力信号をパーソナルコンピュータ16に入力する。パーソナルコンピュータ16は、周波数カウンタ14の出力信号とディジタルマルチメータ58の出力信号を順次入力して各水晶振動子10の発振周波数(f)、測定環境中の温度(T)、測定環境中における湿度(RH)をサンプリングし、サンプリングによって得られた測定値を測定開始時における初期値f10、・・・、fn0、T0、RH0として以降の演算処理に用いる(ステップS1)。次に一定の時間(t)が経過した後に、時間t1経過後における各水晶振動子10の発振周波数、温度センサ48の検出温度、湿度センサ50の検出湿度を順次サンプリングし、サンプリングにより得られた値を時間t1における値f1t・・・fnt、Tt、RHtとする(ステップS2)。このあと時間t1における値と初期値とを比較して各水晶振動子10の周波数の変化量k(f1t−f10)・・・k(fnt−fn0)を求め、この変化量を関数として各ダイオキシン濃度を求める式を設定する(ステップS3)。
【0048】
この後、予め求めておいた各ダイオキシンの毒性換算式に基づいて、ステップS3における数式から各ダイオキシンの濃度、ダイオキシン類の総濃度、毒性換算値を求めるための演算処理を実行する(ステップS4)。この後、演算結果をディスプレイ18の画面上に表示し、その後、任意に設定した時間が経過した後、ステップS2の処理に戻り、再び測定データをサンプリングして測定を継続する。これにより各ダイオキシンの濃度、ダイオキシン類の総濃度、毒性換算値を連続して測定することができる。
【0049】
また、上記の測定結果に基づいて、測定環境中におけるダイオキシン濃度が所定の値、例えば、限界値を超えたときに警報を発生させるに際しては、予めダイオキシン類の濃度に関する限界値を入力し、演算結果と限界値とを比較する演算処理をステップS5からステップS2へのループの間に挿入し、演算結果が限界値を超えたときに、警報器により、ダイオキシン類濃度が限界値を超えた旨を報知することによってダイオキシン監視装置としての機能を向上させることができる。
【0050】
次に、本発明に係る有害化学物質監視装置の第3実施形態を図6にしたがって説明する。本実施形態は、各水晶振動子10として、直径1インチの水晶基板20の片面に直径0.5インチ×厚さ0.5μmの金属を蒸着し、その上に抗体を形成したものを用いるとともに、各発振器12をそれぞれ周波数カウンタ14を介してシグナルスキャナ46に接続し、シグナルスキャナ46の出力をパーソナルコンピュータ18に出力し、温度計測器52の出力を信号変換器60を介してシグナルスキャナ64に出力するとともに湿度計測器54の出力を信号変換器62を介してシグナルスキャナ64に出力し、シグナルスキャナ46によって各周波数カウンタ14の計測値を順番に選択してパーソナルコンピュータ16に出力し、シグナルスキャナ64において信号変換器60、62の出力を順番に選択してパーソナルコンピュータ16に出力するようにしたものであり、他の構成は図4のものと同様である。
【0051】
本実施形態においては、各水晶振動子10を各発振器12によって発振させるとともに、その出力信号を各周波数カウンタ14で計測し、各周波数カウンタ14の計測値を順番にシグナルスキャナ46を介してパーソナルコンピュータ16に転送するようにしているため、1台の周波数カウンタで複数の信号を処理する構成のものに比べて、シグナルスキャナ46によって計測信号にひずみが発生するのを防止することができ、計測値の安定化を計ることができる。さらに温度計測系と湿度計測系が独立になっているため、各計測値の安定化を図ることもできる。また各周波数カウンタ14の出力信号と信号変換器60、62の出力信号の転送規格を同一にすることにより、1台のシグナルスキャナのみで信号の選択を行うことも可能になる。
【0052】
また本実施形態においては、各水晶振動子10には、ダイオキシン類の中で毒性の強い、2,3,7,8−TCDD、1,2,3,7,8−PeCDD、1,2,3,4,7,8−HxCDDと、ダイオキシン類と同様に毒性があるCo−PCB類のうち、3,3’−4,4’,5−PeCB、3,3’,4,4’,5,5’−HxCBのそれぞれにのみ反応するモノクローナル抗体を形成し、有害化学物質類監視装置として構成されている。また各水晶振動子10上に形成する抗体として、ビスフェノールA抗体やDDT抗体を用いることにより、これら化学物質の監視装置として使用することができる。
【0053】
また本実施形態においては、計測されたデータは順次パーソナルコンピュータ16に転送されて処理され、各成分の濃度に関する情報がディスプレイ18の画面上に表示されるとともに、各データがハードディスクに記録されるようになっている。これにより、各水晶振動子10を用いて、測定環境中に存在する有害化学物質の種類とその濃度を同時にかつ連続的に監視することができるとともに、濃度を迅速に算出することができる。
【0054】
次に、本発明に係る有害化学物質監視装置の第4実施形態を図7にしたがって説明する。本実施形態における有害化学物質監視装置は、測定対象となる化学物質の濃度を間接的に測定する装置として、サンプリングポンプ66、サンプラ68、抗体リザーバ70、洗浄液サーバ72、導入ポンプ74、76、78、バルブ80、82、84、86、88、容器90を備えており、容器90内には流体導入口92と流体排出口94とを結ぶ流体流路を形成する反応セル96が収納されているとともに、圧電素子として表面弾性波デバイス34が収納されている。
【0055】
サンプリングポンプ66には、測定対象となる化学物質を含むガス状の検体が導入され、この検体がサンプリングポンプ66の駆動によってサンプラ68に導入され、サンプラ68によってサンプリングされた検体が導入ポンプ74、バルブ80、86を介して流体導入口92から反応セル96内に導入されるようになっている。また検体と反応させるための抗体は抗体リザーバ70に収納されており、抗体リザーバ70に収納された抗体は導入ポンプ76、バルブ82、86を介して流体導入口92から反応セル96内に導入されることになっている。さらに、洗浄液サーバ72内には反応セル96内を洗浄するための洗浄液が収納されており、洗浄液サーバ72内の洗浄液は導入ポンプ78、バルブ84、86を介して流体導入口92から反応セル96内に導入されるようになっている。そして検体と抗体が反応セル96内に導入されるときにはバルブ88が閉じた状態にあり、洗浄液が反応セル96内に導入されるときにはバルブ8が開かれ、反応セル96内を洗浄した洗浄液がバルブ88から反応セル96外に排出されるようになっている。すなわち、サンプリングポンプ66、サンプラ68、抗体リザーバ70、導入ポンプ74、76、バルブ80、82、86は検体およびこの検体中の化学物質に特定的に結合する抗体を導入する導入手段として構成されており、洗浄液サーバ72、導入ポンプ78、バルブ84、86、88は反応セル96中に残留した検体および抗体を反応セル96の流体排出口94から排出する排出手段として構成されている。
【0056】
一方、表面弾性波デバイス34の圧電基板36には固相化抗原(測定対象となる化学物質または化学物質の誘導体であるハプテン)98が形成されており、この固相化抗原98は反応セル96による流体流路中に収納されている。そして表面弾性波デバイス34の出力は発振器12に接続されている。
【0057】
上記構成による有害化学物質監視装置を用いて測定対象となる化学物質を監視するに際しては、まず、バルブ82〜88はすべて閉じた状態で、サンプリングポンプ66を駆動して検体をサンプラ68に一定時間導入する。このとき反応前の発振周波数として表面弾性波デバイス34の発振周波数Fbを測定する。この後、バルブ80、82、86を開き、導入ポンプ74、76の駆動によって反応セル96内に検体および抗体を導入して固相化抗原98上で反応させる。反応セル96内に導入された検体および抗体が固相化抗原98と反応した後、一定時間経過したときには、バルブ80、82を閉じ、代わりにバルブ88を開き、反応セル96内の溶液を流体排出口94、バルブ88から排出する。この後、バルブ84を開くとともに導入ポンプ78を駆動し、洗浄液サーバ72からの洗浄液を反応セル96内に導入して反応セル96内を洗浄し、反応セル96内から洗浄液を排出し、反応後の表面弾性波デバイス34の発振周波数Faを測定し、周波数の時間的な変化として、Fa−Fbを測定する。この測定結果から反応セル96中でハプテンと反応した抗体の質量の変化を求め、この質量の変化を基に反応セル96中における検体中の化学物質の濃度を、予め求めておいた検量線と比較して算出する。この一連のシーケンスを一定時間間隔で繰り返すことにより検体中の化学物質の濃度を連続して測定することができる。
【0058】
前記実施形態においては、圧電素子として、表面弾性波デバイス34を1個用いたものについて述べたが、複数個の表面弾性波デバイス34を用い、各表面弾性波デバイス34に相異なる固相化抗原98を形成することで、複数種の有害化学物質を検出することが可能になる。これにより、表面弾性波デバイス34を用いて、反応セル96中に存在する複数種の有害化学物質の種類と濃度を同時にかつ連続的に監視することができる。なお、複数の表面弾性波デバイス30を用いる場合、各表面弾性波デバイス34を複数の反応セル96にそれぞれ収納するかあるいは単一の反応セル96に表面弾性波デバイス34を順次収納する構成を採用することもできる。また表面弾性波デバイス34の代わりに水晶振動子10を用いることも可能である。
【0059】
次に、本発明に係る監視装置の他の構成を図8ないし図10にしたがって説明する。
【0060】
図8に示す監視装置は、水晶振動子10などの環境センサ(QCM)と、温度センサ48、湿度センサ54など他のセンサをそれぞれ独立させ、センサ自身を被測定部に設置し、各センサの出力をケーブルなどを用いて監視装置の計数回路部100に入力し、計数回路部100においてセンサのアナログ出力をA/D変換し、データ処理部100においてパーソナルコンピュータ16などを用いてデータを処理し、外部送信制御部104を介して外部とデータの処理する形態の構成になっている。この場合、現場にセンサを設置したり、可搬型のデータ取り込み装置として用いることができる。
【0061】
図9は、図8に示す装置を他の装置内部に組み込む場合の構成であって、この装置自身を組み込んだ装置内で独立させて使用する場合と、監視装置としての機能を実現するために、他の処理装置と部分的に回路を共有する場合とがある。後者の場合、計測したデータを接続したコンピュータ側で処理することにより、データ処理部を共有することもできる。
【0062】
図10は、図8および図9に示す監視装置の内部構成を示しており、監視装置は計数回路部100、データ処理部102、外部送信制御部104から構成されている。計数回路部100では、受信回路106により各センサの出力を取り込み、信号選択セレクタ108により複数のセンサの出力から所望のものを選択し、A/D変換器110によりアナログ信号をディジタル信号に変換する。なお、これらの動作は、周期的に行われるものと、データ処理部102からの指示によって実行されるものとがある。
【0063】
データ処理部102は、計数回路部100のデータを一時的に蓄えておくメモリ112と、監視装置内部の制御やデータ送受信などを行う制御部114とから構成されており、外部からの指令情報を解読してデータを送受信したり、計数回路部100を制御する機能を有している。
【0064】
外部送信制御部104は、受信回路および送信回路116、通信制御部118から構成されており、コンピュータなどの処理装置とのデータの送受信を制御するようになっている。
【0065】
図11は、センサ部120、信号変換装置122、データ収集装置124から構成される監視装置と、環境監視システムとしての処理を実行するためのコンピュータなどの情報処理装置(ホストコンピュータ)126との接続方法を示した図である。
【0066】
図11において、(a)は、専用回線方式であって、監視装置のデータ収集装置124とホスト(情報処理装置126)との間を1対1の専用回線128で接続するものであり、専用配線の他に、電話回線や公衆回線などを利用しての接続方向を採用することができる。
【0067】
(b)はLAN方式であって、監視装置のデータ収集装置とホスト(情報処理装置126)との間をLAN130をはじめとするコンピュータ通信手段を利用して接続する方式である。
【0068】
(c)は、無線方式であって、監視装置としてのデータ収集装置124とホストとの間を無線通信手段132を用いて接続する方式であって、無線電話回線などの公衆回線を利用しての接続も含まれる。
【0069】
(d)は、BUS方式であって、監視装置とホストとの間を内部BUS134、内部回路配線などで接続方式である。ここでは、ホストの回路中に監視装置回路を組み込み、内部配線で接続することにより、ホストの機能の一つとして監視装置を組み込む場合も含まれる。
【0070】
次に、監視装置の具体的な適用方法を以下に示す。図12には、有害化学物質を排出する被監視対象装置に監視装置を配置した場合の実施形態である。
【0071】
図12において、基本形では、被監視対象装置136内にデータ収集装置として環境監視装置一式を包含し、データを装置内のメモリに蓄え、装置自身でデータ処理を実行して、有害化学物質の排出濃度が一定値を超えたときにアラームを発生させて異常を知らせることができる。さらに、このアラームによって装置自身の運転をコントロールすることにより、装置からの排出量を一定値以下に抑制することも可能になる。
【0072】
スタンドアロン形では、被監視対象装置138内に環境監視装置一式を包含し、データを環境監視装置内のメモリに蓄え、必要なときに、外部に情報端末を接続してデータを収集することにより、有害化学物質を監視することができる。
【0073】
列盤形では、被監視対象装置140内に環境監視装置一式を包含し、データをオンラインで情報処理装置に伝送して監視する。さらに、複数の監視装置間をオンラインで結び、複数の被監視対象データを一つの情報処理装置で処理することも可能である。
【0074】
なお、スタンドアロン形や列盤形において、各装置に実装するのは環境監視装置一式ではなく、図10における要素のうち(1)センサ部のみ、(2)センサ部分と計数回路部100、(3)センサ部、計数回路部100およびデータ処理部102、(4)センサ部、計数回路部100、データ処理部102および外部送信制御部104のいずれかを設置し、他の部分は外付けあるいは一括で情報処理装置に含むことによっても監視可能である。
【0075】
図13は、被監視対象装置の1機能として込み込んだ場合の実施形態である。ここでは、環境監視装置142はそれ自身で独立しておらず、被監視装置を構成する装置の一部分(装置ユニット)として存在している。センサからの情報は被監視対象装置の制御に使用されているMPU、MM(メインメモリ)、記録装置でデータを処理し蓄積する。さらに、アラーム発生処理も被監視対象装置の一部分の機能として実行する。
【0076】
図14は、環境監視装置を被監視対象とは独立した形で使用するときの実施形態であって、測定器144としての使用が考えられる。この場合、図10に示す機能を一体化あるいはいくつかのブロックに分けたユニットとしてこれらを接続し測定器144として使用する。
【0077】
測定器144を単独の測定装置として使用する場合は、測定データに基づいて直接アラームを発したり、他の装置を制御したりすることはない。しかし、図4に示す監視装置をコンピュータの外部接続ユニットあるいは拡張ボードとしてデータを直接外部信号線や内部BUSを経由し、ホストに伝える装置として構成した場合は、データを受けたホストがアラームを発したり、装置を制御したりすることは可能である。
【0078】
図15は、被監視装置が設置された工場敷地内のような特定区域内の環境監視を行うシステムの構成図である。
【0079】
図15において、センサ部は、工場敷地内の各設備の設置場所D11(i,t)〜D23(i,t)に分散配置することにより、各設備ごとの環境に対する影響と監視区域内全体の状況を同時に把握することができる。この結果、監視区域全体の有害化学物質の分布をデータとして収集できる。
【0080】
図16は、複数の監視エリアを集中監視するためのシステムを示す構成図である。
【0081】
図16において、被監視エリアは、図15に示したブロックを単位とし、複数の監視ブロックのデータをLANやBUSなどの通信手段を経由して集中監視装置に伝送し、システム全体の有害化学物質の排出状況を監視して異常検出を行う。さらに、得られた情報に基づいて、システム内の有害化学物質の発生を予測し、システムからの排出量を未然に抑制することも可能になる。具体的には、大規模な生産設備や処理施設で有害化学物質の発生源が各所に分散しなおかつ全体として一つのシステムを形成するような場合に有効である。
【0082】
図17は、複数の監視エリアを無線を用いて集中監視するためのシステムを示す構成図である。図17におけるシステムにおいては、図15においてシステム間を有線で接続することが困難あるいは不経済である監視エリアを無線で接続し、システム全体を監視することが有効である場合に採用するシステムである。具体的には、廃棄物処理設備など遠隔地にある設備を含む大規模システムで有効に機能することができる。ここで、無線接続として、無線による電話回線も利用できる。さらに、データの送信は常時行わず、必要なときにのみ接続することにより、無線リソースの占有を回避する方法も可能である。
【0083】
図18は、データベースを用いた環境監視・排出量予測システムの構成図である。図18におけるシステムにおいては、図16および図17において、データの蓄積や解析、データの参照を行うことにより、有害化学物質の排出予測を行うシステムである。この場合データベースには、環境条件と環境を欠く設備の運転状況に関わる情報を蓄積し、各システムから時々刻々得られるデータを解析し、システムからの有害化学物質の排出量を予測し、必要な警告を発する。さらに、自動的に排出量の抑制を実施する制御モードに遷移する機能を有し、有害化学物質の異常排出を未然に防止することも可能になる。
【0084】
【発明の効果】
以上説明したように、本発明によれば、測定環境中に存在する有害化学物質の種類と濃度を同時にかつ迅速に監視することができる。
【図面の簡単な説明】
【図1】本発明に係る有害化学物質監視装置の第1実施形態を示すブロック構成図である。
【図2】有害化学物質監視装置に用いるセンサの構成であって、(a)は正面図、(b)は上面図である。
【図3】圧電素子として表面弾性波デバイスを用いたときの構成図である。
【図4】本発明に係る有害化学物質監視装置の第2実施形態をブロック構成図である。
【図5】図4に示す装置のデータ解析方法を説明するためのフローチャートである。
【図6】本発明に係る有害化学物質監視装置の第3実施形態を示すブロック構成図である。
【図7】間接測定法を採用した有害化学物質監視装置のブロック構成図である。
【図8】センサ部の構成図である。
【図9】他のセンサ部の構成を示す構成図である。
【図10】センサ部の内部構成を示す構成図である。
【図11】センサ部と情報処理装置との接続方法を示す構成図である。
【図12】有害化学物質監視システムの基本構成を示す構成図である。
【図13】有害化学物質監視システムの基本構成を示す他の構成図である。
【図14】有害化学物質監視システムの基本構成を示す他の構成図である。
【図15】域内の有害化学物質を監視するシステムを示す構成図である。
【図16】複数の監視エリアを集中監視するためのシステムを示す構成図である。
【図17】複数の監視エリアを無線を用いて集中監視するためのシステムを示す構成図である。
【図18】データベースを用いた有害化学物質監視・排出量予測システムの構成図である。
【符号の説明】
10 水晶振動子
12 発振器
14 周波数カウンタ
16 パーソナルコンピュータ
18 ディスプレイ
34 表面弾性波デバイス
48 温度センサ
50 湿度センサ
66 サンプリングポンプ
68 サンプラ
70 抗体リザーバ
72 洗浄液リザーバ
74、76、78 導入ポンプ
80、82、84、86、88 バルブ
96 反応セル
98 固相化抗原
Claims (3)
- 測定対象となる化学物質または前記化学物質の誘導体であるハプテンが付着される圧電素子と、前記圧電素子に電気信号を印加して前記圧電素子を発振させる発振器と、流体導入口と流体排出口とを結ぶ流体流路を形成しこの流体流路中に前記圧電素子に付着された化学物質またはハプテンを収納する反応セルと、前記流体導入口から前記反応セル中に測定対象となる化学物質を含むガス状の検体およびこの検体中の化学物質に特定的に結合する抗体を導入する導入手段と、前記反応セルに導入された検体および抗体のうち前記圧電素子に付着された化学物質またはハプテンとの反応に伴って前記反応セル中に残留した前記圧電素子に付着していない検体および抗体を前記反応セルの流体排出口から排出する排出手段と、前記発振器により発振した圧電素子の出力信号を取り込み、前記反応セル中に検体および抗体が導入される前と前記反応セル中に残留した前記圧電素子に付着していない検体および抗体が前記反応セルから排出された後における出力信号の周波数の時間的な変化を測定する周波数測定器と、前記周波数測定器の測定結果から前記反応セル中で前記圧電素子に付着された前記化学物質または前記ハプテンと反応した抗体の質量の変化を求め、この質量の変化を基に前記反応セル中における前記検体中の化学物質の濃度を算出する濃度演算器とを備えてなる有害化学物質監視装置。
- 測定対象となる化学物質または前記化学物質の誘導体であるハプテンとして相異なるものがそれぞれ付着される複数の圧電素子と、前記各圧電素子に電気信号を印加して前記圧電素子を発振させる発振器と、流体導入口と流体排出口とを結ぶ流体流路を形成しこの流体流路中に前記各圧電素子に付着された化学物質またはハプテンをそれぞれ収納する複数の反応セルと、前記各流体導入口から前記各反応セル中に測定対象となる化学物質を含むガス状の検体およびこの検体中の化学物質に特定的に結合する抗体を導入する導入手段と、前記各反応セルに導入された検体および抗体のうち前記各圧電素子に付着された化学物質またはハプテンとの反応に伴って前記各反応セル中に残留した前記圧電素子に付着していない検体および抗体を前記各反応セルの流体排出口から排出する排出手段と、前記発振器により発振した各圧電素子の出力信号を取り込み、前記各反応セル中に検体および抗体が導入される前と前記各反応セル中に残留した前記圧電素子に付着していない検体および抗体が前記各反応セルから排出された後における各出力信号の周波数の時間的な変化を測定する周波数測定器と、前記周波数測定器の各測定結果から前記各反応セル中で前記圧電素子に付着された前記化学物質または前記ハプテンと反応した抗体の質量の変化を求め、各抗体の質量の変化を基に前記各反応セル中における前記各検体中の化学物質の濃度を算出する濃度演算器とを備えてなる有害化学物質監視装置。
- 圧電素子の表面に測定対象となる化学物質または前記化学物質の誘導体であるハプテンを形成し、流体流路を形成する反応セルの流体流路中に前記圧電素子に形成された化学物質またはハプテンを収納し、前記圧電素子に発振器から電気信号を印加し、電気信号の印加により前記圧電素子が発振しているときに、前記反応セル中に測定対象となる化学物質を含むガス状の検体およびこの検体中の化学物質に特定的に結合する抗体を導入して前記圧電素子に付着された化学物質またはハプテンと一定時間反応させた後、前記反応セル中に残留した前記圧電素子に付着していない検体および抗体を前記反応セルから排出し、かつ前記圧電素子の出力信号を監視して前記反応セル中に検体および抗体が導入される前と前記反応セル中に残留した前記圧電素子に付着していない検体および抗体が前記反応セルから排出された後における出力信号の周波数の時間的な変化を測定し、この測定結果から前記反応セル中で前記圧電素子に付着された前記化学物質または前記ハプテンと反応した抗体の質量の変化を算出し、この質量の変化を基に前記反応セル中における前記検体中の化学物質の濃度を算出する有害化学物質監視方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000238543A JP3757329B2 (ja) | 2000-08-07 | 2000-08-07 | 有害化学物質監視装置およびその方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000238543A JP3757329B2 (ja) | 2000-08-07 | 2000-08-07 | 有害化学物質監視装置およびその方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002048797A JP2002048797A (ja) | 2002-02-15 |
JP3757329B2 true JP3757329B2 (ja) | 2006-03-22 |
Family
ID=18730230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000238543A Expired - Fee Related JP3757329B2 (ja) | 2000-08-07 | 2000-08-07 | 有害化学物質監視装置およびその方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3757329B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160091142A (ko) * | 2015-01-23 | 2016-08-02 | 전자부품연구원 | 미세입자 및 가스입자 측정 시스템 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004125402A (ja) * | 2002-09-30 | 2004-04-22 | National Institute Of Advanced Industrial & Technology | 微量物質の小型検出装置 |
JP3920223B2 (ja) * | 2003-01-07 | 2007-05-30 | 日本碍子株式会社 | 反応性チップと、このチップを用いた標的物質の結合検出方法 |
US20050148065A1 (en) | 2003-12-30 | 2005-07-07 | Intel Corporation | Biosensor utilizing a resonator having a functionalized surface |
JP4242335B2 (ja) * | 2004-12-06 | 2009-03-25 | 日本電信電話株式会社 | 振動起動無線装置,構造物検査システム及び構造物検査方法 |
JP4226003B2 (ja) | 2005-12-28 | 2009-02-18 | 日本電波工業株式会社 | 感知装置 |
JP4439500B2 (ja) * | 2005-12-28 | 2010-03-24 | 日本電波工業株式会社 | 感知センサ及び濃度測定器 |
JP4973441B2 (ja) * | 2007-10-19 | 2012-07-11 | 富士通株式会社 | 雰囲気分析装置及び雰囲気分析方法 |
JP5076867B2 (ja) * | 2007-12-20 | 2012-11-21 | 富士通株式会社 | 雰囲気分析用センサユニット、雰囲気分析装置、及び、雰囲気分析方法 |
KR101468593B1 (ko) * | 2008-08-14 | 2014-12-04 | 삼성전자주식회사 | 기체 제거 유닛을 포함하는 파동 센서 장치 및 액체 시료 중의 표적 물질을 검출하는 방법 |
JP5505021B2 (ja) | 2010-03-26 | 2014-05-28 | 富士通株式会社 | 物質検出方法及び物質検出装置 |
JP6099866B2 (ja) * | 2011-12-28 | 2017-03-22 | 富士通株式会社 | 物品輸送システム |
WO2013147217A1 (ja) * | 2012-03-30 | 2013-10-03 | 国立大学法人九州大学 | センサ、検出方法、検出システム、及び、検出装置 |
JP7239403B2 (ja) * | 2019-06-27 | 2023-03-14 | 日本無線株式会社 | 弾性表面波センサの濃度検出装置及び濃度検出プログラム |
-
2000
- 2000-08-07 JP JP2000238543A patent/JP3757329B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160091142A (ko) * | 2015-01-23 | 2016-08-02 | 전자부품연구원 | 미세입자 및 가스입자 측정 시스템 |
KR102002665B1 (ko) | 2015-01-23 | 2019-10-01 | 전자부품연구원 | 미세입자 및 가스입자 측정 시스템 |
Also Published As
Publication number | Publication date |
---|---|
JP2002048797A (ja) | 2002-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3757329B2 (ja) | 有害化学物質監視装置およびその方法 | |
EP2630479B1 (en) | Apparatus and method for measuring binding kinetics and concentration with a resonating sensor | |
JP3643521B2 (ja) | 腐食環境監視装置 | |
US6955787B1 (en) | Integrated biological and chemical sensors | |
US5992215A (en) | Surface acoustic wave mercury vapor sensors | |
US7322243B2 (en) | Acoustic wave etch rate sensor system | |
Cai et al. | Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors | |
JP2008502911A (ja) | センサおよび較正要素のアレイを備えた分析機器 | |
US9395334B2 (en) | Atmospheric environment measuring apparatus, atmospheric environment measuring method and atmospheric environment measuring system | |
EP1832862A1 (en) | Sensing apparatus | |
JP2004340766A (ja) | 化学物質検出装置 | |
WO2006084225A2 (en) | Analytical sensor system for field use | |
JP2003307481A (ja) | マルチチャネルバイオセンサ | |
CA2271179A1 (en) | Process for monitoring and detecting small molecule - biomolecule interactions | |
JP2003315254A (ja) | 腐食環境監視装置 | |
CA2373144C (en) | High frequency measuring circuit with inherent noise reduction for resonating chemical sensors | |
Galipeau et al. | Theory, design and operation of a surface acoustic wave hydrogen sulfide microsensor | |
Zielinski et al. | Measuring aerosol phase changes and hygroscopicity with a microresonator mass sensor | |
US7331232B2 (en) | Measurement method and biosensor apparatus using resonator | |
Suzuki et al. | A quartz crystal microbalance based portable gas sensing platform for on-demand human breath monitoring | |
JP2723209B2 (ja) | 混合ガス判別方法 | |
JP2006300742A (ja) | 発振周波数調整方式を利用した化学物質検出装置 | |
JP2003315235A (ja) | 分析方法 | |
JP2005315830A (ja) | 分析装置 | |
JPH07127394A (ja) | 吸排気装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051003 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100113 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100113 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110113 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110113 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120113 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |