JP3756687B2 - Method for removing and fixing arsenic from arsenic-containing solutions - Google Patents
Method for removing and fixing arsenic from arsenic-containing solutions Download PDFInfo
- Publication number
- JP3756687B2 JP3756687B2 JP2244999A JP2244999A JP3756687B2 JP 3756687 B2 JP3756687 B2 JP 3756687B2 JP 2244999 A JP2244999 A JP 2244999A JP 2244999 A JP2244999 A JP 2244999A JP 3756687 B2 JP3756687 B2 JP 3756687B2
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- solution
- iron
- copper
- containing solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CCC(C)CC*=N Chemical compound CCC(C)CC*=N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Removal Of Specific Substances (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、亜鉛、銅等のベースメタルと砒素とを含有する溶液、特に湿式亜鉛製錬の亜鉛浸出残渣処理工程で得られる砒素含有溶液からの砒素の除去および固定法に関する。
【0002】
【従来の技術】
従来から、亜鉛、銅等のベースメタルと砒素とを含有する溶液から、砒素を除去および固定する方法の一つとして、図4に示されるように、前記砒素含有溶液に亜鉛末または硫化水素等を添加し、液中の銅等を銅残渣として分離回収した後、鉄(III)塩を加え、炭カルまたは消石灰で鉄砒素化合物として沈澱除去する方法(A法)が知られている。
【0003】
また、A.J.MonhemiusとP.M.Swashが、1996年に開催された”Second lntemational Symposium on Iron Control”の中で、図5に示されるように、砒素含有溶液をあらかじめ銅等を分離することなくオートクレーブ内に投入し、鉄塩存在下で150〜200℃まで昇温して結晶性の鉄砒素化合物(Type2またはスコロダイト)を沈澱させ、亜鉛、銅等と分離する方法(B法)を発表している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記A法では、得られた鉄砒素化合物が安定でなくさらに他の固定処理が必要であるとともに発生する澱物量も膨大となり、その処理に多大な費用が生じるだけでなく、あらかじめ回収された銅残渣中に砒素が多量に混入し、銅製錬工程に悪影響を与える問題があった。
【0005】
また、上記B法については、銅等が含有されたままオートクレーブ内で処理するため、得られた結晶性の鉄砒素化合物であるType2,またはスコロダイト中に銅が多量に混入し、有価金属のロスを招く結果となる問題があった。
【0006】
本発明は、上述の背景のもとでなされたものであり、銅等の有価金属をロスすることなく、砒素を結晶性の安定なスコロダイトとして除去・固定する方法を提供するものである。
【0007】
【課題を解決するための手段】
上述の課題を解決する手段として第1の発明は、
銅及び/又は亜鉛を含む非鉄金属成分と砒素とを含有する砒素含有溶液からの砒素の除去および固定方法において、
前記砒素含有溶液に鉄(II)溶液及び/又は鉄(III)溶液を加えて120℃以上で反応させ、鉄・砒素化合物として安定な結晶性を持つスコロダイトを生成させ、前記砒素含有溶液から固液分離して銅を含む非鉄金属成分を含有するスコロダイトを回収する第1工程と、
第1工程で得られた銅を含む非鉄金属成分を含有するスコロダイトに水を加えてリパルプし、スコロダイトに含有する銅を含む非鉄金属成分を液中に溶かし出してスコロダイトから分離する第2工程とを有することを特徴とする砒素含有溶液からの砒素の除去および固定方法である。
【0008】
第2の発明は、
第1の発明にかかる砒素含有溶液からの砒素の除去および固定方法において、前記第1工程に加える鉄(II)溶液及び/又は鉄(III)溶液は、該溶液を前記砒素含有溶液に加えた後の溶液におけるFe/Asモル比が1.5〜2.0となるように加えることを特徴とする砒素含有溶液からの砒素の除去および固定方法である。
【0009】
第3の発明は、
第1ないし第3の発明かかる砒素含有溶液からの砒素の除去および固定方法において、
前記第1工程において砒素含有溶液に鉄(II)溶液及び/又は鉄(III)溶液を加えて反応させる場合の反応条件は、反応温度が150〜175℃、酸素分圧が0.5kg/cm2 、以上、反応時間が30分以上であることを特徴とする砒素含有溶液からの砒素の除去および固定方法である。
【0010】
第4の発明は、
第1ないし第3のいずれかの発明にかかる砒素含有溶液からの砒素の除去および固定方法において、
前記第2工程のスコロダイトのリパルプ操作は、リパルプ後のパルプ濃度が200g/L以下になるようにし、リパルプ時間を30分以上とすることを特徴とする請求項1、2記載の砒素含有溶液からの砒素の除去および固定方法である。
【0011】
第5の発明は、第1ないし第4のいずれかの発明にかかる砒素含有溶液からの砒素の除去および固定方法において、前記砒素含有溶液が湿式亜鉛製錬の亜鉛浸出残渣のSO2還元浸出液を炭酸カルシウムにより中和し、石膏を除いた中和液に亜鉛末を加え、砒化銅パルプを生成した後、該砒化銅パルプを希薄な硫酸溶液で溶解した溶液であることを特徴とする砒素含有溶液からの砒素の除去および固定方法である。
【0012】
第6の発明は、
第1ないし第5のいずれかの発明にかかる砒素含有溶液からの砒素の除去および固定方法において、
前記第1工程のFe/Asモル比調整用の鉄源が湿式亜鉛製錬の亜鉛浸出残渣のSO2 還元浸出液を炭酸カルシウムにより中和し、石膏を除いた中和液に亜鉛末を加え、砒化銅パルプを除いた溶液を再度,炭酸カルシウムにより中和して石膏を除いた硫酸鉄溶液であることを特徴とする砒素含有溶液からの砒素の除去および固定方法である。
【0013】
【発明の実施の形態】
図1は本発明の一実施の形態にかかる砒素含有溶液からの砒素の除去および固定方法の概略構成を示すフロー図、図2は図1のフロー図から本発明の要部のみを抜き出して示した図である。以下、図1及び図2を参照にしながら本発明の一実施の形態にかかる砒素含有溶液からの砒素の除去および固定方法を説明する。なお、この実施の形態は、砒素含有溶液として、湿式亜鉛製錬における亜鉛浸出残渣処理工程で得られる砒化銅パルプに亜鉛電解工程からの電解尾液と水とを加えて得られる溶液を用いる例である。
【0014】
この実施の形態の方法は、(1)砒素含有溶液を得る工程、(2)砒素含有溶液に鉄(II)溶液及び/又は鉄(III)溶液を反応させて銅を含有するスコロダイトを析出させる工程(第1工程)、(3)銅を含有するスコロダイトをリパルプし、スコロダイトから銅等分離する工程(第2工程)とを有する。なお、ここで、スコロダイト(scorodite)とは、一般式、FeAsO4 ・2H2 Oで表される斜方晶系鉱物の一種であり、一般的には、砒素鉱の少量成分として存在するものである。
【0015】
(1)砒素含有溶液を得る工程
砒素含有溶液は、図1に示される湿式亜鉛製錬における亜鉛浸出残渣処理工程で得られる砒化銅パルプに電解尾液と水とを加えて得られる。すなわち、図1に示されるように、湿式亜鉛製錬における亜鉛浸出残渣処理は、焼鉱に戻り硫酸を加えて亜鉛浸出を行った後の亜鉛浸出残渣に、まず、SO2 と電解尾液とを加えてSO2 浸出を行う。このSO2 浸出処理によって、亜鉛浸出残渣から、Pb、Au、Ag等が残渣として取り除かれる。
【0016】
次に、SO2 浸出によってPb、Au、Ag等が取り除かれた液に、炭酸カルシウム(CaCO3 )を加えて第一段中和を行う。これにより、石膏が析出して遊離の硫酸が取り除かれる。
【0017】
次に1段中和がなされた液に亜鉛粉末を加えて脱砒素処理を行う。この脱砒素処理の際に、砒化銅パルプが析出される。本発明は、この砒化銅パルプに含まれる砒素を後述する第1及び第2工程によって除去・固定するものである。なお、脱砒素処理が施された後の液には炭酸カルシウムが加えられて2段中和がなされ、石膏、Ga、In等が取り除かれた後、O2 及び蒸気が加えられて脱鉄処理がなされてヘマタイトとして取り除かれ、残りの液は、最初の浸出液に戻されて同様の処理がなされる。
【0018】
(2)第1工程
この工程は、砒素含有溶液に鉄(II)溶液及び/又は鉄(III)溶液を反応させて銅を含有するスコロダイトを得る工程である。ここで用いる砒素含有溶液は、上述の亜鉛浸出残渣処理工程における脱砒素工程によって得られた砒化銅パルプに、希薄な硫酸溶液を加えて、パルプ濃度が100g/L程度(50g/L〜200g/Lであれば良好)になるように調製した後、酸素を加えながら該パルプを溶解した硫酸酸性の溶液である。なお、パルプ濃度は低い方が反応性が良いが、オートクレーブへの充填効率が低下するので50g/Lを下まわると経済的にはマイナスとなる。逆に200g/Lを超えるとTyp2ができる可能性が高くなる。また、この場合の稀薄な硫酸溶液は電解尾液に水を加えて得たものを用いる。この砒素含有溶液の主な成分は、銅が40〜80g/L、亜鉛が5〜25g/L、砒素が5〜25g/L、鉄が1〜2g/L、硫酸が2〜3g/Lである。
【0019】
上記砒素含有溶液に反応させる鉄(II)溶液及び/又は鉄(III)溶液としては、上記亜鉛浸出残渣処理工程における2段中和によって石膏Ga、In等が取り除かれた後の液の一部が用いられる。鉄溶液は、該溶液を砒素含有溶液に加えた後の溶液におけるFe/Asモル比が1.5〜2.0となるように加えるのが望ましい。Fe/Asモル比が1.5より低くても、2.0より高くても、生成する鉄砒素化合物の結晶性が著しく低下し、砒素が溶出しやすくなる。次いで、こうして得られた溶液をオートクレーブ内に封入し、所定温度まで昇温する。
【0020】
昇温後、この温度を維持しながら酸素分圧PO2 =0.5kg/cm2 以上、好ましくは2〜3kg/cm2 となるように調整して1時間以上反応させる。反応温度は安定な鉄砒素化合物であるスコロダイトが生成する150℃〜175℃が好ましいが、更に好ましくは160〜170℃である。150℃より低いと結晶性の鉄砒素化合物が生成せず、アモルファス状となり安定性が悪く、砒素が溶出しやすい。逆に175℃を超えると結晶性のTyPe2という鉄砒素化合物、すなわち、化学式では、一般に、Fe3 (AsO4 )(OH)x (SO4 )y(x+y=27)で表される化合物が生成し、混入した銅等の有価金属を第2工程の水洗浄工程(リパルプ工程)で分離回収できなくなる。なお、酸素についてはあらかじめ鉄が3価であり、かつ溶液中に存在する砒素が5価の場合には、特に必要としない。
【0021】
反応終了後、オートクレーブから反応生成物を抜き出し、シックナー等で固液分離する。溶液中の砒素は大部分除去されて数百mg/L程度まで落ちるが、銅、亜鉛等のベースメタルはほとんど落ちずに溶液中に残る。一方、澱物(析出物)の結晶性鉄砒素化合物のスコロダイトには銅や亜鉛等が硫酸塩の形で混入している。銅を例にとるとこの分の回収を行わないと全体の約10%のロスとなる。またこのままの状態では、砒素の溶出はないが、有価金属である銅が析出物中に混入してしまう。そこで、次の第2工程によって。銅等とスコロダイトとを分離して銅等を回収する。
【0022】
(3)第2工程
この工程は、銅を含有するスコロダイトをリパルプし、スコロダイトから銅等を分離して回収可能にする工程である。リパルプ条件はパルプ濃度で好ましくは200g/L以下、さらに好ましくは100g/Lとなるように水を加え、温度40℃以上、さらに好ましくは90℃以上で通常撹拌、より好ましくはタービン羽根等で剪断力を与えながらの撹拌を行う。撹拌後、遠心分離器等の固液分離機に挿入し、銅等を溶解した脱砒素溶液と、洗浄されたスコロダイトの沈澱とに分離する。こうして得られたスコロダイトの沈澱物は、極めて安定したものであり、仮に野外に長期間放置したとしてもAsが溶出したりするようなことはない。また、得られた脱砒素溶液には、亜鉛粉末が加えられて脱銅処理が施され、銅が回収された後、上述の亜鉛浸出残渣処理工程における脱鉄処理後の液とともに浸出液に加えられ、同様の処理が繰り返される。
【0023】
以下、上述の実施の形態の具体例として実施例を掲げる。
(実施例1)
湿式亜鉛製錬の亜鉛浸出残渣処理工程の砒化銅パルプに電解尾液と水を加え、さらに酸素を加えて溶解することにより硫酸酸性の砒素含有溶液を得た。この砒素含有溶液の主な成分は銅60g/L、亜鉛が15g/L、砒素が15g/L、鉄が1g/L、硫酸が3g/Lであった。
【0024】
この砒素含有溶液6LにFe/As(モル比)で1.8となるように、Feが40g/Lの鉄含有溶液を3L加え、オートクレーブ内に封入し、165℃まで昇温した。昇温後、この温度を維持しながら酸素分圧PO2 =3kg/cm2 となるように調整して2時間反応させた。
【0025】
反応終了後、オートクレープから反応生成物を抜き出し、圧力濾過器で固液分離した。澱物のスコロダイトにパルプ濃度で100g/Lとなるように水を加え、温度60℃に液温を保ち、30分間撹拌した。撹拌後、圧力濾過器にて固液分離した。濾液はオートクレーブの濾液と混合して銅、砒素濃度を測定し、砒素の固定率、銅の回収率を算出した。結果を図3に表にして示した。さらに、この混合した濾液に亜鉛末をEh=0mVとなるまで加え、濾液から銅を沈澱させ回収した。
【0026】
(比較例1)
従来法(A法)のフローに従い操作した。すなわち前記砒素含有溶液6Lを液温70℃に保ち、亜鉛末をEh=0mVとなるまで加え、銅を沈澱させ回収した。この銅中の砒素を測定した結果を図3の表に示す。更にこの濾液に40g/Lの硫酸鉄(III)を3L加え、消石灰でpHを4.0まで上げて濾過した。濾液の砒素濃度を測定し、砒素の固定率、銅の回収率を算出した。結果を図3の表に実施例1と併せて示した。
【0027】
(比較例2)
従来法(B法)のフローに従い操作した。前記砒素含有溶液6LにFe/As(モル比)で1.8となるようにFeが40g/Lの鉄含有溶液を3L加え、オートクレーブ内に封入し、200℃まで昇温した。昇温後、この温度を維持しながら酸素分圧PO2 =3kg/cm2 となるように調整して2時間反応させた。反応終了後、オートクレーブから反応生成物を抜き出し、加圧濾過器で固液分離した。澱物のType2にパルプ濃度で100g/Lとなるように水を加え、温度60℃に液温を保ち、30分間撹拌した。撹拌後、加圧濾過器にて固液分離した。濃液はオートクレーブの濾液と混合して銅、砒素濃度を測定し、砒素の固定率、銅の回収率を算出した。結果を図3の表に実施例1、比較例1と併せて示した。
【0028】
また上記B法で得られた鉄砒素化合物の溶出試験を行い、安定性を確認した結果および澱物量の比(本発明法のスコロダイトの澱物容量を1とした場合)も図3の表に併せて示した。
【0029】 本発明の方法とA法と比較すると、有価金属回収率ではほぼ同等であるが、A法は砒素固定率が80%と低い上、固定された鉄砒素化合物の安定性がかなり落ちる。逆にB法は、砒素固定率や固定された鉄砒素化合物の安定性については本発明の方法と同等であるが、Cu等の有価金属が鉄砒素化合物に入り込んでしまい、回収率が低い。また、砒素が回収された銅に混入してしまうという欠点もある。
【0030】
【発明の効果】
以上詳述したように、本発明は、砒素含有溶液に鉄(II)溶液及び/又は鉄(III)溶液を加えて反応させてスコロダイトを生成させ、固液分離して銅を含む非鉄金属成分を含有するスコロダイトを回収する第1工程と、第1工程で得られた銅を含む非鉄金属成分を含有するスコロダイトに水を加えてリパルプし、スコロダイトに含有する銅を含む非鉄金属成分を液中に溶かし出してスコロダイトから分離する第2工程とを有することを特徴とする。これにより、銅等の有価金属をロスすることなく、砒素を結晶性の安定なスコロダイトとして除去・固定することを可能にしている。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかる砒素含有溶液からの砒素の除去および固定方法の概略構成を示すフロー図である。
【図2】図1のフロー図から本発明の要部のみを抜き出して示した図である。
【図3】実施例及び比較例の方法による有価金属の回収率、砒素固定率、鉄砒素化合物の安定性及び残渣容量比の測定値を示す表である。
【図4】従来の方法(A法)のフロー図である。
【図5】従来の方法(B法)のフロー図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing and fixing arsenic from a solution containing a base metal such as zinc or copper and arsenic, in particular, from an arsenic-containing solution obtained in a zinc leaching residue treatment step of wet zinc smelting.
[0002]
[Prior art]
Conventionally, as one method for removing and fixing arsenic from a solution containing base metal such as zinc or copper and arsenic, as shown in FIG. 4, the arsenic-containing solution contains zinc dust or hydrogen sulfide. Is added, and after separating and recovering copper or the like in the liquid as a copper residue, an iron (III) salt is added, and precipitation removal as an iron arsenic compound with charcoal cal or slaked lime is known (Method A).
[0003]
A. J. et al. Monhemius and P.M. M.M. As shown in FIG. 5, Swash puts an arsenic-containing solution into an autoclave without separating copper or the like in advance in the “Second lnd Symposium on Iron Control” held in 1996. A method (Method B) in which the temperature is raised to 150 to 200 ° C. to precipitate a crystalline iron arsenic compound (
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned method A, the obtained iron arsenic compound is not stable and requires another fixing treatment, and the amount of starch generated is enormous, resulting in a great expense for the treatment and not being recovered in advance. A large amount of arsenic was mixed in the copper residue, which adversely affected the copper smelting process.
[0005]
In addition, since the above method B is processed in an autoclave while containing copper or the like, a large amount of copper is mixed in the obtained crystalline iron
[0006]
The present invention has been made under the above-described background, and provides a method for removing and fixing arsenic as a stable crystalline scorodite without losing valuable metals such as copper.
[0007]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the first invention
In a method for removing and fixing arsenic from an arsenic-containing solution containing a non-ferrous metal component containing copper and / or zinc and arsenic,
An iron (II) solution and / or an iron (III) solution is added to the arsenic-containing solution and reacted at 120 ° C. or higher to produce scorodite having stable crystallinity as an iron / arsenic compound, and the arsenic-containing solution is solidified. A first step of recovering scorodite containing a non-ferrous metal component containing copper by liquid separation;
A second step in which water is added to the scorodite containing the nonferrous metal component containing copper obtained in the first step and repulped, and the nonferrous metal component containing copper contained in the scorodite is dissolved in the solution and separated from the scorodite; A method for removing and fixing arsenic from an arsenic-containing solution characterized by comprising:
[0008]
The second invention is
In the method for removing and fixing arsenic from an arsenic-containing solution according to the first invention, the iron (II) solution and / or iron (III) solution added to the first step is added to the arsenic-containing solution. A method for removing and fixing arsenic from an arsenic-containing solution, wherein the Fe / As molar ratio in the subsequent solution is added to be 1.5 to 2.0.
[0009]
The third invention is
In the method for removing and fixing arsenic from arsenic-containing solutions according to the first to third inventions,
In the first step, an iron (II) solution and / or an iron (III) solution is added to the arsenic-containing solution for reaction, and the reaction temperature is 150 to 175 ° C. and the oxygen partial pressure is 0.5 kg / cm. 2. A method for removing and fixing arsenic from an arsenic-containing solution, wherein the reaction time is 30 minutes or more.
[0010]
The fourth invention is:
In the method for removing and fixing arsenic from an arsenic-containing solution according to any one of the first to third inventions,
The repulping operation of the scorodite in the second step is such that the pulp concentration after repulping is 200 g / L or less, and the repulping time is 30 minutes or more. This is a method for removing and fixing arsenic.
[0011]
According to a fifth aspect of the present invention, in the method for removing and fixing arsenic from an arsenic-containing solution according to any one of the first to fourth aspects, the arsenic-containing solution converts an SO2 reductive leachate of a zinc leaching residue of wet zinc smelting to carbonic acid. An arsenic-containing solution characterized in that after neutralizing with calcium and adding zinc powder to a neutralized solution excluding gypsum to produce copper arsenide pulp, the copper arsenide pulp is dissolved in a dilute sulfuric acid solution. Is a method for removing and fixing arsenic from water.
[0012]
The sixth invention is:
In the method for removing and fixing arsenic from an arsenic-containing solution according to any one of the first to fifth inventions,
The iron source for adjusting the Fe / As molar ratio in the first step neutralizes the SO 2 reduction leachate of the zinc leaching residue of wet zinc smelting with calcium carbonate, and adds zinc dust to the neutralized solution excluding gypsum, This is a method for removing and fixing arsenic from an arsenic-containing solution, characterized in that it is an iron sulfate solution in which the solution from which copper arsenide pulp has been removed is neutralized again with calcium carbonate to remove gypsum.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart showing a schematic configuration of a method for removing and fixing arsenic from an arsenic-containing solution according to an embodiment of the present invention, and FIG. 2 shows only a main part of the present invention extracted from the flowchart of FIG. It is a figure. Hereinafter, a method for removing and fixing arsenic from an arsenic-containing solution according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. In this embodiment, as the arsenic-containing solution, an example of using a solution obtained by adding electrolytic tail solution and water from a zinc electrolysis step to copper arsenide pulp obtained in a zinc leaching residue treatment step in wet zinc smelting It is.
[0014]
In the method of this embodiment, (1) a step of obtaining an arsenic-containing solution, (2) an iron (II) solution and / or an iron (III) solution is reacted with the arsenic-containing solution to precipitate copper-containing scorodite A step (first step) and (3) a step of repulping copper containing scorodite and separating copper from the scorodite (second step). Here, scorodite is a kind of orthorhombic mineral represented by the general formula, FeAsO 4 .2H 2 O, and generally exists as a minor component of arsenite. is there.
[0015]
(1) Step of obtaining arsenic-containing solution The arsenic-containing solution is obtained by adding an electrolytic tail solution and water to copper arsenide pulp obtained in the zinc leaching residue treatment step in wet zinc smelting shown in FIG. That is, as shown in FIG. 1, in the zinc leaching residue treatment in the wet zinc smelting process, first, SO 2 and electrolytic tail liquor are added to the zinc leaching residue after returning to the sinter and adding sulfuric acid to perform zinc leaching. And leaching SO2. By this SO 2 leaching treatment, Pb, Au, Ag, etc. are removed as residues from the zinc leaching residue.
[0016]
Next, first stage neutralization is performed by adding calcium carbonate (CaCO 3 ) to the liquid from which Pb, Au, Ag and the like have been removed by SO 2 leaching. Thereby, gypsum precipitates and free sulfuric acid is removed.
[0017]
Next, zinc powder is added to the liquid that has been neutralized by one stage to perform dearsenic treatment. During this dearsenic treatment, copper arsenide pulp is deposited. In the present invention, arsenic contained in the copper arsenide pulp is removed and fixed by first and second steps described later. In addition, calcium carbonate is added to the solution after the dearsenic treatment, and two-step neutralization is performed. After removing gypsum, Ga, In, etc., O 2 and steam are added to remove iron. Is removed as hematite, and the remaining liquid is returned to the original leachate for similar treatment.
[0018]
(2) First Step This step is a step of obtaining a scorodite containing copper by reacting an arsenic-containing solution with an iron (II) solution and / or an iron (III) solution. The arsenic-containing solution used here is obtained by adding a dilute sulfuric acid solution to the copper arsenide pulp obtained by the dearsenic step in the zinc leaching residue treatment step, so that the pulp concentration is about 100 g / L (50 g / L to 200 g / L). It is a sulfuric acid solution in which the pulp is dissolved while adding oxygen. The lower the pulp concentration, the better the reactivity. However, since the filling efficiency into the autoclave is lowered, if it falls below 50 g / L, it becomes economically negative. Conversely, if it exceeds 200 g / L, there is a high possibility that Typ2 can be produced. In this case, a dilute sulfuric acid solution obtained by adding water to the electrolytic tail solution is used. The main components of this arsenic-containing solution are 40-80 g / L for copper, 5-25 g / L for zinc, 5-25 g / L for arsenic, 1-2 g / L for iron, and 2-3 g / L for sulfuric acid. is there.
[0019]
The iron (II) solution and / or iron (III) solution to be reacted with the arsenic-containing solution is a part of the liquid after gypsum Ga, In, etc. are removed by two-step neutralization in the zinc leaching residue treatment step. Is used. The iron solution is preferably added so that the Fe / As molar ratio in the solution after adding the solution to the arsenic-containing solution is 1.5 to 2.0. Even if the Fe / As molar ratio is lower than 1.5 or higher than 2.0, the crystallinity of the produced iron arsenic compound is remarkably lowered and arsenic is easily eluted. Next, the solution thus obtained is enclosed in an autoclave and heated to a predetermined temperature.
[0020]
After the temperature rise, while maintaining this temperature, the oxygen partial pressure PO 2 is adjusted to 0.5 kg / cm 2 or more, preferably 2 to 3 kg / cm 2 and reacted for 1 hour or more. The reaction temperature is preferably 150 ° C. to 175 ° C. at which scorodite, which is a stable iron arsenic compound, is produced, more preferably 160 to 170 ° C. When the temperature is lower than 150 ° C., a crystalline iron arsenic compound is not generated, becomes amorphous, has poor stability, and arsenic tends to elute. Conversely, when the temperature exceeds 175 ° C., a crystalline iron arsenic compound called TyPe2, that is, a compound represented by a general formula of Fe 3 (AsO 4 ) (OH) x (SO 4 ) y (x + y = 27) is generated. In addition, valuable metals such as copper mixed in cannot be separated and recovered in the water washing step (repulping step) in the second step. Note that oxygen is not particularly required when iron is trivalent in advance and arsenic present in the solution is pentavalent.
[0021]
After completion of the reaction, the reaction product is extracted from the autoclave and solid-liquid separated with a thickener or the like. Most of the arsenic in the solution is removed and drops to about several hundred mg / L, but base metals such as copper and zinc remain in the solution with almost no drop. On the other hand, the crystalline iron arsenic compound scorodite of the starch (precipitate) contains copper, zinc or the like in the form of sulfate. If copper is taken as an example, a loss of about 10% of the whole will be lost if this amount is not collected. In this state, arsenic is not eluted, but valuable metal copper is mixed into the precipitate. Therefore, by the next second step. Separate copper and scorodite to recover copper and the like.
[0022]
(3) Second step This step is a step of repulping scorodite containing copper and separating and recovering copper and the like from the scorodite. The repulping condition is that water is added so that the pulp concentration is preferably 200 g / L or less, more preferably 100 g / L, and the mixture is normally stirred at a temperature of 40 ° C. or higher, more preferably 90 ° C. or higher, and more preferably sheared by a turbine blade or the like. Stir while applying force. After stirring, it is inserted into a solid-liquid separator such as a centrifugal separator, and separated into a dearsenic solution in which copper or the like is dissolved and a washed scorodite precipitate. The scorodite precipitate thus obtained is extremely stable, and As does not elute even if left in the field for a long time. Further, the obtained dearsenic solution is subjected to copper removal treatment by adding zinc powder, and after copper is recovered, it is added to the leachate together with the liquid after the deironation treatment in the zinc leaching residue treatment step described above. The same process is repeated.
[0023]
Examples will be given below as specific examples of the above-described embodiment.
Example 1
An electrolytic tail liquor and water were added to the copper arsenide pulp in the zinc leaching residue treatment step of wet zinc smelting, and oxygen was added to dissolve the resulting solution to obtain an acidic arsenic-containing solution. The main components of this arsenic-containing solution were copper 60 g / L, zinc 15 g / L, arsenic 15 g / L, iron 1 g / L, and sulfuric acid 3 g / L.
[0024]
3 L of an iron-containing solution having Fe of 40 g / L was added to 6 L of this arsenic-containing solution so that the Fe / As (molar ratio) was 1.8, and the solution was sealed in an autoclave and heated to 165 ° C. After the temperature increase, while maintaining this temperature, the oxygen partial pressure PO 2 was adjusted to 3 kg / cm 2 and reacted for 2 hours.
[0025]
After completion of the reaction, the reaction product was extracted from the autoclave and solid-liquid separated with a pressure filter. Water was added to the starch scorodite so that the pulp concentration would be 100 g / L, and the liquid temperature was maintained at 60 ° C., followed by stirring for 30 minutes. After stirring, solid-liquid separation was performed with a pressure filter. The filtrate was mixed with the autoclave filtrate to measure the concentration of copper and arsenic, and the arsenic fixation rate and copper recovery rate were calculated. The results are tabulated in FIG. Further, zinc dust was added to the mixed filtrate until Eh = 0 mV, and copper was precipitated and collected from the filtrate.
[0026]
(Comparative Example 1)
The operation was performed according to the flow of the conventional method (Method A). That is, 6 L of the arsenic-containing solution was kept at a liquid temperature of 70 ° C., and zinc dust was added until Eh = 0 mV, and copper was precipitated and recovered. The results of measurement of arsenic in copper are shown in the table of FIG. Further, 3 L of 40 g / L iron (III) sulfate was added to the filtrate, and the pH was raised to 4.0 with slaked lime, followed by filtration. The arsenic concentration of the filtrate was measured, and the arsenic fixation rate and the copper recovery rate were calculated. The results are shown together with Example 1 in the table of FIG.
[0027]
(Comparative Example 2)
The operation was performed according to the flow of the conventional method (Method B). 3 L of an iron-containing solution having Fe of 40 g / L was added to 6 L of the arsenic-containing solution so that the Fe / As (molar ratio) was 1.8, and the solution was sealed in an autoclave and heated to 200 ° C. After the temperature increase, while maintaining this temperature, the oxygen partial pressure PO 2 was adjusted to 3 kg / cm 2 and reacted for 2 hours. After completion of the reaction, the reaction product was extracted from the autoclave and solid-liquid separated with a pressure filter. Water was added to the
[0028]
Further, the results of the elution test of the iron arsenic compound obtained by the above-mentioned method B and the stability confirmed and the ratio of the amount of starch (when the starch volume of the scorodite of the present invention is 1) are also shown in the table of FIG. Also shown.
Compared with the method of the present invention and the method A, the recovery rate of valuable metals is almost the same, but the method A has a low arsenic fixation rate of 80% and the stability of the fixed iron arsenic compound is considerably reduced. . Conversely, method B is equivalent to the method of the present invention in terms of the arsenic fixation rate and the stability of the fixed iron arsenic compound, but valuable metals such as Cu enter the iron arsenic compound and have a low recovery rate. Another disadvantage is that arsenic is mixed into the recovered copper.
[0030]
【The invention's effect】
As described above in detail, the present invention is a non-ferrous metal component containing copper by adding a ferrous (II) solution and / or an iron (III) solution to an arsenic-containing solution and reacting them to produce scorodite, followed by solid-liquid separation. The first step of recovering the scorodite containing scorodite, and repulping the scorodite containing the nonferrous metal component containing copper obtained in the first step by adding water, and refining the nonferrous metal component containing copper contained in the scorodite in the liquid And a second step of separating from the scorodite. This makes it possible to remove and fix arsenic as crystalline stable scorodite without losing valuable metals such as copper.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a schematic configuration of a method for removing and fixing arsenic from an arsenic-containing solution according to an embodiment of the present invention.
FIG. 2 is a diagram showing only the main part of the present invention extracted from the flowchart of FIG.
FIG. 3 is a table showing measured values of recovery rate of valuable metals, arsenic fixation rate, stability of iron arsenic compound and residual capacity ratio by the methods of Examples and Comparative Examples.
FIG. 4 is a flowchart of a conventional method (Method A).
FIG. 5 is a flowchart of a conventional method (Method B).
Claims (6)
前記砒素含有溶液に鉄(II)溶液及び/又は鉄(III)溶液を加えて120℃以上で反応させ、鉄・砒素化合物として安定な結晶性を持つスコロダイトを生成させ、前記砒素含有溶液から固液分離して銅を含む非鉄金属成分を含有するスコロダイトを回収する第1工程と、
第1工程で得られた銅を含む非鉄金属成分を含有するスコロダイトに水を加えてリパルプし、スコロダイトに含有される銅を含む非鉄金属成分を液中に溶かし出してスコロダイトから分離する第2工程とを有することを特徴とする砒素含有溶液からの砒素の除去および固定方法。In a method for removing and fixing arsenic from an arsenic-containing solution containing a non-ferrous metal component containing copper and / or zinc and arsenic,
An iron (II) solution and / or an iron (III) solution is added to the arsenic-containing solution and reacted at 120 ° C. or higher to produce scorodite having stable crystallinity as an iron / arsenic compound, and the arsenic-containing solution is solidified. A first step of recovering scorodite containing a non-ferrous metal component containing copper by liquid separation;
Second step of adding water to the scorodite containing the nonferrous metal component containing copper obtained in the first step and repulping, and dissolving the nonferrous metal component containing copper contained in the scorodite in the liquid and separating it from the scorodite And a method for removing and fixing arsenic from an arsenic-containing solution.
前記第1工程に加える鉄(II)溶液及び/又は鉄(III)溶液は、該溶液を前記砒素含有溶液に加えた後の溶液におけるFe/Asモル比が1.5〜2.0となるように加えることを特徴とする砒素含有溶液からの砒素の除去および固定方法。The method for removing and fixing arsenic from the arsenic-containing solution according to claim 1,
The iron (II) solution and / or iron (III) solution added to the first step has an Fe / As molar ratio of 1.5 to 2.0 in the solution after the solution is added to the arsenic-containing solution. A method for removing and fixing arsenic from an arsenic-containing solution, characterized by comprising:
前記第1工程において砒素含有溶液に鉄(II)溶液及び/又は鉄(III)溶液を加えて反応させる場合の反応条件は、反応温度が150〜175℃、酸素分圧が0.5kg/cm2 以上、反応時間が30分以上であることを特徴とする砒素含有溶液からの砒素の除去および固定方法。In the method for removing and fixing arsenic from the arsenic-containing solution according to claim 1 or 2,
In the first step, an iron (II) solution and / or an iron (III) solution is added to the arsenic-containing solution for reaction, and the reaction conditions are 150 to 175 ° C. and the oxygen partial pressure is 0.5 kg / cm A method for removing and fixing arsenic from an arsenic-containing solution, wherein the reaction time is 2 or more and the reaction time is 30 minutes or more.
前記第2工程のスコロダイトのリパルプ操作は、リパルプ後のパルプ濃度が200g/L以下になるようにし、リパルプ時間を30分以上とすることを特徴とする請求項1、2記載の砒素含有溶液からの砒素の除去および固定方法。A method for removing and fixing arsenic from an arsenic-containing solution according to any one of claims 1 to 3,
The repulping operation of the scorodite in the second step is such that the pulp concentration after repulping is 200 g / L or less, and the repulping time is 30 minutes or more. To remove and fix arsenic in water.
前記砒素含有溶液が湿式亜鉛製錬の亜鉛浸出残渣のSO2還元浸出液を炭酸カルシウムにより中和し、石膏を除いた中和液に亜鉛末を加え、砒化銅パルプを生成した後、該砒化銅パルプを希薄な硫酸溶液で溶解した溶液であることを特徴とする砒素含有溶液からの砒素の除去および固定方法。A method for removing and fixing arsenic from an arsenic-containing solution according to any one of claims 1 to 4,
The arsenic-containing solution neutralizes the SO2 reduction leachate of the zinc leaching residue of wet zinc smelting with calcium carbonate, adds zinc powder to the neutralized solution excluding gypsum to produce copper arsenide pulp, and then the copper arsenide pulp A method for removing and immobilizing arsenic from an arsenic-containing solution, wherein the arsenic is dissolved in a dilute sulfuric acid solution.
前記第1工程のFe/Asモル比調整用の鉄源が湿式亜鉛製錬の亜鉛浸出残渣のSO2 還元浸出液を炭酸カルシウムにより中和し、石膏を除いた中和液に亜鉛末を加え、砒化銅パルプを除いた溶液を再度炭酸カルシウムにより中和して再度石膏を除いた硫酸鉄溶液であることを特徴とする砒素含有溶液からの砒素の除去および固定方法。A method for removing and fixing arsenic from an arsenic-containing solution according to any one of claims 1 to 5,
The iron source for adjusting the Fe / As molar ratio in the first step neutralizes the SO 2 reduction leachate of the zinc leaching residue of wet zinc smelting with calcium carbonate, and adds zinc dust to the neutralization solution excluding gypsum, A method for removing and fixing arsenic from an arsenic-containing solution, which is an iron sulfate solution obtained by neutralizing a solution from which copper arsenide pulp has been removed again with calcium carbonate and again removing gypsum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2244999A JP3756687B2 (en) | 1999-01-29 | 1999-01-29 | Method for removing and fixing arsenic from arsenic-containing solutions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2244999A JP3756687B2 (en) | 1999-01-29 | 1999-01-29 | Method for removing and fixing arsenic from arsenic-containing solutions |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000219920A JP2000219920A (en) | 2000-08-08 |
JP3756687B2 true JP3756687B2 (en) | 2006-03-15 |
Family
ID=12083035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2244999A Expired - Fee Related JP3756687B2 (en) | 1999-01-29 | 1999-01-29 | Method for removing and fixing arsenic from arsenic-containing solutions |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3756687B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7935328B2 (en) | 2007-03-19 | 2011-05-03 | Jx Nippon Mining & Metals Corporation | Method for manufacturing scorodite |
US8277633B2 (en) | 2007-09-25 | 2012-10-02 | Jx Nippon Mining & Metals Corporation | Process for producing scorodite and recycling the post-scorodite-synthesis solution |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7314604B1 (en) | 1999-09-30 | 2008-01-01 | Billiton Intellectual Property, B.V. | Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses |
JP4411057B2 (en) * | 2003-11-28 | 2010-02-10 | 三井金属鉱業株式会社 | Arsenic removal method from smoke ash |
FI119438B (en) * | 2005-05-03 | 2008-11-14 | Outokumpu Oy | Method for recovering precious metals and arsenic from solution |
JP5114764B2 (en) * | 2005-09-08 | 2013-01-09 | Dowaメタルマイン株式会社 | Wet treatment of zinc leaching residue |
JP4597107B2 (en) * | 2006-03-02 | 2010-12-15 | 三井金属鉱業株式会社 | Arsenic removing method and arsenic removing apparatus from arsenic containing body |
JP4615561B2 (en) * | 2006-04-28 | 2011-01-19 | Dowaメタルマイン株式会社 | Arsenic-containing solution processing method |
JP2008260683A (en) * | 2006-04-28 | 2008-10-30 | Dowa Metals & Mining Co Ltd | Iron arsenate powder |
JP3999805B1 (en) | 2006-04-28 | 2007-10-31 | Dowaメタルマイン株式会社 | Arsenic-containing solution processing method |
CA2656724C (en) * | 2006-07-27 | 2012-11-13 | Dowa Metals & Mining Co., Ltd. | Iron arsenate powder |
JP5070525B2 (en) * | 2006-08-01 | 2012-11-14 | Dowaメタルマイン株式会社 | Thallium-containing iron and arsenic compound, process for producing the same, and method for treating arsenic and thallium-containing aqueous solution |
JP4216307B2 (en) * | 2006-09-27 | 2009-01-28 | 日鉱金属株式会社 | Process for electrolytically precipitated copper |
CA2663108C (en) | 2006-09-27 | 2013-08-13 | Dowa Metals & Mining Co., Ltd. | Method of producing iron-arsenic compound excellent in crystallinity |
JP5156224B2 (en) * | 2006-12-11 | 2013-03-06 | Dowaメタルマイン株式会社 | Manufacturing method of iron arsenic compounds |
JP5102519B2 (en) * | 2007-03-15 | 2012-12-19 | Dowaメタルマイン株式会社 | Arsenic-containing solid and its production method |
JP5137232B2 (en) * | 2007-04-02 | 2013-02-06 | Dowaメタルマイン株式会社 | Method for producing porous iron oxide and method for treating water to be treated |
JP5188296B2 (en) | 2007-07-13 | 2013-04-24 | Dowaメタルマイン株式会社 | Method for treating copper arsenic compound |
WO2009011075A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of treating copper-arsenic compound |
WO2009011073A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of treating diarsenic trioxide |
WO2009011074A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of alkali treatment of substance containing arsenic |
WO2009011076A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of treating nonferrous smelting intermediate product containing arsenic |
JP5188297B2 (en) * | 2007-07-13 | 2013-04-24 | Dowaメタルマイン株式会社 | Method for processing non-ferrous smelting intermediates containing arsenic |
JP2009242935A (en) * | 2007-07-13 | 2009-10-22 | Dowa Metals & Mining Co Ltd | Method for alkali-treating substance containing arsenic |
JP2009242223A (en) * | 2007-07-13 | 2009-10-22 | Dowa Metals & Mining Co Ltd | Method of treating diarsenic trioxide |
WO2009019799A1 (en) * | 2007-08-09 | 2009-02-12 | Dowa Metals & Mining Co., Ltd. | Method of treating nonferrous smelting intermediate product containing arsenic |
JP5188298B2 (en) | 2007-08-09 | 2013-04-24 | Dowaメタルマイン株式会社 | Method for processing non-ferrous smelting intermediates containing arsenic |
JP5107637B2 (en) | 2007-08-24 | 2012-12-26 | Dowaメタルマイン株式会社 | Iron arsenate powder |
JP4971933B2 (en) * | 2007-10-02 | 2012-07-11 | Dowaメタルマイン株式会社 | Method for producing iron arsenic compound |
JP4620100B2 (en) | 2007-10-23 | 2011-01-26 | Jx日鉱日石金属株式会社 | Manufacturing method and cleaning method of scorodite |
JP4717917B2 (en) * | 2008-10-06 | 2011-07-06 | Jx日鉱日石金属株式会社 | Manufacturing method and cleaning method of scorodite |
JP2010202443A (en) * | 2009-03-03 | 2010-09-16 | Dowa Metals & Mining Co Ltd | Iron arsenate powder and method for producing the same |
JP5232806B2 (en) * | 2010-01-25 | 2013-07-10 | Jx日鉱日石金属株式会社 | Manufacturing method and cleaning method of scorodite |
US10077487B2 (en) * | 2013-05-29 | 2018-09-18 | Barrick Gold Corporation | Method for arsenic oxidation and removal from process and waste solutions |
US9410225B2 (en) * | 2014-05-13 | 2016-08-09 | Teck Resources Limited | Process for recovery of copper from arsenic-bearing and/or antimony-bearing copper sulphide concentrates |
CN111620380B (en) * | 2020-07-10 | 2021-11-26 | 中南大学 | Method for preparing scorodite by hydrothermally treating trivalent arsenic and application thereof |
CN114606400B (en) * | 2022-01-28 | 2023-09-22 | 云锡文山锌铟冶炼有限公司 | Treatment method of high-iron arsenic-zinc-containing leaching residues |
-
1999
- 1999-01-29 JP JP2244999A patent/JP3756687B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7935328B2 (en) | 2007-03-19 | 2011-05-03 | Jx Nippon Mining & Metals Corporation | Method for manufacturing scorodite |
US8277633B2 (en) | 2007-09-25 | 2012-10-02 | Jx Nippon Mining & Metals Corporation | Process for producing scorodite and recycling the post-scorodite-synthesis solution |
Also Published As
Publication number | Publication date |
---|---|
JP2000219920A (en) | 2000-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3756687B2 (en) | Method for removing and fixing arsenic from arsenic-containing solutions | |
JP5967284B2 (en) | Recovery method of high purity scandium | |
JP4846677B2 (en) | Arsenic-containing solution processing method | |
US4431613A (en) | Leaching of sulphidic mattes containing non-ferrous metals and iron | |
JP4126415B2 (en) | Method for removing and fixing arsenic present in iron sulfate solution | |
WO2018101039A1 (en) | Ion exchange processing method, and scandium recovery method | |
WO1988003911A1 (en) | Process for recovering metal values from jarosite solids | |
JP3052535B2 (en) | Treatment of smelting intermediates | |
JP2016180151A (en) | Method for recovering scandium | |
US5443619A (en) | Process for extracting metals from solution | |
US4094753A (en) | Recovery of gallium from gallium compounds | |
JPS6221728B2 (en) | ||
JP6406234B2 (en) | Scandium recovery method | |
CN113088698B (en) | Method for improving copper recovery rate during conventional leaching of high-copper high-germanium roasted ore | |
US4515696A (en) | Treatment of solutions to facilitate the removal of ferric iron therefrom | |
JP3197288B2 (en) | Simultaneous wet treatment of zinc concentrate and zinc leaching residue | |
JP3411320B2 (en) | Zinc smelting method | |
US3699208A (en) | Extraction of beryllium from ores | |
JP6256491B2 (en) | Scandium recovery method | |
JP3955934B2 (en) | Wet treatment of zinc leaching residue | |
US4384940A (en) | Chlorine leaching of nickel-cobalt-iron sulphides | |
JP3407600B2 (en) | Silver extraction and recovery method | |
CN85100106B (en) | All-wet refining process of goldmud from cyanide processing | |
US4457897A (en) | Process for the selective dissolution of cobalt from cobaltite-pyrite concentrates | |
US3685961A (en) | Extraction of beryllium from ores |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051222 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140106 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |