JPS6221728B2 - - Google Patents

Info

Publication number
JPS6221728B2
JPS6221728B2 JP3673383A JP3673383A JPS6221728B2 JP S6221728 B2 JPS6221728 B2 JP S6221728B2 JP 3673383 A JP3673383 A JP 3673383A JP 3673383 A JP3673383 A JP 3673383A JP S6221728 B2 JPS6221728 B2 JP S6221728B2
Authority
JP
Japan
Prior art keywords
arsenic
copper
iron
solution
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3673383A
Other languages
Japanese (ja)
Other versions
JPS59164639A (en
Inventor
Masatoshi Tomita
Masaru Azuma
Jusaku Masuda
Shuichi Oodo
Hideo Tamanoi
Koji Hosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3673383A priority Critical patent/JPS59164639A/en
Publication of JPS59164639A publication Critical patent/JPS59164639A/en
Publication of JPS6221728B2 publication Critical patent/JPS6221728B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はひ素を含む酸性溶液から、ひ素を分離
除去する方法に関する。 銅製錬工程において発生する煙灰には、原料の
主成分である銅のほかにひ素,カドミウム,亜
鉛,鉛等の揮発成分が含まれている。この煙灰か
ら銅等の有価物を回収し、ひ素等の不純物を分離
するために、一般に硫酸による浸出が行われる。
煙灰の硫酸浸出により、鉛は硫酸鉛となり硫酸溶
液では不溶性のため、残さとして分離され鉛原料
となる。一方、銅,ひ素,カドミウム,亜鉛等は
硫酸により浸出されて溶液に入る。本発明はこの
溶液からひ素を効率よく分離除去する方法に関す
るものである。 従来,銅,ひ素,カドミウム,亜鉛等を含む溶
液からのひ素の回収方法としては、硫化水素,鉄
粉および炭酸カルシウム等の中和剤により有価物
である銅を硫化銅あるいは沈殿銅として、先ず分
離回収する。次いで銅のなくなつた該液にさらに
中和剤を添加してPHを4以上とし、該液中に鉄が
少ない場合には鉄塩を添加したのち、該液のPHを
4以上に保持しながら空気酸化を行い、ひ素をひ
酸鉄として分離除去する方法がよく用いられる。
しかしながらこれらの公知の方法では、ひ素の分
離のまえに銅の除去工程が必要であり工程が多く
なる欠点を持つばかりでなく、ひ素殿の分離がPH
=4以上で行われるため沈殿生成物が多くなり、
ひ酸鉄のひ素品位も10%以下と低く、発生した大
量のひ酸鉄のその後の処分も厄介となる欠点を有
している。さらに該液がカドミウムを含有してい
る場合には、PHが4以上ではひ酸鉄中へのカドミ
ウムの沈殿を招く欠点を有する。このように、ひ
素と他の重金属を含有する溶液からひ素の分離を
行うさいにPHが4以上で沈殿を起こさせると、ひ
素を完全に液より分離できるものの、該液中に銅
があれば事前にこれの分離が必要であり、また該
液中にカドミウムが存在すれば、ひ素と共にカド
ミウムも沈殿してくる欠点がある。さらにはひ素
の沈殿分離時のPHが4以上と高いためにひ素殿物
量が多くなるという欠点もある。このため、斯界
の技術者はPHが低い酸性領域で銅等の重金属を含
む溶液からのひ素の沈殿分離技術をいろいろと研
究している。その一方として特公昭56―6356によ
れば、PHが2.0〜3.2でひ素を沈殿分離させるため
に、ひ素と重金属を含む硫酸酸性溶液に硫酸第1
鉄を添加した後酸素加圧下あるいは空気加圧下の
高圧容器内で加温する処理法を開示している。こ
の方法によれば、ひ素の沈殿分離をPHが2.0から
3.2の範囲で行うため、ひ素と他の重金属との分
離が良いと述べている。しかしながら実施例に見
られるように、工業用酸素で1.5Kg/cm2Gに加圧
した容器内で130℃の高温で処理するため、設備
的にも高価なものとなる欠点がある。また高圧容
器内で酸性溶液を取扱うという操作上の欠点もあ
る。さらには、ひ素を沈殿させた後のろ液中にま
だひ素が0.14〜0.39g/残存し、ひ素の沈殿分
離が完全でない欠点も示されている。このよう
に、PHが3以下の酸性領域でひ素を他の重金属と
効率よく沈殿分離させる事はきわめて難しいとさ
れているが、発明者らは、かかる欠点を取り除
き、工程も簡素化すると共に、ひ素品位が10%以
上のひ酸鉄として、ひ素を他の重金属を含む酸性
溶液から効率よく分離する方法について種々研究
を行つたところ、次のプロセスの開発に成功し
た。以下にその方法を説明する。 銅,カドミウム,亜鉛等の重金属とひ素を含む
酸性溶液では、ひ素は3価あるいは5価の形で溶
解している。3価のひ素は沈殿分離が難しいた
め、先ず酸化剤を該液に添加して、3価のひ素を
5価に酸化する。この時に用いる酸化剤は過マン
ガン酸カリウム,過酸化水素,塩素等があり、添
加量は3価のひ素の化学的必要量の2倍量あれば
十分である。ひ素の酸化が完了したのち該液のPH
を1.5〜3.0に調節し、これに第1鉄塩を添加し、
該液のPHを1.5〜3.0,望ましくは2.0〜2.6に保持
しながら空気または工業用酸素あるいは前記に例
示したような酸化剤にて酸化を行い、第1鉄を第
2鉄に酸化させ、ひ素をひ酸鉄として沈殿分離さ
せる。この方法により、ひ素は銅等の他の重金属
と効率よく分離されるばかりか、反応がPHが2.0
〜2.6の酸性領域で行われるため、ひ素含有率が
10%以上のひ酸鉄が得られる。上記の反応処理中
の溶液の温度は常温でも大気圧における沸点以下
の加温状態でも良い。 以下に本発明の実施例を示す。 実施例 下記第1表の成分を含有するPHが1.7の硫酸酸
性溶液1リツトルに3.6gの過マンガン酸カリウ
ムを添加し混合かくはんする。この酸化は短時間
で完了するため、かくはん時間は数分でよい。
The present invention relates to a method for separating and removing arsenic from an acidic solution containing arsenic. The smoke generated in the copper smelting process contains volatile components such as arsenic, cadmium, zinc, and lead in addition to copper, which is the main component of the raw material. Leaching with sulfuric acid is generally performed to recover valuables such as copper and separate impurities such as arsenic from this smoke ash.
When smoke ash is leached with sulfuric acid, lead becomes lead sulfate and is insoluble in sulfuric acid solution, so it is separated as a residue and used as a lead raw material. On the other hand, copper, arsenic, cadmium, zinc, etc. are leached out by sulfuric acid and enter the solution. The present invention relates to a method for efficiently separating and removing arsenic from this solution. Conventionally, as a method for recovering arsenic from solutions containing copper, arsenic, cadmium, zinc, etc., the valuable copper is first converted into copper sulfide or precipitated copper using neutralizing agents such as hydrogen sulfide, iron powder, and calcium carbonate. Separate and collect. Next, a neutralizing agent is further added to the copper-depleted liquid to raise the pH to 4 or higher, and if there is little iron in the liquid, an iron salt is added, and the PH of the liquid is maintained at 4 or higher. A commonly used method is to perform air oxidation while separating and removing arsenic as iron arsenate.
However, these known methods not only have the drawback of requiring a copper removal step before arsenic separation, resulting in a large number of steps, but also have the disadvantage that the separation of arsenic particles is difficult due to PH.
Since it is carried out at a temperature of 4 or higher, a large amount of precipitated products will be produced.
The arsenic content of iron arsenate is also low, at less than 10%, and the subsequent disposal of the large amount of iron arsenate generated is a problem. Furthermore, when the liquid contains cadmium, a pH of 4 or more has the disadvantage of causing precipitation of cadmium in the iron arsenate. In this way, when separating arsenic from a solution containing arsenic and other heavy metals, if precipitation is caused at a pH of 4 or higher, arsenic can be completely separated from the solution, but if there is copper in the solution, It is necessary to separate this in advance, and if cadmium is present in the liquid, there is a drawback that cadmium will precipitate together with arsenic. Furthermore, since the pH during precipitation and separation of arsenic is as high as 4 or more, there is also the drawback that the amount of arsenic precipitates increases. For this reason, engineers in this field are researching various techniques for precipitation and separation of arsenic from solutions containing heavy metals such as copper in acidic regions with low pH. On the other hand, according to Japanese Patent Publication No. 56-6356, in order to precipitate and separate arsenic at a pH of 2.0 to 3.2, sulfuric acid is added to a sulfuric acid solution containing arsenic and heavy metals.
A treatment method is disclosed in which iron is added and then heated in a high-pressure vessel under oxygen pressure or air pressure. According to this method, arsenic can be separated by precipitation from pH 2.0.
3.2, it is said that arsenic and other heavy metals can be separated well. However, as seen in the examples, the treatment is carried out at a high temperature of 130° C. in a container pressurized to 1.5 kg/cm 2 G with industrial oxygen, which has the disadvantage of requiring expensive equipment. There is also the operational disadvantage of handling acidic solutions in high-pressure vessels. Furthermore, 0.14 to 0.39 g of arsenic still remains in the filtrate after arsenic has been precipitated, indicating that the precipitation and separation of arsenic is not complete. As described above, it is said that it is extremely difficult to efficiently precipitate and separate arsenic from other heavy metals in an acidic region with a pH of 3 or less, but the inventors have solved this drawback and simplified the process. After conducting various research on how to efficiently separate arsenic from acidic solutions containing other heavy metals using iron arsenate with an arsenic content of 10% or more, we succeeded in developing the following process. The method will be explained below. In acidic solutions containing arsenic and heavy metals such as copper, cadmium, and zinc, arsenic is dissolved in trivalent or pentavalent form. Since trivalent arsenic is difficult to separate by precipitation, an oxidizing agent is first added to the liquid to oxidize trivalent arsenic to pentavalent arsenic. The oxidizing agent used at this time includes potassium permanganate, hydrogen peroxide, chlorine, etc., and it is sufficient that the amount added is twice the chemically required amount of trivalent arsenic. After the oxidation of arsenic is completed, the pH of the liquid
is adjusted to 1.5 to 3.0, ferrous salt is added to this,
While maintaining the pH of the liquid at 1.5 to 3.0, preferably 2.0 to 2.6, oxidation is carried out with air, industrial oxygen, or an oxidizing agent such as those exemplified above to oxidize ferrous iron to ferric iron and remove arsenic. is precipitated and separated as iron arsenate. This method not only efficiently separates arsenic from other heavy metals such as copper, but also allows the reaction to occur at a pH of 2.0.
Since it is carried out in the acidic region of ~2.6, the arsenic content is
More than 10% iron arsenate can be obtained. The temperature of the solution during the above reaction treatment may be at room temperature or in a heated state below the boiling point at atmospheric pressure. Examples of the present invention are shown below. Example 3.6 g of potassium permanganate is added to 1 liter of a sulfuric acid acidic solution having a pH of 1.7 containing the ingredients shown in Table 1 below, and the mixture is stirred. Since this oxidation is completed in a short time, the stirring time may be several minutes.

【表】 次いでこの溶液に少量(3.4g)の炭酸カルシ
ウムを添加して該溶液のPHを2.0〜2.6に調節し、
さらに硫酸第1鉄を25g添加したのち(炭酸カル
シウムと硫酸第1鉄の添加はどちらが先でもよ
い)、該液のPHを2.0〜2.6に保持しながら空気酸
化を行い、第1鉄を第2鉄に酸化し、ひ素をひ酸
鉄として沈殿分離し、ろ過分別を行う。ろ別され
たひ酸鉄およびろ液の成分を第2表に示す。
[Table] Next, a small amount (3.4 g) of calcium carbonate was added to this solution to adjust the pH of the solution to 2.0-2.6.
After further adding 25g of ferrous sulfate (calcium carbonate and ferrous sulfate may be added first), air oxidation is performed while maintaining the pH of the liquid at 2.0 to 2.6, and the ferrous sulfate is replaced with ferrous sulfate. Oxidizes to iron, precipitates arsenic as iron arsenate, and performs filtration separation. The components of the filtered iron arsenate and the filtrate are shown in Table 2.

【表】 第1表の溶液に酸化剤を添加することによつて
3価のひ素を5価に酸化することをせずに従来法
のように第1鉄塩の空気酸化だけでひ素の除去を
行うと、PHが1.5〜3.0の範囲では、ひ素の沈殿が
不十分で、ひ酸鉄除去後のろ液中のひ素含有量
は、例えばPHが2.5の場合には、0.7g/残存
し、ひ素除去の目的が達成されない。一方ひ素を
完全に除去するためには該液のPHを従来法のよう
に、例えば4.1に高めて空気酸化を行うとろ液中
のひ素は0.1g/以下となつてひ素除去の目的
は達成されるかわりに、ひ酸鉄中の銅含有量が
5.2%,カドミウム含有量が0.2%と高くなり、
銅,カドミウムとひ素の分離が悪くなつてくる。 以上の結果からわかるように、本発明の方法に
よつて液のPHが1.5〜3.0の範囲で、ひ素を効率よ
く、銅,カドミウム等の重金属と分離する事がで
きる。またこの方法では沈殿のために用いる鉄量
も、ひ素1部に対して10部以下(実施例では約
2.2部)ときわめて少ないため、ひ酸鉄殿物量を
少なくできる利点もあり、さらには設備的にも簡
単なかくはん機を有する容器のみときわめて簡便
である。
[Table] By adding an oxidizing agent to the solution in Table 1, arsenic is removed only by air oxidation of ferrous salt as in the conventional method, without oxidizing trivalent arsenic to pentavalent arsenic. When the pH is in the range of 1.5 to 3.0, arsenic precipitation is insufficient, and the arsenic content in the filtrate after iron arsenate removal is, for example, 0.7 g/residual when the pH is 2.5. , the purpose of arsenic removal is not achieved. On the other hand, in order to completely remove arsenic, if the pH of the liquid is raised to 4.1 and air oxidized as in the conventional method, the arsenic in the filtrate will be less than 0.1g/, and the purpose of arsenic removal will not be achieved. Instead, the copper content in iron arsenate
5.2%, cadmium content is as high as 0.2%,
Separation of copper, cadmium and arsenic becomes worse. As can be seen from the above results, by the method of the present invention, arsenic can be efficiently separated from heavy metals such as copper and cadmium when the pH of the liquid is in the range of 1.5 to 3.0. In addition, in this method, the amount of iron used for precipitation is less than 10 parts per 1 part of arsenic (about 10 parts in the example).
Since the amount of iron arsenate precipitate is extremely small (2.2 parts), it has the advantage of reducing the amount of iron arsenate precipitate, and it is also extremely simple in terms of equipment, requiring only a container equipped with a simple stirrer.

Claims (1)

【特許請求の範囲】[Claims] 1 銅,カドミウム,亜鉛等の重金属とひ素を含
む酸性溶液に酸化剤を添加して、該溶液中の3価
のひ素を5価のひ素に酸化したのち、第1鉄塩を
添加し、さらに溶液のPHを1.5〜3.0に保持しつ
つ、空気,酸素または酸化剤あるいは以上のうち
二者以上の併用によつて第1鉄を酸化する事によ
り、ひ素をひ素品位の高いひ酸鉄として、前記重
金属を含有する溶液から沈殿分離することを特徴
とするひ素の分離法。
1 Add an oxidizing agent to an acidic solution containing heavy metals such as copper, cadmium, zinc, etc. and arsenic to oxidize the trivalent arsenic in the solution to pentavalent arsenic, then add a ferrous salt, and then By oxidizing ferrous iron with air, oxygen, an oxidizing agent, or a combination of two or more of the above while maintaining the pH of the solution between 1.5 and 3.0, arsenic is converted into iron arsenate with a high arsenic content. A method for separating arsenic, which comprises performing precipitation separation from a solution containing the heavy metal.
JP3673383A 1983-03-08 1983-03-08 Separation of arsenic Granted JPS59164639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3673383A JPS59164639A (en) 1983-03-08 1983-03-08 Separation of arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3673383A JPS59164639A (en) 1983-03-08 1983-03-08 Separation of arsenic

Publications (2)

Publication Number Publication Date
JPS59164639A JPS59164639A (en) 1984-09-17
JPS6221728B2 true JPS6221728B2 (en) 1987-05-14

Family

ID=12477932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3673383A Granted JPS59164639A (en) 1983-03-08 1983-03-08 Separation of arsenic

Country Status (1)

Country Link
JP (1) JPS59164639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075880A (en) * 2008-09-26 2010-04-08 Nippon Poly-Glu Co Ltd Method for purification of arsenic-containing water to be treated

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024769A (en) * 1988-07-29 1991-06-18 Union Oil Company Of California Method of treating an arsenic-containing solution
US5252003A (en) * 1990-10-29 1993-10-12 International Technology Corporation Attenuation of arsenic leaching from particulate material
US5762891A (en) * 1996-02-27 1998-06-09 Hazen Research, Inc. Process for stabilization of arsenic
FR2759308B1 (en) * 1997-02-11 1999-04-16 Oberkampf Louis PROCESS FOR THE STABILIZATION AND SOLIDIFICATION OF SOLID AND LIQUID SUBSTANCES CONTAMINATED BY ARSENIC AND ARSENICAL DERIVATIVES
US5820966A (en) * 1997-12-09 1998-10-13 Inco Limited Removal of arsenic from iron arsenic and sulfur dioxide containing solutions
SE514338C2 (en) * 1999-06-01 2001-02-12 Boliden Mineral Ab Process for the purification of acidic saline solution
US7314604B1 (en) * 1999-09-30 2008-01-01 Billiton Intellectual Property, B.V. Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses
JP4615561B2 (en) * 2006-04-28 2011-01-19 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
JP5156224B2 (en) * 2006-12-11 2013-03-06 Dowaメタルマイン株式会社 Manufacturing method of iron arsenic compounds
JP2008200635A (en) * 2007-02-21 2008-09-04 Dowa Metals & Mining Co Ltd Method for treating liquid after iron-arsenic reaction
JP5102519B2 (en) * 2007-03-15 2012-12-19 Dowaメタルマイン株式会社 Arsenic-containing solid and its production method
JP4913649B2 (en) * 2007-03-27 2012-04-11 Dowaメタルマイン株式会社 Method for producing pentavalent arsenic-containing liquid
JP4846677B2 (en) * 2007-08-24 2011-12-28 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
JP5232806B2 (en) * 2010-01-25 2013-07-10 Jx日鉱日石金属株式会社 Manufacturing method and cleaning method of scorodite
JP2011168467A (en) * 2010-02-22 2011-09-01 Dowa Metals & Mining Co Ltd Method for producing crystalline scorodite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075880A (en) * 2008-09-26 2010-04-08 Nippon Poly-Glu Co Ltd Method for purification of arsenic-containing water to be treated

Also Published As

Publication number Publication date
JPS59164639A (en) 1984-09-17

Similar Documents

Publication Publication Date Title
JP3756687B2 (en) Method for removing and fixing arsenic from arsenic-containing solutions
EP0048103B1 (en) Process for the extraction of precious metals from concentrates thereof
JP5652503B2 (en) Scandium recovery method
JPS6221728B2 (en)
TW201739923A (en) Processing method for lithium ion battery scrap
JPS643550B2 (en)
MXPA00005341A (en) A method of purifying acid leaching solution.
US3826648A (en) Method of purifying zinc sulphate solutions
US3434798A (en) Process for recovering zinc from ferrites
JPH0156128B2 (en)
JP3052535B2 (en) Treatment of smelting intermediates
JP3197288B2 (en) Simultaneous wet treatment of zinc concentrate and zinc leaching residue
JP3411320B2 (en) Zinc smelting method
US4778520A (en) Process for leaching zinc from partially desulfurized zinc concentrates by sulfuric acid
JP3212875B2 (en) Arsenic recovery method
JP4215547B2 (en) Cobalt recovery method
JP4439804B2 (en) Cobalt recovery method
JP3955934B2 (en) Wet treatment of zinc leaching residue
CN115747500A (en) Method for cooperatively removing chlorine in strong-acid arsenic solution from high-arsenic silver-containing smelting slag
US3193382A (en) Process for the recovery of zinc from zinc plant residues
US3684489A (en) Method of recovering metals from sulfide-containing mixtures
WO2015092150A1 (en) Method and process arrangement of separating indium and arsenic from each other
US4222999A (en) Removal of selenium from sulphate solutions
JPH027377B2 (en)
JPS5952696B2 (en) Method for recovering copper and selenium from copper electrolysis anode slime