JPS59164639A - Separation of arsenic - Google Patents

Separation of arsenic

Info

Publication number
JPS59164639A
JPS59164639A JP3673383A JP3673383A JPS59164639A JP S59164639 A JPS59164639 A JP S59164639A JP 3673383 A JP3673383 A JP 3673383A JP 3673383 A JP3673383 A JP 3673383A JP S59164639 A JPS59164639 A JP S59164639A
Authority
JP
Japan
Prior art keywords
arsenic
solution
added
heavy metals
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3673383A
Other languages
Japanese (ja)
Other versions
JPS6221728B2 (en
Inventor
Masatoshi Tomita
昌利 冨田
Masaru Azuma
東 勝
Yusaku Masuda
益田 雄策
Shuichi Oto
修一 大戸
Hideo Tamanoi
英雄 玉野井
Koji Hosaka
広司 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3673383A priority Critical patent/JPS59164639A/en
Publication of JPS59164639A publication Critical patent/JPS59164639A/en
Publication of JPS6221728B2 publication Critical patent/JPS6221728B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To remove As effectively and simply in the form of iron arsenate from an acidic solution contg. As and heavy metals such as Cu by adding an oxidizing agent and ferrous salt to the solution and oxidizing the ferrous salt while controlling the pH using air or the like. CONSTITUTION:An oxidizing agent such as H2O2 is added to an acidic solution contg. As and heavy metals such as Cu, Cd, Zn, etc. produced after separating Pb from the flue cinder generated in a refining stage of Cu using H2SO4 to transform As<3+> to As<5+> which is more easily precipitated. A ferrous salt contg. <=ca. 10pts.wt. Fe per 1pt.wt. As is then added to the solution and Fe<2+> is transformed to Fe<3+> by oxidizing with air, O2, an oxidizing agent, or a combination thereof while adjusting the pH of the solution to 1.5-3.0, pref. 2.0-2.6 to precipitate As in the form of iron arsenate. By this process, As is effectively separated from an acidic solution contg. heavy metals such as Cu in the form of iron arsenate contg. >=ca. 10% As.

Description

【発明の詳細な説明】 本発明はひ素を含む酸性溶液から、ひ素を分離除去する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and removing arsenic from an acidic solution containing arsenic.

銅製錬工程において発生する煙灰には、原料の主成分で
ある銅のほかにひ素、カドミウム。
The smoke generated during the copper smelting process contains copper, the main ingredient of the raw material, as well as arsenic and cadmium.

亜鉛、鉛等の揮発成分が含まれている。この煙灰から銅
専の有価物を回収し、ひ素等の不純物を分離するために
、一般に硫酸による浸出が行われる。煙灰の硫酸浸出に
より、鉛は硫酸鉛となり硫酸溶液では不溶性のため、残
さとして分離され鉛原料と外る。一方、銅、ひ素、カド
ミウム、亜鉛等は硫酸によシ浸出されて溶液に入る。本
発明はこの溶液からひ素を効率よく分離除去する方法に
関するものである。
Contains volatile components such as zinc and lead. Leaching with sulfuric acid is generally performed to recover copper's valuable materials from this smoke ash and separate impurities such as arsenic. By leaching smoke ash with sulfuric acid, lead becomes lead sulfate and is insoluble in sulfuric acid solution, so it is separated as a residue and separated from the lead raw material. On the other hand, copper, arsenic, cadmium, zinc, etc. are leached out by sulfuric acid and enter the solution. The present invention relates to a method for efficiently separating and removing arsenic from this solution.

従来9例、ひ素、カドミウム、亜鉛等を含む溶液からの
ひ素の回収方法としては、硫化水素。
Nine conventional methods for recovering arsenic from solutions containing arsenic, cadmium, zinc, etc. include hydrogen sulfide.

鉄粉および炭酸カルシウム等の中和剤により有価物であ
る鋼を硫化鋼あるいは沈殿銅として、先ず分離回収する
。次いで銅のかくなった該液にさらに中和剤を添加して
pHを4以上とし、該液中釦鉄が少ない場合には鉄塩を
添加したのち。
Steel, which is a valuable material, is first separated and recovered as sulfurized steel or precipitated copper using neutralizing agents such as iron powder and calcium carbonate. Next, a neutralizing agent is further added to the copper-rich liquid to adjust the pH to 4 or more, and if there is little button iron in the liquid, an iron salt is added.

該液のpTIを4以上に保持しながら空気酸化を行い、
ひ素をひ酸鉄として分離除去する方法がよく用いられる
。しかしながらとれらの公知の方法では、ひ素の分離の
まえに銅の除去工程が必要であシ工程が多くなる欠点を
持つばかシでなく、ひ素の沈殿分離がpH=4以上で行
われるため沈殿生成物が多くなり、ひ酸鉄のひ素品位も
10係以下と低く2発生した大量のひ酸鉄のその後の処
分も厄介となる欠点を有している。さらに該液がカドミ
ウムを含有している場合には。
Perform air oxidation while maintaining the pTI of the liquid at 4 or more,
A method of separating and removing arsenic as iron arsenate is often used. However, in these known methods, a copper removal step is required before arsenic separation, which is disadvantageous in that the number of steps is increased. The product is large, and the arsenic grade of the iron arsenate is low, at less than 10 parts, and the subsequent disposal of the large amount of iron arsenate generated is also troublesome. Furthermore, if the liquid contains cadmium.

pHが4以上ではひ酸鉄中へのカドミウムの沈殿を招く
欠点を有する。このように、ひ素と他の重金属を含有す
る溶液からひ素の分離を行うさい[p)Tが4以上で沈
殿を起こさせると、ひ素を完全に液より分離できるもの
の、該液中に銅があれば事前にこれの分離が必要であシ
、また該液中にカドミウムが存在すれば、ひ素と共にカ
ドミウムも沈殿してくる欠点がある。さらにはひ素の沈
殿分離時のpHが4以上と高いためにひ素殿物量が多く
たるという欠点もある。このため、斯界の技術者はpH
が4より低い酸性領域で銅等の重金属を含む溶液からの
ひ素の沈殿分離技術をいろいろと研究している。その一
方法として特公昭56−6356によれば、 pHが2
.0〜五2でひ素を沈殿分離させるために、ひ素と重金
属を含む硫酸酸性溶液に硫酸第1鉄を添加した後酸素加
圧下あるいは空気加圧下の高圧容器内で加温する処理法
を開示している。この方法によれば、ひ素の沈殿分離を
pHが2.0から3.2の範囲で行うため、ひ素と他の
重金属との分離が良いと述べている。しかしながら実施
例に見られるように、工業用酸素で1.51p/ari
aに加圧した容器内で130℃の高温で処理するため。
A pH of 4 or higher has the disadvantage of causing precipitation of cadmium in iron arsenate. In this way, when separating arsenic from a solution containing arsenic and other heavy metals, if [p) T is 4 or more and precipitation is caused, arsenic can be completely separated from the solution, but copper may be present in the solution. If present, it is necessary to separate it in advance, and if cadmium is present in the liquid, there is a drawback that cadmium will precipitate together with arsenic. Furthermore, since the pH at the time of precipitation and separation of arsenic is as high as 4 or more, there is also the drawback that the amount of arsenic precipitates is large. For this reason, engineers in this field
We are researching various techniques for precipitation and separation of arsenic from solutions containing heavy metals such as copper in the acidic region where the ratio is lower than 4. According to Japanese Patent Publication No. 56-6356, one method is to
.. Discloses a treatment method in which ferrous sulfate is added to an acidic sulfuric acid solution containing arsenic and heavy metals, and then heated in a high-pressure container under oxygen pressure or air pressure, in order to precipitate and separate arsenic at 0 to 52. ing. According to this method, arsenic is precipitated and separated at a pH in the range of 2.0 to 3.2, so it is said that arsenic and other heavy metals can be separated well. However, as seen in the example, 1.51 p/ari with industrial oxygen
To process at a high temperature of 130°C in a pressurized container.

設備的にも高価なものとなる欠点がある。また高圧容器
内で酸性溶液を取扱うという操作上の欠点もある。さら
には、ひ素を沈殿させた後のる液中にまだひ素が0.1
4〜0.39 f/を残存し。
The disadvantage is that the equipment is expensive. There is also the operational disadvantage of handling acidic solutions in high-pressure vessels. Furthermore, after arsenic is precipitated, there is still 0.1 arsenic in the solution.
4 to 0.39 f/remaining.

ひ素の沈殿分離が完全でない欠点も示されている。この
ように、 pT(が3以下の酸性領域でひ素を他の重金
属と効率よく沈殿分離させる事はきわめて難しいとされ
ているが2発明者らは、かかる欠点を取シ除き、工程も
簡素化すると共に。
The drawback that the precipitation separation of arsenic is not complete is also shown. In this way, it is said that it is extremely difficult to efficiently precipitate and separate arsenic from other heavy metals in an acidic region with pT (3 or less), but the inventors have solved this drawback and simplified the process. Along with.

ひ素品位が10%以上のひ酸鉄として、ひ素を他の重金
属を含む酸性溶液から効率よく分離する方法について種
々研究を行ったところ1次のプロセスの開発に成功した
。以下にその方法を説明する。
We conducted various studies on how to efficiently separate arsenic from acidic solutions containing other heavy metals using iron arsenate with an arsenic content of 10% or more, and succeeded in developing the first process. The method will be explained below.

銅、カドミウム、亜鉛等の重金属とひ素を含む酸性溶液
では、ひ素は3価あるいは5価の形で溶解している。3
価のひ素は沈殿分離が離1−いため、先ず酸化剤を該液
に添加して、3価のひ素を5価に酸化する。この時に用
いる酸化剤は過マンガン酸カリウム、過酸化水素、塩素
等があシ、添加量は3価のひ素の化学的必要量の2倍量
あれば十分である。ひ素の酸化が完了したのち該液のp
Hを1.5〜五〇に調節し、これに第1鉄塩を添加し、
該液のpHを1.5〜XO,望ましくけ2.0〜2.6
に保持しながら空気または工業用酸素あるいけ前記に例
示したような酸化剤にて酸化を行い、第1鉄を第2鉄に
酸化させ。
In acidic solutions containing arsenic and heavy metals such as copper, cadmium, and zinc, arsenic is dissolved in trivalent or pentavalent form. 3
Since valent arsenic is difficult to precipitate and separate, an oxidizing agent is first added to the solution to oxidize trivalent arsenic to pentavalent arsenic. The oxidizing agent used at this time may be potassium permanganate, hydrogen peroxide, chlorine, etc., and it is sufficient that the amount added is twice the chemically required amount of trivalent arsenic. After the oxidation of arsenic is completed, the p of the liquid
Adjust H to 1.5 to 50, add ferrous salt to this,
The pH of the liquid is 1.5 to XO, preferably 2.0 to 2.6.
Ferrous iron is oxidized to ferric iron by oxidizing with air or industrial oxygen or an oxidizing agent such as those exemplified above while maintaining the temperature.

ひ素をひ酸鉄として沈殿分離させる。この方法によシ、
ひ素は銅等の他の重金属と効率よく分離されるばかりか
0反応がp)Iが2.0−2.6の酸性領域で行われる
ため、ひ素含有率が101以上のひ酸鉄が得られる。上
記の反応処理中の溶液の温度は常温でも大気圧における
沸点以下の加温状態で本良い。
Arsenic is precipitated and separated as iron arsenate. By this method,
Not only is arsenic efficiently separated from other heavy metals such as copper, but the reaction is carried out in an acidic region with p)I of 2.0-2.6, so iron arsenate with an arsenic content of 101 or more can be obtained. It will be done. The temperature of the solution during the above reaction treatment may be at room temperature or below the boiling point at atmospheric pressure.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例 下記第1表の成分を含有するpHが1.7の硫酸酸性溶
液1リツトルに3.61の過マンガン酸カリウムを添加
し混合かくはんする。この酸化は短時間で完了するため
、かくはん時間は数分でよい。
EXAMPLE To 1 liter of a sulfuric acid acidic solution having a pH of 1.7 containing the ingredients listed in Table 1 below, 3.61% potassium permanganate is added and mixed and stirred. Since this oxidation is completed in a short time, the stirring time may be several minutes.

第1表 ひ素含有溶液 次いでとの溶液に少量(x4r)の炭酸カルシウムを添
加して該溶液のI)Hを2.0〜2.6に調節し、さら
に硫酸第1鉄を25F添加したのち(炭酸カルシウムと
硫酸第1鉄の添加はどちらが先でもよい)、該液のpH
を2.0〜2.6に保持しながら空気酸化を行い、g1
鉄を第2鉄に酸化し、ひ素をひ酸鉄として沈殿分離し、
ろ過分別を行う。ろ別されたひ酸鉄およびろ液の成分を
第2表に示す。
Table 1 Arsenic-containing solution Next, a small amount (x4r) of calcium carbonate was added to the solution to adjust the I)H of the solution to 2.0 to 2.6, and then 25F of ferrous sulfate was added. (Calcium carbonate and ferrous sulfate may be added first), pH of the solution
Air oxidation is carried out while maintaining g1 at 2.0 to 2.6.
Oxidize iron to ferric iron, precipitate and separate arsenic as iron arsenate,
Perform filtration and separation. The components of the filtered iron arsenate and the filtrate are shown in Table 2.

第2表 ひ酸鉄とろ液 第1表の溶液に酸化剤を添加するととによって3価のひ
素f5価に酸化することをせずに従来法のように第1鉄
塩の空気酸化だけでひ素の除去を行うと、pHが1.5
〜五〇の範囲では、ひ素の沈殿が不十分で、ひ酸鉄除去
後のろ液中のひ素含有量は1例えばpHが2.5の場合
には、o、71/1残存し、ひ素除去の目的が達成され
ない。
Table 2: When an oxidizing agent is added to the solution of iron arsenate and filtrate in Table 1, arsenic can be oxidized by air oxidation of ferrous salt without oxidizing it to trivalent arsenic (F5) as in the conventional method. When the pH is removed, the pH becomes 1.5.
-50, the precipitation of arsenic is insufficient, and the arsenic content in the filtrate after iron arsenate removal is 1. For example, when the pH is 2.5, 71/1 remains, and the arsenic content is 1. The purpose of removal is not achieved.

一方ひ素を完全に除去するためには、該液のpllを従
来法のように1例えば4.1に高めて空気酸化を行うと
る液中のひ素は[L 1 f/1.以下となってひ素除
去の目的は達成されるかわりに、ひ酸鉄中の銅含有量が
5.2%、カドミウム含有量が0.2係と高くなり、銅
、カドミウムとひ素の分離が悪くなってくる。
On the other hand, in order to completely remove arsenic, the pll of the liquid is increased to 1, for example 4.1, and air oxidation is performed as in the conventional method.The arsenic in the liquid is [L 1 f/1. Although the purpose of arsenic removal was achieved as follows, the copper content in iron arsenate was as high as 5.2%, and the cadmium content was as high as 0.2%, making it difficult to separate copper, cadmium, and arsenic. It's coming.

以上の結果かられかるように9本発明の方法によって液
のpHが1.5〜&0の範囲で、ひ素を効率よく、銅、
カドミウム等の重金属と分離する事ができる。またこの
方法では沈殿のために用いる鉄量も、ひ素1部に対して
10部以下(実施例では約2.2部)ときわめて少ない
ため。
From the above results, it is clear that the method of the present invention efficiently removes arsenic, copper, and
It can be separated from heavy metals such as cadmium. Further, in this method, the amount of iron used for precipitation is extremely small, less than 10 parts (approximately 2.2 parts in the example) per 1 part of arsenic.

ひ酸鉄殿物降を少なくできる利点もあり、さらには設備
的にも簡単なかくはん機を有する容器のみときわめて簡
便である。
It has the advantage of reducing iron arsenate precipitation, and is extremely simple in terms of equipment, requiring only a container equipped with a simple stirrer.

竹許出願人 日本鉱秦株式会社 代理人 弁理士(7569)並用啓志 7− 0発 明 者 保坂広司 戸田市新曾南3丁目17番35号日 本鉱業株式会社中央研究所内 8−Bamboo permit applicant Nippon Kohata Co., Ltd. Agent: Patent attorney (7569) Keishi Namiyo 7- 0 shots: Hiroshi Hosaka 3-17-35 Shinzenminami, Toda City Hon Mining Co., Ltd. Central Research Institute 8-

Claims (1)

【特許請求の範囲】[Claims] 銅、カドミウム、亜鉛等の重金属とひ素を含む酸性溶液
に酸化剤を添加して、該溶液中の3価のひ素を5価のひ
素に酸化したのち、第1鉄塩を添加し、さらに溶液のp
I(を1.5〜五〇に保持しつつ、空気、酸素または酸
化剤あるいけ以上のうち二者以上の併用によって第1鉄
を酸化する事により、ひ素をひ素品位の高いひ酸鉄とし
て、前記重金属を含有する溶液から沈殿分離することを
特徴とするひ素の分離法。
An oxidizing agent is added to an acidic solution containing arsenic and heavy metals such as copper, cadmium, and zinc to oxidize the trivalent arsenic in the solution to pentavalent arsenic, then a ferrous salt is added, and the solution is further oxidized. p of
By oxidizing ferrous iron with a combination of air, oxygen, or an oxidizing agent or more while maintaining I(I) at 1.5 to 50, arsenic can be converted into iron arsenate with a high arsenic grade. , a method for separating arsenic, characterized in that it is separated by precipitation from a solution containing the heavy metal.
JP3673383A 1983-03-08 1983-03-08 Separation of arsenic Granted JPS59164639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3673383A JPS59164639A (en) 1983-03-08 1983-03-08 Separation of arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3673383A JPS59164639A (en) 1983-03-08 1983-03-08 Separation of arsenic

Publications (2)

Publication Number Publication Date
JPS59164639A true JPS59164639A (en) 1984-09-17
JPS6221728B2 JPS6221728B2 (en) 1987-05-14

Family

ID=12477932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3673383A Granted JPS59164639A (en) 1983-03-08 1983-03-08 Separation of arsenic

Country Status (1)

Country Link
JP (1) JPS59164639A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024769A (en) * 1988-07-29 1991-06-18 Union Oil Company Of California Method of treating an arsenic-containing solution
US5252003A (en) * 1990-10-29 1993-10-12 International Technology Corporation Attenuation of arsenic leaching from particulate material
WO1997031861A1 (en) * 1996-02-27 1997-09-04 Hazen Research, Inc. Process for stabilization of arsenic
FR2759308A1 (en) * 1997-02-11 1998-08-14 Oberkampf Louis Arsenic-containing waste stabilisation and solidification
US5820966A (en) * 1997-12-09 1998-10-13 Inco Limited Removal of arsenic from iron arsenic and sulfur dioxide containing solutions
WO2001023628A1 (en) * 1999-09-30 2001-04-05 Billiton Intellectual Property B.V. Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses
US6406676B1 (en) * 1999-06-01 2002-06-18 Boliden Mineral Ab Method of purifying acid leaching solution by precipitation and oxidation
JP2008119690A (en) * 2006-04-28 2008-05-29 Dowa Metals & Mining Co Ltd Method for treating arsenic containing solution
JP2008143741A (en) * 2006-12-11 2008-06-26 Dowa Metals & Mining Co Ltd Manufacturing method of ferric-arsenic compound
JP2008200635A (en) * 2007-02-21 2008-09-04 Dowa Metals & Mining Co Ltd Method for treating liquid after iron-arsenic reaction
JP2008222525A (en) * 2007-03-15 2008-09-25 Dowa Metals & Mining Co Ltd Arsenic-containing solid matter, and method for producing the same
JP2008239412A (en) * 2007-03-27 2008-10-09 Dowa Metals & Mining Co Ltd Method for producing pentavalent arsenic-containing solution
JP2009050769A (en) * 2007-08-24 2009-03-12 Dowa Metals & Mining Co Ltd Treatment method of arsenic-containing solution
JP2010100524A (en) * 2010-01-25 2010-05-06 Nippon Mining & Metals Co Ltd Method for producing scorodite and method for washing the same
JP2011168467A (en) * 2010-02-22 2011-09-01 Dowa Metals & Mining Co Ltd Method for producing crystalline scorodite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075880A (en) * 2008-09-26 2010-04-08 Nippon Poly-Glu Co Ltd Method for purification of arsenic-containing water to be treated

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024769A (en) * 1988-07-29 1991-06-18 Union Oil Company Of California Method of treating an arsenic-containing solution
US5252003A (en) * 1990-10-29 1993-10-12 International Technology Corporation Attenuation of arsenic leaching from particulate material
WO1997031861A1 (en) * 1996-02-27 1997-09-04 Hazen Research, Inc. Process for stabilization of arsenic
US5762891A (en) * 1996-02-27 1998-06-09 Hazen Research, Inc. Process for stabilization of arsenic
AU723800B2 (en) * 1996-02-27 2000-09-07 Hazen Research Inc. Process for stabilization of arsenic
FR2759308A1 (en) * 1997-02-11 1998-08-14 Oberkampf Louis Arsenic-containing waste stabilisation and solidification
US5820966A (en) * 1997-12-09 1998-10-13 Inco Limited Removal of arsenic from iron arsenic and sulfur dioxide containing solutions
US6406676B1 (en) * 1999-06-01 2002-06-18 Boliden Mineral Ab Method of purifying acid leaching solution by precipitation and oxidation
US7314604B1 (en) 1999-09-30 2008-01-01 Billiton Intellectual Property, B.V. Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses
AU767980B2 (en) * 1999-09-30 2003-11-27 Billiton Intellectual Property B.V. Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses
WO2001023628A1 (en) * 1999-09-30 2001-04-05 Billiton Intellectual Property B.V. Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses
JP2008119690A (en) * 2006-04-28 2008-05-29 Dowa Metals & Mining Co Ltd Method for treating arsenic containing solution
JP4615561B2 (en) * 2006-04-28 2011-01-19 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
JP2008143741A (en) * 2006-12-11 2008-06-26 Dowa Metals & Mining Co Ltd Manufacturing method of ferric-arsenic compound
JP2008200635A (en) * 2007-02-21 2008-09-04 Dowa Metals & Mining Co Ltd Method for treating liquid after iron-arsenic reaction
WO2008114833A1 (en) * 2007-03-15 2008-09-25 Dowa Metals & Mining Co., Ltd. Arsenic-containing solid material and method for production thereof
JP2008222525A (en) * 2007-03-15 2008-09-25 Dowa Metals & Mining Co Ltd Arsenic-containing solid matter, and method for producing the same
US8465723B2 (en) 2007-03-15 2013-06-18 Dowa Metals & Mining Co., Ltd. Arsenic-containing solid and method for producing it
JP2008239412A (en) * 2007-03-27 2008-10-09 Dowa Metals & Mining Co Ltd Method for producing pentavalent arsenic-containing solution
JP2009050769A (en) * 2007-08-24 2009-03-12 Dowa Metals & Mining Co Ltd Treatment method of arsenic-containing solution
JP2010100524A (en) * 2010-01-25 2010-05-06 Nippon Mining & Metals Co Ltd Method for producing scorodite and method for washing the same
JP2011168467A (en) * 2010-02-22 2011-09-01 Dowa Metals & Mining Co Ltd Method for producing crystalline scorodite

Also Published As

Publication number Publication date
JPS6221728B2 (en) 1987-05-14

Similar Documents

Publication Publication Date Title
JP5475277B2 (en) Method for recovering valuable metals and arsenic from solution
CA2753163C (en) Method for removing arsenic as scorodite
JPS59164639A (en) Separation of arsenic
US4241039A (en) Method of removal of arsenic from a sulfuric acid solution
FI100806B (en) Procedure for dissolving zinc-like under atmospheric conditions
EP0119685B1 (en) Hydrometallurgical arsenopyrite process
US4131454A (en) Process for recovering silver and gold from chloride solutions
JP3052535B2 (en) Treatment of smelting intermediates
US4594102A (en) Recovery of cobalt and nickel from sulphidic material
JP3411320B2 (en) Zinc smelting method
US4778520A (en) Process for leaching zinc from partially desulfurized zinc concentrates by sulfuric acid
JP3212875B2 (en) Arsenic recovery method
JP3197288B2 (en) Simultaneous wet treatment of zinc concentrate and zinc leaching residue
JPS6220868B2 (en)
JP3294181B2 (en) Method for producing calcium arsenate
US4439288A (en) Process for reducing Zn consumption in zinc electrolyte purification
JP3955934B2 (en) Wet treatment of zinc leaching residue
JPH027377B2 (en)
JPH05311267A (en) Method for recovering indium from indium-containing matter
WO2015079116A1 (en) Method and arrangement of separating arsenic from starting materials
US1163286A (en) Process of recovering zinc from an acid sulfite solution.
JP4982662B2 (en) Treatment method of leachate in wet zinc smelting process
US1167701A (en) Process of recovering zinc from its ores.
JPS6386824A (en) Method for recovering valuable metal from manganese nodule or cobalt crust by separation
JPH10237560A (en) Recovery valuable material from dust to be discharged from high temperature treatment furnace