AU767980B2 - Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses - Google Patents

Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses Download PDF

Info

Publication number
AU767980B2
AU767980B2 AU78872/00A AU7887200A AU767980B2 AU 767980 B2 AU767980 B2 AU 767980B2 AU 78872/00 A AU78872/00 A AU 78872/00A AU 7887200 A AU7887200 A AU 7887200A AU 767980 B2 AU767980 B2 AU 767980B2
Authority
AU
Australia
Prior art keywords
solution
arsenic
ferric
copper
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU78872/00A
Other versions
AU7887200A (en
Inventor
John De Klerk Batty
Paul Harvey
Colette Kock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Billiton Intellectual Property BV
Original Assignee
Billiton Intellectual Property BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25587937&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AU767980(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Billiton Intellectual Property BV filed Critical Billiton Intellectual Property BV
Publication of AU7887200A publication Critical patent/AU7887200A/en
Application granted granted Critical
Publication of AU767980B2 publication Critical patent/AU767980B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

WO 01/23628 PCT/ZA00/00176 STABLE FERRIC ARSENATE PRECIPITATION FROM ACID COPPER SOLUTIONS WHILST MINIMISING COPPER LOSSES BACKGROUND OF THE INVENTION This invention relates to a method of disposing arsenic from acidic solutions. In particular, this invention relates to an environmentally acceptable method of disposing of arsenic from acidic solutions containing copper, ferric iron and ferrous iron in an environmentally acceptable manner without the loss of significant amounts of copper.
BACKGROUND OF THE INVENTION Arsenic is found in many types of mineral deposits. Generally arsenic associates with iron, copper, nickel, cobalt, lead, antimony, silver and gold. This association is either as arsenic minerals or in solid solution with sulphide minerals. Copper, gold and lead mines are the primary producers of arsenic wastes. The amount of arsenic waste produced has increased steadily over the last two decades as the mining industry has been forced to begin exploiting complex ore bodies. This has been accompanied by a decrease in the market for arsenic, which is limited to the production of pesticides, lead acid storage batteries, glass, pharmaceuticals and wood preservation agents.
The complex ores containing arsenical minerals are usually sulphidic in nature. These ores require some form of oxidative treatment to achieve acceptable dissolution rates and metal liberation. It is usually during the oxidative process, such as bacterial oxidation or roasting, that the arsenic is released from its mineral form.
Safe disposal of arsenic-containing residues is an important consideration since many countries have strict mandatory limits on the allowable arsenic levels of wastes from WO 01/23628 PCT/ZA00/00176 processing operations. Arsenic-containing residues can be categorised as either solid waste, usually originating from a pyrometallurgical process, or aqueous wastes, originating from hydrometallurgical or hydrothermal processes, which are generally held in tailings dams.
The solid waste originating from pyrometallurgical oxidation is in the form of arsenic trioxide or in slag. In most cases arsenic minerals volatilise under high temperature to form arsenic trioxide (As 2 03), which is collected in the flue dust treatment section of the plant. This powder is then stockpiled. The stockpiled material may be sold as is, purified, or treated to oxidise the arsenic to As(V) to form arsenic acid (H 3 As0 4 In copper smelting a portion of the arsenic can be removed in the slag by blowing basic flux into the copper during the oxidation stage. Some of the arsenic also reports to the copper metal and the remainder to off-gases. The slag is dumped onto slag heaps. Off-gas cleaning by aqueous scrubbing typically produces acidic solutions rich in sulfur dioxide gas, iron in its ferrous state and arsenic in its arsenic (III) state. Neutralisation of this acid solution first requires oxidation of the ferrous iron and arsenic (III) in order to form stable precipitates for tailings disposal.
Pressure oxidation of ores containing arsenical minerals involves subjecting ores (usually gold ores) to high temperatures and pressures in an oxygen-rich atmosphere contained within an autoclave. During this process any arsenic which is solubilised will react with ferric iron to form crystalline ferric arsenate, (scorodite). Scorodite formation only requires a 1:1 ferric arsenic ratio, unlike amorphous ferric arsenate which requires a greater than 1:1 ferric: arsenic (V) ratio. This makes scorodite formation very attractive in ferric poor effluents. The technology exists to form scorodite from effluent streams in an autoclave operated at 150 C. The capital cost of an autoclave is, however, usually so high that scorodite precipitation may only be economically feasible if it is carried out together with the oxidation of the valuable concentrate.
WO 01/23628 PCT/ZA00/00176 To the applicant's knowledge no process plants exist which employ an autoclave solely for formation of scorodite from effluent.
Hydrometallurgical treatment of arsenic-containing feeds results in aqueous effluent streams containing arsenic (111) and arsenic These streams are generally treated by the addition of complexing agents such as Cd, Ca, Pb, Cu and Fe which react with the arsenic to form soluble compounds of varying solubility. The addition of calcium is usually in the form of lime or limestone to form calcium arsenate. Calcium arsenate is not environmentally stable as the compound reacts with carbon dioxide, releasing arsenic into ground water systems.
The addition of ferric iron to arsenic-containing feeds results in precipitation of arsenic as a hydrated ferric arsenate and the arsenic (111) remains soluble in the aqueous effluent stream.
The ferric arsenate precipitate is typically disposed of in tailings dams. The soluble arsenic (111) needs to be removed before the aqueous stream can be disposed of in an environmentally acceptable manner. Such additional process steps involve the use of additional reagents to oxidise the arsenic (111) in order to form stable precipitates for tailings disposal and can lead to significant increases in both capital and operating costs.
The effluent streams produced by the bacterial oxidation of copper concentrates contain arsenic in the form of arsenic copper, ferric iron and ferrous iron. The ferric iron arsenic ratio is higher than 1:1.
The known prior art is typically concerned with pH adjusting the acid solution to a pH in the region of 7 to Kuyucak, N. (1998)(1) and U.S. Pat. Nos. 4,366,128 (Weir et. 5,137,640 (Poncha), 5,427,691 (Kuyucak et. 5,645,730 (Malachosky et. al.) and 5,651,895 (Gordon), all provide for disposal of arsenic in feed materials by adding a base to increase the pH. The pH 3 WO 01/23628 PCT/ZA00/00176 adjustment of the effluent streams produced by the bacterial oxidation of copper concentrates to this level of pH would result in all the desired copper being co-precipitated with the arsenic.
The effluent streams produced by the bacterial oxidation of copper concentrates contain arsenic in the form of arsenic and iron in the form of ferric iron. Oxidation of arsenic (III) and ferrous iron has already been achieved and hence oxidising agents do not need to be added to the effluent streams. Examples of such prior art are discussed hereinafter.
Zouboulis et. al. (1993)(2) and U.S. Pat. Nos. 4,241,039 (Koh et. 5,024,769 (Gallup), 5,482,534 (Leonard et. al.) and 5,820,966 (Krause et. This is typical of the prior art known to the applicant in that it relates to the oxidation of either ferrous iron to ferric iron and or arsenic (III) to arsenic prior to the neutralisation of arsenic.
Swash et. al. (1994)(3) and U.S. Pat. Nos. 4,149,880 (Prater), 4,244,735 (Reynolds et. al.) and 4,331,469 (Kunda), all provide for disposal of arsenic in feed materials as an iron arsenic compound. These processes however require pressure oxidation to operate in the sulphuric acid environment provided and are accordingly not cost effective due to the expensive nature of pressure oxidation.
Droppert et.al. (1995)(4), describes the production of crystalline scorodite from arsenic-rich sulphate-based metallurgical solutions at ambient pressure (95 Scorodite formation only requires a 1:1 ferric: arsenic ratio, unlike amorphous ferric arsenate which requires a ferric arsenic ratio which is greater than 1:1. The effluent streams produced by the bacterial oxidation of copper concentrates have ferric iron arsenic ratios far in excess of 1:1.
Droppert et.al. (1995)(4), does not describe copper co-precipitation or selective amorphous ferric arsenate precipitation.
Cashman, in U.S. Patent No. 4,655,829, discloses a method of oxidising arsenic sulphide ores in a hydrometallurgical process with no soluble arsenic compounds formed.
This is achieved by blending copper, lead or zinc sulphides to the arsenic sulphide ore.
This approach is directed to the oxidative leaching of metal sulphides rather than the environmentally acceptable removal of arsenic from arsenic sulphide ores.
Summary of the Invention The invention provides a method of selective precipitation of arsenic from acidic solutions containing copper, ferric iron and ferrous iron in an environmentally acceptable manner. This method includes pH adjusting the acid solution in a series of aerated io continuously stirred tank reactors. The reactors are maintained at elevated temperatures to increase the rate of ferric arsenate precipitation and to minimise copper coprecipitation. Recycling of neutralised slurry to the first continuously stirred tank reactor provides seeds for enhanced crystalline precipitation. Lime or limestone neutralising agent is added to the seeded acid solution to increase the pH and further selectively is precipitate stable ferric arsenate compounds.
Thus, according to the invention, there is provided a method of selectively precipitating arsenic from a solution containing copper, ferric iron and ferrous iron whilst minimising copper losses, which includes the steps of: introducing an acidic solution containing arsenic copper, ferric iron and S. 20 ferrous iron in succession into each of a series of continuously stirred tank reactors; in each of the tanks adjusting the pH of the solution and adding air to the **solution to oxidise a portion of the ferrous iron to ferric iron and heating the solution to an elevated temperature to increase the rate of ferric arsenate precipitation and to minimise copper co-precipitation; recycling a portion of selectively precipitated ferric arsenate compounds exiting a final tank in the series to a first tank in the series; seeding the solution with ferric arsenate compounds to provide seeds for enhanced crystalline formation; and in a second tank in the series, maintaining the pH of the solution at a pH of about 1,5 and selectively precipitating ferric arsenate compounds from the seeded aqueous solution with a first calcium-containing neutralising agent.
[R:\LI BXX]04476.doc: KOB WO 01/23628 PCT/ZA00/00176 Preferably the seeding occurs to provide seeds for enhanced crystalline formation.
The molar ratio of iron to arsenic of the solution may be at least 1.
Air may be added, in step to oxidise the ferrous iron to ferric iron.
The solution may be heated, in step to increase the rate of ferric arsenate precipitation and to minimise copper co-precipitation.
The said elevated temperature may be above 60 0 C and below 100°C.
The method of the invention is preferably conducted at atmospheric pressure.
The method may include the step of: transferring solution from the said first tank to a second tank in the series of continuously stirred tank reactors.
The method may include the steps, in the second tank, of adding air to the solution; heating the solution to an elevated temperature; and selectively precipitating fenrric arsenate compounds from the seeded aqueous solution with a first calcium-containing neutralising agent.
Preferably the molar ratio of iron to arsenic of the seeded solution in the second tank is at least 1.Air may be added, in step to oxidise ferrous iron of the seeded solution to ferric iron.
Air may be added, in step to oxidise ferrous iron of the seeded solution to ferric iron.
WO 01/23628 PCT/ZAOO/00176 The solution may be heated, in step to increase the rate of ferric arsenate precipitation and to minimise copper co-precipitation.
The elevated temperature in step is preferably above 60 0 C and below 100 °C.
The precipitation of ferric arsenate compounds in step is preferably conducted at atmospheric pressure and, preferably, at a pH of at least about The first neutralising agent used in step may be limestone.
The invention may include the step of: transferring solution from the second tank to a third tank in the series of continuously stirred tank reactors.
The method may include the steps, in the third tank, of: adding air to the solution; heating the solution to an elevated temperature; and selectively precipitating ferric arsenate compounds from the solution with a second calcium-containing neutralising agent.
Preferably the molar ratio of iron to arsenic of the solution in the third tank is at least 1.
Air may be added, in step to oxidise ferrous iron of the solution to ferric iron.
Step may be used to increase the rate of ferric arsenate precipitation and to minimise copper co-precipitation.
The elevated temperature in step is preferably above 60 0 C and below 100 0
C.
WO 01/23628 PCT/ZA00/00176 The precipitation of ferric arsenate compounds in step is preferably conducted at atmospheric pressure and, preferably, at a pH of at least about 1,9.
The second neutralising agent used in step may be limestone.
The invention may include the step of: transferring solution from the third tank to a final tank in the series of continuously stirred tank reactors.
The method may include the steps, in the final tank, of: adding air to the solution; heating the solution to an elevated temperature; and selectively precipitating ferric arsenate compounds from the solution by holding the solution in the final tank.
Preferably the molar ratio of iron to arsenic of the solution in the final tank is at least 1.
Air may be added, in step to oxidise ferrous iron of the solution to ferric iron.
Step may be used to increase the rate of ferric arsenate precipitation and to minimise copper co-precipitation.
The elevated temperature in step may be above 60C and below 100C.
The selective precipitation of ferric arsenate compounds in step is preferably conducted at atmospheric pressure.
The solution from the final tank may be transferred to a separation unit wherein separation is undertaken to form a solid phase and a liquid phase.
8 WO 01/23628 PCT/ZA00/00176 A portion of the solid phase may be recycled to the said first tank BRIEF DESCRIPTION OF THE DRAWINGS The invention is further described by way of examples with reference to the accompanying drawings in which: Figure 1 is a schematic flow sheet illustrating the selective precipitation of stable ferric arsenate compounds in accordance with the method of the invention, Figure 2 illustrates the use of the method shown in Figure 1 on a PLS solution produced by a ferric pre-leach stage in a bacterial oxidation process, Figure 3 illustrates the use of the method of the invention in a bacterial oxidation decant thickener overflow solution, Figure 4 shows the use of the method of the invention in a raffinate solution produced by a solvent extraction electrowinning circuit, and Figure 5 shows the use of the method of the invention in bacterial oxidation counter current decant (CCD) wash water.
DESCRIPTION OF PREFERRED EMBODIMENTS The invention provides a method of selective precipitation of arsenic from acidic solutions containing copper, ferric iron and ferrous iron in an environmentally acceptable manner. The method includes pH adjusting the acid solution in a series of aerated continuously stirred tank reactors. The reactors are maintained at elevated temperatures to increase the rate of ferric arsenate compound precipitation and to minimise copper co-precipitation. Recycling of neutralised solution to a first continuously stirred tank reactor provides seeds for enhanced crystalline precipitation. Lime or limestone neutralising agent is added to the seeded acid solution to increase the pH and further selectively precipitate stable ferric arsenate compounds.
WO 01/23628 PCT/ZA00/00176 As is described hereinafter with reference to Figures 2 to 5 the position at which the method of the invention is carried out, within the bacterial oxidation process, does not affect the method which can therefore be conducted on different process streams according to requirement.
Figure 1 is a schematic representation of the method of the invention. An acidic solution containing arsenic copper, ferric iron and ferrous iron is fed into a feed tank 12 which has an agitator 14. The molar ratio of iron arsenic of the solution is at least 1.
Solution 16 from the feed tank 12 is pumped to a first tank 18 of a series of four continuously stirred tank reactors labelled 18, 20, 22 and 24 which respectively have agitators 26A to 26D.
Solution (58) from the fourth tank 24 is directed to a thickener 28 which produces a solid phase 30 and a liquid phase 32. As is apparent from the following description the solid phase includes selectively precipitated ferric arsenate compounds and a portion 34 thereof, produced by a splitter 36, is recycled to the first tank 18 in order to seed the solution 16 with ferric arsenate compounds. This provides seeds for enhanced crystalline formation.
The first tank 18 is operated at atmospheric pressure. Air 38 from a source 40 is added to the tank 18 to oxidise a portion of the ferrous iron in the tank to ferric iron. The solution in the first tank is heated to an elevated temperature of between 60'C and 100 0 C to increase the rate of ferric arsenate compounds precipitation and to minimise copper co-precipitation.
Solution 42 from the first tank is transferred to the second tank 20 which is also operated at atmospheric pressure. Air 44 is added to the tank 20 to oxidise a portion of the ferrous iron in the tank to ferric iron. The solution in the second tank is heated to an elevated temperature of between 60 0 C and 1000C to increase the rate of ferric arsenate precipitation and to minimise copper co-precipitation. Lime or limestone 46 is added to the tank 20 to selectively precipitate ferric arsenate compounds from the seeded solution. The addition of limestone is controlled so that the pH of the solution in the second tank is maintained at a pH of at least about WO 01/23628 PCT/ZA00/00176 Solution 48 from the tank 20 is transferred to the third tank 22. This tank is also operated at atmospheric pressure and air 50 is added to the solution in the third tank to oxidise a portion of the ferrous iron to ferric iron. The solution in the third tank is heated to an elevated temperature of between 600C and 100°C to increase the rate of ferric arsenate compounds precipitation and to minimise copper co-precipitation. Lime or limestone 52 is added to the solution in the tank 22 to selectively precipitate ferric arsenate compounds from the seeded solution with the addition of lime or limestone being controlled so that the pH of the solution in the third tank is maintained at a pH of at least about 1,9.
Solution 54 from the third tank is transferred to the fourth tank 24 which is operated at atmospheric pressure. Air 56 is added to the solution in the fourth tank to oxidise a portion of the ferrous iron in the solution to ferric iron. The solution is heated to an elevated temperature of between 600C and 100C to increase the rate of ferric arsenate compound precipitation and to minimise copper co-precipitation.
As has been previously indicated the solution 58 from the fourth tank is transferred to the separation unit 28 which forms a low solution content phase 30 and a liquid phase 32. A portion 34 of the low solution content phase is recycled as seed material to the first tank 18.
The overflow 32 of the separation unit or thickener 28 can, according to the application, form different streams in the flow charts of Figures 2 to 5. The underflow 60 of the separation unit is filtered to form a disposable cake.
The source 40 is used to provide the air 38, 44, 50 and 56 to each of the tanks 18 to 24 respectively. The lime or limestone 46 and 52, as the case may be, supplied to the tanks 18 and 20, is fed from a tank 62 which contains an agitator 64. The addition of limestone to the two tanks 18 and 20 is controlled by respective valves 66 and 68. Unused lime or limestone is returned to the tank 62. The lime or limestone solution is made up with water.
WO 01/23628 PCT/ZAOO/00176 As has been stated the position within a bacterial oxidation process at which stable ferric arsenate compounds (Neutral) are selectively precipitated does not affect the method of the invention. Thus the flow sheet shown in Figure 1 remains unaltered when the position, at which the method of the invention is implemented, within a bacterial oxidation process, is altered. Figures 2 to 5 illustrate different possible locations at which the method of the invention can be carried out in a bacterial oxidation process.
Figure 2 shows the thickener 28 in block diagram form giving rise to the overflow stream 32 and the underflow stream 60. The other components of the flow sheet of Figure 1 are collectively represented by a block labeled 70. The remaining elements in Figure 2 are briefly described.
Concentrate 72 from a regrind circuit 74 and a solution 76 are fed into a ferric pre-leach reactor 78. The solution 76 is an acidic solution containing copper, arsenic and ferric iron.
In the reactor 78 oxidation of sulphide minerals occurs. The product 80 of the ferric pre-leach reactor flows into a thickener 82. Overflow 84 from the thickener contains copper, arsenic (V) and ferrous and ferric iron. Underflow 86 from the thickener reports to a bioleaching phase 88 which produces a solution 90 containing copper, arsenic and ferric iron and which is directed into a decant thickener 92. The thickener overflow is the solution 76. The underflow 94 of the thickener is pumped to counter current decant (CCD) thickeners 96 for washing. The overflow product 98 and the solution 84 from the thickener 82, in combination, make up the acid solution 10 which is fed to the tank 12 in Figure 1. The underflow product 100 is filtered to form a cake 102 for disposal.
The overflow solution 32 from the thickener 28 is fed to a solvent extraction plant 104 in which the solution is contacted with an organic solvent extractant and copper in the solution is transferred to the extractant. Copper is then stripped from the extractant to form a stream 106 which is reported as an advance electrolyte to an electrowinning stage 108 where the copper 12 WO 01/23628 PCT/ZA00/00176 is plated onto cathodes 110. The spent electrolyte 112 is returned to the solvent extraction plant 104.
The plant 104 produces a raffinate 114 which is predominantly returned to the bioleach stage 88 although a portion is bled (step 116) to remove impurities from the SX EW circuit.
With the arrangement of Figure 2 the feed stream to the process for selectively precipitating stable ferric arsenate compounds is a combination of the solutions 84 and 98. In Figure 3 on the other hand the overflow 76 from the decant thickener 92 constitutes the feed 10 to the process 70 of the invention. In other respects the process steps shown in Figure 3 are similar to those which have been described in connection with Figure 2.
In the approach illustrated in Figure 4 the bleed 116 of the raffinate solution 114 provides the feed 10 to the method 70 of the invention. In Figure 5 on the other hand the overflow product 98 of the CCD thickeners 96 is the feed, alone, to the method block 70 and the solution 84, in this case, is not combined with the product 98 but is directly transferred to the solvent extraction step 104.
References: Kuyucak, N. (1998) "Mining, the environment and the treatment of mine effluents", Int. J.
Environment and Pollution, Vol. 10, No. 2, 315-325.
Zouboulis, Kydros, K.A. and Matis, K.A. (1993) "Arsenic (III) and Arsenic (V) Removal from Solutions by Pyrite Fines", Separation Science and Technology, 28 (15&16), 2246 2463.
WO 01/23628 PCT/ZA00/00176 Swash, P.M. and Monhemius, A.J. (1994) "Hydrothermal Precipitation from Aqueous Solutions Containing Iron (III), Arsenate and Sulphate", Hydrometallurgy 94, Chapman and Hall, 177-190.
Droppert, Demopoulos, G.P. and Harris, G.B. (1995) "Ambient Pressure Production of Crystalline Scorodite from Arsenic-rich Metallurgical Effluent Solutions", The Min, Met.
Materials Society, EPD Congress 1996, 227-239.

Claims (9)

1. A method of selectively precipitating arsenic from a solution containing copper, ferric iron and ferrous iron whilst minimising copper losses which includes the steps of: introducing an acidic solution containing arsenic(V), copper, ferric iron and ferrous iron in succession into each of a series of continuously stirred tank reactors; in each of the tanks adjusting the pH of the solution and adding air to the solution to oxidise a portion of the ferrous iron to ferric iron and heating the solution to an elevated temperature to increase the rate of ferric arsenate precipitation and to 0 minimise copper co-precipitation; recycling a portion of selectively precipitated ferric arsenate compounds exiting a final tank in the series to a first tank in the series; seeding the solution with ferric arsenate compounds to provide seeds for enhanced crystalline formatiori; and in a second tank in the series, maintaining the pH of the solution at a pH of about and selectively precipitating ferric arsenate compounds from the seeded aqueous solution with a first calcium-containing neutralising agent. d
2. A method according to claim 1 wherein the molar ratio of iron to arsenic of the solution Is 0 at least 1,
3, A method according to claim 1 or2 wherein the elevated temperature in step is above and below 100 0 C.
4. A method according to any one of claims 1 to 3 which is conducted at atmospheric pressure.
Empfans MEN c- AMENDED SHEET 16 A method according to any one of claims 1 to 4 wherein the first neutralising agent used in step is limestone.
6. A method according to any one of claims 1 to 5 which includes the steps, in a third tank in the series, of maintaining the pH of the solution at a pH of about 1,9, and selectively precipitating ferric arsenate compounds from the solution with a second calcium-containing neutralising agent.
7. A method according to claim 6 wherein the second neutralising agent is limestone.
8. A method of selectively precipitating arsenic from a solution containing copper, ferric iron and ferrous iron whilst minimising copper losses substantially as hereinbefore described with reference to the accompanying drawings.
9. Ferric arsenate compounds precipitated by a method as claimed in any one of claims 1 to 8. Dated 23 September, 2003 Billiton Intellectual Property B.V. Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON *e *ee [R:\LIBXX04476doc: KOB
AU78872/00A 1999-09-30 2000-09-21 Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses Ceased AU767980B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA99/6235 1999-09-30
ZA996235 1999-09-30
PCT/ZA2000/000176 WO2001023628A1 (en) 1999-09-30 2000-09-21 Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses

Publications (2)

Publication Number Publication Date
AU7887200A AU7887200A (en) 2001-04-30
AU767980B2 true AU767980B2 (en) 2003-11-27

Family

ID=25587937

Family Applications (1)

Application Number Title Priority Date Filing Date
AU78872/00A Ceased AU767980B2 (en) 1999-09-30 2000-09-21 Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses

Country Status (8)

Country Link
US (1) US7314604B1 (en)
CN (1) CN1170949C (en)
AP (1) AP1476A (en)
AU (1) AU767980B2 (en)
CA (1) CA2384664C (en)
PE (1) PE20010845A1 (en)
WO (1) WO2001023628A1 (en)
ZA (1) ZA200201539B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20050453A1 (en) * 2003-05-19 2005-06-23 Bhp Billiton Sa Ltd TREATMENT OF A BASE METAL CONCENTRATE
FI119438B (en) * 2005-05-03 2008-11-14 Outokumpu Oy Method for recovering precious metals and arsenic from solution
JP5107637B2 (en) * 2007-08-24 2012-12-26 Dowaメタルマイン株式会社 Iron arsenate powder
FI122349B (en) * 2009-02-23 2011-12-15 Outotec Oyj Procedure for removing arsenic as chorodite
JP2011168467A (en) * 2010-02-22 2011-09-01 Dowa Metals & Mining Co Ltd Method for producing crystalline scorodite
CA2861537A1 (en) 2012-01-12 2013-07-18 Jean-Marc Lalancette Method for selective precipitation of iron, arsenic and antimony
FI126884B (en) * 2013-11-29 2017-07-14 Outotec Finland Oy Method and arrangement for separating arsenic from starting material
WO2015113141A1 (en) 2014-01-31 2015-08-06 Goldcorp Inc. Process for separation of at least one metal sulfide compristng arsenic and/or antimony from a mixed sulfide concentrate
CN107619939A (en) * 2017-08-15 2018-01-23 昆明理工大学 Arsenic, the minimizing technology of cadmium in a kind of zinc sulfate crystallization
CN107915291A (en) * 2017-11-17 2018-04-17 金川集团股份有限公司 It is a kind of using waste water sink arsenic slag to copper-bath containing arsenic carry out arsenic removal method
CN109574319B (en) * 2019-01-07 2021-11-19 紫金矿业集团股份有限公司 Arsenic fixing process for high-arsenic waste acid in non-ferrous metal smelting
CN109607872B (en) * 2019-01-07 2021-11-19 紫金矿业集团股份有限公司 Comprehensive utilization of arsenic-containing waste acid and safe arsenic disposal method
CN109761390A (en) * 2019-01-10 2019-05-17 昆明理工大学 A kind of innoxious Arsenic fixation method of industry arsenic-containing waste water
US20220234909A1 (en) * 2019-05-28 2022-07-28 The Royal Institution For The Advancement Of Learning / Mcgill University Method for producing scorodite
CN115448372B (en) * 2022-09-14 2023-09-22 中南大学 Method for solidifying high-arsenic crystal by using composite iron salt through hydrothermal oxygen pressure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164639A (en) * 1983-03-08 1984-09-17 Nippon Mining Co Ltd Separation of arsenic
US5482534A (en) * 1991-10-25 1996-01-09 Sasox Processing Pty. Limited Extraction or recovery of non-ferrous metal values from arsenic-containing materials
US5820966A (en) * 1997-12-09 1998-10-13 Inco Limited Removal of arsenic from iron arsenic and sulfur dioxide containing solutions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510259A (en) * 1967-07-13 1970-05-05 Union Carbide Canada Ltd Simultaneous leaching of zinc and manganese ores
US3985856A (en) * 1975-02-06 1976-10-12 Continental Oil Company Removal of iron from aqueous acid solutions containing iron and copper
JPS5482307A (en) * 1977-12-14 1979-06-30 Dowa Mining Co Arsenic removing method
JP3254501B2 (en) 1993-01-12 2002-02-12 秋田製錬株式会社 Method for removing arsenic from acidic solution containing arsenic and iron
US5762891A (en) * 1996-02-27 1998-06-09 Hazen Research, Inc. Process for stabilization of arsenic
JP3756687B2 (en) 1999-01-29 2006-03-15 同和鉱業株式会社 Method for removing and fixing arsenic from arsenic-containing solutions
SE514338C2 (en) 1999-06-01 2001-02-12 Boliden Mineral Ab Process for the purification of acidic saline solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164639A (en) * 1983-03-08 1984-09-17 Nippon Mining Co Ltd Separation of arsenic
US5482534A (en) * 1991-10-25 1996-01-09 Sasox Processing Pty. Limited Extraction or recovery of non-ferrous metal values from arsenic-containing materials
US5820966A (en) * 1997-12-09 1998-10-13 Inco Limited Removal of arsenic from iron arsenic and sulfur dioxide containing solutions

Also Published As

Publication number Publication date
AP1476A (en) 2005-10-03
CN1376211A (en) 2002-10-23
CN1170949C (en) 2004-10-13
US7314604B1 (en) 2008-01-01
ZA200201539B (en) 2002-09-13
CA2384664C (en) 2008-08-05
PE20010845A1 (en) 2001-08-31
WO2001023628A1 (en) 2001-04-05
AP2002002436A0 (en) 2002-03-31
CA2384664A1 (en) 2001-04-05
AU7887200A (en) 2001-04-30

Similar Documents

Publication Publication Date Title
Nazari et al. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic
Riveros et al. Arsenic disposal practices in the metallurgical industry
US5120353A (en) Hydrometallurgic method for processing raw materials containing zinc sulphide
AU767980B2 (en) Stable ferric arsenate precipitation from acid copper solutions whilst minimising copper losses
CN101278064B (en) Method for processing nickel bearing raw material in chloride-based leaching
CA2706414C (en) Method for processing pyritic concentrate containing gold, copper and arsenic
AU725971B2 (en) Method for leaching zinc concentrate in atmospheric conditions
US6383255B1 (en) Method for recovering the valuable metal content of a sulphuric acid leaching solution
US20220267877A1 (en) Co-Processing of Copper Sulphide Concentrate with Nickel Laterite Ore
EP0155250B1 (en) A method for recovering the metal values from materials containing iron
JPH0625763A (en) Treatment of intermediate product of smelting
CA1110076A (en) Metal leaching from concentrates using nitrogen dioxide in acids
CA2373012A1 (en) Base metal recovery
MXPA01003809A (en) Process for bioleaching of copper concentrates.
EP1325164B1 (en) Pressure leaching process for zinc recovery from sulphidic ore materials
AU769984B2 (en) Process for recovering metal values
US11584975B1 (en) Integrated pressure oxidative leach of copper sulphidic feed with copper heap leach
WO2015079116A1 (en) Method and arrangement of separating arsenic from starting materials
NO134117B (en)
CA2663356C (en) Process for the indirect bioleaching of zinc sulphide
SULFIDES 1. Copper Sulfide The sulfide minerals of copper such as chalcopyrite (CuFeS2), covellite (CuS), chalcocite (Cu₂S), bornite (Cu, FeS,), cubanite (CuFe₂S,), and digenite (Cu, S,) are not as such soluble in dilute H₂SO,. However, they readily dissolve in this acid in the presence of oxidizing agents such as oxygen, ferric ion, and bacteria. In common practice, low-grade ores are
CA2212378A1 (en) Copper precipitation process
Hackl Reduction leaching of chalcopyrite

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)