JP5232806B2 - Manufacturing method and cleaning method of scorodite - Google Patents
Manufacturing method and cleaning method of scorodite Download PDFInfo
- Publication number
- JP5232806B2 JP5232806B2 JP2010013238A JP2010013238A JP5232806B2 JP 5232806 B2 JP5232806 B2 JP 5232806B2 JP 2010013238 A JP2010013238 A JP 2010013238A JP 2010013238 A JP2010013238 A JP 2010013238A JP 5232806 B2 JP5232806 B2 JP 5232806B2
- Authority
- JP
- Japan
- Prior art keywords
- scorodite
- washing
- water
- solution
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- UYZMAFWCKGTUMA-UHFFFAOYSA-K iron(3+);trioxido(oxo)-$l^{5}-arsane;dihydrate Chemical compound O.O.[Fe+3].[O-][As]([O-])([O-])=O UYZMAFWCKGTUMA-UHFFFAOYSA-K 0.000 title claims description 220
- 238000000034 method Methods 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000004140 cleaning Methods 0.000 title description 43
- 238000005406 washing Methods 0.000 claims description 144
- 239000010949 copper Substances 0.000 claims description 132
- 229910052802 copper Inorganic materials 0.000 claims description 101
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 100
- 239000000243 solution Substances 0.000 claims description 97
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 90
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 88
- 239000007788 liquid Substances 0.000 claims description 77
- 238000002386 leaching Methods 0.000 claims description 48
- 150000002500 ions Chemical class 0.000 claims description 47
- 239000012295 chemical reaction liquid Substances 0.000 claims description 39
- 238000000926 separation method Methods 0.000 claims description 34
- 239000007864 aqueous solution Substances 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 238000001914 filtration Methods 0.000 claims description 31
- 230000002378 acidificating effect Effects 0.000 claims description 29
- 230000015572 biosynthetic process Effects 0.000 claims description 25
- 238000003786 synthesis reaction Methods 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 17
- 230000007423 decrease Effects 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 8
- 238000004737 colorimetric analysis Methods 0.000 claims description 7
- 238000000967 suction filtration Methods 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 229910052785 arsenic Inorganic materials 0.000 description 66
- 238000010828 elution Methods 0.000 description 61
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 57
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 39
- 238000012360 testing method Methods 0.000 description 19
- 239000013078 crystal Substances 0.000 description 18
- 239000008151 electrolyte solution Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 238000007922 dissolution test Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 5
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 4
- UGWKCNDTYUOTQZ-UHFFFAOYSA-N copper;sulfuric acid Chemical compound [Cu].OS(O)(=O)=O UGWKCNDTYUOTQZ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 3
- VETKVGYBAMGARK-UHFFFAOYSA-N arsanylidyneiron Chemical compound [As]#[Fe] VETKVGYBAMGARK-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000011085 pressure filtration Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- DJHGAFSJWGLOIV-UHFFFAOYSA-N Arsenic acid Chemical compound O[As](O)(O)=O DJHGAFSJWGLOIV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- 235000014413 iron hydroxide Nutrition 0.000 description 2
- 229910000358 iron sulfate Inorganic materials 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 150000001495 arsenic compounds Chemical class 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Compounds Of Iron (AREA)
Description
本発明は、スコロダイトの製造方法に関する。とりわけ、銅製錬工程で産出する電解沈殿銅からのスコロダイトの製造方法に関する。また、本発明はスコロダイトから砒素の溶出を低減するための洗浄方法に関する。 The present invention relates to a method for producing scorodite. In particular, the present invention relates to a method for producing scorodite from electrolytically precipitated copper produced in a copper smelting process. The present invention also relates to a cleaning method for reducing arsenic elution from scorodite.
銅鉱石中には種々の不純物が混入しており、そのような不純物には砒素(As)が含まれる。砒素(As)は銅製錬の乾式工程で高熱によって揮発分離されるが、一部は粗銅に混入して銅の電解精製工程へ持ち込まれることとなる。
粗銅(銅陽極)に含まれるAsは電解液に一部溶出し、未溶出分は電解槽底部に沈殿するアノードスライム中に混入する。また、陰極に析出する銅量よりも陽極から溶出する銅量の方が一般に多いので、電解液中の銅濃度は次第に増大する。そのため、電解液の一部を別の電解槽に抜き出して電解液の品質を制御している。抜き出した電解液に対しては脱銅電解を行い、陰極にCu及びAs等の不純物を析出させ、また、電解槽底部にこれらを沈殿させることでCu及びAs等の不純物を分離回収する。斯界では、これら電解槽底部に沈殿するものと陰極に析出するものを併せて電解沈殿銅と呼んでいる。
Various impurities are mixed in the copper ore, and such impurities include arsenic (As). Arsenic (As) is volatilized and separated by high heat in a dry process of copper smelting, but a part of it is mixed with crude copper and brought into the copper electrolytic purification process.
As contained in the crude copper (copper anode) is partly eluted in the electrolytic solution, and the undissolved part is mixed in the anode slime that precipitates at the bottom of the electrolytic cell. Further, since the amount of copper eluted from the anode is generally larger than the amount of copper deposited on the cathode, the copper concentration in the electrolytic solution gradually increases. Therefore, a part of the electrolytic solution is extracted into another electrolytic cell to control the quality of the electrolytic solution. The extracted electrolytic solution is subjected to copper removal electrolysis, and impurities such as Cu and As are deposited on the cathode, and impurities such as Cu and As are separated and recovered by depositing them on the bottom of the electrolytic cell. In this field, those precipitated at the bottom of the electrolytic cell and those deposited at the cathode are collectively referred to as electrolytically precipitated copper.
電解沈殿銅は銅製錬工程に繰り返されるのが通常であるが、そのためには電解沈殿銅からAs等の不純物を分離しておくのが好ましい。また、Asは有価物として利用する道も残されている。従って、電解沈殿銅からAsを高い品位で分離・回収する技術が望まれる。分離・回収された砒素は、環境汚染を引き起こさないように、安定な化合物として固定化するのが好ましい。 Electrolytically precipitated copper is usually repeated in the copper smelting process. For this purpose, it is preferable to separate impurities such as As from electrolytically precipitated copper. In addition, there is still a way to use As as a valuable resource. Therefore, a technique for separating and recovering As from electrolytically precipitated copper with high quality is desired. The separated and recovered arsenic is preferably immobilized as a stable compound so as not to cause environmental pollution.
砒素を固定するために、鉄砒素化合物であるスコロダイト(FeAsO4・2H2O)の結晶を生成させることが有効であることが知られている。結晶性スコロダイトは化学的に安定であり、長期保存にも適している。一方、スコロダイトであっても非晶質のものは安定性に欠き、長期保存に適さない。 In order to fix arsenic, it is known that it is effective to produce crystals of scorodite (FeAsO 4 .2H 2 O), which is an iron arsenic compound. Crystalline scorodite is chemically stable and suitable for long-term storage. On the other hand, amorphous scorodite lacks stability and is not suitable for long-term storage.
例えば、特許文献1では、銅及び/又は亜鉛を含む非鉄金属成分と砒素とを含有する砒素含有溶液からの砒素の除去および固定方法において、前記砒素含有溶液に鉄(II)溶液及び/又は鉄(III)溶液を加えて120℃以上で反応させ、鉄・砒素化合物として安定な結晶性を持つスコロダイトを生成させ、前記砒素含有溶液から固液分離して銅を含む非鉄金属成分を含有するスコロダイトを回収する第1工程と、第1工程で得られた銅を含む非鉄金属成分を含有するスコロダイトに水を加えてリパルプし、スコロダイトに含有する銅を含む非鉄金属成分を液中に溶かし出してスコロダイトから分離する第2工程とを有することを特徴とする砒素含有溶液からの砒素の除去および固定方法が記載されている。これにより、銅等の有価金属をロスすることなく、砒素を結晶性の安定なスコロダイトとして除去・固定することが可能とされている。 For example, in Patent Document 1, in a method for removing and fixing arsenic from an arsenic-containing solution containing a non-ferrous metal component containing copper and / or zinc and arsenic, an iron (II) solution and / or iron is used as the arsenic-containing solution. (III) A scorodite containing a non-ferrous metal component containing copper by solid-liquid separation from the arsenic-containing solution by generating a scorodite having stable crystallinity as an iron / arsenic compound by adding a solution and reacting at 120 ° C. or higher. The first step of recovering and re-pulping the scorodite containing the copper-containing nonferrous metal component obtained in the first step, and dissolving the nonferrous metal component containing the copper contained in the scorodite into the solution A method of removing and fixing arsenic from an arsenic-containing solution, characterized in that it comprises a second step of separating from scorodite. Thereby, it is possible to remove and fix arsenic as crystalline stable scorodite without losing valuable metals such as copper.
特許文献1には、安定性の高いスコロダイトを得るための方法に関して、「Fe/Asモル比が1.5より低くても、2.0より高くても、生成する鉄砒素化合物の結晶性が著しく低下し、砒素が溶出しやすくなる。」という記載や、「150℃より低いと結晶性の鉄砒素化合物が生成せず、アモルファス状となり安定性が悪く、砒素が溶出しやすい。」という記載がある。 Patent Document 1 describes a method for obtaining a highly stable scorodite: “Even if the Fe / As molar ratio is lower than 1.5 or higher than 2.0, the crystallinity of the produced iron arsenic compound is high. The description is remarkably lowered and arsenic is likely to be eluted, and the statement “if lower than 150 ° C., a crystalline iron arsenic compound is not formed, becomes amorphous and has poor stability, and arsenic is likely to be eluted”. There is.
そして、スコロダイトを合成する第1工程後に行う第2工程の意義について、「スコロダイトには銅や亜鉛等が硫酸塩の形で混入している。銅を例にとるとこの分の回収を行わないと全体の約10%のロスとなる。またこのままの状態では、砒素の溶出はないが、有価金属である銅が析出物中に混入してしまう。そこで、次の第2工程によって銅等とスコロダイトとを分離して銅等を回収する。」と記載されている。
すなわち、特許文献1の教示によれば、スコロダイトの砒素の溶出性は反応段階でのFe/Asモル比や温度条件が重要である。
And about the significance of the 2nd process performed after the 1st process which synthesizes scorodite, "copper, zinc, etc. are mixed in the form of a sulfate in scorodite. If copper is taken as an example, this amount will not be collected. In this state, arsenic is not eluted but copper, which is a valuable metal, is mixed into the precipitate. It separates from scorodite and collects copper etc. ".
That is, according to the teaching of Patent Document 1, the Fe / As molar ratio and temperature conditions in the reaction stage are important for the arsenic elution of scorodite.
しかしながら、本発明者の実験結果によれば、スコロダイトの反応条件を最適化したとしても、得られたスコロダイトからは砒素が環境基準を超えて溶出することがあり、その溶出量にもばらつきがあることが分かった。スコロダイトの品質にばらつきが生じるのは好ましくない。そこで、本発明は砒素溶出性の低いスコロダイトを安定的に製造するための方法を提供することを課題とする。 However, according to the experiment results of the present inventor, even if the reaction conditions of scorodite are optimized, arsenic may be eluted from the obtained scorodite exceeding the environmental standard, and the amount of elution is also variable. I understood that. It is not preferable that the scorodite quality varies. Therefore, an object of the present invention is to provide a method for stably producing scorodite having low arsenic elution.
これまで、スコロダイトから砒素が溶出する要因として考えられていたのは、非晶質のスコロダイトの存在であった。非晶質のスコロダイトは安定性が低く、結晶性スコロダイト中に不純物として含まれれば、砒素が溶出する原因となる。そのため、得られたスコロダイトの安定性が低いのは主に非晶質のスコロダイトが混在していることによるものと考えられていた。そこで、これまでのスコロダイトの安定性向上のための技術は、合成時に結晶性のスコロダイトを高い選択率で生成させることに注力されてきたのである。 Until now, it was the presence of amorphous scorodite that was considered as a factor for arsenic to elute from scorodite. Amorphous scorodite has low stability, and if it is contained as an impurity in crystalline scorodite, it will cause arsenic to elute. For this reason, the low stability of the obtained scorodite was thought to be mainly due to the presence of amorphous scorodite. Thus, conventional techniques for improving the stability of scorodite have been focused on generating crystalline scorodite with high selectivity during synthesis.
ところが、本発明者がスコロダイトの砒素溶出性について鋭意検討したところ、溶出量やそのばらつきはスコロダイト合成後の洗浄操作に大きく左右されることを見出した。洗浄操作はスコロダイトに付着した反応後液を洗い流し、スコロダイトの品位を高めるという点で有効であると考えられ、これまでも、スコロダイトを合成した後には固液分離や水洗などの一般的な操作は行っていた。例えば、本発明者がこれまでスコロダイトの洗浄方法として採用していた方法は、ブフナー漏斗上でスコロダイトのケークの上に水を加えて洗浄する操作を、洗液から銅の青い色が認められなくなるまで繰り返すというものである。 However, the present inventor has intensively studied the arsenic elution property of scorodite, and found that the elution amount and its variation greatly depend on the washing operation after scorodite synthesis. The washing operation is thought to be effective in that the post-reaction liquid adhering to the scorodite is washed away to improve the quality of the scorodite, and until now, after synthesizing the scorodite, general operations such as solid-liquid separation and water washing have not been performed. I was going. For example, the method that the present inventor has previously adopted as a method for cleaning scorodite is that the operation of adding water on the scorodite cake on the Buchner funnel for cleaning, no blue color of copper is recognized from the cleaning solution. Repeat until.
そして、従来の知見ではスコロダイトの安定性は主にスコロダイト合成時の結晶化の度合いによると考えられていたため、スコロダイトに付着した反応後液を除去するという洗浄操作を充分に行ったとしても、スコロダイト自体の結晶性が低ければやはり砒素の溶出は避けられない。そのため、洗浄後に溶出する砒素はスコロダイトの低結晶性に起因するものであると考えていた。 According to conventional knowledge, the stability of scorodite was thought to be mainly due to the degree of crystallization during the synthesis of scorodite. Therefore, even if the washing operation of removing the post-reaction liquid adhering to scorodite was performed sufficiently, If the crystallinity of itself is low, elution of arsenic is inevitable. For this reason, arsenic that eluted after washing was thought to be due to the low crystallinity of scorodite.
しかしながら、実は、スコロダイトからの砒素の溶出は洗浄が不十分であることに起因するものが意外にも多いことが分かった。そして、洗浄液中に含まれる反応後液成分が低下すればスコロダイトの溶出試験による砒素等の金属イオンの溶出値も低下するという関係にあることが分かった。そのため、スコロダイトから反応後液を分離するための洗浄操作は洗浄液中に含まれる反応後液成分、例えばCuやAs等の金属イオン濃度を監視して行うことにより、所望の溶出量を有し、しかも溶出量にばらつきの少ないスコロダイトが簡便に得られることを見出したのである。 However, it has been found that surprisingly many arsenic elutions from scorodite are caused by insufficient cleaning. It was also found that if the post-reaction liquid component contained in the cleaning liquid decreases, the elution value of metal ions such as arsenic in the scorodite elution test also decreases. Therefore, the cleaning operation for separating the post-reaction liquid from scorodite has a desired elution amount by monitoring the post-reaction liquid components contained in the cleaning liquid, for example, the concentration of metal ions such as Cu and As, In addition, it has been found that scorodite with little variation in the elution amount can be easily obtained.
以上の知見を基礎として完成した本発明は一側面において、
・5価のAsと3価のFeを含有する酸性水溶液を結晶性スコロダイトの合成に有効な温度及び時間加熱する工程1と、
・合成されたスコロダイトを反応後液から固液分離によって分離する工程2と、
・その後に、スコロダイトを水洗した上でスコロダイトを水洗液から固液分離により分離する工程3と、
を行うことを含むスコロダイトの製造方法であって、
工程1の酸性水溶液の原料として電解沈殿銅の硫酸浸出液を使用し、工程3は、第n回目(n≧1)の工程3を実施した後の水洗液中に含まれるCu、S及びFeよりなる群から選択される少なくとも1種の反応後液成分の濃度とAsイオン濃度との間の相関関係に基づき、スコロダイトの水洗に使用した水洗液中に含まれる該反応後液成分の濃度測定値から推定されるAsイオン濃度が0.3mg/L以下に低下するまで繰り返すことを含む方法である。
The present invention completed on the basis of the above knowledge, in one aspect,
Step 1 of heating an acidic aqueous solution containing pentavalent As and trivalent Fe at a temperature and time effective for the synthesis of crystalline scorodite;
-Step 2 of separating the synthesized scorodite from the post-reaction liquid by solid-liquid separation;
-After that, after washing the scorodite with water and separating the scorodite from the washing solution by solid-liquid separation,
A method for producing scorodite, comprising:
The sulfuric acid leaching solution of electrolytically-precipitated copper is used as a raw material for the acidic aqueous solution in Step 1, and Step 3 is based on Cu, S, and Fe contained in the water washing solution after performing the n-th (n ≧ 1) Step 3. Based on the correlation between the concentration of at least one post-reaction liquid component selected from the group consisting of and the As ion concentration , the measured value of the concentration of the post-reaction liquid component contained in the water wash used for scorodite water washing It is a method including repeating until the As ion concentration estimated from 1 falls to 0.3 mg / L or less.
本発明は別の一側面において、
・5価のAsと3価のFeを含有する酸性水溶液を結晶性スコロダイトの合成に有効な温度及び時間加熱する工程1と、
・合成されたスコロダイトを反応後液から固液分離によって分離する工程2と、
・その後に、スコロダイトを水洗した上でスコロダイトを水洗液から固液分離により分離する工程3と、
を行うことを含むスコロダイトの製造方法であって、
工程1の酸性水溶液の原料として電解沈殿銅の硫酸浸出液を使用し、工程3は、洗浄に使用する水量とスコロダイトの乾燥重量の比率を一定値に定めた上で、水洗液中に含まれるAs濃度測定値とCu、S及びFeよりなる群から選択される少なくとも1種の反応後液成分の濃度測定値との関係をプロットし、該反応後液成分の濃度測定値の推移から洗浄液中に残存するAs濃度を推測し、スコロダイトの水洗に使用した水洗液中に含まれる該反応後液成分の濃度測定値から推定されるAsのイオン濃度が0.3mg/L以下に低下するまで繰り返すことを含む方法である。
In another aspect of the present invention,
Step 1 of heating an acidic aqueous solution containing pentavalent As and trivalent Fe at a temperature and time effective for the synthesis of crystalline scorodite;
-Step 2 of separating the synthesized scorodite from the post-reaction liquid by solid-liquid separation;
-After that, after washing the scorodite with water and separating the scorodite from the washing solution by solid-liquid separation,
A method for producing scorodite, comprising:
The sulfuric acid leaching solution of electrolytically precipitated copper is used as a raw material for the acidic aqueous solution in step 1, and in step 3, the ratio of the amount of water used for washing and the dry weight of scorodite is set to a constant value, and then As is contained in the washing solution. The relationship between the measured concentration value and the measured concentration value of at least one post-reaction liquid component selected from the group consisting of Cu, S, and Fe is plotted. The remaining As concentration is estimated, and the process is repeated until the As ion concentration estimated from the measured concentration value of the post-reaction liquid component contained in the washing solution used for washing scorodite is lowered to 0.3 mg / L or less. It is a method including.
本発明に係るスコロダイトの製造方法の一実施形態においては、前記少なくとも1種の反応後液成分の濃度はCuイオン濃度である。 In one embodiment of the method for producing scorodite according to the present invention, the concentration of the at least one post-reaction liquid component is a Cu ion concentration.
本発明は更に別の一側面において、
・5価のAsと3価のFeを含有する酸性水溶液を結晶性スコロダイトの合成に有効な温度及び時間加熱する工程1と、
・合成されたスコロダイトを反応後液から固液分離によって分離する工程2と、
・その後に、スコロダイトを水洗した上でスコロダイトを水洗液から固液分離により分離する工程3と、
を行うことを含むスコロダイトの製造方法であって、
工程1の酸性水溶液の原料として電解沈殿銅の硫酸浸出液を使用し、反応後液中のAsイオン濃度を0.1〜3g/L、Cuイオン濃度を10〜60g/Lとし、工程3は1回の洗浄を、水量1L当たりスコロダイト100〜300g(乾燥重量)の比率として行い、スコロダイトの水洗に使用した水洗液中に含まれるCuイオン濃度を測定し、測定されたCuイオン濃度が10mg/L以下に低下するまで繰り返すことを含む方法である。
In another aspect of the present invention,
Step 1 of heating an acidic aqueous solution containing pentavalent As and trivalent Fe at a temperature and time effective for the synthesis of crystalline scorodite;
-Step 2 of separating the synthesized scorodite from the post-reaction liquid by solid-liquid separation;
-After that, after washing the scorodite with water and separating the scorodite from the washing solution by solid-liquid separation,
A method for producing scorodite, comprising:
The sulfuric acid leaching solution of electrolytically precipitated copper is used as a raw material for the acidic aqueous solution in Step 1, the As ion concentration in the post-reaction solution is 0.1 to 3 g / L, the Cu ion concentration is 10 to 60 g / L, and Step 3 is 1 Washing is performed as a ratio of 100 to 300 g (dry weight) of scorodite per liter of water, and the Cu ion concentration contained in the washing solution used for scorodite washing is measured, and the measured Cu ion concentration is 10 mg / L. It is a method including repeating until it falls below.
本発明に係るスコロダイトの製造方法の更に別の一実施形態においては、スコロダイトの水洗に使用した水洗液中に含まれるCuイオン濃度分析を比色分析法により行う。 In yet another embodiment of the method for producing scorodite according to the present invention, the analysis of Cu ion concentration contained in the washing solution used for scorodite washing is performed by a colorimetric analysis method.
本発明に係るスコロダイトの製造方法の更に別の一実施形態においては、工程3の水洗はスコロダイトに水を加えた後にリパルプ及び撹拌を行うことにより実施する。 In yet another embodiment of the method for producing scorodite according to the present invention, the water washing in step 3 is carried out by repulping and stirring after adding water to the scorodite.
本発明に係るスコロダイトの製造方法の更に別の一実施形態においては、工程2は漏斗上での自然濾過により実施し、工程3は漏斗上に設置したスコロダイト上に洗浄水を注ぎ、洗浄水を注いでいる間はスコロダイト全体が洗浄水で覆われている状態を保つことを含む重力又は吸引濾過により実施する。 In yet another embodiment of the method for producing scorodite according to the present invention, step 2 is performed by natural filtration on a funnel, and step 3 is performed by pouring wash water on the scorodite installed on the funnel. While pouring, it is carried out by gravity or suction filtration including keeping the entire scorodite covered with washing water.
本発明に係るスコロダイトの製造方法の更に別の一実施形態においては、工程3は縦型のフィルタープレス内にスコロダイトを配置した上で洗浄水を供給した後に圧搾を行うことにより実施する。 In still another embodiment of the method for producing scorodite according to the present invention, step 3 is performed by placing the scorodite in a vertical filter press and then pressing the squeezing after supplying the washing water.
本発明は別の一側面において、スコロダイトを水洗した上でスコロダイトを水洗液から固液分離により分離する操作を含むスコロダイトの洗浄方法であって、水洗に使用した水洗液中に含まれるスコロダイトから溶出した少なくとも1種の成分の濃度を測定し、その測定結果に応じて上記操作を繰り返すか判断することを含む方法である。 In another aspect, the present invention is a scorodite washing method including an operation of washing scorodite with water and separating the scorodite from the washing solution by solid-liquid separation, and is eluted from the scorodite contained in the washing solution used for washing And measuring the concentration of at least one component and determining whether to repeat the above operation according to the measurement result.
本発明によれば、砒素溶出性の低いスコロダイトを安定的に製造することが可能となる。 According to the present invention, it is possible to stably manufacture scorodite having low arsenic elution.
本発明の主題の一つは、
・5価のAsと3価のFeを含有する酸性水溶液を結晶性スコロダイトの合成に有効な温度及び時間加熱する工程1と、
・合成されたスコロダイトを反応後液から固液分離によって分離する工程2と、
・その後に、スコロダイトを水洗した上でスコロダイトを水洗液から固液分離により分離する工程3と、
を行うことを含むスコロダイトの製造方法であって、工程3はスコロダイトの水洗に使用した水洗液中に含まれる反応後液成分の濃度が予め設定した値以下に低下するまで繰り返すことを含む方法である。
One subject of the present invention is:
Step 1 of heating an acidic aqueous solution containing pentavalent As and trivalent Fe at a temperature and time effective for the synthesis of crystalline scorodite;
-Step 2 of separating the synthesized scorodite from the post-reaction liquid by solid-liquid separation;
-After that, after washing the scorodite with water and separating the scorodite from the washing solution by solid-liquid separation,
The step 3 is a method that includes repeating until the concentration of the post-reaction liquid component contained in the washing liquid used for washing the scorodite falls below a preset value. is there.
工程1
工程1ではスコロダイトの合成を行う。スコロダイトの合成は5価のAsと3価のFeを含有する酸性水溶液を結晶性スコロダイトの合成に有効な温度及び時間加熱することによって行うことができる。スコロダイトの合成条件については、結晶性スコロダイトの合成に有利であると当業者に知られている任意の条件を採用すればよいが、その好適な条件を以下に例示的に示す。
Process 1
In step 1, scorodite is synthesized. The scorodite can be synthesized by heating an acidic aqueous solution containing pentavalent As and trivalent Fe at a temperature and time effective for the synthesis of crystalline scorodite. As the scorodite synthesis conditions, any conditions known to those skilled in the art as being advantageous for the synthesis of crystalline scorodite may be adopted, and suitable conditions are exemplified below.
5価のAsは例示的には砒酸(H3AsO4)等の形態で与えることができる。典型的には、5価のAsは電解沈殿銅を硫酸浸出した後の硫酸浸出液中に砒酸(H3AsO4)の形態で存在する。
3価のFeは例示的には酸化鉄、硫酸鉄及び塩化鉄、水酸化鉄等の形態で与えることができる。3価のFeは水溶液中での反応を行う観点から酸性水溶液の形態で提供されるのが好ましく、脱鉄後液を電錬の電解液に戻す事が最も有効である観点から硫酸第二鉄(Fe2(SO4)3)の水溶液の形態で提供されるのが好ましい。また、廃水処理等で使用される、ポリ硫酸第二鉄水溶液も使用可能である。
酸性水溶液は例示的には塩酸酸性、硫酸酸性、硝酸酸性、過塩素酸酸性等の水溶液として与えることができる。典型的には電解沈殿銅を硫酸浸出した後の硫酸浸出液が使用される。硫酸浸出の方法は後述する。
Pentavalent As can be given in the form of arsenic acid (H 3 AsO 4 ), for example. Typically, pentavalent As is present in the form of arsenic acid (H 3 AsO 4 ) in the sulfuric acid leaching solution after the electrolytically precipitated copper is leached with sulfuric acid.
Trivalent Fe can be given in the form of iron oxide, iron sulfate, iron chloride, iron hydroxide, and the like. The trivalent Fe is preferably provided in the form of an acidic aqueous solution from the viewpoint of performing the reaction in an aqueous solution, and ferric sulfate from the viewpoint that it is most effective to return the liquid after deironing to the electrolytic solution of electrolysis. It is preferably provided in the form of an aqueous solution of (Fe 2 (SO 4 ) 3 ). Moreover, the polyferric sulfate aqueous solution used by waste water treatment etc. can also be used.
The acidic aqueous solution can be given as an aqueous solution such as hydrochloric acid acidic, sulfuric acid acidic, nitric acid acidic or perchloric acid acidic. Typically, a sulfuric acid leaching solution after sulfuric acid leaching of electrolytically precipitated copper is used. The method of sulfuric acid leaching will be described later.
酸性水溶液中に含まれるAsの反応率を高めるためには、3価のFeを5価のAs量に対して1.0当量以上とするのが好ましく、経済的な観点から1.1〜1.5当量とするのがより好ましい。
酸性水溶液のpHは1.0〜1.5とするのが結晶性スコロダイトの生成に好ましい。
In order to increase the reaction rate of As contained in the acidic aqueous solution, it is preferable that the trivalent Fe is 1.0 equivalent or more with respect to the pentavalent As amount. More preferably, it is 5 equivalents.
The pH of the acidic aqueous solution is preferably 1.0 to 1.5 for producing crystalline scorodite.
結晶性スコロダイトは上記酸性溶液を例えば大気圧下で60〜95℃に加熱することにより生成させることができ、例えば8〜72時間反応させることにより充分な量の結晶性スコロダイトが生成する。Asは5価に酸化されているため、3価の鉄と高い反応効率で結晶性のスコロダイトが生成する。 Crystalline scorodite can be produced by heating the acidic solution to 60 to 95 ° C., for example, under atmospheric pressure. For example, a sufficient amount of crystalline scorodite is produced by reacting for 8 to 72 hours. Since As is oxidized to pentavalent, crystalline scorodite is produced with trivalent iron and high reaction efficiency.
工程2
工程2では、合成されたスコロダイトを反応後液から固液分離によって分離する。反応後液には砒素、銅及びその他の金属のイオンが含まれており、これらがスコロダイトに付着していると保管時に溶出するため、充分に除去しておく必要がある。固液分離の方法は公知の任意の方法で行えばよく、特に制限はないが、濾過が一般的である。濾過としては重力(自然)濾過、吸引濾過、加圧濾過、遠心濾過などが挙げられる。一般には重力濾過が最も分離効率が悪く、加圧濾過及び遠心濾過が最も効率がよい。吸引濾過はその中間である。
しかしながら、本発明が目標とする分離効率を得るには何れの方法によって固液分離しても不十分であり、その後に水洗が必要である。そこで、後の水洗効率のことも考慮すると、スコロダイトを反応後液から分離する段階では濾過により得られたスコロダイトのケークにクラックが生じないようにすることが重要である。ケークにクラックが生じると、その後の水洗では、クラック部分の水の抵抗が小さくなるため、その部分を集中的に水が流れてしまい、洗浄むらが出来てしまうからである。
クラックを避けるには吸引濾過は行わない方がよく、重力濾過(自然濾過)するのが好ましい。加圧濾過でもクラックは入ることがあるが、縦型(ケークの加圧方向が垂直方向)のフィルタープレスを用いた場合にはクラックの発生を抑えることができる。縦型は、量によらず均一な厚さのケークとすることができるからである。横型フィルタープレス(ケークの加圧方向が水平方向)ではスラリーはチャンバーの下から満たされ、縦型フィルタープレスのように厚さの均一なケークを作ることが難しく、重力によって、ケークにクラックが入りやすい。そのためそのケークを水洗する際はケークの厚さの薄い部分や、クラックに集中的に水が流れてしまい、全体を均一に洗浄することが難しい(洗いむらができてしまう)。
Process 2
In step 2, the synthesized scorodite is separated from the post-reaction solution by solid-liquid separation. The post-reaction solution contains ions of arsenic, copper and other metals. If these ions are attached to the scorodite, they will be eluted during storage, so it is necessary to remove them sufficiently. The solid-liquid separation method may be any known method and is not particularly limited, but filtration is common. Examples of the filtration include gravity (natural) filtration, suction filtration, pressure filtration, and centrifugal filtration. In general, gravity filtration has the lowest separation efficiency, and pressure filtration and centrifugal filtration have the highest efficiency. Suction filtration is intermediate.
However, in order to obtain the target separation efficiency according to the present invention, solid-liquid separation by any method is insufficient, and washing with water is necessary thereafter. In view of the subsequent washing efficiency, it is important to prevent cracks in the scorodite cake obtained by filtration at the stage of separating the scorodite from the post-reaction solution. If cracks occur in the cake, the subsequent water washing reduces the resistance of the water in the crack portion, so that water flows intensively through the portion, resulting in uneven cleaning.
In order to avoid cracks, it is better not to perform suction filtration, and it is preferable to perform gravity filtration (natural filtration). Although cracking may occur even under pressure filtration, the occurrence of cracks can be suppressed when a vertical filter press (the pressurizing direction of the cake is vertical) is used. This is because the vertical type can be a cake having a uniform thickness regardless of the amount. In horizontal filter press (cake pressurization direction is horizontal), slurry is filled from the bottom of the chamber, making it difficult to make a cake with uniform thickness like vertical filter press, and cracks enter the cake due to gravity. Cheap. Therefore, when the cake is washed with water, the water flows intensively in the thin portion of the cake or in the cracks, and it is difficult to uniformly wash the whole (even if washing is performed).
工程3
工程2によって、スコロダイトに付着していた反応後液は大部分が除去されるが、この段階におけるスコロダイトでは砒素の溶出性が国内処分場の基準値を下回らないことが多く、製品毎の溶出値のばらつきも大きい。従って、低溶出性のスコロダイトを安定的に得るためには、更に水洗処理を行って徹底的にスコロダイトから反応後液を分離することが重要である。
Process 3
Although most of the post-reaction liquid adhering to scorodite is removed by step 2, the arsenic dissolution at this stage often does not fall below the standard value for domestic disposal sites. The variation of the is also large. Therefore, in order to stably obtain a low-elution scorodite, it is important to further separate the post-reaction solution from the scorodite by further washing with water.
工程3ではスコロダイトを水洗した後にスコロダイトを水洗液から固液分離により分離する。水洗によって水溶性の成分は洗い流され、その回数を重ねる毎にスコロダイトの砒素溶出性は徐々に低下する。スコロダイトからの砒素の溶出の大半は、スコロダイト自体からの溶出ではなく、反応後液の付着が原因だからである。
なお、スコロダイトの合成時に副産物として生成し得る非晶質のスコロダイトは水溶性が高いので、この徹底的な洗浄操作によって、反応後液と共に除去されていると考えられる。従って、洗浄操作は単に反応後液をスコロダイトから除去するのみならず、副生成した非晶質スコロダイトの除去する役割もある。
In step 3, the scorodite is washed with water and then separated from the washing solution by solid-liquid separation. Water-soluble components are washed away by water washing, and the arsenic elution property of scorodite gradually decreases as the number of times is increased. This is because most of the arsenic elution from scorodite is caused not by elution from scorodite itself but by adhesion of post-reaction solution.
Since amorphous scorodite that can be generated as a by-product during the synthesis of scorodite has high water solubility, it is considered that this thorough washing operation has been removed together with the post-reaction solution. Accordingly, the washing operation not only removes the post-reaction solution from the scorodite, but also serves to remove the by-produced amorphous scorodite.
水洗の方法は公知の任意の方法で行えば良く、特に制限はないが、洗浄操作の単位を明確にし、そして水洗後に水洗液中に含まれる各種反応後液成分の濃度を正確に測定できるようにするため、1回の水洗に使用する水量を定め、そして水洗に使用した後の洗浄液を全部取っておくのがよい。水洗に使用する水を掛け流しにしてそのまま排水してしまうと、洗浄操作の単位が不明確になり、また、単一の洗浄操作においても、開始と終了時によって水洗液中の反応後液成分の濃度が変化するため、スコロダイトを洗浄した後の洗浄液濃度を正確に把握できなくなってしまう。 The washing method may be any known method and is not particularly limited, but the unit of washing operation is clarified, and the concentration of various post-reaction liquid components contained in the washing solution can be accurately measured after washing. Therefore, it is preferable to determine the amount of water to be used for one washing and to save all the washing liquid after being used for washing. If the water used for washing is drained and drained as it is, the unit of the washing operation becomes unclear, and even in a single washing operation, the components of the post-reaction liquid in the washing liquid at the start and end Therefore, the concentration of the cleaning liquid after cleaning the scorodite cannot be accurately grasped.
効率的な洗浄方法としては以下のような方法が挙げられる。
漏斗を用いて洗浄と濾過を連続的に実施する場合にはスコロダイトのケークにクラックが発生しないような洗浄方法が好ましい。クラックが入ると、洗浄効率に悪影響を与えるからである。漏斗を用いた濾過ではケーク上に水が存在する間、すなわちケークが水に完全に浸漬している間はクラックは発生しないが、水が途切れてケークが水面上に露出すると、ケークの体積が縮小してクラックが発生してしまう。そこで、水を途切れなく供給し、ケーク全体が洗浄水に覆われている状態(例:完全に浸漬している状態)を保つように濾過を行うのが望ましい。
また、水洗槽中にスコロダイトを投入して撹拌やリパルプ等を行った後に固液分離する方法も有効である。水洗液中に含まれる反応後液成分の濃度は固液分離した後の水洗液に対して測定すればよい。この際の固液分離の方法は工程2で上述した何れの方法を使用してもよく、クラックの発生は気にしなくてよい。
他の好ましい方法の一つは、フィルタープレスでスコロダイトのケークを作製し、フィルタープレス内で、洗浄水を供給後圧搾することにより、ケークを直に洗浄及び濾過する方法(例えばラロックス社製縦型フィルタープレスを用いた洗浄)がある。使用した洗浄水は後に分析できるようにその全部を適当な容器に貯めておくのが好ましい。この方法によれば、リパルプよりも簡便に洗浄濾過操作を行うことができる。縦型のフィルタープレスであればクラックも入りにくい。
Examples of efficient cleaning methods include the following methods.
When washing and filtration are carried out continuously using a funnel, a washing method is preferred so that cracks do not occur in the scorodite cake. This is because cracks adversely affect cleaning efficiency. Filtration using a funnel does not generate cracks while water is present on the cake, i.e., when the cake is completely immersed in water, but if the water breaks and the cake is exposed on the surface of the water, the volume of the cake will increase. It shrinks and cracks occur. Therefore, it is desirable to perform filtration so that water is supplied without interruption and the entire cake is covered with washing water (eg, a state where the cake is completely immersed).
It is also effective to perform solid-liquid separation after adding scorodite into a washing tank and stirring or repulping. What is necessary is just to measure the density | concentration of the post-reaction liquid component contained in a water washing liquid with respect to the water washing liquid after solid-liquid separation. In this case, any of the methods described above in Step 2 may be used as the solid-liquid separation method, and the generation of cracks need not be concerned.
Another preferred method is to prepare a scorodite cake with a filter press, and supply the washing water in the filter press and then squeeze to wash and filter the cake directly (for example, a vertical type manufactured by Lalox) Cleaning with a filter press). It is preferable to store all of the used washing water in a suitable container so that it can be analyzed later. According to this method, the washing and filtering operation can be performed more simply than repulping. If it is a vertical filter press, cracks are less likely to occur.
ところで、合成直後にスコロダイトに付着しているAsイオンの濃度はロット毎に変動し、固液分離後のスコロダイトケークの含水率もスコロダイトの粒径の違い等により変動することから、所望の溶出特性をもつスコロダイトを得るために必要な水洗の回数や洗浄水の量はロット毎に変動する。そのため、単に洗浄回数や洗浄水の量を定めて洗浄を行う方法では水洗が不十分であったり、逆に過剰であったりなどして、スコロダイトの品質にばらつきを生じさせることとなる。また、スコロダイトの溶出試験は6時間の振盪(しんとう)を要するため、洗浄毎にスコロダイトの溶出試験を行って洗浄の終点を見極めていたのでは手間がかかりすぎて実用性に欠ける。 By the way, the concentration of As ions adhering to the scorodite immediately after synthesis varies from lot to lot, and the water content of the scorodite cake after solid-liquid separation also varies depending on the particle size of the scorodite. The number of washings and the amount of washing water required to obtain scorodite having elution characteristics vary from lot to lot. For this reason, the method of performing the cleaning simply by determining the number of times of cleaning and the amount of cleaning water may result in variations in the quality of the scorodite due to inadequate or excessive water cleaning. In addition, since the scorodite dissolution test requires shaking for 6 hours, if the scorodite dissolution test was performed for each cleaning to determine the end point of the cleaning, it was too laborious and lacked practicality.
そこで、本発明では洗浄液中に含まれる反応後液成分の濃度が低下すればスコロダイトの溶出試験による砒素等の金属イオンの溶出値も低下するという関係を利用し、スコロダイトを洗浄した後の洗浄液中の反応後液成分、例えばAs、Cu、Fe及びSから選択される少なくとも1種の濃度を監視することによって、スコロダイトの溶出特性を制御する。 Therefore, in the present invention, if the concentration of the post-reaction liquid component contained in the cleaning liquid decreases, the elution value of metal ions such as arsenic in the scorodite elution test also decreases, and the cleaning liquid after cleaning the scorodite The elution characteristics of scorodite are controlled by monitoring the concentration of at least one selected from the following reaction components, such as As, Cu, Fe and S.
洗浄液中に含まれる反応後液成分の濃度が高い間はスコロダイトの溶出試験によるAsの溶出値との相関も小さいが、反応後液成分の濃度が低下するにつれ、スコロダイトの溶出試験(環境省告示13号に準拠)によるAsの溶出値との相関が強くなっていき、洗浄液中に含まれる反応後液成分の濃度からスコロダイトの溶出試験によるAsの溶出値の予測性が高まる。例えば、1回の洗浄を、水量1L当たりスコロダイト100〜300g、より典型的には150〜250g(乾燥重量)の比率として行う場合、洗浄液中のAsイオン濃度が1mg/L程度にまで低下すると、スコロダイトの溶出試験によるAsの溶出値は概ねその1/10〜10倍の濃度となる。洗浄液中のAsイオン濃度が0.1mg/L以下にまで低下すると、スコロダイトの溶出試験によるAsの溶出値は概ねその1/3〜3倍、典型的には1/2〜2倍の濃度となる。 While the concentration of the post-reaction liquid component contained in the washing liquid is high, the correlation with the elution value of As by the scorodite elution test is small, but as the concentration of the post-reaction liquid component decreases, the scorodite elution test (Ministry of the Environment notification) The correlation with the As elution value according to No. 13) becomes stronger, and the predictability of the As elution value by the scorodite elution test is increased from the concentration of the post-reaction liquid component contained in the cleaning liquid. For example, when one washing is performed at a ratio of 100 to 300 g of scorodite per liter of water, more typically 150 to 250 g (dry weight), when the As ion concentration in the washing liquid is reduced to about 1 mg / L, The As elution value by the scorodite elution test is approximately 1/10 to 10 times the concentration. When the As ion concentration in the washing solution decreases to 0.1 mg / L or less, the dissolution value of As in the scorodite dissolution test is approximately 1/3 to 3 times, typically 1/2 to 2 times the concentration. Become.
そのため、わざわざスコロダイトの溶出試験を行わなくとも水洗液中の砒素濃度を分析すれば溶出値を推定できる。洗浄操作は固液分離も含めて1回につき10分程度ですむため短時間でスコロダイトの溶出特性を把握できる。現在の国内処分場におけるAs溶出基準値は0.3mg/L以下となっているので、これをスコロダイトの溶出試験によるAsの溶出値の目標とする場合、洗浄液中のAsイオン濃度の目標値を0.1mg/L以下、好ましくは0.05mg/Lに設定すれば当該溶出基準を満たすスコロダイトが高い確率で得られる。 Therefore, the elution value can be estimated by analyzing the arsenic concentration in the water washing solution without the need to perform a scorodite elution test. Since the washing operation takes about 10 minutes per time including solid-liquid separation, the elution characteristics of scorodite can be grasped in a short time. Since the current standard value for dissolution of As at domestic disposal sites is 0.3 mg / L or less, if this is the target for the dissolution value of As in the scorodite dissolution test, the target value of As ion concentration in the cleaning solution should be If it is set to 0.1 mg / L or less, preferably 0.05 mg / L, a scorodite that satisfies the elution standard can be obtained with a high probability.
反応後液に含まれる他の成分の濃度推移からスコロダイトの溶出試験によるAsの溶出値を予測することも可能である。洗浄に使用する水量とスコロダイトの乾燥重量の比率を一定値に定めた上で、洗浄液中に含まれるAs濃度とAs以外の任意の反応後液成分の濃度との関係をプロットすれば、その反応後液成分の濃度の推移から洗浄液中に残存するAs濃度を推測することができる。そして、洗浄液中に残存するAs濃度が予測できればスコロダイトの溶出試験によるAsの溶出値も上述したように予測できる。このようにして、洗浄液中に残存する任意の反応後液成分について目標とすべき濃度を設定することが可能となる。 It is also possible to predict the elution value of As by the scorodite elution test from the concentration transition of other components contained in the post-reaction solution. If the ratio between the amount of water used for washing and the dry weight of scorodite is set to a constant value and the relationship between the concentration of As contained in the washing solution and the concentration of any post-reaction liquid component other than As is plotted, the reaction The As concentration remaining in the cleaning liquid can be estimated from the transition of the concentration of the post-liquid component. If the As concentration remaining in the cleaning liquid can be predicted, the elution value of As in the scorodite elution test can also be predicted as described above. In this way, it is possible to set a target concentration for any post-reaction liquid component remaining in the cleaning liquid.
水洗液中のAsイオン濃度は一般に1〜0.01mg/Lという低濃度で推移するため、砒素の分析にはICPなどの高度な分析機器が必要となる。また、砒素は感度が低く、発光強度が弱い低濃度分析には困難を伴う。そこで、より高い濃度で洗浄液中に含まれる反応後液成分を監視することで、濃度分析を簡単に行うことができるようになる。 Since the As ion concentration in the washing solution generally changes at a low concentration of 1 to 0.01 mg / L, an advanced analytical instrument such as ICP is required for the analysis of arsenic. In addition, arsenic has low sensitivity and has a difficulty in low concentration analysis with low emission intensity. Therefore, by monitoring the post-reaction liquid component contained in the cleaning liquid at a higher concentration, the concentration analysis can be easily performed.
例えば電解沈殿銅の硫酸浸出液を酸性水溶液の原料として用いた場合のスコロダイト反応後液には、Cuイオンが高濃度で含まれるので、これを監視することができる。洗液中のCuイオン濃度は一般に100〜1mg/Lの範囲で推移し、砒素よりも高濃度である。更にICPでは銅は砒素よりも感度が高い。従って、銅の分析は砒素の分析に比べて容易である。 For example, since a scorodite post-reaction solution using a sulfuric acid leaching solution of electrolytically precipitated copper as a raw material for an acidic aqueous solution contains Cu ions at a high concentration, it can be monitored. The Cu ion concentration in the washing solution generally changes in the range of 100 to 1 mg / L, and is higher than arsenic. Furthermore, with ICP, copper is more sensitive than arsenic. Therefore, analysis of copper is easier than analysis of arsenic.
更に、上記範囲の銅濃度ならば、銅アンモニア錯体を用いた目視による比色分析(半定量)が可能であることが知られている。比色分析法は希薄な銅溶液にアンモニア水を入れると、青色に強く発色し、その発色の強さを標準サンプルと比較して、銅濃度を(半)定量する方法である。この方法を使えば、スコロダイトの洗浄の終点をICPなどの高度な分析機器を使わずとも、簡単に判定できる。 Furthermore, it is known that a colorimetric analysis (semi-quantitative) by visual observation using a copper ammonia complex is possible if the copper concentration is in the above range. Colorimetric analysis is a method in which when ammonia water is added to a dilute copper solution, a strong blue color is developed, and the intensity of the color development is compared with a standard sample to determine the copper concentration (semi-). By using this method, the end point of scorodite cleaning can be easily determined without using an advanced analytical instrument such as ICP.
ある時点において洗浄液中に含まれるCuイオン濃度とAsイオン濃度が分かれば、Cuイオン濃度がn桁低下するとAs濃度も概ねn桁(n−1桁〜n+1桁の範囲)低下することから、例えば、ある時点における洗浄液中のAsイオン濃度が1mg/L、Cuイオン濃度が200mg/Lであるなら、Cuイオン濃度が2mg/Lにまで低下すればAsイオン濃度は0.1〜0.01mg/L程度まで低下する。そして、1回の洗浄を、水量1L当たりスコロダイト100〜300g、より典型的には150〜250g(乾燥重量)の比率として行う場合、上述したように、洗浄液中のAsイオン濃度が0.1mg/L以下にまで低下すると、スコロダイトの溶出試験によるAsの溶出値は概ねその1/3〜3倍、典型的には1/2〜2倍の濃度であると予測できる。従って、この場合、洗浄液中のCuイオン濃度が2mg/Lに低下したことから、スコロダイトの溶出試験によるAsの溶出値は0.3mg/L以下となることが予測できる。 If the Cu ion concentration and As ion concentration contained in the cleaning liquid are known at a certain point in time, the As concentration also decreases by n digits (in the range of n−1 digits to n + 1 digits) when the Cu ion concentration is reduced by n digits. If the As ion concentration in the cleaning liquid at a certain time is 1 mg / L and the Cu ion concentration is 200 mg / L, the As ion concentration is 0.1 to 0.01 mg / L if the Cu ion concentration is reduced to 2 mg / L. Decreases to about L. When one washing is performed at a ratio of 100 to 300 g of scorodite per liter of water, more typically 150 to 250 g (dry weight), as described above, the As ion concentration in the washing solution is 0.1 mg / When it falls to L or less, it can be predicted that the dissolution value of As in the scorodite dissolution test is approximately 1/3 to 3 times, typically 1/2 to 2 times the concentration. Therefore, in this case, since the Cu ion concentration in the cleaning liquid has decreased to 2 mg / L, it can be predicted that the elution value of As in the scorodite elution test will be 0.3 mg / L or less.
従って、スコロダイトの原料となる酸性水溶液として電解沈殿銅の硫酸浸出液を使用した場合には以下の一般的方法によって、水洗液中のCuイオン濃度の推移から水洗液中のAsイオン濃度の推移を把握することができる。すなわち、工程3をn回(n≧1)、典型的には1回実施した後の水洗液中に含まれるCuのイオン濃度とAsイオン濃度を測定し、その測定結果に応じて目標とすべきCuイオン濃度を設定した上で、スコロダイトの水洗に使用した水洗液中に含まれるCuのイオン濃度を該目標値以下に低下するまで繰り返す。 Therefore, when electrolytically precipitated copper sulfuric acid leachate is used as the acidic aqueous solution that is the raw material for scorodite, the transition of As ion concentration in the washing solution is grasped from the change in Cu ion concentration in the washing solution by the following general method. can do. That is, Cu ion concentration and As ion concentration contained in the washing solution after step 3 is performed n times (n ≧ 1), typically once, are measured, and the target is set according to the measurement result. After the Cu ion concentration to be set is set, the process is repeated until the Cu ion concentration contained in the washing solution used for washing the scorodite is lowered below the target value.
また、上述したような好適な反応条件下でスコロダイトを製造した場合には、反応後液中のAsイオン濃度は0.1〜3g/L、より典型的には0.3〜1g/L、Cuイオン濃度は10〜60g/L、より典型的には20〜40g/Lである。このような条件下で、1回の洗浄を、水量1L当たりスコロダイト100〜300g、より典型的には150〜250g(乾燥重量)の比率として行う場合、スコロダイトからの砒素溶出量を0.3mg/L以下にするためには、洗浄液中の銅濃度を10mg/L以下、好ましくは5mg/L以下にすればよいことが経験的に分かっている。反応後液中の砒素及び銅の比率が大幅に異なる場合は、Cuイオン濃度の目標値を見直せばよい。 When scorodite is produced under the suitable reaction conditions as described above, the As ion concentration in the post-reaction solution is 0.1 to 3 g / L, more typically 0.3 to 1 g / L, The Cu ion concentration is 10 to 60 g / L, more typically 20 to 40 g / L. Under such conditions, when one washing is performed at a ratio of 100 to 300 g of scorodite per liter of water, more typically 150 to 250 g (dry weight), the amount of arsenic eluted from scorodite is 0.3 mg / It has been empirically known that the copper concentration in the cleaning solution may be 10 mg / L or less, preferably 5 mg / L or less in order to make L or less. If the ratio of arsenic and copper in the solution after the reaction is significantly different, the target value of the Cu ion concentration may be reviewed.
銅がスコロダイト洗浄後の水洗液中に主成分として含まれない場合は、他の主成分、例えば鉄、硫黄(硫酸根として含まれる)の水洗液中の濃度推移から、同様にスコロダイトの洗浄終点を判定することも可能である。 If copper is not included as a main component in the washing solution after scorodite washing, the end point of scorodite washing is similarly determined from the transition of the concentration of other main components such as iron and sulfur (contained as sulfate radicals) in the washing solution. Can also be determined.
以上をまとめると、工程3のポイントは、スコロダイトの水洗に使用した水洗液中に含まれる反応後液成分の濃度とスコロダイトの砒素溶出特性を関連付けたことにある。水洗液中に溶け出した反応後液成分の濃度を監視することによって間接的にスコロダイトの砒素溶出特性を把握することができ、洗浄の終点も簡便に判定できるのである。具体的には水洗液中に含まれる少なくとも1種の反応後液成分の濃度が予め設定した値以下に低下した場合にスコロダイトの洗浄を終了することができる。
工程1の酸性水溶液として電解沈殿銅の硫酸浸出液を使用した場合には、水洗液中に含まれる反応後液成分として監視するのに好ましいのはCu、S、Fe及びAsのイオンであり、より好ましいのはCuイオンである。
In summary, the point of step 3 is that the concentration of the post-reaction liquid component contained in the washing solution used for washing scorodite and the arsenic elution characteristics of scorodite are related. By monitoring the concentration of post-reaction liquid components dissolved in the water washing solution, the arsenic elution characteristics of scorodite can be grasped indirectly, and the end point of washing can be easily determined. Specifically, the cleaning of the scorodite can be terminated when the concentration of at least one post-reaction liquid component contained in the water washing liquid falls below a preset value.
When sulfuric acid leaching solution of electrolytically precipitated copper is used as the acidic aqueous solution in Step 1, it is preferable to monitor Cu, S, Fe and As ions to be monitored as post-reaction liquid components contained in the washing solution, Preferred is Cu ion.
電解沈殿銅の硫酸侵出液
スコロダイトの原料として好適な電解沈殿銅の硫酸浸出液は例えば以下のように得ることができる。
まず、電解沈殿銅に対して水洗処理を随意的に行う。水洗処理は電解沈殿銅を水でリパルプし、0.5〜6時間撹拌して、電解沈殿銅の製造時に付着した電解液(硫酸銅、Ni、Fe等を含む)や、電解沈殿銅に含まれる微量のNi及びFe等を溶解させた後に、スラリーを濾過し、固液分離することで実施することができる。この工程では電解沈殿銅からFe及びNiの大部分を分離することができる。
しかしながら、この操作は、電解沈殿銅中の銅量の中で、硫酸銅を排除した0価の(水に溶解しない)銅量を明らかにして、次工程で行う電解沈殿銅の硫酸浸出に必要な硫酸量をより正確に求めるために行うことを主目的とする操作である。NiやFe等の微量元素を特に気にしない場合や、硫酸銅の含有量が既知であったり電解沈殿銅への電解液の持込が少なかったりする場合は、この工程を行う必要はない。
Electrolytically precipitated copper sulfuric acid leaching solution An electrolytically precipitated copper sulfuric acid leaching solution suitable as a raw material for scorodite can be obtained, for example, as follows.
First, a water washing treatment is optionally performed on the electrolytically precipitated copper. The washing process involves repulping the electrolytically precipitated copper with water, stirring for 0.5 to 6 hours, and including in the electrolytic solution (including copper sulfate, Ni, Fe, etc.) attached during the production of the electrolytically precipitated copper and the electrolytically precipitated copper After dissolving a minute amount of Ni, Fe and the like, the slurry is filtered and solid-liquid separation can be performed. In this step, most of Fe and Ni can be separated from the electrolytically precipitated copper.
However, this operation is necessary for the sulfuric acid leaching of the electrolytically precipitated copper in the next step by clarifying the amount of zero-valent (not dissolved in water) copper excluded from the copper amount in the electrolytically precipitated copper. The main purpose of this operation is to obtain a more accurate amount of sulfuric acid. This step is not necessary when trace elements such as Ni and Fe are not particularly concerned, or when the content of copper sulfate is known or the electrolytic solution is not brought into the electrolytically precipitated copper.
随意的に水洗処理を行った後、硫酸酸性中の電解沈殿銅に酸素含有ガスを導入しながら、電解沈殿銅中に含まれるAs成分を5価に酸化するのに充分な液温及び時間で該溶液を撹拌して硫酸浸出を行い、次いでSb成分及びBi成分を含有する浸出残渣と5価のAs成分を含有する硫酸浸出液に固液分離する。 After optionally washing with water, while introducing an oxygen-containing gas into the electrolytically precipitated copper in sulfuric acid acid, at a liquid temperature and time sufficient to oxidize the As component contained in the electrolytically precipitated copper to pentavalent The solution is stirred and subjected to sulfuric acid leaching, and then solid-liquid separation into a leaching residue containing an Sb component and a Bi component and a sulfuric acid leaching solution containing a pentavalent As component.
このときに起きる浸出反応は一般に次式に従い、CuはCu2+まで、AsはAs5+まで酸化される。
Cu+H2SO4+1/2O2 → CuSO4+H2O ・・・(1)
2As+5/2O2+3H2O → 2H3AsO4 ・・・(2)
硫酸使用量は、Cu量に対し好ましくは1.0〜1.2当量である。1.0当量未満の場合浸出液が弱酸性になり、Cu3AsO4等の沈殿物が生成しCu、Asの浸出率が低下する。1.2当量を超える場合は、Cu、Asの浸出率に影響しないが、使用硫酸量が多くなる。Cu、Asの硫酸溶液中の濃度は特に制限はないが、溶解度を越えるとCu、Asの浸出率が低下するので、Cu2+、As5+の溶解度以下が好ましい。
また、その後に合成する結晶性スコロダイトの生成に適したpHは1.0〜1.5であるが、硫酸濃度が低いと硫酸浸出の効率、すなわち銅や砒素の回収効率が低下する傾向にあるので、硫酸浸出時に使用する硫酸の濃度はpHが1未満となるような濃度であるのが好ましい。また、硫酸浸出液のpHが1以上であったとしても、スコロダイトを合成する際に添加する3価の鉄は酸性水溶液の形態で提供されるのが好ましく、例えば、硫酸第二鉄水溶液やポリ硫酸第二鉄水溶液のpHは0.6程度である。
The leaching reaction occurring at this time generally follows the following equation: Cu is oxidized to Cu 2+ and As is oxidized to As 5+ .
Cu + H 2 SO 4 + 1 / 2O 2 → CuSO 4 + H 2 O (1)
2As + 5 / 2O 2 + 3H 2 O → 2H 3 AsO 4 (2)
The amount of sulfuric acid used is preferably 1.0 to 1.2 equivalents relative to the amount of Cu. When it is less than 1.0 equivalent, the leaching solution becomes weakly acidic, precipitates such as Cu 3 AsO 4 are generated, and the leaching rate of Cu and As decreases. When it exceeds 1.2 equivalents, the leaching rate of Cu and As is not affected, but the amount of sulfuric acid used is increased. The concentration of Cu and As in the sulfuric acid solution is not particularly limited. However, if the solubility is exceeded, the leaching rate of Cu and As decreases, so that it is preferably not more than the solubility of Cu 2+ and As 5+ .
Further, the pH suitable for the production of the crystalline scorodite synthesized thereafter is 1.0 to 1.5, but if the sulfuric acid concentration is low, the efficiency of sulfuric acid leaching, that is, the recovery efficiency of copper and arsenic tends to decrease. Therefore, it is preferable that the concentration of sulfuric acid used at the time of sulfuric acid leaching is such that the pH is less than 1. Even if the sulfuric acid leachate has a pH of 1 or more, the trivalent iron added when synthesizing scorodite is preferably provided in the form of an acidic aqueous solution. For example, ferric sulfate aqueous solution or polysulfate The pH of the ferric aqueous solution is about 0.6.
硫酸浸出では、Asを5価に酸化するために、例えば70〜95℃で4.5〜11時間、好ましくは80〜95℃で7〜11時間撹拌すればよい。硫酸浸出は発熱反応であるため特に外部から加熱しないで行うことも可能である。撹拌時間は更に長く行っても良く、経済性と効果との兼ね合いで適宜決定すればよい。
Asの酸化効率を高めるためには、導入する酸素含有ガスの気泡を細かくして充分な量(例えば銅に対して酸素10当量/7時間)供給した方がよい。そこで、撹拌を激しく行うのが好ましく、例えば酸素含有ガスの導入及び/又は撹拌はジェット噴射により行うのが好都合である。この値は、ジェット噴射(「ジェットアジター」商品名)場合であり、通常のタービン翼を用いた撹拌機の場合反応効率は低下し、酸素含有ガス量をこの3.5倍以上導入しても、2倍以上の反応時間が必要となる。この段階でAsの価数制御を行うことで、後のスコロダイト生成が容易となる。また、Cu2+もAsの酸化を促進する効果がある。
In sulfuric acid leaching, in order to oxidize As to pentavalent, for example, it may be stirred at 70 to 95 ° C. for 4.5 to 11 hours, preferably at 80 to 95 ° C. for 7 to 11 hours. Since sulfuric acid leaching is an exothermic reaction, it can be performed without heating from the outside. The stirring time may be longer, and may be determined as appropriate in consideration of economy and effect.
In order to increase the oxidation efficiency of As, it is preferable to supply a sufficient amount of oxygen-containing gas bubbles to be introduced (for example, 10 equivalents of oxygen to copper for 7 hours). Therefore, it is preferable to vigorously perform stirring, and for example, introduction of oxygen-containing gas and / or stirring is conveniently performed by jet injection. This value is the case of jet injection (trade name of “Jet Agitator”). In the case of a stirrer using a normal turbine blade, the reaction efficiency is lowered, and the amount of oxygen-containing gas is introduced 3.5 times or more. However, a reaction time of 2 times or more is required. By performing As valence control at this stage, subsequent scorodite generation is facilitated. Cu 2+ also has the effect of promoting As oxidation.
酸素含有ガスとしては上記反応に有意な悪影響を与えない限り特に制限はないが、例えば純酸素、酸素と不活性ガスの混合物を使用することができる。取扱い性やコストの観点からは空気とするのが好ましい。 The oxygen-containing gas is not particularly limited as long as it does not have a significant adverse effect on the above reaction. For example, pure oxygen or a mixture of oxygen and an inert gas can be used. Air is preferable from the viewpoint of handling and cost.
このようにして得られた電解沈殿銅の硫酸浸出液に3価の鉄を添加することで、5価のAsと3価のFeを含有する酸性水溶液が得られる。この場合、3価の鉄としては、酸化鉄、硫酸鉄、塩化鉄、水酸化鉄等が挙げられるが、3価の鉄は水溶液中での反応を行う観点から酸性水溶液の形態で提供されるのが好ましく、脱鉄後液を電錬の電解液に戻す事が最も有効である観点から硫酸第二鉄(Fe2(SO4)3)の水溶液の形態で提供されるのが好ましい。また、廃水処理等で使用される、ポリ硫酸第二鉄水溶液も使用可能である。
3価鉄の使用量はAsを除去するという観点からは、As量に対して1.0当量以上必要であり、経済的な観点から1.1〜1.5当量であるのが好ましい。
An acidic aqueous solution containing pentavalent As and trivalent Fe is obtained by adding trivalent iron to the sulfuric acid leaching solution of the electrolytically precipitated copper thus obtained. In this case, examples of the trivalent iron include iron oxide, iron sulfate, iron chloride, and iron hydroxide. The trivalent iron is provided in the form of an acidic aqueous solution from the viewpoint of performing the reaction in the aqueous solution. It is preferable to provide it in the form of an aqueous solution of ferric sulfate (Fe 2 (SO 4 ) 3 ) from the viewpoint that it is most effective to return the solution after deironing to the electrolytic solution for electrolysis. Moreover, the polyferric sulfate aqueous solution used by waste water treatment etc. can also be used.
The amount of trivalent iron used is required to be 1.0 equivalent or more with respect to the amount of As from the viewpoint of removing As, and is preferably 1.1 to 1.5 equivalents from an economical viewpoint.
以下、本発明及びその利点をより良く理解するための実施例を記載するが、本発明はそれらに限定されることはない。 Hereinafter, examples for better understanding of the present invention and its advantages will be described, but the present invention is not limited thereto.
実施例1
<電解沈澱銅の硫酸浸出液の製造>
電解沈澱銅418g(乾重量)に98%の濃硫酸を259g(電解沈澱銅に含まれる銅に対して1当量。)加え、更に水を加えて、スラリー量を1.85L(スラリー濃度256g/L)とした。4L/分で空気を導入しながら、7時間撹拌して浸出した。反応効率を高めるためには、導入する空気の気泡を細かくすることが有効であるため、空気の導入、撹拌にはジェットアジター(SHIMAZAKI社製 JET AJITER)を使用した。尚、液温はウォーターバスにより80℃に制御した。浸出終了時の銅濃度は約90g/Lで、室温での溶解度50g/L程度を超えていた。硫酸銅5水塩を析出させないために3.5Lまで水で希釈した。その後、硫酸浸出濾過後液(硫酸浸出液)と硫酸浸出残渣をブフナー漏斗を用いた吸引濾過によって固液分離した。得られた硫酸浸出液、硫酸浸出残渣の物量を表1に示す。
上記の操作を2バッチ分行い、得られた硫酸浸出濾過後液を混合した。それを次のスコロダイト結晶の合成に用いた。
Example 1
<Production of sulfuric acid leaching solution of electrolytically precipitated copper>
259 g of 98% concentrated sulfuric acid (1 equivalent to the copper contained in the electrolytically precipitated copper) was added to 418 g (dry weight) of the electrolytically precipitated copper, water was further added, and the amount of slurry was 1.85 L (slurry concentration 256 g / L). The mixture was stirred and leached for 7 hours while introducing air at 4 L / min. In order to increase the reaction efficiency, it is effective to make fine bubbles of air to be introduced. Therefore, a jet agitator (JET AJITER manufactured by SHIMAZAKI) was used for air introduction and stirring. The liquid temperature was controlled at 80 ° C. with a water bath. The copper concentration at the end of leaching was about 90 g / L, exceeding the solubility at room temperature of about 50 g / L. In order not to precipitate copper sulfate pentahydrate, it was diluted with water to 3.5 L. Then, the liquid after sulfuric acid leaching filtration (sulfuric acid leaching liquid) and the sulfuric acid leaching residue were separated into solid and liquid by suction filtration using a Buchner funnel. Table 1 shows the amounts of the obtained sulfuric acid leaching solution and sulfuric acid leaching residue.
The above operation was performed for two batches, and the resulting solution after sulfuric acid leaching filtration was mixed. It was used for the synthesis of the next scorodite crystal.
<スコロダイト結晶の合成>
上で得られた電解沈澱銅の硫酸浸出液(pH0.86)6.95Lに、日鉄鉱業社製ポリ硫酸第2鉄(以下ポリ鉄)1.112Lを加えた。pHは0.59となった。その後、加熱中に液量を8.1Lに調整しながら95℃まで加熱し、24時間スコロダイトの合成を行った。加熱中、蒸発によって液量が減り過ぎないように、適宜水を追加して8.1Lに維持した。スコロダイトの合成終了後に、スコロダイト結晶をブフナー漏斗で自然濾過し、クラックが発生しないように注意しながら固液分離した。得られたスコロダイト結晶及び結晶濾過後液(反応後液)の物量を表2に示す。
なお、反応後液からスコロダイを分離した時点におけるスコロダイトからの砒素の溶出値をみるために、上記と同様の条件で別途スコロダイトを製造した。該スコロダイトに対する砒素の溶出試験(環境省告示13号に則った試験)の結果は、砒素の溶出が7mg/Lであり、銅の溶出が1200mg/Lであった(表3参照)。
<Synthesis of scorodite crystals>
To 6.95 L of the sulfuric acid leachate (pH 0.86) of the electrolytically precipitated copper obtained above, 1.112 L of polyferric ferric sulfate (hereinafter referred to as polyiron) manufactured by Nittetsu Mining Co., Ltd. was added. The pH was 0.59. Then, while adjusting the liquid volume to 8.1 L during heating, it was heated to 95 ° C., and scorodite was synthesized for 24 hours. During heating, water was appropriately added and maintained at 8.1 L so as not to reduce the liquid volume too much due to evaporation. After the completion of the scorodite synthesis, the scorodite crystals were naturally filtered with a Buchner funnel, and solid-liquid separation was performed with care not to generate cracks. Table 2 shows the quantities of the obtained scorodite crystals and the post-crystal filtration liquid (post-reaction liquid).
In addition, in order to see the elution value of arsenic from scorodite when scorodite was separated from the reaction solution, scorodite was separately produced under the same conditions as described above. As a result of the arsenic elution test (test according to Ministry of the Environment Notification No. 13) for the scorodite, the arsenic elution was 7 mg / L and the copper elution was 1200 mg / L (see Table 3).
<スコロダイトの洗浄>
引き続き、ブフナー漏斗上のスコロダイトケーク(756.5g湿重量、605g乾重量相当)の上に500mLの水で6回(計3L)洗浄した。濾過は自然濾過(重力濾過)とし、前述のとおりケークにクラックを入れて洗浄むらが発生しないように、スコロダイト結晶が洗浄水中に浸漬されている状態が維持されるよう洗浄水を途切れなく注いで、細心の注意を払い洗浄効果の低下を防いだ。最終的に、洗液からは銅イオンの青い色は消え、無色透明であることを確認した(従来は、洗浄はこれで十分であると考えていた。)。そのスコロダイトの一部を用いて、砒素の溶出試験(環境省告示13号に則った試験)を行ったところ、砒素の溶出は0.21mg/Lであり、銅の溶出は170mg/Lであった(表3参照)。その後、ブフナー漏斗上のスコロダイト338.4gを分取し、3Lのビーカに入れ、水を2L加え、10分間リパルプ、撹拌した。その後これを吸引濾過し、固液分離した。
この、リパルプ、撹拌、固液分離の操作を10回繰り返し、それぞれの濾過液(洗浄液)中の砒素及び銅の残留濃度をICPで分析した。分析値を表4、図1に示す。更に、この10回の操作を終了したスコロダイトに対して、砒素の溶出試験(環境省告示13号)を行ったところ、砒素の溶出は0.05mg/Lであり、銅の溶出は6.6mg/Lであった(表3参照)。
<Cleaning scorodite>
Subsequently, it was washed 6 times (3 L in total) with 500 mL of water on a scorodite cake (756.5 g wet weight, equivalent to 605 g dry weight) on a Buchner funnel. Filtration should be natural filtration (gravity filtration), and the washing water should be poured without interruption to maintain the condition that the scorodite crystals are immersed in the washing water so as not to crack the cake and cause uneven washing as described above. We paid close attention to prevent the cleaning effect from decreasing. Finally, it was confirmed that the blue color of copper ions disappeared from the washing solution and was colorless and transparent (previously, this was considered sufficient for washing). When a part of the scorodite was used, an arsenic elution test (a test in accordance with Ministry of the Environment Notification No. 13) was conducted. As a result, the arsenic elution was 0.21 mg / L and the copper elution was 170 mg / L. (See Table 3). Thereafter, 338.4 g of scorodite on the Buchner funnel was collected, put into a 3 L beaker, 2 L of water was added, and repulped and stirred for 10 minutes. Thereafter, this was subjected to suction filtration and solid-liquid separation was performed.
This operation of repulping, stirring, and solid-liquid separation was repeated 10 times, and the residual concentrations of arsenic and copper in each filtrate (cleaning solution) were analyzed by ICP. The analysis values are shown in Table 4 and FIG. Further, when the scorodite after the 10 operations were completed, an arsenic elution test (Ministry of the Environment Notification No. 13) was conducted. As a result, arsenic elution was 0.05 mg / L and copper elution was 6.6 mg. / L (see Table 3).
実施例2
<電解沈澱銅の硫酸浸出液の製造>
電解沈澱銅742g(乾重量)に98%の濃硫酸を702g(電解沈澱銅に含まれる銅に対して1.1当量。)加え、更に水を加えて、スラリー量を2.7L(パルプ濃度274g/L)とした。5L/分で空気を導入しながら、13.5時間撹拌して浸出した。反応効率を高めるためには、導入する空気の気泡を細かくすることが有効であるため、空気の導入、撹拌にはジェットアジター(SHIMAZAKI社製 JET AJITER)を使用した。尚、液温はウォーターバスにより80℃に制御した。浸出終了時の銅濃度は約150g/Lで、室温での溶解度50g/L程度を超えていた。硫酸銅5水塩を析出させないために8Lまで水で希釈した。その後、硫酸浸出濾過後液(硫酸浸出液)と硫酸浸出残渣を濾過によって固液分離した。得られた硫酸浸出液、硫酸浸出残渣の物量を表5に示す。得られた硫酸浸出濾過後液を次に示すスコロダイト結晶の合成に用いた。
Example 2
<Production of sulfuric acid leaching solution of electrolytically precipitated copper>
To 742 g (dry weight) of electrolytically precipitated copper, 702 g of 98% concentrated sulfuric acid (1.1 equivalents with respect to the copper contained in the electrolytically precipitated copper) was added, water was further added, and the amount of slurry was 2.7 L (pulp concentration). 274 g / L). While introducing air at 5 L / min, the mixture was stirred and leached for 13.5 hours. In order to increase the reaction efficiency, it is effective to make fine bubbles of air to be introduced. Therefore, a jet agitator (JET AJITER manufactured by SHIMAZAKI) was used for air introduction and stirring. The liquid temperature was controlled at 80 ° C. with a water bath. The copper concentration at the end of leaching was about 150 g / L, exceeding the solubility at room temperature of about 50 g / L. In order not to precipitate copper sulfate pentahydrate, it was diluted with water to 8 L. Then, the liquid after sulfuric acid leaching filtration (sulfuric acid leaching liquid) and the sulfuric acid leaching residue were separated into solid and liquid by filtration. Table 5 shows the amounts of the obtained sulfuric acid leaching solution and sulfuric acid leaching residue. The obtained solution after filtration with sulfuric acid leaching was used for the synthesis of the following scorodite crystals.
<スコロダイト結晶の合成及び洗浄>
上で得られた電解沈澱銅の硫酸浸出液(pH1.02)8.08Lに、日鉄鉱業社製ポリ硫酸第2鉄(以下ポリ鉄)1.15Lを加えた。pHは0.74となった。その後、加熱中に液量を9.3Lに調整しながら95℃まで加熱し、24時間スコロダイトの合成を行った。加熱中、蒸発によって液量が減り過ぎないように、適宜水を追加して9.3Lに維持した。硫酸浸出液と硫酸第2鉄溶液を室温で混ぜ合わせた直後は、反応は進行しないが、加熱に伴い、85℃でスコロダイトの生成が観察された。スコロダイトの合成終了後に、スコロダイト結晶をブフナー漏斗で吸引濾過し、固液分離した。得られたスコロダイト結晶及び結晶濾過後液の物量を表6に示す。
<Synthesis and washing of scorodite crystals>
1.15 L of polyferric sulfate (hereinafter referred to as polyiron) manufactured by Nittetsu Mining Co., Ltd. was added to 8.08 L of the sulfuric acid leachate (pH 1.02) of the electrolytically precipitated copper obtained above. The pH was 0.74. Then, while adjusting the liquid volume to 9.3 L during heating, it was heated to 95 ° C., and scorodite was synthesized for 24 hours. During heating, water was appropriately added and maintained at 9.3 L so that the amount of liquid was not reduced excessively by evaporation. Immediately after mixing the sulfuric acid leachate and the ferric sulfate solution at room temperature, the reaction did not proceed, but the formation of scorodite was observed at 85 ° C. with heating. After the completion of the scorodite synthesis, the scorodite crystals were suction-filtered with a Buchner funnel and separated into solid and liquid. Table 6 shows the quantity of the obtained scorodite crystals and the liquid after crystal filtration.
スコロダイト結晶に水を加えて、パルプ濃度約200〜250g/Lにリパルプし、10分間撹拌した後に濾過をし、スコロダイトと洗浄液に分離した。この操作を4回繰り返した。濾過は、実施例1と同様にケークにクラックが生じないように重力濾過とした。それぞれの洗液は、銅アンモニア錯体による比色法で、測定した。比色分析は以下の手順で行った。蓋つきの100mLの透明なガラス瓶に、スコロダイトを水洗した後の水洗液を約90mL採取し、25%アンモニア水(試薬)を約10mL添加し、撹拌して銅アンモニア錯体を生成させて発色させた。銅濃度が既知な銅標準液(例えば、50、20、10、5、1、0mg/L)についても同様に銅アンモニア錯体を生成、発色させ、銅標準液との発色の比較により試料の銅濃度を(半)定量した。
1回目の水洗液は銅イオンに青色が観察されたので、50mg/Lを大きく超えていると判断して、測定しなかった。2回目は30mg/L、3回目は7mg/L、4回目は7mg/Lであった。以上の洗浄の後、スコロダイトからの砒素の溶出試験を3回行った。溶出値は0.09、0.08、0.04mg/Lであり、溶出は少なく、安定していた。
Water was added to the scorodite crystals, repulped to a pulp concentration of about 200 to 250 g / L, stirred for 10 minutes, filtered, and separated into scorodite and washing solution. This operation was repeated 4 times. The filtration was gravity filtration so that cracks would not occur in the cake as in Example 1. Each washing solution was measured by a colorimetric method using a copper ammonia complex. The colorimetric analysis was performed according to the following procedure. About 90 mL of the water washing solution after scorodite was washed with water was collected in a 100 mL transparent glass bottle with a lid, about 10 mL of 25% aqueous ammonia (reagent) was added, and the mixture was stirred to produce a copper ammonia complex for coloring. For copper standard solutions with known copper concentrations (for example, 50, 20, 10, 5, 1, 0 mg / L), a copper ammonia complex is generated and colored in the same manner. The concentration was quantified (semi).
In the first washing solution, since blue color was observed in copper ions, it was judged that it greatly exceeded 50 mg / L and was not measured. The second time was 30 mg / L, the third time was 7 mg / L, and the fourth time was 7 mg / L. After the above washing, an arsenic elution test from scorodite was performed three times. The elution values were 0.09, 0.08, and 0.04 mg / L, and the elution was small and stable.
同様の条件で、電解沈澱銅の浸出−スコロダイト合成−スコロダイト洗浄の一連の操作を合計8回実施した。洗液中の銅濃度が10mg/L以下となることを(銅アンモニア錯体による)洗浄終了の判断とした。洗液中の銅濃度が10mg/L以下となるまでの洗浄回数はバッチ間でばらつきがあり、4〜7回であった。それぞれの溶出値を表7(右側)に示す。砒素の溶出値は平均0.05mg/L、標準偏差0.03mg/Lと少なく、安定している。 Under the same conditions, a series of operations of electrolytic leaching copper leaching-scorodite synthesis-scorodite washing was performed a total of 8 times. It was judged that the cleaning was finished (by the copper ammonia complex) that the copper concentration in the washing solution was 10 mg / L or less. The number of washings until the copper concentration in the washing solution became 10 mg / L or less varied between batches and was 4 to 7 times. The respective elution values are shown in Table 7 (right side). The elution value of arsenic is stable with an average of 0.05 mg / L and a standard deviation of 0.03 mg / L.
実施例3
実施例2と同様の方法で合成したスコロダイト3.14kg(湿量、乾量換算2.59kg)をラロックス社製縦型フィルタープレス(型式:濾過試験装置PF 0.1型)で濾過し、その後圧搾し固液を分離してスコロダイトのケークとした。引き続きフィルタープレスのチャンバー内にあるケークに8Lの水を流し洗浄、圧搾した。この操作を4回繰り返した。それぞれの洗液は実施例2と同様に銅濃度を比色分析で定量した。1回目の洗液は測定しなかった。2、3、4回目の洗液はそれぞれ50、10、1mg/Lとなった。以上の洗浄後、ヒ素の溶出値は0.06mg/Lであった。これによって、フィルタープレスでも銅による洗浄終点の判定方法は有効であることが実証された。
Example 3
3.14 kg of scorodite synthesized in the same manner as in Example 2 (wet amount, dry weight conversion: 2.59 kg) was filtered with a vertical filter press (model: filtration test apparatus PF 0.1 type) manufactured by Lalox, and then pressed. The solid liquid was separated into a scorodite cake. Subsequently, 8 L of water was poured into the cake in the chamber of the filter press for washing and pressing. This operation was repeated 4 times. Each washing solution was quantified by colorimetric analysis of copper concentration in the same manner as in Example 2. The first washing was not measured. The second, third, and fourth washings were 50, 10, and 1 mg / L, respectively. After the above washing, the elution value of arsenic was 0.06 mg / L. As a result, it was proved that the method for determining the end point of cleaning with copper is effective even with a filter press.
比較例1
<電解沈澱銅の硫酸浸出>
実施例1と同様の方法で電解沈澱銅から硫酸浸出液を得、次のスコロダイト結晶合成の原料とした。
Comparative Example 1
<Sulfuric acid leaching of electrolytically precipitated copper>
A sulfuric acid leachate was obtained from electrolytically precipitated copper by the same method as in Example 1, and used as a raw material for the next scorodite crystal synthesis.
<スコロダイト結晶の合成方法及び洗浄>
電解沈澱銅の硫酸浸出液(pH1.03)1.24Lに、日鉄鉱業社製ポリ硫酸第2鉄(以下ポリ鉄)0.265Lを加えた。pHは0.61となった。その後、加熱中に液量を1.5Lに調整しながら95℃まで加熱し、24時間スコロダイトの合成を行った。加熱中、蒸発によって液量が減り過ぎないように、適宜水を追加して1.5Lに維持した。スコロダイトの合成終了後に、スコロダイト結晶をブフナー漏斗で自然濾過し、クラックが発生しないように注意しながら固液分離した。得られたスコロダイト結晶及び結晶濾過後液の物量を表8に示す。
<Synthesis method and cleaning of scorodite crystal>
To 1.24 L of electrolytically precipitated copper sulfuric acid leaching solution (pH 1.03), 0.265 L of polyferric sulfate (hereinafter referred to as polyiron) manufactured by Nittetsu Mining Co., Ltd. was added. The pH was 0.61. Then, while adjusting the liquid volume to 1.5 L during heating, it was heated to 95 ° C., and scorodite was synthesized for 24 hours. During heating, water was appropriately added and maintained at 1.5 L so as not to reduce the liquid volume too much by evaporation. After the completion of the scorodite synthesis, the scorodite crystals were naturally filtered with a Buchner funnel, and solid-liquid separation was performed with care not to generate cracks. Table 8 shows the quantity of the obtained scorodite crystals and the liquid after crystal filtration.
引き続きブフナー漏斗上のスコロダイトケーク(220.9g湿重量、163g乾重量相当)の上に160mLの水で5回(計0.8L)洗浄した。濾過は、実施例1と同様にケークにクラックが生じないように重力濾過とした。スコロダイト合成終了後、最終的に、洗液からは銅イオンの青い色は消え、無色透明であることを確認した。そのスコロダイトを用いて、砒素の溶出試験(環境省告示13号に則った試験)を2回行ったところ、砒素の溶出は0.2、0.5mg/Lであった。
同様の条件で、電解沈澱銅の浸出−スコロダイト合成−スコロダイト洗浄の一連の操作を合計13回実施した。それぞれは最終的に、洗液からは銅イオンの青い色は消え、無色透明であることを確認した。それぞれの溶出値を表7(左側)に示す。平均0.4mg/L、標準偏差0.4mg/Lと溶出値、ばらつき共に大きい。
Subsequently, it was washed 5 times (total 0.8 L) with 160 mL of water on a scorodite cake (220.9 g wet weight, equivalent to 163 g dry weight) on a Buchner funnel. The filtration was gravity filtration so that cracks would not occur in the cake as in Example 1. After the completion of the scorodite synthesis, it was finally confirmed that the blue color of copper ions disappeared from the washing solution and was colorless and transparent. Using the scorodite, the arsenic elution test (test in accordance with Ministry of the Environment Notification No. 13) was conducted twice. As a result, the arsenic elution was 0.2 and 0.5 mg / L.
Under the same conditions, a series of operations of electrolytic leaching copper leaching-scorodite synthesis-scorodite washing was performed 13 times in total. Finally, it was confirmed that the blue color of copper ions disappeared from the washing solution and was colorless and transparent. The respective elution values are shown in Table 7 (left side). The average 0.4 mg / L, standard deviation 0.4 mg / L, and the elution value and variation are large.
Claims (8)
・合成されたスコロダイトを反応後液から固液分離によって分離する工程2と、
・その後に、スコロダイトを水洗した上でスコロダイトを水洗液から固液分離により分離する工程3と、
を行うことを含むスコロダイトの製造方法であって、
工程1の酸性水溶液の原料として電解沈殿銅の硫酸浸出液を使用し、工程3は、第n回目(n≧1)の工程3を実施した後の水洗液中に含まれるCu、S及びFeよりなる群から選択される少なくとも1種の反応後液成分の濃度とAsイオン濃度との間の相関関係に基づき、スコロダイトの水洗に使用した水洗液中に含まれる該反応後液成分の濃度測定値から推定されるAsイオン濃度が0.3mg/L以下に低下するまで繰り返すことを含む方法。 Step 1 of heating an acidic aqueous solution containing pentavalent As and trivalent Fe at a temperature and time effective for the synthesis of crystalline scorodite;
-Step 2 of separating the synthesized scorodite from the post-reaction liquid by solid-liquid separation;
-After that, after washing the scorodite with water and separating the scorodite from the washing solution by solid-liquid separation,
A method for producing scorodite, comprising:
The sulfuric acid leaching solution of electrolytically-precipitated copper is used as a raw material for the acidic aqueous solution in Step 1, and Step 3 is based on Cu, S, and Fe contained in the water washing solution after performing the n-th (n ≧ 1) Step 3. Based on the correlation between the concentration of at least one post-reaction liquid component selected from the group consisting of and the As ion concentration , the measured value of the concentration of the post-reaction liquid component contained in the water wash used for scorodite water washing The method includes repeating the process until the As ion concentration estimated from 1 decreases to 0.3 mg / L or less.
・合成されたスコロダイトを反応後液から固液分離によって分離する工程2と、
・その後に、スコロダイトを水洗した上でスコロダイトを水洗液から固液分離により分離する工程3と、
を行うことを含むスコロダイトの製造方法であって、
工程1の酸性水溶液の原料として電解沈殿銅の硫酸浸出液を使用し、工程3は、洗浄に使用する水量とスコロダイトの乾燥重量の比率を一定値に定めた上で、水洗液中に含まれるAs濃度測定値とCu、S及びFeよりなる群から選択される少なくとも1種の反応後液成分の濃度測定値との関係をプロットし、該反応後液成分の濃度測定値の推移から洗浄液中に残存するAs濃度を推測し、スコロダイトの水洗に使用した水洗液中に含まれる該反応後液成分の濃度測定値から推定されるAsのイオン濃度が0.3mg/L以下に低下するまで繰り返すことを含む方法。 Step 1 of heating an acidic aqueous solution containing pentavalent As and trivalent Fe at a temperature and time effective for the synthesis of crystalline scorodite;
-Step 2 of separating the synthesized scorodite from the post-reaction liquid by solid-liquid separation;
-After that, after washing the scorodite with water and separating the scorodite from the washing solution by solid-liquid separation,
A method for producing scorodite, comprising:
The sulfuric acid leaching solution of electrolytically precipitated copper is used as a raw material for the acidic aqueous solution in step 1, and in step 3, the ratio of the amount of water used for washing and the dry weight of scorodite is set to a constant value, and then As is contained in the washing solution. The relationship between the measured concentration value and the measured concentration value of at least one post-reaction liquid component selected from the group consisting of Cu, S, and Fe is plotted. The remaining As concentration is estimated, and the process is repeated until the As ion concentration estimated from the measured concentration value of the post-reaction liquid component contained in the washing solution used for washing scorodite is lowered to 0.3 mg / L or less. Including methods.
・合成されたスコロダイトを反応後液から固液分離によって分離する工程2と、
・その後に、スコロダイトを水洗した上でスコロダイトを水洗液から固液分離により分離する工程3と、
を行うことを含むスコロダイトの製造方法であって、
工程1の酸性水溶液の原料として電解沈殿銅の硫酸浸出液を使用し、反応後液中のAsイオン濃度を0.1〜3g/L、Cuイオン濃度を10〜60g/Lとし、工程3は1回の洗浄を、水量1L当たりスコロダイト100〜300g(乾燥重量)の比率として行い、スコロダイトの水洗に使用した水洗液中に含まれるCuイオン濃度を測定し、測定されたCuイオン濃度が10mg/L以下に低下するまで繰り返すことを含む方法。 Step 1 of heating an acidic aqueous solution containing pentavalent As and trivalent Fe at a temperature and time effective for the synthesis of crystalline scorodite;
-Step 2 of separating the synthesized scorodite from the post-reaction liquid by solid-liquid separation;
-After that, after washing the scorodite with water and separating the scorodite from the washing solution by solid-liquid separation,
A method for producing scorodite, comprising:
The sulfuric acid leaching solution of electrolytically precipitated copper is used as a raw material for the acidic aqueous solution in Step 1, the As ion concentration in the post-reaction solution is 0.1 to 3 g / L, the Cu ion concentration is 10 to 60 g / L, and Step 3 is 1 Washing is performed as a ratio of 100 to 300 g (dry weight) of scorodite per liter of water, and the Cu ion concentration contained in the washing solution used for scorodite washing is measured, and the measured Cu ion concentration is 10 mg / L. A method comprising repeating until reduced below.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010013238A JP5232806B2 (en) | 2010-01-25 | 2010-01-25 | Manufacturing method and cleaning method of scorodite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010013238A JP5232806B2 (en) | 2010-01-25 | 2010-01-25 | Manufacturing method and cleaning method of scorodite |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007275070A Division JP4620100B2 (en) | 2007-10-23 | 2007-10-23 | Manufacturing method and cleaning method of scorodite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010100524A JP2010100524A (en) | 2010-05-06 |
JP5232806B2 true JP5232806B2 (en) | 2013-07-10 |
Family
ID=42291512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010013238A Active JP5232806B2 (en) | 2010-01-25 | 2010-01-25 | Manufacturing method and cleaning method of scorodite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5232806B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104678050A (en) * | 2015-02-05 | 2015-06-03 | 北大先行科技产业有限公司 | Method for determining content of trivalent ferrum in lithium iron phosphate by adopting iodimetry |
CN110240241A (en) * | 2018-03-09 | 2019-09-17 | 天津大学 | A kind of preparation method of high dispersive amorphous polymer ferric sulfate |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59164639A (en) * | 1983-03-08 | 1984-09-17 | Nippon Mining Co Ltd | Separation of arsenic |
JP3784940B2 (en) * | 1997-09-25 | 2006-06-14 | 日鉱金属株式会社 | Method for removing arsenic in copper electrolyte |
JP3756687B2 (en) * | 1999-01-29 | 2006-03-15 | 同和鉱業株式会社 | Method for removing and fixing arsenic from arsenic-containing solutions |
JP3999805B1 (en) * | 2006-04-28 | 2007-10-31 | Dowaメタルマイン株式会社 | Arsenic-containing solution processing method |
JP4149488B2 (en) * | 2006-04-28 | 2008-09-10 | Dowaメタルマイン株式会社 | Iron arsenate powder |
JP5102519B2 (en) * | 2007-03-15 | 2012-12-19 | Dowaメタルマイン株式会社 | Arsenic-containing solid and its production method |
JP5107637B2 (en) * | 2007-08-24 | 2012-12-26 | Dowaメタルマイン株式会社 | Iron arsenate powder |
JP4971933B2 (en) * | 2007-10-02 | 2012-07-11 | Dowaメタルマイン株式会社 | Method for producing iron arsenic compound |
-
2010
- 2010-01-25 JP JP2010013238A patent/JP5232806B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104678050A (en) * | 2015-02-05 | 2015-06-03 | 北大先行科技产业有限公司 | Method for determining content of trivalent ferrum in lithium iron phosphate by adopting iodimetry |
CN110240241A (en) * | 2018-03-09 | 2019-09-17 | 天津大学 | A kind of preparation method of high dispersive amorphous polymer ferric sulfate |
Also Published As
Publication number | Publication date |
---|---|
JP2010100524A (en) | 2010-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4620100B2 (en) | Manufacturing method and cleaning method of scorodite | |
CN104039991B (en) | Lead is reclaimed from mixed oxidization section bar material | |
CN104046785B (en) | The treatment process of a kind of waste and old copper iron base diamond cutter head | |
KR100979309B1 (en) | Producing method for scorodite and recycling method for liquid after compounding scorodite | |
JP4900322B2 (en) | Method for producing metal selenium powder | |
JP4268196B2 (en) | Method for producing scorodite | |
JP4216307B2 (en) | Process for electrolytically precipitated copper | |
JP6011809B2 (en) | Method for producing gold powder with high bulk density | |
JP2012087407A (en) | RECOVERING METHOD OF VALUABLE METAL FROM Pb-FREE WASTE SOLDER | |
CN105967153A (en) | Technology for recovering tellurium from high-tellurium slag | |
JP4717917B2 (en) | Manufacturing method and cleaning method of scorodite | |
JP5232806B2 (en) | Manufacturing method and cleaning method of scorodite | |
CN100510123C (en) | Lixiviation method for treatment substance containing selenium and/or tellurium, and ruthenium and/or rhodium | |
JP2009209421A (en) | Method for producing high purity silver | |
JP5447357B2 (en) | Chlorine leaching method for copper electrolytic slime | |
JP5059081B2 (en) | Method for producing scorodite and method for recycling liquid after synthesis of scorodite | |
JP5423592B2 (en) | Method for producing low chlorine nickel sulfate / cobalt solution | |
JP2018150186A (en) | Method for producing scorodite | |
JP5573763B2 (en) | High purity silver production waste liquid treatment method | |
JP2000038692A (en) | Production of high purity silver | |
JP6250365B2 (en) | Method for concentrating rhodium and ruthenium | |
RU2516180C1 (en) | Method to process alloy of ligature gold | |
RU2534093C2 (en) | Method of copper-electrolyte processing | |
CN102796871B (en) | Method for treating cast of lead anode plate in electro-deposit copper | |
TW202419636A (en) | Method for removing chlorine in zinc hydrometallurgy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130305 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130325 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5232806 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |