JP4597107B2 - Arsenic removing method and arsenic removing apparatus from arsenic containing body - Google Patents

Arsenic removing method and arsenic removing apparatus from arsenic containing body Download PDF

Info

Publication number
JP4597107B2
JP4597107B2 JP2006271838A JP2006271838A JP4597107B2 JP 4597107 B2 JP4597107 B2 JP 4597107B2 JP 2006271838 A JP2006271838 A JP 2006271838A JP 2006271838 A JP2006271838 A JP 2006271838A JP 4597107 B2 JP4597107 B2 JP 4597107B2
Authority
JP
Japan
Prior art keywords
arsenic
mixed solution
iron arsenate
solution
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006271838A
Other languages
Japanese (ja)
Other versions
JP2007260660A (en
Inventor
博 宮川
宏則 立岩
良一 白井
浩伸 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mesco Inc
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mesco Inc
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mesco Inc, Mitsui Mining and Smelting Co Ltd filed Critical Mesco Inc
Priority to JP2006271838A priority Critical patent/JP4597107B2/en
Publication of JP2007260660A publication Critical patent/JP2007260660A/en
Application granted granted Critical
Publication of JP4597107B2 publication Critical patent/JP4597107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Processing Of Solid Wastes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

本発明は、砒素含有体から砒素を除去する砒素除去方法、砒素除去装置及びその反応槽に関するものである。   The present invention relates to an arsenic removal method, an arsenic removal apparatus, and a reaction tank for removing arsenic from an arsenic-containing body.

従来、製錬所、例えば、銅製錬所においては、煤煙等による環境汚染が問題となっており、排出される亜硫酸ガス,粉塵,砒素等の削減が強化されている。このような亜硫酸ガスの排出規制に伴い、新たに砒素を含む大量の煙灰が発生し、この煙灰の処理が問題となっている。煙灰中の砒素を結晶質砒酸鉄として除去する方法として、煙灰から酸溶液により砒素を酸浸出し、この浸出液と鉄イオンを含む酸性水溶液とを混合し、この混合液を90℃に加温し結晶の砒酸鉄を沈殿させて取り出すことで、煙灰から砒素を除去する方法が知られている(非特許文献1参照)。   Conventionally, in a smelter, for example, a copper smelter, environmental pollution due to smoke or the like has been a problem, and reduction of sulfurous acid gas, dust, arsenic, and the like emitted has been strengthened. Along with the emission regulation of sulfurous acid gas, a large amount of smoke ash containing arsenic is newly generated, and the treatment of this smoke ash has become a problem. As a method of removing arsenic in the smoke ash as crystalline iron arsenate, arsenic is acid leached from the smoke ash with an acid solution, the leaching solution is mixed with an acidic aqueous solution containing iron ions, and the mixture is heated to 90 ° C. There is known a method of removing arsenic from smoke ash by precipitating crystalline iron arsenate (see Non-Patent Document 1).

上記の煙灰からの砒素除去においては、不安定で安全に投棄することが難しい非晶質の砒酸鉄を沈殿させないために、混合液のpH管理が必要であり、非常に煩雑な手間が掛かるという問題があった。これに対して、砒素を含む浸出液と鉄イオンを含む酸性水溶液とを混合して非晶質の砒酸鉄を沈殿させてから、加温によって非晶質の砒酸鉄を結晶化して結晶の砒酸鉄を取り出す方法が開示されている。この方法を用いれば、混合液のpH管理が不要で、煙灰から安定した砒素を極めて簡単に除去することができる(特許文献1参照)。   In removing arsenic from the above-mentioned smoke ash, it is necessary to control the pH of the mixed solution in order not to precipitate amorphous iron arsenate which is unstable and difficult to dump safely, and it is very troublesome. There was a problem. In contrast, a leaching solution containing arsenic and an acidic aqueous solution containing iron ions are mixed to precipitate amorphous iron arsenate, and then the amorphous iron arsenate is crystallized by heating to produce crystalline iron arsenate. Is disclosed. If this method is used, pH control of the mixed solution is unnecessary, and stable arsenic can be removed from smoke ash very easily (see Patent Document 1).

D. Filippou, P. Demopoulos著 "Arsenic Immobilization by Controlled Scorodite Precipitation" JOM Dec., 1997, p. 52-55D. Filippou, P. Demopoulos "Arsenic Immobilization by Controlled Scorodite Precipitation" JOM Dec., 1997, p. 52-55 特開2005−161123号公報JP 2005-161123 A

銅製錬所から排出される煤煙の量の増加に伴い、煙灰の処理をより短時間で効率的に行うことが要求されている。しかしながら、従来の煙灰から砒素を除去する方法では、非晶質の砒酸鉄を結晶化するのに時間が掛かり、煙灰から安定した砒素を短時間で効率的に除去することができないという問題があった。また、非鉄製錬所等から排出される砒素を含む処理対象としての砒素含有体には前記煤煙やスラグ等の固体の他、砒素含有廃水等の液体がある。   As the amount of soot discharged from the copper smelter increases, it is required to efficiently treat the smoke ash in a shorter time. However, the conventional method of removing arsenic from smoke ash has a problem that it takes time to crystallize amorphous iron arsenate, and stable arsenic cannot be efficiently removed from smoke ash in a short time. It was. Further, the arsenic-containing body as a treatment target containing arsenic discharged from a non-ferrous smelter or the like includes liquids such as arsenic-containing wastewater in addition to solids such as soot and slag.

本発明は、上記に鑑みてなされたものであって、砒素を含有する液体又は固体からなる砒素含有体から結晶化した砒素を極めて短時間で効率的に除去することができる砒素含有体からの砒素除去方法、砒素除去装置及びその反応槽を提供することを目的とする。   The present invention has been made in view of the above. From an arsenic-containing body that can efficiently remove crystallized arsenic from an arsenic-containing body composed of a liquid or solid containing arsenic. An object is to provide an arsenic removal method, an arsenic removal apparatus, and a reaction tank thereof.

上述した課題を解決し、目的を達成するために、本発明の砒素含有体からの砒素除去方法は、砒素を含有する液体又は固体からなる砒素含有体から砒素を除去する砒素除去方法であって、前記砒素含有体と鉄イオンを含む酸性水溶液とを混合する混合工程と、前記混合した混合液を加温するとともに該混合液に超音波を印加して、非晶質の砒酸鉄の生成と該非晶質の砒酸鉄の結晶化とを促進する結晶化促進工程と、前記混合液をろ過して前記結晶化した砒酸鉄を除去するろ過工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, an arsenic removal method from an arsenic-containing body of the present invention is an arsenic removal method for removing arsenic from an arsenic-containing body composed of a liquid or solid containing arsenic. A mixing step of mixing the arsenic-containing body and an acidic aqueous solution containing iron ions; heating the mixed liquid mixture and applying ultrasonic waves to the mixed liquid to produce amorphous iron arsenate; A crystallization promoting step for promoting crystallization of the amorphous iron arsenate; and a filtration step for removing the crystallized iron arsenate by filtering the mixed solution.

また、本発明の砒素含有体からの砒素除去方法は、上記の発明において、前記砒素含有体が固体の場合、酸溶液により砒素を浸出する浸出工程と、砒素を浸出した浸出液をろ過するろ過工程と、を含むことを特徴とする。浸出工程で、酸溶液によって砒素を浸出するのは、酸溶液によってpHを制御する目的もある。これは、浸出工程のpHが高過ぎると、砒素の浸出率が低くなるという問題があり、pHが低過ぎると、後工程で中和用のアルカリが多量に消費され、中和処理のコストが上昇するという問題があるからである。例えば、煙灰の場合、浸出工程のpHは、1.0〜1.5に制御することが望ましい。   The method for removing arsenic from an arsenic-containing body according to the present invention includes the leaching step of leaching arsenic with an acid solution and the filtering step of filtering the leached leaching solution when the arsenic-containing body is solid in the above invention. It is characterized by including these. In the leaching process, arsenic is leached with an acid solution for the purpose of controlling the pH with the acid solution. If the pH of the leaching process is too high, the leaching rate of arsenic will be low. If the pH is too low, a large amount of alkali for neutralization will be consumed in the subsequent process, and the cost of the neutralization treatment will be reduced. This is because there is a problem of rising. For example, in the case of smoke ash, it is desirable to control the pH of the leaching process to 1.0 to 1.5.

また、本発明の砒素含有体からの砒素除去方法は、上記の発明において、前記結晶化促進工程は、前記混合液をヒータによって加温することを特徴とする。   The arsenic removal method from an arsenic-containing body of the present invention is characterized in that, in the above invention, the crystallization promoting step heats the mixed solution with a heater.

また、本発明の砒素含有体からの砒素除去方法は、上記の発明において、前記混合液に加熱水蒸気によって局所的に熱を供給して加温することを特徴とする。   Moreover, the method for removing arsenic from an arsenic-containing body of the present invention is characterized in that, in the above-mentioned invention, the mixed solution is heated by locally supplying heat with heated steam.

また、本発明の砒素含有体からの砒素除去方法は、上記の発明において、前記混合工程は鉄と砒素のモル比が1〜1.5、砒素濃度が0.1g/L以上の条件で行い、前記結晶化促進工程は80〜95℃に加温した状態を保持することを特徴とする。   In the method for removing arsenic from an arsenic-containing body according to the present invention, in the above invention, the mixing step is performed under the conditions that the molar ratio of iron to arsenic is 1 to 1.5 and the arsenic concentration is 0.1 g / L or more. The crystallization promoting step is characterized by maintaining a state heated to 80 to 95 ° C.

また、本発明の砒素含有体からの砒素除去方法は、上記の発明において、前記酸溶液は硫酸であり、前記鉄イオンを含む酸性水溶液は硫酸第二鉄の水溶液であることを特徴とする。   The method for removing arsenic from an arsenic-containing body of the present invention is characterized in that, in the above invention, the acid solution is sulfuric acid, and the acidic aqueous solution containing iron ions is an aqueous solution of ferric sulfate.

また、上述した課題を解決し、目的を達成するために、本発明の砒素除去装置は、砒素を含有する液体又は固体からなる砒素含有体から砒素を除去する砒素除去装置であって、前記砒素含有体と鉄イオンを含む酸性水溶液とを混合した混合液を加温するとともに該混合液に超音波を印加して、非晶質の砒酸鉄の生成と該非晶質の砒酸鉄の結晶化とを促進する反応槽と、前記混合液をろ過して前記結晶化した砒酸鉄を除去するろ過装置と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, an arsenic removing apparatus of the present invention is an arsenic removing apparatus that removes arsenic from an arsenic-containing body composed of a liquid or solid containing arsenic. Heating a mixed liquid in which the inclusion body and an acidic aqueous solution containing iron ions are heated and applying ultrasonic waves to the mixed liquid to form amorphous iron arsenate and crystallize the amorphous iron arsenate; And a filtration device for filtering the mixed solution to remove the crystallized iron arsenate.

また、本発明の砒素除去装置は、上記の発明において、前記砒素含有体が固体の場合、酸溶液により砒素を浸出する浸出槽と、砒素を浸出した浸出液をろ過するろ過装置とを備え、ろ過した砒素を含む浸出液は、前記反応槽に供給されることを特徴とする。   Further, the arsenic removing apparatus of the present invention comprises the leaching tank for leaching arsenic with an acid solution when the arsenic-containing body is solid in the above invention, and a filtration device for filtering the leachate leached from the arsenic. The leaching solution containing arsenic is supplied to the reaction vessel.

また、本発明の砒素除去装置は、上記の発明において、前記反応槽は、加熱水蒸気によって局所的に熱を供給して前記混合液を加温することを特徴とする。   The arsenic removing apparatus of the present invention is characterized in that, in the above-mentioned invention, the reaction tank heats the mixed solution by locally supplying heat with heated steam.

また、上述した課題を解決し、目的を達成するために、本発明の砒素除去装置の反応槽は、砒素を含む液体又は固体からなる砒素含有体と鉄イオンを含む酸性水溶液とを混合する混合手段と、混合された混合液を加温する加温手段と、前記混合液に超音波を印加して、非晶質の砒酸鉄の生成と該非晶質の砒酸鉄の結晶化とを促進する超音波印加手段と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the reaction tank of the arsenic removal apparatus of the present invention is a mixture in which an arsenic-containing liquid or solid arsenic-containing body and an acidic aqueous solution containing iron ions are mixed. Means, heating means for heating the mixed liquid mixture, and applying ultrasonic waves to the liquid mixture to promote generation of amorphous iron arsenate and crystallization of the amorphous iron arsenate And an ultrasonic wave application means.

また、本発明の砒素除去装置の反応槽は、上記の発明において、前記加温手段は、加熱水蒸気によって局所的に熱を供給して前記混合液を加温することを特徴とする。   The reaction tank of the arsenic removing apparatus of the present invention is characterized in that, in the above invention, the heating means locally supplies heat with heated steam to heat the mixed solution.

また、本発明の砒素除去装置の反応槽は、上記の発明において、前記混合手段は、前記混合液を全体的に攪拌する攪拌羽根を有する攪拌棒であり、前記加温手段は、局所的に熱を供給する加熱水蒸気によって前記混合液を局所的に攪拌することを特徴とする。   Further, the reaction tank of the arsenic removing apparatus according to the present invention is the above invention, wherein the mixing means is a stirring rod having a stirring blade for stirring the mixed liquid as a whole, and the heating means is locally The mixed liquid is locally stirred by heated steam supplying heat.

また、本発明の砒素除去装置の反応槽は、上記の発明において、前記攪拌棒の回転数、前記混合液のpH又は温度の少なくとも一つを制御する制御手段を備えることを特徴とする。   Moreover, the reaction tank of the arsenic removing apparatus of the present invention is characterized in that, in the above-mentioned invention, a control means for controlling at least one of the number of rotations of the stirring rod, the pH or temperature of the mixed solution is provided.

また、本発明の砒素除去装置の反応槽は、上記の発明において、内壁の表面が耐食性の素材によって被覆されていることを特徴とする。   Moreover, the reaction tank of the arsenic removing apparatus of the present invention is characterized in that, in the above invention, the surface of the inner wall is covered with a corrosion-resistant material.

また、本発明の砒素除去装置の反応槽は、上記の発明において、前記耐食性の素材は、フッ素樹脂であることを特徴とする。   The reaction tank of the arsenic removing apparatus of the present invention is characterized in that, in the above invention, the corrosion-resistant material is a fluororesin.

本発明の砒素含有体からの砒素除去方法によれば、砒素を含む浸出液と鉄イオンを含む酸性水溶液との混合液を加温するとともに該混合液に超音波を印加し、本発明の砒素除去装置及びその反応槽によれば、浸出液と鉄イオンを含む酸性水溶液との混合液を加温するとともに該混合液に超音波を印加することによって、非晶質の砒酸鉄の生成とその結晶化の両方を促進するので、非晶質の砒酸鉄が生成して結晶化するまでの時間を大幅に短縮でき、その結果、砒素含有体から安定した砒素を極めて短時間で効率的に除去することができるという効果を奏する。   According to the method for removing arsenic from an arsenic-containing body of the present invention, a mixed solution of a leaching solution containing arsenic and an acidic aqueous solution containing iron ions is heated and an ultrasonic wave is applied to the mixed solution to remove the arsenic of the present invention. According to the apparatus and its reaction tank, by heating a mixed solution of a leachate and an acidic aqueous solution containing iron ions and applying ultrasonic waves to the mixed solution, formation of amorphous iron arsenate and its crystallization As a result, the time until amorphous iron arsenate is formed and crystallized can be greatly shortened. As a result, stable arsenic can be efficiently removed from arsenic-containing bodies in a very short time. There is an effect that can be.

以下に、図面を参照して本発明の砒素含有体からの砒素除去方法、砒素除去装置及びその反応槽の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a method for removing arsenic from an arsenic-containing body, an arsenic removing apparatus, and a reaction tank thereof will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の砒素含有体からの砒素除去方法として砒素含有体が固体である煙灰の場合における実施の形態1を示すフローチャートである。本実施の形態においては、まず、酸溶液として濃度0.2mol/Lの硫酸溶液を用いて煙灰から砒素を浸出する(ステップS10)。次に、浸出した酸性の浸出液をろ過し、固液分離する(ステップS12)。得られた残渣は、浮選処理により尾鉱(鉛)と精鉱(銅)とに選別され、尾鉱からは鉛が、精鉱からは銅が、それぞれ回収される。
(Embodiment 1)
FIG. 1 is a flowchart showing a first embodiment in the case of ash containing solid arsenic containing body as a method for removing arsenic from the arsenic containing body of the present invention. In the present embodiment, first, arsenic is leached from the smoke ash using a sulfuric acid solution having a concentration of 0.2 mol / L as the acid solution (step S10). Next, the leached acidic leachate is filtered and separated into solid and liquid (step S12). The obtained residue is sorted into tailings (lead) and concentrates (copper) by flotation, and lead is recovered from the tailings and copper is recovered from the concentrates.

次に、ろ過された砒素を含む浸出液と硫酸第二鉄(Fe2(SO4)3)水溶液とを混合して混合液を作製する(ステップS14)。この混合工程は、pH1.0〜1.5の浸出液と鉄イオン(Fe3+)の濃度が80〜120g/Lの硫酸第二鉄水溶液とを、鉄と砒素のモル比が1〜1.5となるように混合し、砒素濃度が0.1g/L以上となる条件で行う。また、硫酸第二鉄水溶液に用いる硫酸第二鉄は、鉄酸化菌によって鉄スクラップを酸化して作った水酸化第二鉄を硫酸処理して得られるものであれば、工業的に非常に安価に入手することができるから好ましい。その結果、作製した混合液中には非晶質の砒酸鉄(FeAsO4・2H2O)が生成して沈殿する。 Next, the leaching solution containing filtered arsenic and a ferric sulfate (Fe 2 (SO 4 ) 3 ) aqueous solution are mixed to prepare a mixed solution (step S14). In this mixing step, a leachate having a pH of 1.0 to 1.5 and a ferric sulfate aqueous solution having a concentration of iron ions (Fe 3+ ) of 80 to 120 g / L and a molar ratio of iron to arsenic of 1 to 1. 5 is performed under the condition that the arsenic concentration is 0.1 g / L or more. In addition, ferric sulfate used in ferric sulfate aqueous solution is industrially very inexpensive as long as it is obtained by sulfuric acid treatment of ferric hydroxide produced by oxidizing iron scrap with iron-oxidizing bacteria. It is preferable because it can be obtained. As a result, amorphous iron arsenate (FeAsO 4 .2H 2 O) is generated and precipitated in the prepared mixed solution.

次に、ステップS14で作製した混合液を80〜95℃に加温するとともに、この混合液に超音波を印加する。その結果、非晶質の砒酸鉄の生成が促進されるとともに、生成して沈殿した非晶質の砒酸鉄の結晶化が促進され、砒酸鉄の結晶が短時間で生成する(ステップS16)。   Next, while heating the liquid mixture produced at step S14 to 80-95 degreeC, an ultrasonic wave is applied to this liquid mixture. As a result, the generation of amorphous iron arsenate is promoted, and the crystallization of the amorphous iron arsenate that has been formed and precipitated is promoted, so that iron arsenate crystals are formed in a short time (step S16).

ここで、図を用いてステップS16を説明する。図2は混合液中に生成する非晶質の砒酸鉄の沈殿を模式的に示す図である。容器1に収容された混合液Lmには非晶質の砒酸鉄Amが沈殿している。ステップS16においては、攪拌棒2と不図示の超音波発生器に備えられた超音波発生チップ3とを混合液Lmに浸漬し、攪拌棒2の攪拌羽根2aにより混合液Lmを攪拌しながら、ヒータ4により混合液Lmを80〜95℃に加温するとともに、超音波発生チップ3により混合液Lmに超音波を印加する。混合液Lmを加温するとともに混合液Lmに超音波を印加することにより、混合液Lm中において非晶質の砒酸鉄Amの生成が促進されるとともに、沈殿した非晶質の砒酸鉄Amの結晶化が促進される。その結果、混合液Lmを加温するだけの場合よりも短時間で、非晶質の砒酸鉄Amが酸に溶け難く安定した結晶の砒酸鉄Crに改質される。図3は混合液中に生成する結晶の砒酸鉄の沈殿を模式的に示す図である。   Here, step S16 will be described with reference to the drawings. FIG. 2 is a diagram schematically showing the precipitation of amorphous iron arsenate formed in the mixed solution. Amorphous iron arsenate Am is precipitated in the mixed liquid Lm contained in the container 1. In step S16, the stirring rod 2 and the ultrasonic wave generation tip 3 provided in the ultrasonic generator (not shown) are immersed in the mixed solution Lm, and the mixed solution Lm is stirred by the stirring blade 2a of the stirring rod 2, The mixed liquid Lm is heated to 80 to 95 ° C. by the heater 4, and ultrasonic waves are applied to the mixed liquid Lm by the ultrasonic wave generation chip 3. By heating the mixed liquid Lm and applying ultrasonic waves to the mixed liquid Lm, the formation of amorphous iron arsenate Am in the mixed liquid Lm is promoted, and the precipitated amorphous iron arsenate Am is precipitated. Crystallization is promoted. As a result, amorphous iron arsenate Am is reformed into stable crystalline iron arsenate Cr, which is less soluble in acid, in a shorter time than when the mixed solution Lm is merely heated. FIG. 3 is a diagram schematically showing precipitation of crystalline iron arsenate formed in the mixed solution.

なお、混合液Lmを加温する際、図4に示すように、蒸気配管5の下端から吹き出す加熱水蒸気Stによって混合液Lmを加温すると、蒸気配管5近傍の混合液Lmに加熱水蒸気Stによって局所的に熱が供給されて加温される。このため、結晶が生成され易くなるとともに、非晶質Amの砒酸鉄の生成が促進され、ヒータ4を用いて加温する場合に比べて、混合液Lmを短時間で加温することができ、非晶質砒酸鉄から結晶質砒酸鉄への変化が促進されるので好ましい。   When the mixed liquid Lm is heated, as shown in FIG. 4, when the mixed liquid Lm is heated by the heated steam St blown from the lower end of the steam pipe 5, the mixed liquid Lm near the steam pipe 5 is heated by the heated steam St. Heat is supplied locally and warmed. This facilitates the formation of crystals and promotes the formation of amorphous Am iron arsenate, allowing the mixed liquid Lm to be heated in a shorter time compared to heating using the heater 4. It is preferable because the change from amorphous iron arsenate to crystalline iron arsenate is promoted.

次に、所定時間だけ結晶化を行った後、混合液Lmをろ過する(ステップS18)。そして、結晶の砒酸鉄を回収することにより、煙灰に含まれていた砒素が除去される。このとき、結晶の砒酸鉄は酸に溶け難く安定しているので、効率良く混合液Lmから分離することができる。なお、ステップS16の結晶化促進工程の後に、混合液と沈殿物が混合した状態のスラリーをサイクロン等の分級装置に投入して微粒の砒酸鉄結晶を分離し、分離した微粒の砒酸鉄結晶は再び結晶化促進工程に戻し、ステップS18のろ過工程では粗粒の砒酸鉄結晶だけをろ過することで、ろ過に要する時間を短縮することができる。   Next, after crystallization is performed for a predetermined time, the mixed solution Lm is filtered (step S18). Then, by collecting the crystalline iron arsenate, arsenic contained in the smoke ash is removed. At this time, the crystalline iron arsenate is stable because it is difficult to dissolve in the acid, so that it can be efficiently separated from the mixed solution Lm. In addition, after the crystallization promoting step of Step S16, the slurry in which the mixed solution and the precipitate are mixed is put into a classifier such as a cyclone to separate the fine iron arsenate crystals, and the separated fine iron arsenate crystals are By returning to the crystallization promotion step again and filtering only the coarse iron arsenate crystals in the filtration step of Step S18, the time required for the filtration can be shortened.

一方、結晶の砒酸鉄をろ過して得られる脱砒液は、溶媒抽出によって銅溶液と粗亜鉛液とに分離され、銅溶液は電解工程によって銅が回収される。粗亜鉛液は、一次中和処理された後、固液分離されて残液と非晶質の砒素を含む鉄・砒素沈殿物とに分けられ、残液は所定の処理が施される。そして、非晶質の砒素を含む鉄・砒素沈殿物は、再度、浸出液に加えられ、ステップS14の混合工程が施される。   On the other hand, a dearsenic solution obtained by filtering crystalline iron arsenate is separated into a copper solution and a crude zinc solution by solvent extraction, and copper is recovered from the copper solution by an electrolysis process. The crude zinc solution is subjected to a primary neutralization treatment and then solid-liquid separation to divide the residue into an iron / arsenic precipitate containing amorphous arsenic, and the residue is subjected to a predetermined treatment. Then, the iron / arsenic precipitate containing amorphous arsenic is added again to the leachate, and the mixing step of step S14 is performed.

以上説明したように、本実施の形態に係る煙灰からの砒素除去方法によれば、煙灰から砒素を浸出した浸出液と硫酸第二鉄水溶液との混合液を加温するとともに混合液に超音波を印加して、非晶質の砒酸鉄の生成と非晶質の砒酸鉄の結晶化の両方を促進するので、煙灰から安定した砒素を極めて短時間で効率よく回収することができる。本実施の形態においては、砒素含有体として煙灰から砒素を除去する砒素除去方法について説明した。しかし、本発明方法は、煙灰以外のスラグ等の砒素含有体から砒素を除去する砒素除去方法としても使用することができる。   As described above, according to the arsenic removal method from the smoke ash according to the present embodiment, the mixed solution of the leachate obtained by leaching arsenic from the smoke ash and the aqueous ferric sulfate solution is heated and ultrasonic waves are applied to the mixed solution. By applying this, both generation of amorphous iron arsenate and crystallization of amorphous iron arsenate are promoted, so that stable arsenic can be efficiently recovered from smoke ash in an extremely short time. In the present embodiment, an arsenic removal method for removing arsenic from smoke ash as an arsenic containing body has been described. However, the method of the present invention can also be used as an arsenic removal method for removing arsenic from arsenic-containing bodies such as slag other than smoke ash.

次に、上述の砒素除去方法を適用し、加熱水蒸気によって混合液を加温する砒素除去装置を図5を参照して説明する。図5は、煙灰から砒素を除去する際に使用する本発明の砒素除去装置の構成図である。   Next, an arsenic removing apparatus that applies the above-described arsenic removing method and heats the mixed solution with heated steam will be described with reference to FIG. FIG. 5 is a configuration diagram of an arsenic removing apparatus of the present invention used when removing arsenic from smoke ash.

砒素除去装置10は、図5に示すように、配管によって接続された浸出槽11、ろ過装置13、反応槽16、スラリー槽27及びろ過装置29を備えている。   As shown in FIG. 5, the arsenic removing apparatus 10 includes a leaching tank 11, a filtration apparatus 13, a reaction tank 16, a slurry tank 27, and a filtration apparatus 29 connected by piping.

浸出槽11は、煙灰から砒素を浸出する操作を行うタンクであり、煙灰と水と硫酸が供給される。硫酸は、浸出槽11のpHを制御するが、砒素含有体の種類によって最適pHは異なる。例えば、砒素含有体が煙灰の場合、浸出槽11は、pH1.0〜1.5の範囲に制御することが望ましい。浸出槽11において浸出した酸性の浸出液は、ポンプ12によってろ過装置13へ圧送される。   The leaching tank 11 is a tank that performs an operation of leaching arsenic from smoke ash, and is supplied with smoke ash, water, and sulfuric acid. Although sulfuric acid controls the pH of the leaching tank 11, the optimum pH differs depending on the type of arsenic-containing body. For example, when the arsenic-containing body is smoke ash, it is desirable to control the leaching tank 11 in the range of pH 1.0 to 1.5. The acidic leachate leached in the leaching tank 11 is pumped to the filtration device 13 by the pump 12.

ろ過装置13は、ポンプ12によって圧送されてくる浸出液をフィルタープレス等によってろ過し、固液分離する。ろ過装置13においてろ過された砒素を含む浸出液は、ろ液槽14へ圧送され、固形分は残渣Drとして排出される。一方、ろ液槽14へ送られた砒素を含む浸出液は、ポンプ15によって反応槽16へ圧送される。   The filtration device 13 filters the leachate pumped by the pump 12 with a filter press or the like, and separates it into solid and liquid. The leachate containing arsenic filtered in the filtration device 13 is pumped to the filtrate tank 14 and the solid content is discharged as a residue Dr. On the other hand, the leachate containing arsenic sent to the filtrate tank 14 is pumped to the reaction tank 16 by the pump 15.

反応槽16は、ろ過装置13においてろ過された砒素を含む浸出液に硫酸第二鉄(Fe2(SO4)3)水溶液を混合して混合液を作製する金属タンクであり、混合液の排出口となる配管との接続部は配管側に向かって直径が小さくなるように成形されている。このため、反応槽16は、砒素を含む浸出液と硫酸第二鉄水溶液との反応によって生ずる非晶質の砒酸鉄及び結晶化した砒酸鉄が配管との接続部で詰まることなく配管側へ排出される。また、反応槽16は、混合液が80〜95℃に加温されることによる腐食から保護するため、タンクの内壁表面がフッ素樹脂からなる耐食性シート16aで被覆されると共に、外側は保温材によって覆われている。反応槽16は、図5に示すように、攪拌棒2、超音波発生チップ3、蒸気配管17、供給管18及び冷却装置19を備えている。 The reaction tank 16 is a metal tank for preparing a mixed liquid by mixing a ferric sulfate (Fe 2 (SO 4 ) 3 ) aqueous solution with the leachate containing arsenic filtered in the filtering device 13, and a discharge port for the mixed liquid The connecting portion with the piping is formed so that the diameter decreases toward the piping side. For this reason, the reaction tank 16 discharges the amorphous iron arsenate and crystallized iron arsenate generated by the reaction between the leaching solution containing arsenic and the ferric sulfate aqueous solution to the piping side without clogging at the connection portion with the piping. The Moreover, in order to protect the reaction tank 16 from corrosion caused by heating the mixed solution to 80 to 95 ° C., the inner wall surface of the tank is covered with a corrosion-resistant sheet 16a made of a fluororesin, and the outside is covered with a heat insulating material. Covered. As shown in FIG. 5, the reaction tank 16 includes a stirring rod 2, an ultrasonic wave generation chip 3, a steam pipe 17, a supply pipe 18, and a cooling device 19.

攪拌棒2は、モータMによって回転駆動され、砒素を含む浸出液と硫酸第二鉄水溶液とを全体的に攪拌する混合手段である。このとき、モータMは、制御装置24によってインバータを制御することにより回転数を制御する。超音波発生チップ3は、浸出液と硫酸第二鉄水溶液との混合液に超音波を印加して、非晶質の砒酸鉄の生成と非晶質の砒酸鉄の結晶化とを促進する超音波印加手段である。   The stirring rod 2 is a mixing means that is rotationally driven by the motor M and that totally agitates the leachate containing arsenic and the aqueous ferric sulfate solution. At this time, the motor M controls the rotation speed by controlling the inverter by the control device 24. The ultrasonic wave generation chip 3 applies ultrasonic waves to the mixture of the leachate and the aqueous ferric sulfate solution to promote generation of amorphous iron arsenate and crystallization of amorphous iron arsenate. Application means.

蒸気配管17は、反応槽16内の混合液に上方から加熱水蒸気(例えば、約686.7kPa,約164℃)を吹き込むことにより、蒸気配管17近傍の混合液に加熱水蒸気によって局所的に熱を供給して加温する加温手段であり、下端から加熱水蒸気が吹き出す。蒸気配管17は、局所的に熱を供給する加熱水蒸気によって混合液を局所的に攪拌する。蒸気配管17は、反応槽16内へ吹き込む加熱水蒸気の流量を調節する調節弁17aが設けられている。供給管18は、硫酸第二鉄(Fe2(SO4)3)水溶液を反応槽16に供給し、浸出液と混合して混合液を作製する。冷却装置19は、ブロワ19aと反応槽16の底部近傍に配置されるパイプ19bとを有しており、ブロワ19aが吹き出す空気をパイプ19bから反応槽16の混合液中に吹き出して曝気冷却することにより混合液の冷却温度を制御する。 The steam pipe 17 blows heated steam (for example, about 686.7 kPa, about 164 ° C.) from above into the mixed liquid in the reaction tank 16 to locally heat the mixed liquid near the steam pipe 17 with the heated steam. This is a heating means for supplying and heating, and heated steam blows out from the lower end. The steam pipe 17 locally agitates the mixed solution with heated steam that locally supplies heat. The steam pipe 17 is provided with a control valve 17 a that adjusts the flow rate of the heated steam blown into the reaction tank 16. The supply pipe 18 supplies a ferric sulfate (Fe 2 (SO 4 ) 3 ) aqueous solution to the reaction tank 16 and mixes it with the leaching solution to prepare a mixed solution. The cooling device 19 includes a blower 19a and a pipe 19b disposed in the vicinity of the bottom of the reaction tank 16, and aeration is performed by blowing air blown from the blower 19a from the pipe 19b into the mixed liquid in the reaction tank 16. To control the cooling temperature of the mixture.

また、反応槽16は、酸化還元電位(ORP:oxidation-reduction potential)を検出する電位検出装置21、pH検出装置22及び温度検出装置23のそれぞれの検出部が槽内に配置され、それぞれの検出部が検出した結果は制御装置24へ出力される。制御装置24は、例えば、マイクロコンピュータ等が使用され、ブロワ19aとモータMを制御し、混合液の温度と攪拌棒2の回転数を制御すると共に、pH検出装置22から入力される反応液のpHをもとに、供給管20から供給される硫酸溶液の供給量を調整し、反応液のpHを制御している。更に、制御装置24は、蒸気配管17に設けた調節弁17aを制御することにより反応槽16内へ吹き込む加熱水蒸気の流量を調節し、混合液の加温温度を制御している。   Further, in the reaction tank 16, detection units of a potential detection device 21, a pH detection device 22, and a temperature detection device 23 that detect an oxidation-reduction potential (ORP) are arranged in the tank, and each detection unit The result detected by the unit is output to the control device 24. For example, a microcomputer or the like is used as the control device 24, controls the blower 19 a and the motor M, controls the temperature of the mixed solution and the rotation speed of the stirring rod 2, and controls the reaction solution input from the pH detection device 22. Based on the pH, the supply amount of the sulfuric acid solution supplied from the supply pipe 20 is adjusted to control the pH of the reaction solution. Further, the control device 24 controls the temperature of the mixed liquid by controlling the flow rate of the heated steam blown into the reaction tank 16 by controlling the control valve 17 a provided in the steam pipe 17.

ここで、反応槽16で沈殿した非晶質の砒酸鉄、砒酸鉄の結晶と混合液とが混合した状態のスラリーは、ポンプ25によってサイクロン26へ圧送される。サイクロン26は、分級によって分離した微粒の砒酸鉄結晶を再び反応槽16に戻し、粗粒の砒酸鉄結晶と混合液とが混合した状態のスラリーをスラリー槽27へ排出する。スラリー槽27へ排出された粗粒の砒酸鉄結晶と混合液とが混合したスラリーは、ポンプ28によってろ過装置29へ圧送される。   Here, the slurry in which the amorphous iron arsenate precipitated in the reaction tank 16, the crystals of iron arsenate and the mixed solution are mixed is pumped to the cyclone 26 by the pump 25. The cyclone 26 returns the fine iron arsenate crystals separated by classification to the reaction tank 16 again, and discharges the slurry in a state where the coarse iron arsenate crystals and the mixed liquid are mixed to the slurry tank 27. The slurry in which the coarse iron arsenate crystals discharged into the slurry tank 27 and the mixed liquid are mixed is pumped to the filtration device 29 by the pump 28.

ろ過装置29は、スラリー槽27から送られてくるスラリーをフィルタープレス等によってろ過し、粗粒の砒酸鉄結晶と混合液とに固液分離し、粗粒の砒酸鉄結晶Crを排出する。このように、サイクロン26によって微粒の砒酸鉄結晶を分離し、粗粒の砒酸鉄結晶Crのみをろ過するので、ろ過装置29は、ろ過に要する時間を短縮することができる。ここで、サイクロン26から反応槽16へ戻す微粒の砒酸鉄結晶が足りない場合には、ろ過装置29から排出された粗粒の砒酸鉄結晶Crを反応槽16へ戻す。   The filtration device 29 filters the slurry sent from the slurry tank 27 with a filter press or the like, separates it into a solid-liquid separation into coarse iron arsenate crystals and a mixed liquid, and discharges coarse iron arsenate crystals Cr. Thus, since the fine iron arsenate crystal is separated by the cyclone 26 and only the coarse iron arsenate crystal Cr is filtered, the filtering device 29 can shorten the time required for the filtration. Here, when there are not enough fine iron arsenate crystals to be returned from the cyclone 26 to the reaction vessel 16, the coarse iron arsenate crystals Cr discharged from the filtration device 29 are returned to the reaction vessel 16.

上述のように、図5に示す砒素除去装置10及び反応槽16は、反応槽16内の混合液に加熱水蒸気によって局所的に熱を供給して加温する。このため、砒素除去装置10及び反応槽16は、エネルギー的な熱効率が良いことから、ヒータ4によって混合液を間接的に加温する場合に比べて短時間での加温が可能となり、局所的な熱の供給によって砒酸鉄の微細な結晶が生成され易く、微細な結晶を種結晶として結晶の成長が促進される。   As described above, the arsenic removing apparatus 10 and the reaction tank 16 shown in FIG. 5 are heated by locally supplying heat to the mixed liquid in the reaction tank 16 with heated steam. For this reason, since the arsenic removal apparatus 10 and the reaction tank 16 have good energy thermal efficiency, it is possible to heat the mixed liquid in a short time compared to the case where the mixed liquid is indirectly heated by the heater 4, and locally. By supplying a sufficient amount of heat, fine crystals of iron arsenate are easily generated, and crystal growth is promoted using the fine crystals as seed crystals.

(実施の形態2)
次に、本発明の砒素含有体からの砒素除去方法として砒素含有体が液体である砒素含有廃水の場合における実施の形態2を、図6に示すフローチャートを参照して説明する。
(Embodiment 2)
Next, as a method for removing arsenic from an arsenic-containing body of the present invention, Embodiment 2 in the case of arsenic-containing wastewater in which the arsenic-containing body is liquid will be described with reference to the flowchart shown in FIG.

本発明の砒素除去方法の処理対象が砒素含有廃水の場合、煙灰の場合のように浸出工程は不要である。このため、まず、砒素含有廃水と硫酸第二鉄水溶液とを混合して混合液を作製する(ステップS20)。この混合工程は、pH1.0〜1.5に調整した砒素含有廃水と鉄イオン(Fe3+)の濃度が80〜120g/Lの硫酸第二鉄水溶液とを、鉄と砒素のモル比が1〜1.5となるように混合し、砒素濃度が0.1g/L以上となる条件で行う。その結果、作製した混合液中には非晶質の砒酸鉄(FeAsO4・2H2O)が生成して沈殿する。 When the treatment target of the arsenic removal method of the present invention is arsenic-containing wastewater, a leaching step is not required as in the case of smoke ash. For this reason, first, an arsenic-containing wastewater and a ferric sulfate aqueous solution are mixed to prepare a mixed solution (step S20). In this mixing step, an arsenic-containing wastewater adjusted to a pH of 1.0 to 1.5 and a ferric sulfate aqueous solution having a concentration of iron ions (Fe 3+ ) of 80 to 120 g / L are mixed with a molar ratio of iron to arsenic. It mixes so that it may become 1-1.5, and it carries out on the conditions from which an arsenic density | concentration becomes 0.1 g / L or more. As a result, amorphous iron arsenate (FeAsO 4 .2H 2 O) is generated and precipitated in the prepared mixed solution.

次に、ステップS20で作製した混合液を80〜95℃に加温するとともに、この混合液に超音波を印加する。その結果、非晶質の砒酸鉄の生成が促進されるとともに、生成して沈殿した非晶質の砒酸鉄の結晶化が促進され、砒酸鉄の結晶が短時間で生成する(ステップS22)。   Next, while heating the liquid mixture produced at step S20 to 80-95 degreeC, an ultrasonic wave is applied to this liquid mixture. As a result, the generation of amorphous iron arsenate is promoted, and the crystallization of the amorphous iron arsenate that has been formed and precipitated is promoted, so that iron arsenate crystals are formed in a short time (step S22).

次に、所定時間だけ結晶化を行った後、混合液をろ過する(ステップS24)。そして、結晶の砒酸鉄を回収することにより、砒素含有廃水に含まれていた砒素が除去される。なお、ステップS22の結晶化促進工程の後に、混合液と沈殿物が混合した状態のスラリーをサイクロン等の分級装置に投入して微粒の砒酸鉄結晶を分離し、分離した微粒の砒酸鉄結晶は再び結晶化促進工程に戻し、ステップS24のろ過工程では粗粒の砒酸鉄結晶だけをろ過すると、ろ過に要する時間を短縮することができる。このようにして結晶の砒酸鉄をろ過した脱砒液は、煙灰の場合と同様にして処理される。   Next, after crystallization is performed for a predetermined time, the mixed solution is filtered (step S24). Then, by recovering the crystalline iron arsenate, arsenic contained in the arsenic-containing wastewater is removed. After the crystallization promoting step of step S22, the slurry in which the mixed solution and the precipitate are mixed is put into a classifier such as a cyclone to separate the fine iron arsenate crystals, and the separated fine iron arsenate crystals are Returning to the crystallization promotion step again, and filtering only the coarse iron arsenate crystals in the filtration step of step S24, the time required for the filtration can be shortened. The dearsenic solution obtained by filtering the crystalline iron arsenate in this way is treated in the same manner as in the case of smoke ash.

次に、砒素含有廃水から砒素を除去する上述の砒素除去方法を適用した砒素除去装置を図7を参照して説明する。図7は、砒素含有廃水から砒素を除去する際に使用する本発明の砒素除去装置の構成図である。   Next, an arsenic removing apparatus to which the above-described arsenic removing method for removing arsenic from arsenic-containing wastewater is described with reference to FIG. FIG. 7 is a configuration diagram of the arsenic removing apparatus of the present invention used when arsenic is removed from arsenic-containing wastewater.

砒素除去装置30は、実施の形態1の砒素除去装置10から浸出槽11及びろ過装置13を外し、ろ液槽14に代えて廃水槽31を設けたもので、図7に示すように、配管によって接続された廃水槽31、反応槽16、スラリー槽27及びろ過装置29を備えている。このため、砒素除去装置10と同一の構成要素には同一の符号を使用している。   The arsenic removing device 30 is obtained by removing the leaching tank 11 and the filtering device 13 from the arsenic removing device 10 of the first embodiment, and providing a waste water tank 31 instead of the filtrate tank 14, and as shown in FIG. The waste water tank 31, the reaction tank 16, the slurry tank 27, and the filtration apparatus 29 connected by these are provided. For this reason, the same reference numerals are used for the same components as the arsenic removing apparatus 10.

廃水槽31は、砒素含有廃水を集めて貯留しておくタンクであり、貯留した砒素含有廃水はポンプ15によって反応層16へ圧送される。反応層16は、廃水槽31から送られてきた砒素含有廃水に硫酸第二鉄水溶液を混合して混合液を作製する。そして、反応層16は、作製した混合液へ蒸気配管17によって加熱水蒸気を吹き込み、混合液を加熱水蒸気によって局所的に加温すると共に、全体の温度を80〜95℃に加温する。この加温とともに、混合液に超音波発生チップ3によって超音波を印加する。   The wastewater tank 31 is a tank that collects and stores arsenic-containing wastewater, and the stored arsenic-containing wastewater is pumped to the reaction layer 16 by the pump 15. The reaction layer 16 mixes an aqueous ferric sulfate solution with the arsenic-containing wastewater sent from the wastewater tank 31 to produce a mixed solution. And the reaction layer 16 blows heated water vapor | steam into the produced liquid mixture with the vapor | steam piping 17, heats a liquid mixture locally with heat water vapor | steam, and heats the whole temperature to 80-95 degreeC. Along with this heating, an ultrasonic wave is applied to the mixed solution by the ultrasonic wave generating chip 3.

これにより、反応槽16内の混合液には、非晶質の砒酸鉄の生成が促進されるとともに、生成して沈殿した非晶質の砒酸鉄の結晶化が促進され、砒酸鉄の結晶が短時間で生成する。従って、実施の形態1と同様に、反応槽16で沈殿した非晶質の砒酸鉄、砒酸鉄の結晶と混合液とが混合した状態のスラリーをサイクロン26へ圧送し、サイクロン26で分離された微粒の砒酸鉄結晶を再び反応槽16に戻し、粗粒の砒酸鉄結晶と混合液とが混合した状態のスラリーをスラリー槽27へ排出する。そして、粗粒の砒酸鉄結晶と混合液とが混合したスラリーを、ポンプ28によってスラリー槽27からろ過装置29へ圧送してろ過し、粗粒の砒酸鉄結晶Crを排出する。   This promotes the formation of amorphous iron arsenate in the mixed solution in the reaction tank 16 and promotes the crystallization of the amorphous iron arsenate formed and precipitated. Generate in a short time. Therefore, as in the first embodiment, the slurry in which the amorphous iron arsenate precipitated in the reaction vessel 16 and the crystals of iron arsenate and the mixed liquid are mixed is pumped to the cyclone 26 and separated by the cyclone 26. The fine iron arsenate crystals are returned to the reaction tank 16 again, and the slurry in a state where the coarse iron arsenate crystals and the mixed liquid are mixed is discharged to the slurry tank 27. Then, the slurry in which the coarse iron arsenate crystals and the mixed liquid are mixed is pumped from the slurry tank 27 to the filtration device 29 by the pump 28 and filtered to discharge the coarse iron arsenate crystals Cr.

このように、実施の形態2に係る砒素含有廃水からの砒素除去方法及び砒素除去装置30によれば、砒素含有廃水と硫酸第二鉄水溶液との混合液を加熱水蒸気によって局所的に加温するとともに混合液に超音波を印加して、非晶質の砒酸鉄の生成と非晶質の砒酸鉄の結晶化の両方を促進するので、砒素含有廃水から安定した砒素を極めて短時間で効率よく回収することができる。   Thus, according to the arsenic removal method and the arsenic removal apparatus 30 from the arsenic-containing wastewater according to Embodiment 2, the mixed solution of the arsenic-containing wastewater and the aqueous ferric sulfate solution is locally heated with heated steam. In addition, ultrasonic waves are applied to the mixed solution to promote both the formation of amorphous iron arsenate and the crystallization of amorphous iron arsenate, so stable arsenic from arsenic-containing wastewater can be efficiently produced in a very short time. It can be recovered.

(実施例および比較例)
本発明の砒素除去方法の実施例として、濃度0.2mol/Lの硫酸溶液を用いて煙灰から砒素を浸出し、ろ過して得た砒素濃度が16.8g/LでpH1.2の浸出液600mLと、鉄イオン濃度118.1g/LでpH1.2の硫酸第二鉄水溶液80mLとを混合して混合液を作製した。この混合液の鉄と砒素のモル比は約1.3であった。次に、この混合液をヒータ4によって加温するとともに混合液に超音波を印加して非晶質の砒酸鉄を結晶化した。加温は、加温開始から1時間経過後に95℃になるように行い、超音波の印加は、加温開始後から1時間経過後に開始した。また、超音波の印加は、(株)日本精機製作所の超音波発生器US−150Tの超音波発生チップを混合液に浸漬して行った。超音波発生器US−150Tは、超音波発生チップから発生する超音波の周波数は20kHzであり、設定電流に応じてチップの振動の振幅が変化し、設定電流値が400μAのときにチップが約30μmの振幅で振動するように設定されたものであるが、本実施例においては、設定電流値を100μAとした。
(Examples and Comparative Examples)
As an example of the arsenic removal method of the present invention, 600 mL of a leachate having a pH of 1.2 and an arsenic concentration of 16.8 g / L obtained by leaching arsenic from smoke ashes using a 0.2 mol / L sulfuric acid solution. Were mixed with 80 mL of ferric sulfate aqueous solution having an iron ion concentration of 118.1 g / L and a pH of 1.2 to prepare a mixed solution. The molar ratio of iron and arsenic in this mixture was about 1.3. Next, this mixed solution was heated by the heater 4 and ultrasonic waves were applied to the mixed solution to crystallize amorphous iron arsenate. Heating was performed so as to reach 95 ° C. after 1 hour from the start of heating, and application of ultrasonic waves was started after 1 hour from the start of heating. The application of ultrasonic waves was performed by immersing an ultrasonic wave generation chip of an ultrasonic generator US-150T manufactured by Nippon Seiki Seisakusho Co., Ltd. in a mixed solution. In the ultrasonic generator US-150T, the frequency of the ultrasonic wave generated from the ultrasonic wave generation chip is 20 kHz, the amplitude of the vibration of the chip changes according to the set current, and the chip is approximately when the set current value is 400 μA. Although set so as to vibrate with an amplitude of 30 μm, in this embodiment, the set current value was set to 100 μA.

一方、比較例として、実施例のものと同様の特性を有する混合液を加温して、非晶質の砒酸鉄を結晶化した。実施例と同様に、加温は開始から1時間経過後に95℃になるように行った。   On the other hand, as a comparative example, an amorphous iron arsenate was crystallized by heating a liquid mixture having the same characteristics as those of the example. As in the example, the heating was performed so that the temperature reached 95 ° C. after 1 hour from the start.

つぎに、上記のように処理を行った混合液中の砒素濃度の経時的な変化を測定した。図8は、実施例および比較例について、反応時間と混合液中の砒素濃度との関係を測定した結果を示す図である。なお、ここで反応時間とは、混合液への加温を開始した時点からの経過時間を意味する。また、図中の矢印は、実施例において超音波を印加した時点を示す。図8に示す結果から明らかなように、実施例においては反応時間が2時間を経過すると砒素濃度が急激に減少し、反応時間が4時間で約2g/Lとほぼ一定の値となった。一方、比較例においては、砒素濃度が約2g/Lに減少するまでに12時間かかった。   Next, the change with time of the arsenic concentration in the mixed solution treated as described above was measured. FIG. 8 is a graph showing the results of measuring the relationship between the reaction time and the arsenic concentration in the mixed solution for Examples and Comparative Examples. In addition, reaction time means the elapsed time from the time of starting the heating to a liquid mixture here. Moreover, the arrow in a figure shows the time of applying an ultrasonic wave in an Example. As is clear from the results shown in FIG. 8, in the examples, the arsenic concentration decreased rapidly after 2 hours of reaction time, and the reaction time reached approximately 2 g / L in 4 hours. On the other hand, in the comparative example, it took 12 hours for the arsenic concentration to decrease to about 2 g / L.

この結果は、実施例においては、混合液を加温するとともにこれに超音波を印加することによって非晶質の砒酸鉄の生成や結晶化を促進する結果、砒素を含む沈殿物の生成が促進されるので、混合液中の砒素濃度が比較例の場合よりも短時間で減少することを示す。   This result shows that, in the embodiment, the mixture is heated and ultrasonic waves are applied thereto to promote the formation and crystallization of amorphous iron arsenate, thereby promoting the formation of precipitates containing arsenic. Therefore, it is shown that the arsenic concentration in the mixed solution decreases in a shorter time than in the comparative example.

次に、各反応時間において混合液中に生成している沈殿物を取り出してHCl溶液に投入し、投入した沈殿物の溶解率を測定することにより、沈殿物中の結晶化した砒酸鉄の割合を調べた。なお、HCl溶液の濃度は0.6規定(0.6mol/L)、沈殿物とHCl溶液の重量比は5:1000、反応温度は25℃、反応時間は15分とした。   Next, the precipitate formed in the mixed solution at each reaction time is taken out and put into an HCl solution, and the ratio of crystallized iron arsenate in the precipitate is measured by measuring the dissolution rate of the added precipitate. I investigated. The concentration of the HCl solution was 0.6 N (0.6 mol / L), the weight ratio of the precipitate to the HCl solution was 5: 1000, the reaction temperature was 25 ° C., and the reaction time was 15 minutes.

図9は、実施例および比較例について、反応時間と沈殿物の溶解率との関係を測定した結果を示す図である。なお、図中の矢印は、実施例において超音波を印加した時点を示す。図9に示す結果から明らかなように、実施例においては反応時間が2時間を経過すると溶解率が急激に減少し、反応時間が4時間でほぼ0%の値となった。一方、比較例においては、溶解率がほぼ0%に減少するまでに12時間かかった。   FIG. 9 is a diagram showing the results of measuring the relationship between the reaction time and the dissolution rate of precipitates for Examples and Comparative Examples. In addition, the arrow in a figure shows the time of applying an ultrasonic wave in an Example. As is apparent from the results shown in FIG. 9, in the examples, when the reaction time passed 2 hours, the dissolution rate decreased rapidly, and the reaction time was almost 0% after 4 hours. On the other hand, in the comparative example, it took 12 hours for the dissolution rate to decrease to almost 0%.

非晶質の砒酸鉄はHCl溶液に溶解し、結晶の砒酸鉄はHCl溶液にはほとんど溶解しない。そして、沈殿物は非晶質または結晶の砒酸鉄であると考えられるので、沈殿物の溶解率は沈殿物中の非晶質の砒酸鉄の割合であると考えることができる。したがって、図9に示す結果は、実施例においては、混合液を加温するとともにこれに超音波を印加することによって、沈殿物中の非晶質の砒酸鉄の結晶化が比較例の場合よりも一層促進されることを示す。   Amorphous iron arsenate dissolves in HCl solution, and crystalline iron arsenate hardly dissolves in HCl solution. Since the precipitate is considered to be amorphous or crystalline iron arsenate, the dissolution rate of the precipitate can be considered to be the ratio of amorphous iron arsenate in the precipitate. Therefore, the results shown in FIG. 9 indicate that, in the example, the crystallization of amorphous iron arsenate in the precipitate is more than in the comparative example by heating the mixed liquid and applying ultrasonic waves thereto. Will be further promoted.

つぎに、実施例および比較例について、各反応時間において混合液中に生じている沈殿物を取り出して、X線結晶回折装置により回折角と回折強度との関係を測定した。図10は、実施例について、反応時間が1〜5時間における沈殿物の回折角と回折強度との関係を測定した結果を示す図である。図10に示すように、反応時間が1時間の場合には、沈殿物が非晶質の砒酸鉄からなることを示すように、回折強度の分布が緩やかで、結晶に起因したピークが見られないが、反応時間が3時間を経過すると、回折角が15〜30度の範囲に回折強度が突出し、結晶の砒酸鉄の存在を示すピークが発生し始める。そして、反応時間が4時間以上経過すると、回折角を測定した全範囲に亘って回折強度が突出し、特に回折角が15〜30度の範囲においては、結晶の砒酸鉄の存在を示す急峻なピークが出現する。   Next, for Examples and Comparative Examples, precipitates generated in the mixed solution at each reaction time were taken out, and the relationship between the diffraction angle and the diffraction intensity was measured with an X-ray crystal diffractometer. FIG. 10: is a figure which shows the result of having measured the relationship between the diffraction angle of a precipitate and diffraction intensity in reaction time 1-5 hours about an Example. As shown in FIG. 10, when the reaction time is 1 hour, the distribution of diffraction intensity is gentle and peaks due to crystals are seen, indicating that the precipitate consists of amorphous iron arsenate. However, when the reaction time passes 3 hours, the diffraction intensity protrudes in the range of 15 to 30 degrees, and a peak indicating the presence of crystalline iron arsenate begins to occur. And when reaction time passes for 4 hours or more, diffraction intensity protrudes over the whole range which measured the diffraction angle, and especially in the range of 15-30 degree of diffraction angles, the steep peak which shows presence of crystalline iron arsenate is shown. Appears.

一方、図11は、比較例について、反応時間が1〜6および9時間における沈殿物の回折角と回折強度との関係を測定した結果を示す図である。図11に示すように、比較例においては、反応時間が5時間を経過してから結晶の砒酸鉄の存在を示すピークが発生し始めた。そして、結晶の砒酸鉄の存在を示す急峻なピークが出現するまでには、反応時間が9時間以上かかった。   On the other hand, FIG. 11 is a figure which shows the result of having measured the relationship between the diffraction angle of the precipitate and diffraction intensity in reaction time 1-6 and 9 hours about a comparative example. As shown in FIG. 11, in the comparative example, a peak indicating the presence of crystalline iron arsenate began to appear after the reaction time of 5 hours passed. Then, it took 9 hours or more for a steep peak indicating the presence of crystalline iron arsenate to appear.

以上の結果から、図9に示す溶解率と図10および7に示す回折強度のピークの高さとは相関があり、沈殿物の溶解率が低いほど沈殿物中の砒酸鉄の結晶の割合が高くなっており、回折強度のピークも急峻になるということが確認された。そして、実施例においては、混合液を加温するとともにこれに超音波を印加することによって、沈殿物中の非晶質の砒酸鉄の結晶化が比較例の場合よりも一層促進されることが確認された。   From the above results, there is a correlation between the dissolution rate shown in FIG. 9 and the peak heights of the diffraction intensities shown in FIGS. 10 and 7, and the lower the dissolution rate of the precipitate, the higher the ratio of iron arsenate crystals in the precipitate. It was confirmed that the peak of diffraction intensity was also steep. In the examples, the crystallization of amorphous iron arsenate in the precipitate is further promoted than in the comparative example by heating the mixed liquid and applying ultrasonic waves thereto. confirmed.

なお、実施の形態1,2の砒素除去装置10,30は、反応槽16に設けた蒸気配管17によって約686.7kPa,約164℃の加熱水蒸気を混合液に吹き込んだ。しかし、砒素除去装置10,30は、反応槽16内の混合液を80〜95℃に加温することができれば、吹き込む加熱水蒸気の圧力や温度は、反応槽16の容量や混合液の量によって変わるので、上記の値に限定されるものではない。また、砒素除去装置10,30は、非晶質の砒酸鉄の生成を促進するとともに、生成して沈殿した非晶質の砒酸鉄の結晶化を促進させることができれば、混合液をヒータによって加温してもよい。   In the arsenic removing apparatuses 10 and 30 of the first and second embodiments, heated steam of about 686.7 kPa and about 164 ° C. was blown into the mixed solution through the steam pipe 17 provided in the reaction tank 16. However, if the arsenic removing apparatuses 10 and 30 can heat the mixed liquid in the reaction tank 16 to 80 to 95 ° C., the pressure and temperature of the heated steam to be blown in depend on the capacity of the reaction tank 16 and the amount of the mixed liquid. Since it changes, it is not limited to said value. Further, the arsenic removing devices 10 and 30 promote the generation of amorphous iron arsenate and, if the crystallization of amorphous iron arsenate generated and precipitated can be promoted, the mixed solution is added by a heater. May be warm.

また、実施の形態1,2の反応槽16は、内壁表面を被覆する耐食性の素材としてフッ素樹脂からなる耐食性シートを使用したが、処理対象の砒素含有体がフッ素を含んでいない場合には、FRP等の樹脂シートを使用してもよい。   Moreover, the reaction tank 16 of Embodiments 1 and 2 used a corrosion-resistant sheet made of a fluororesin as a corrosion-resistant material covering the inner wall surface, but when the arsenic-containing body to be treated does not contain fluorine, A resin sheet such as FRP may be used.

また、反応槽16は、混合液に加熱水蒸気によって局所的に熱を供給して加温する蒸気配管17を複数設けてもよい。   In addition, the reaction tank 16 may be provided with a plurality of steam pipes 17 for locally heating the mixed liquid with heated steam to heat it.

本発明にかかる砒素含有体からの砒素除去方法は、砒素の除去に有用であり、特に、製錬所等において排出される砒素含有体から安定した砒素を短時間で効率的に除去するのに適している。   The method for removing arsenic from an arsenic-containing body according to the present invention is useful for removing arsenic, and particularly for efficiently removing stable arsenic from an arsenic-containing body discharged in a smelter or the like in a short time. Is suitable.

本発明に係る煙灰からの砒素除去方法の実施の形態を示すフローチャートである。It is a flowchart which shows embodiment of the arsenic removal method from the smoke ash which concerns on this invention. 混合液中に生成する非晶質の砒酸鉄の沈殿を模式的に示す図である。It is a figure which shows typically precipitation of the amorphous iron arsenate produced | generated in a liquid mixture. 混合液中に生成する結晶の砒酸鉄の沈殿を模式的に示す図である。It is a figure which shows typically precipitation of the iron arsenate of the crystal | crystallization produced | generated in a liquid mixture. ヒータに代えて蒸気配管から吹き出す加熱水蒸気によって混合液を加温する図2の変形例を示す図である。It is a figure which shows the modification of FIG. 2 which heats a liquid mixture with the heating water vapor which blows off from steam piping instead of a heater. 煙灰から砒素を除去する際に使用する本発明の砒素除去装置の構成図である。It is a block diagram of the arsenic removal apparatus of this invention used when removing arsenic from smoke ash. 本発明に係る砒素含有廃水からの砒素除去方法の実施の形態を示すフローチャートである。It is a flowchart which shows embodiment of the arsenic removal method from the arsenic containing wastewater based on this invention. 砒素含有廃水から砒素を除去する際に使用する本発明の砒素除去装置の構成図である。It is a block diagram of the arsenic removal apparatus of this invention used when removing arsenic from an arsenic containing wastewater. 実施例および比較例について、反応時間と混合液中の砒素濃度との関係を測定した結果を示す図である。It is a figure which shows the result of having measured the relationship between reaction time and the arsenic density | concentration in a liquid mixture about an Example and a comparative example. 実施例および比較例について、反応時間と沈殿物の溶解率との関係を測定した結果を示す図である。It is a figure which shows the result of having measured the relationship between reaction time and the dissolution rate of a precipitate about an Example and a comparative example. 実施例について、反応時間が1〜5時間における沈殿物の回折角と回折強度との関係を測定した結果を示す図である。It is a figure which shows the result of having measured the relationship between the diffraction angle of a precipitate and diffraction intensity in reaction time 1-5 hours about the Example. 比較例について、反応時間が1〜6および9時間における沈殿物の回折角と回折強度との関係を測定した結果を示す図である。It is a figure which shows the result of having measured the relationship between the diffraction angle of a precipitate and diffraction intensity in reaction time 1-6 and 9 hours about a comparative example.

符号の説明Explanation of symbols

1 容器
2 攪拌棒
3 超音波発生チップ
4 ヒータ
5 蒸気配管
10 砒素除去装置
11 浸出槽
12,15,25,28 ポンプ
13,29 ろ過装置
14 ろ液槽
16 反応槽
17 蒸気配管
18 供給管
19 冷却装置
21 電位検出装置
22 pH検出装置
23 温度検出装置
24 制御装置
26 サイクロン
27 スラリー槽
Am 非晶質の砒酸鉄
Cr 結晶の砒酸鉄
Lm 混合液
DESCRIPTION OF SYMBOLS 1 Container 2 Stirring bar 3 Ultrasonic wave generation chip 4 Heater 5 Steam piping 10 Arsenic removal apparatus 11 Leaching tank 12, 15, 25, 28 Pump 13,29 Filtration apparatus 14 Filtration tank 16 Reaction tank 17 Steam piping 18 Supply pipe 19 Cooling Device 21 Potential detection device 22 pH detection device 23 Temperature detection device 24 Control device 26 Cyclone 27 Slurry tank Am Amorphous iron arsenate Cr Crystallized iron arsenate Lm Mixed solution

Claims (16)

砒素を含有する液体から砒素を除去する砒素除去方法であって、
記液体と鉄イオンを含む酸性水溶液とを混合する混合工程と、
前記混合した混合液を加温するとともに該混合液に超音波を印加して、非晶質の砒酸鉄の生成と該非晶質の砒酸鉄の結晶化とを促進する結晶化促進工程と、
前記混合液をろ過して前記結晶化した砒酸鉄を除去するろ過工程と、
を含むことを特徴とする砒素含有体からの砒素除去方法。
A arsenic removal method for removing liquids or we arsenic containing arsenic,
A mixing step of mixing an acidic aqueous solution containing a pre-SL solution body and iron ions,
A crystallization promoting step of heating the mixed liquid and applying ultrasonic waves to the liquid mixture to promote formation of amorphous iron arsenate and crystallization of the amorphous iron arsenate;
Filtering the mixture to remove the crystallized iron arsenate;
A method for removing arsenic from an arsenic-containing material, comprising:
固体からなる砒素含有体から砒素を除去する場合、
酸溶液により前記砒素含有体から砒素を浸出する浸出工程と、
砒素を浸出した浸出液をろ過するろ過工程と、
を含むことを特徴とする請求項1に記載の砒素含有体からの砒素除去方法。
When removing arsenic from a solid arsenic containing body,
A leaching step of leaching arsenic from the arsenic-containing body with an acid solution;
A filtration step of filtering the leachate leached from arsenic;
The method for removing arsenic from an arsenic-containing body according to claim 1, comprising:
前記結晶化促進工程は、前記混合液をヒータによって加温することを特徴とする請求項1又は2に記載の砒素含有体からの砒素除去方法。   The method for removing arsenic from an arsenic-containing body according to claim 1 or 2, wherein in the crystallization promoting step, the mixed solution is heated by a heater. 前記結晶化促進工程は、前記混合液に加熱水蒸気によって局所的に熱を供給して加温することを特徴とする請求項1又は2に記載の砒素含有体からの砒素除去方法。   3. The method for removing arsenic from an arsenic-containing body according to claim 1, wherein in the crystallization promoting step, the mixed solution is heated by locally supplying heat with heated steam. 前記混合工程は鉄と砒素のモル比が1〜1.5、砒素濃度が0.1g/L以上の条件で行い、前記結晶化促進工程は80〜95℃に加温した状態を保持することを特徴とする請求項1または2に記載の砒素含有体からの砒素除去方法。   The mixing step is performed under the conditions that the molar ratio of iron to arsenic is 1 to 1.5 and the arsenic concentration is 0.1 g / L or more, and the crystallization promoting step is maintained at a temperature of 80 to 95 ° C. The method for removing arsenic from an arsenic-containing body according to claim 1, wherein: 前記酸溶液は硫酸であり、前記鉄イオンを含む酸性水溶液は硫酸第二鉄の水溶液であることを特徴とする請求項1〜5のいずれか一つに記載の砒素含有体からの砒素除去方法。   The method for removing arsenic from an arsenic-containing body according to any one of claims 1 to 5, wherein the acid solution is sulfuric acid, and the acidic aqueous solution containing iron ions is an aqueous solution of ferric sulfate. . 砒素を含有する液体から砒素を除去する砒素除去装置であって、
前記液体と鉄イオンを含む酸性水溶液とを混合する混合手段と、
混合された混合液を加温する加温手段と、
前記混合液に超音波を印加して、非晶質の砒酸鉄の生成と該非晶質の砒酸鉄の結晶化とを促進する超音波印加手段と、
加温されると共に、超音波が印加された前記混合液をろ過して前記結晶化した砒酸鉄を除去する結晶ろ過装置と、
を備えたことを特徴とする砒素除去装置。
A arsenic removal apparatus for removing liquids or we arsenic containing arsenic,
Mixing means for mixing the liquid and an acidic aqueous solution containing iron ions ;
Heating means for heating the mixed liquid mixture;
An ultrasonic wave application means for applying ultrasonic waves to the mixed solution to promote generation of amorphous iron arsenate and crystallization of the amorphous iron arsenate;
A crystal filtration device for removing the crystallized iron arsenate by filtering the mixed solution to which ultrasonic waves are applied while being heated;
An arsenic removing apparatus comprising:
酸溶液により固体からなる砒素含有体から砒素を浸出する浸出槽と、
砒素を浸出した浸出液をろ過する浸出液ろ過装置と、を備え、
前記砒素を含有する液体は、前記浸出液ろ過装置でろ過された浸出液であることを特徴とする請求項7に記載の砒素除去装置。
A leaching tank for leaching arsenic from a solid arsenic containing body with an acid solution ;
A leachate filtration device that filters the leachate leached from arsenic,
The arsenic removing apparatus according to claim 7 , wherein the liquid containing arsenic is a leachate filtered by the leachate filtration apparatus.
前記混合手段は、前記混合液を全体的に攪拌する攪拌羽根を有する攪拌棒であることを特徴とする請求項7又は8に記載の砒素除去装置。The arsenic removing apparatus according to claim 7 or 8, wherein the mixing means is a stirring rod having a stirring blade for stirring the mixed solution as a whole. 前記加温手段は、加熱水蒸気によって局所的に熱を供給して前記混合液を加温することを特徴とする請求項9に記載の砒素除去装置。The arsenic removing apparatus according to claim 9, wherein the heating means heats the mixed solution by locally supplying heat with heated steam. 前記加温手段は、蒸気配管であり、前記混合液の液中に配置した一端の開口から加熱水蒸気を吹き出すことを特徴とする請求項10に記載の砒素除去装置。The arsenic removing apparatus according to claim 10, wherein the heating means is a steam pipe, and heated steam is blown out from an opening at one end disposed in the liquid mixture. 前記攪拌棒を回転駆動するモータと、
前記インバータを制御することにより前記モータの回転数を制御する制御手段と、
を備えることを特徴とする請求項11に記載の砒素除去装置。
A motor for rotationally driving the stirring rod;
Control means for controlling the number of revolutions of the motor by controlling the inverter ;
Arsenic removal equipment according to claim 11, characterized in that it comprises a.
加温されると共に、超音波が印加された前記混合液のpHを検出するpH検出手段を備え、PH detecting means for detecting the pH of the mixed solution to which the ultrasonic wave is applied while being heated,
前記制御手段は、前記pH検出手段が検出したpHをもとに前記混合液のpHを制御することを特徴とする請求項11又は12に記載の砒素除去装置。The arsenic removing apparatus according to claim 11 or 12, wherein the control means controls the pH of the mixed solution based on the pH detected by the pH detection means.
加温されると共に、超音波が印加された前記混合液の温度を検出する温度検出手段を備え、A temperature detecting means for detecting the temperature of the mixed liquid to which the ultrasonic wave is applied while being heated;
前記制御手段は、前記温度検出手段が検出した温度をもとに前記混合液の温度を80〜95℃に制御することを特徴とする請求項12又は13に記載の砒素除去装置。The arsenic removing apparatus according to claim 12 or 13, wherein the control means controls the temperature of the mixed solution to 80 to 95 ° C based on the temperature detected by the temperature detection means.
内壁の表面が耐食性の素材によって被覆されていることを特徴とする請求項14に記載の砒素除去装置。The arsenic removing apparatus according to claim 14, wherein the surface of the inner wall is covered with a corrosion-resistant material. 前記耐食性の素材は、フッ素樹脂であることを特徴とする請求項15に記載の砒素除去装置。The arsenic removing apparatus according to claim 15, wherein the corrosion-resistant material is a fluororesin.
JP2006271838A 2006-03-02 2006-10-03 Arsenic removing method and arsenic removing apparatus from arsenic containing body Active JP4597107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271838A JP4597107B2 (en) 2006-03-02 2006-10-03 Arsenic removing method and arsenic removing apparatus from arsenic containing body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006056105 2006-03-02
JP2006271838A JP4597107B2 (en) 2006-03-02 2006-10-03 Arsenic removing method and arsenic removing apparatus from arsenic containing body

Publications (2)

Publication Number Publication Date
JP2007260660A JP2007260660A (en) 2007-10-11
JP4597107B2 true JP4597107B2 (en) 2010-12-15

Family

ID=38634175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271838A Active JP4597107B2 (en) 2006-03-02 2006-10-03 Arsenic removing method and arsenic removing apparatus from arsenic containing body

Country Status (1)

Country Link
JP (1) JP4597107B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538481B2 (en) * 2007-09-25 2010-09-08 日鉱金属株式会社 Method for producing scorodite and method for recycling liquid after synthesis of scorodite
JP5059081B2 (en) * 2009-10-26 2012-10-24 Jx日鉱日石金属株式会社 Method for producing scorodite and method for recycling liquid after synthesis of scorodite
JP2014035333A (en) * 2012-08-10 2014-02-24 Shimizu Corp Decontamination treatment method for burned ash
CN107261546A (en) * 2017-05-19 2017-10-20 贵州大学 Multifunctional continuous leaching device with heating and aeration performance
CN115490293A (en) * 2021-06-18 2022-12-20 昆明理工大学 Ultrasonic reinforced arsenic removal method
KR102508684B1 (en) * 2021-10-27 2023-03-10 에스케이하이닉스 주식회사 Salt removal device using ultrasonic electrode coagulation and gas scrubber system using the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167569A (en) * 1998-12-07 2000-06-20 Mesco Inc Method and equipment for treating copper-containing acidic waste water
JP2000219920A (en) * 1999-01-29 2000-08-08 Dowa Mining Co Ltd Method for removing and fixing aresenic from solution containing arsenic
JP2000342902A (en) * 1999-06-07 2000-12-12 Ube Gosei Kogyo Kk Method for producing deliquescent inorganic salt crystal delayed in deliquescence and reaction apparatus therefor
JP2001347264A (en) * 2000-06-07 2001-12-18 Shimadzu Corp Water treatment equipment and water treatment method
JP2003135903A (en) * 2001-07-30 2003-05-13 Basf Ag Method for adjusting and crystallizing small particle
JP2003320366A (en) * 2002-05-02 2003-11-11 Nippon Steel Corp Method for cleaning contaminated soil
JP2004033951A (en) * 2002-07-04 2004-02-05 Mitsubishi Chemicals Corp Crystallization method and crystallizer
JP2004089954A (en) * 2002-09-03 2004-03-25 Ki System:Kk Method for removing arsenic and the like from mud or soil contaminated therewith
JP2005052723A (en) * 2003-08-01 2005-03-03 Ataka Construction & Engineering Co Ltd Heavy metal removal method, and apparatus therefor
JP2005161123A (en) * 2003-11-28 2005-06-23 Mitsui Mining & Smelting Co Ltd Method for removing arsenic from soot
JP2005525216A (en) * 2002-01-22 2005-08-25 グラクソ グループ リミテッド Apparatus and method for preparing crystalline particles
JP2005257368A (en) * 2004-03-10 2005-09-22 Inax Corp Distance detector
JP2006519780A (en) * 2003-02-21 2006-08-31 ザ ユニヴァーシティ オブ バース Particle manufacturing process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110239A (en) * 1976-03-12 1977-09-16 Hitachi Seiko Kk Method of treating liquids for electrolytic processing
JPS55137083A (en) * 1979-04-11 1980-10-25 Nippon Kagaku Hakko Kk Method for electrolytic separation of silica and harmful element from underground water
JPS57201577A (en) * 1981-06-03 1982-12-10 Sumitomo Metal Mining Co Ltd Treatment of smelter smoke ash containing copper
JPS59120290A (en) * 1982-12-27 1984-07-11 Daido Chem Eng Kk Regeneration of sulfuric acid plating liquid waste
JPH0497908A (en) * 1990-08-10 1992-03-30 Lion Corp Production of zeolite
JP3492067B2 (en) * 1995-12-28 2004-02-03 富士化水工業株式会社 Recycling treatment of etching waste liquid
JPH10137757A (en) * 1996-11-11 1998-05-26 Shinko Pantec Co Ltd Water treatment and device therefor
JP4126415B2 (en) * 1998-03-31 2008-07-30 Dowaホールディングス株式会社 Method for removing and fixing arsenic present in iron sulfate solution

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167569A (en) * 1998-12-07 2000-06-20 Mesco Inc Method and equipment for treating copper-containing acidic waste water
JP2000219920A (en) * 1999-01-29 2000-08-08 Dowa Mining Co Ltd Method for removing and fixing aresenic from solution containing arsenic
JP2000342902A (en) * 1999-06-07 2000-12-12 Ube Gosei Kogyo Kk Method for producing deliquescent inorganic salt crystal delayed in deliquescence and reaction apparatus therefor
JP2001347264A (en) * 2000-06-07 2001-12-18 Shimadzu Corp Water treatment equipment and water treatment method
JP2003135903A (en) * 2001-07-30 2003-05-13 Basf Ag Method for adjusting and crystallizing small particle
JP2005525216A (en) * 2002-01-22 2005-08-25 グラクソ グループ リミテッド Apparatus and method for preparing crystalline particles
JP2003320366A (en) * 2002-05-02 2003-11-11 Nippon Steel Corp Method for cleaning contaminated soil
JP2004033951A (en) * 2002-07-04 2004-02-05 Mitsubishi Chemicals Corp Crystallization method and crystallizer
JP2004089954A (en) * 2002-09-03 2004-03-25 Ki System:Kk Method for removing arsenic and the like from mud or soil contaminated therewith
JP2006519780A (en) * 2003-02-21 2006-08-31 ザ ユニヴァーシティ オブ バース Particle manufacturing process
JP2005052723A (en) * 2003-08-01 2005-03-03 Ataka Construction & Engineering Co Ltd Heavy metal removal method, and apparatus therefor
JP2005161123A (en) * 2003-11-28 2005-06-23 Mitsui Mining & Smelting Co Ltd Method for removing arsenic from soot
JP2005257368A (en) * 2004-03-10 2005-09-22 Inax Corp Distance detector

Also Published As

Publication number Publication date
JP2007260660A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4597107B2 (en) Arsenic removing method and arsenic removing apparatus from arsenic containing body
WO2007046325A1 (en) Method and equipment for the disposal of chlorine-containing waste
JP4216626B2 (en) Method for recovering nickel sulfate from nickel-containing waste liquid sludge
JP2004202488A (en) Method for treating metal mine drainage and method for collecting valuable metal
CN103402909B (en) Make UO3And/or U3O8It is converted into hydration UO4Method
JPH09503693A (en) Treatment method of water treatment sludge
JP4518893B2 (en) Wastewater treatment method and apparatus containing heavy metal
WO2010065031A1 (en) Configurations and methods of treatment of silicate-containing waste streams
JP2004148289A (en) Fluorine or phosphorus-containing water treatment equipment
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP6731261B2 (en) Heavy metal-containing water treatment device and treatment method
JP7084704B2 (en) Silica-containing water treatment equipment and treatment method
JP4786332B2 (en) Sludge treatment apparatus, organic wastewater treatment apparatus, phosphorus production method and sludge production method
JP5289082B2 (en) Waste liquid treatment method
JP4158642B2 (en) Molten fly ash treatment equipment for ash melting furnace
JPH11104450A (en) Treatment of desulfurization waste water
JP3684477B2 (en) Treatment method for petroleum combustion ash
JP4457027B2 (en) Disposal water treatment method
WO2001007370A1 (en) Removal of sulphates from a feedstock
JP2002126787A (en) Scale preventing method and scale inhibitor
JPS6046930A (en) Improved method for treating heavy oil ash
WO2002074698A1 (en) Removal of sulphates from a feedstock
JP4524796B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPS59121123A (en) Reclamation of solution of ferric chloride
JP2005200231A (en) Method for producing ammonium metavanadate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

R150 Certificate of patent or registration of utility model

Ref document number: 4597107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250