JP3747313B2 - 系統連系インバータ装置 - Google Patents

系統連系インバータ装置 Download PDF

Info

Publication number
JP3747313B2
JP3747313B2 JP2000127002A JP2000127002A JP3747313B2 JP 3747313 B2 JP3747313 B2 JP 3747313B2 JP 2000127002 A JP2000127002 A JP 2000127002A JP 2000127002 A JP2000127002 A JP 2000127002A JP 3747313 B2 JP3747313 B2 JP 3747313B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
output
orthogonal transform
supply group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000127002A
Other languages
English (en)
Other versions
JP2001309560A (ja
Inventor
政樹 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000127002A priority Critical patent/JP3747313B2/ja
Publication of JP2001309560A publication Critical patent/JP2001309560A/ja
Application granted granted Critical
Publication of JP3747313B2 publication Critical patent/JP3747313B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は複数の直流電力供給源から得られる直流電力を交流電力に変換して商用配電線系統との連系運転を行う系統連系インバータ装置に関するものである。
【0002】
【従来の技術】
従来の系統連系インバータ装置を適用したシステムとして、ここでは太陽電池発電システムを例に挙げて説明を行う。太陽電池発電システムにおいては、太陽電池によって発生する直流電力を50Hzまたは60Hzの交流電力に変換し、この交流電力を商用交流電力で運転される電気機器に供給するようにしている。
【0003】
例えば、個人の住宅等に設置される太陽電池発電システムでは、その建物の屋根上に複数個の太陽電池モジュールが配列されており、これらの太陽電池モジュールが太陽光を受けて発電する直流電力は商用周波数(50Hzまたは60Hz)と同じ周波数の交流電力に変換される。
【0004】
ここで、各太陽電池モジュールは系統連系インバータ装置によって商用配電線系統に連系されており、系統連系インバータ装置から送出される交流電力は商用配電線を通して電気機器に供給される。また、太陽電池モジュールからの発電電力が少ないときには商用配電線系統から不足分の商用電力を補うことによって、電気機器を安定に運転できるようにしている。
【0005】
ところで、太陽電池発電システムを設置する場合には、複数枚の太陽電池モジュールを直列に接続して太陽電池ストリングを形成し、さらに複数の太陽電池ストリングを並列に接続することで全体を太陽電池アレイとして使用するのが一般的である。
【0006】
しかしながら、住宅の屋根上に太陽電池発電システムを設置する場合、屋根の上面形状が必ずしも太陽電池モジュールの標準寸法(一般的には長方形)の組み合わせによって得られる形であるとは限らない。このような場合、前記太陽電池ストリングを構成する太陽電池モジュールの直列数が各々の太陽電池ストリング毎にばらついてしまうことがある。
【0007】
図4は太陽電池モジュールの直列数が互いに異なる太陽電池ストリングによって得られる出力電圧値−出力電力値の関係を示すグラフである。本図の横軸は出力電圧値を示しており、縦軸は出力電力値を示している。ここで、図中の曲線A、Bはそれぞれ太陽電池ストリングA、Bによって得られる出力電圧値−出力電力値の関係を示している。また、曲線A+Bは太陽電池ストリングA、Bを並列接続することで構成した太陽電池アレイの出力電圧値−出力電力値の関係を示している。
【0008】
通常、太陽電池発電システムに設けられた系統連系インバータ装置は、前記太陽電池アレイがその時々の日射量に応じた最大電力値Pmax(A+B)を出力できるように、前記太陽電池アレイの出力電圧値を図中のV(A+B)に制御する機能を有している。
【0009】
ここで、太陽電池ストリングA、Bを構成する太陽電池モジュールの直列数が同一であり、太陽電池ストリングAが最大電力値Pmax(A)を出力するための出力電圧値V(A)と、太陽電池ストリングBが最大電力値Pmax(B)を出力するための出力電圧値V(B)とが同一である場合には、Pmax(A+B)=Pmax(A)+Pmax(B)となるため、太陽電池ストリングA、Bの発電能力はそれぞれ最大限に引き出されることになる。
【0010】
しかしながら、太陽電池ストリングA、Bを構成する太陽電池モジュールの直列数が異なる場合には、図4からも明らかなように出力電圧値V(A)と出力電圧値V(B)とは互いに異なる値となる。よって、Pmax(A+B)<Pmax(A)+Pmax(B)となるため、太陽電池ストリングA、Bの発電能力を最大限に引き出すことができない。
【0011】
上記課題を解決する従来技術が特開昭59−144327、特開平8−46231、もしくは特開平8−70533等にて提案されている。図5は従来の太陽電池発電システムの一構成例を示すブロック図である。
【0012】
図中に示すように、従来の太陽電池発電システムにおいては、複数の太陽電池ストリング101〜103(以下、ストリング101〜103と呼ぶ)が系統連系インバータ装置100によって商用配電線系統に連系されている。なお、各ストリング101〜103を構成する太陽電池モジュールの直列数は互いに異なっており、ストリング101〜103を最大電力で運転し得る出力電圧値も互いに異なっている。
【0013】
ここで、従来の系統連系インバータ装置100は各ストリング101〜103とインバータ回路300との間にそれぞれ電圧調整回路200を有している。この電圧調整回路200は各ストリングから得られる出力電圧値がそのストリングを最大電力で運転させる電圧値となるように制御し、かつインバータ回路300に送出される直流電圧値がインバータ回路300への入力電圧値として予め設定された所定電圧値となるように制御する回路である。
【0014】
一方、インバータ回路300は電圧調整回路200から送出された直流電力を直流電力を商用周波数(50Hzまたは60Hz)と同じ周波数の交流電力に変換し、その交流電力を商用の配電線系統に送出する回路である。
【0015】
図6は電圧調整回路200の一構成例を示す回路図である。各ストリング側からの直流出力成分はリアクトル201を介してスイッチング素子202に入力される。ここで、スイッチング素子202がオンの場合にはストリング側から得たエネルギーがリアクトル201に一旦蓄えられることになる。
【0016】
逆に、スイッチング素子202がオフの場合にはリアクトル201によって蓄えられたエネルギーがダイオード203を介してコンデンサ204に蓄えられ、その端子間電圧が直流電圧としてインバータ回路側に出力されることになる。このように、スイッチング素子202のオン/オフ制御(デューティ制御)を行うことにより、インバータ回路300側に送出される直流電圧の電圧値Voutを調整することができる。
【0017】
ここで、ストリング側から得られる直流電圧値Vin及び直流電流値Iinは、それぞれ電圧調整回路200の入力段に設けられた電圧検出器207及び電流検出器208によって検出され、最大電力追従回路205に入力される。この最大電力追従回路205は検出された直流電圧値Vin及び直流電流値Iinに基づいて、そのストリングを最大電力で運転し得る出力電圧設定値Vcを求める回路であり、ここで求められた出力電圧設定値Vcは制御回路206に送出される。
【0018】
一方、電圧調整回路200にはコンデンサ204の端子間電圧値Voutを検出するための電圧検出器209が設けられており、ここで得られた直流電圧値Voutも制御回路206に送出される。
【0019】
制御回路206は最大電力追従回路205で求めた出力電圧設定値Vcと、インバータ回路300への入力電圧値として予め設定された所定電圧値VIとの比(VI/Vc)が電圧調整回路200の昇圧比となるように、スイッチング素子202のデューティ制御を行う。
【0020】
このようにして、電圧調整回路200はストリング側から得られる出力電圧値Vinがそのストリングを最大電力で運転させる出力電圧設定値Vcとなるように制御し、かつ電圧調整回路200からインバータ回路300に送出される直流電圧値Voutがインバータ回路300への入力電圧値として予め設定された所定電圧値VIとなるように制御することができる。
【0021】
【発明が解決しようとする課題】
たしかに、上記構成の系統連系インバータ装置であれば、複数の太陽電池ストリングから得られる出力電圧値が一様でない場合であっても、各太陽電池ストリングをそれぞれの最大電力で運転させることが可能である。
【0022】
しかしながら、上記構成の系統連系インバータ装置では、全ての太陽電池ストリングに対して個別に電圧調整回路を設ける必要があるため、系統連系インバータ装置のコストが増大するという課題がある。
【0023】
また、上記で例示した太陽電池発電システムに限らず、その他の直流電力供給源を複数有する分散電源システム、またはこれらのハイブリッドシステムについても、各直流電力供給源が最大電力を出力する際の出力電圧が異なる場合には、上記と同様の課題を有する。
【0024】
本発明は上記の問題点に鑑み、複数の直流電力供給源から得られる出力電圧値が一様でない場合であっても、各直流電力供給源をそれぞれの最大電力で運転させることが可能である系統連系インバータ装置を、従来より低コストで提供することを目的とする。
【0025】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る系統連系インバータ装置においては、複数の直流電力供給源と、前記直流電力供給源から得られる直流電力を交流電力に変換する直交変換手段とを有し、商用配電線系統との連系運転を行う系統連系インバータ装置において、複数の前記直流電力供給源のうち出力電圧が近接しているものを並列接続して複数の電力供給グループとし、各電力供給グループの出力電圧を等しくするための電圧調整手段を各電力供給グループ毎に設け、各電圧調整手段の出力を並列接続して前記直交変換手段に入力する構成としている。
【0026】
もしくは、複数の前記直流電力供給源のうち出力電圧が近接しているものを並列接続して複数の電力供給グループとし、少なくとも1つの電力供給グループを除いた残りの電力供給グループに電圧調整手段を設け、前記電圧調整手段を介さない電力供給グループの出力と各電圧調整手段の出力とを並列接続して前記直交変換手段に入力する構成とし、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧とを等しくするように前記電圧調整手段を制御する構成としてもよい。
【0027】
また、上記構成の系統連系インバータ装置は、前記直交変換手段に対して入力される直流電圧値と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値と、に基づいて前記電圧調整手段の入出力電圧比を制御することで、各電力供給グループの出力電圧をいずれも最大点に追従させる最大電力追従手段を有する構成にするとよい。
【0028】
また、前記最大電力追従手段は、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧値及び出力電流値に基づいて該電力供給グループの出力電圧設定値を求め、その出力電圧設定値と前記直交変換手段に対して入力される直流電圧値とを基に、前記電圧調整手段の入出力電圧比を制御する第1制御手段と、前記直交変換手段の出力電流値に基づいて、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値を求め、その出力電圧設定値を基に前記直交変換手段の出力電力を制御する第2制御手段と、を有する構成にするとよい。
【0029】
さらに、第1制御手段による前記電圧調整回路の入出力電圧比の変更動作は、第2制御手段による前記電力調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧設定値の算定動作期間外に実行する構成にするとよい。
【0030】
加えて、第2制御手段は、第1制御手段による前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧設定値の算定動作期間中、前記電圧調整手段を介さずに前記直交変換手段に入力される電力供給グループの出力電圧が変化しないように、前記直交変換手段の出力電力を制御する構成にするとよい。
【0031】
また、装置起動時には第1制御手段に先立って第2制御手段が動作を開始し、前記電圧調整手段を介さずに前記直交変換手段に入力される電力供給グループの出力電圧が所定値に達した後に、第1制御手段が制御動作を開始する構成にするとよい。
【0032】
さらに、前記直交変換手段への入力電圧が所定の上限電圧設定値以上になった場合、前記電圧調整手段の昇圧動作が停止される構成にするとよい。
【0033】
もしくは、前記直交変換手段への入力電圧が所定の停止電圧設定値以上になると前記電圧調整手段の昇圧動作が停止され、その後に所定の再起動電圧設定値以下になると前記電圧調整手段の昇圧動作が再開される構成とし、前記再起動電圧設定値は前記停止電圧設定値より低い値に設定しておくのもよい。
【0034】
もしくは、前記直交変換手段への入力電圧が所定の上限電圧設定値以上になると、前記電圧調整手段は前記直交変換手段への入力電圧を前記上限電圧設定値に維持するように昇圧動作を行う構成にしてもよい。
【0035】
【発明の実施の形態】
本発明に係る系統連系インバータ装置を適用した分散電源システムとして、ここでは太陽電池発電システムを例に挙げて説明を行う。図1は本発明に係る系統連系インバータ装置を適用した太陽電池発電システムの第1実施形態を示すブロック図である。
【0036】
図中に示すように、本実施形態の系統連系インバータ装置10を適用した太陽電池発電システムにおいては、複数枚の太陽電池モジュールを直列に接続して形成された太陽電池ストリング1、1’、2、2’(以下、ストリング1、1’、2、2’と呼ぶ)を有している。ストリング1、1’、2、2’は系統連系インバータ装置10によって商用配電線系統に連系されている。
【0037】
なお、ストリング1、1’を構成する太陽電池モジュールの直列数は同一(もしくはほぼ同一)であり、ストリング1、1’を最大電力で運転し得る出力電圧値も互いに同一(もしくはほぼ同一)である。同様に、ストリング2、2’を構成する太陽電池モジュールの直列数は同一(もしくはほぼ同一)であり、ストリング2、2’を最大電力で運転し得る出力電圧値も互いに同一(もしくはほぼ同一)である。
【0038】
一方、ストリング1(1’)とストリング2(2’)とでは各ストリングを構成する太陽電池モジュールの直列数が異なっているため、各ストリングを最大電力で運転し得る出力電圧値も互いに異なっている。
【0039】
ここで、本実施形態の系統連系インバータ装置10においては、ストリング1とストリング1’を互いに並列接続することで電力供給グループAとしている。同様に、ストリング2とストリング2’を互いに並列接続することで電力供給グループBとしている。
【0040】
そして、本実施形態の系統連系インバータ装置10には、電力供給グループA、Bとインバータ回路30との間にそれぞれ電圧調整回路20が設けられている。なお、本実施形態の系統連系インバータ装置10に設けられた電圧調整回路20の内部構成については、図6に示した従来の電圧調整回路200と同様であるため、内部構成についての詳細な説明は省略する。
【0041】
この電圧調整回路20は各電力供給グループから得られる出力電圧値がその電力供給グループを最大電力で運転させる電圧値となるように制御し、かつインバータ回路30に送出される直流電圧値がインバータ回路30への入力電圧値として予め設定された所定電圧値となるように制御する回路である。
【0042】
また、インバータ回路30は電圧調整回路20から送出された直流電力を商用周波数(50Hzまたは60Hz)と同じ周波数の交流電力に変換し、その交流電力を商用の配電線系統に送出する回路である。
【0043】
上記のように、各ストリングの出力電力を最大にし得る出力電圧が互いに近接している場合、各ストリングを並列接続して出力電力を結合し、その出力電圧値を最適値に制御すれば、結果的には各ストリングの出力電力を最大限に引き出すことができる。このような構成とすることにより、従来に比べて電圧調整回路20の数を抑制することが可能となるので、コストの低減に貢献することができる。
【0044】
次に、本発明に係る系統連系インバータ装置の第2実施形態について説明する。図2は本発明に係る系統連系インバータ装置を適用した太陽電池発電システムの第2実施形態を示す回路図である。
【0045】
前述の第1実施形態と同様に、本実施形態においてもストリング1、1’、2、2’は系統連系インバータ装置10によって商用配電線系統に連系されている。また、ストリング1、1’を最大電力で運転し得る出力電圧値は同一であり、ストリング2、2’を最大電力で運転し得る出力電圧値も同一である。よって、本実施形態でもストリング1とストリング1’を互いに並列接続することで電力供給グループAとし、ストリング2とストリング2’を互いに並列接続することで電力供給グループBとしている。
【0046】
なお、本実施形態では電力供給グループAの出力電圧の方が電力供給グループBの出力電圧より高いものとする。例えば、図中のストリング1、1’は8つの太陽電池モジュールが直列に接続されることで構成されており、これらのストリング1、1’の出力電力を最大とし得る出力電圧は200Vである。一方、ストリング2、2’は6つの太陽電池モジュールが直列に接続されることで構成されており、これらのストリング2、2’の出力電力を最大とし得る出力電圧は150Vである。
【0047】
続いて、本実施形態の系統連係インバータ装置10の回路構成について説明する。ストリング1、1’の正極端子(+)はそれぞれダイオード11、11’のアノードに接続されている。ダイオード11、11’のカソードは互いに接続されており、その接続ノードはダイオード23のカソード、コンデンサ13の一端、及びインバータ回路30の入力端にそれぞれ接続されている。
【0048】
ストリング2、2’の正極端子(+)はそれぞれダイオード12、12’のアノードに接続されている。ダイオード12、12’のカソードは互いに接続されており、その接続ノードはリアクトル21の一端に接続されている。なお、ダイオード11、11’、12、12’はいずれも電流の逆流防止用に設けられている。
【0049】
一方、ストリング1、1’、2、2’の負極端子(−)は互いに接続されており、その接続ノードはコンデンサ13の他端に接続されるとともに、インバータ回路30の入力端にも接続されている。
【0050】
リアクトル21の他端はスイッチング素子22の一端に接続されるとともに、ダイオード23のアノードにも接続されている。スイッチング素子22の他端はコンデンサ13の他端に接続されている。なお、スイッチング素子22としては高耐圧で電流容量を大きくとることができるIGBT等を用いるとよい。
【0051】
ここで、本実施形態の系統連係インバータ装置10には、電力供給グループBの出力電圧値Vbを検出する第1電圧検出器24、電力供給グループBの出力電流値Ibを検出する第1電流検出器25、コンデンサ13の端子間電圧Va(すなわちインバータ回路30への入力電圧Va)を検出する第2電圧検出器26、及びインバータ回路30の出力電流値Ioを検出する第2電流検出器14が設けられている。
【0052】
なお、前述のリアクトル21、スイッチング素子22、ダイオード23、第1電圧検出器24、第1電流検出器25、及び第2電圧検出器26から成る回路を、ここでは電圧調整回路20と呼ぶ。
【0053】
電圧調整回路20及びインバータ回路30の動作はいずれも最大電力追従回路40により制御されている。この最大電力追従回路40は第1制御部41及び第2制御部42を有している。
【0054】
第1制御部41には電力供給グループBの出力電圧値Vb、出力電流値Ib、及びコンデンサ13の端子間電圧Vaといった情報が入力されている。第1制御部41は電圧調整回路20に設けられたスイッチング素子22のオン/オフ制御(デューティ制御)を行うチョッパ制御部としての機能を有する。
【0055】
一方、第2制御部42にはコンデンサ13の端子間電圧Va及びインバータ回路30の出力電流値Ioといった情報が入力されている。第2制御部はインバータ回路の動作制御を行うインバータ制御部としての機能を有する。
【0056】
次に、上記構成から成る系統連係インバータ装置10の定常動作について説明する。電力供給グループAからの直流電力はダイオード11、11’を介してコンデンサ13を充電する。一方、電力供給グループBからの直流電力はダイオード12、12’を介して電圧調整回路20に入力される。
【0057】
電圧調整回路20に入力された電力供給グループBからの直流電力は、リアクトル21を介してスイッチング素子22に入力される。ここで、スイッチング素子22がオンの場合には電力供給グループBから得たエネルギーがリアクトル21に一旦蓄えられることになる。
【0058】
逆に、スイッチング素子22がオフの場合にはリアクトル21によって蓄えられたエネルギーがダイオード23を介してコンデンサ13に蓄えられる。このように、コンデンサ13には電圧調整回路20から出力される直流電力と、電力供給グループAからの直流電力とが合成されて蓄えられることになる。
【0059】
コンデンサ13に蓄えられた直流電力はインバータ回路30へと送出される。そして、インバータ回路30によって商用周波数(50Hzまたは60Hz)を有する交流電力に変換された後に商用の配電線系統に出力される。
【0060】
ここで、最大電力追従回路40に設けられた第2制御部42は、インバータ回路30の出力電流値Io、及びインバータ回路30への入力電圧値Vaに基づいて、出力電流値Ioが最大となるようにインバータ回路30を制御する。これにより、インバータ回路30の出力電力を最大とすることができる。
【0061】
インバータ回路30の出力電力が最大であるということは、言い換えれば電力供給グループAの出力電力が最大となっていることを意味する。よって、この状態で電力供給グループBの出力電力が最大となるように電圧調整回路20を制御すれば、電力供給グループA及び電力供給グループBの双方を最大電力で運転することになる。
【0062】
そこで、最大電力追従回路40に設けられた第1制御部41は、電力供給グループBの出力電圧値Vb及び出力電流値Ibに基づいて、電力供給グループBの出力電力を最大とし得る出力電圧設定値Vbrefを逐一算出する。そして、出力電圧値Vbが出力電圧設定値Vbrefとなるように、電圧調整回路20に設けられたスイッチング素子22のデューティ制御を行う。
【0063】
この時、電圧調整回路20の入出力電圧比(以下、昇圧比と呼ぶ)はVa/Vbrefとなっており、その際に設定されるスイッチング素子22のデューティαは1−Vbref/Vaと算出される。
【0064】
上記のように、電圧調整回路20を介さない電力供給グループAの出力と、電力供給グループBの出力電力を受ける電圧調整回路20の出力とを並列接続してインバータ回路30に入力する構成とし、電力供給グループA、Bの出力電圧を等しくするように電圧調整回路20を制御すれば、本実施形態のように4つの太陽電池ストリング(ストリング1、1’、2、2’)が接続される系統連系インバータ装置10であっても、ただ1つの電圧調整手段20を追加するだけで各ストリングの出力電力を最大限に引き出すことが可能となる。
【0065】
このような構成とすることにより、従来もしくは前述の第1実施形態に比べて、電圧調整回路20の数を最小限に抑制することが可能となるので、コストの低減に貢献することができる。
【0066】
特に、本実施形態では最大電力追従回路40において、インバータ回路30に対して入力される直流電圧値Vaと、電力供給グループBの出力電力が最大となるように算出された出力電圧設定値Vbrefとに基づいて、電圧調整回路20の昇圧比を制御している。本構成と従来構成との違いは、電圧調整回路20の昇圧比を決定する際にインバータ回路30に対して入力される直流電圧値Vaを参照する点である。
【0067】
従来構成をそのまま適用するのであれば、電圧調整回路20の昇圧比を決定する際には、インバータ回路30に対して入力すべき所定の直流電圧値VIと、電力供給グループBの出力電力が最大となるように算出された出力電圧設定値Vbrefとに基づいて、電圧調整回路20の昇圧比を制御することになる。
【0068】
しかしながら、本実施形態においてインバータ回路30に入力される直流電圧Vaは、すなわち電圧調整回路20を介さずに入力される電力供給グループAの出力電圧と同義である。このため、従来構成をそのまま適用してしまうと、その時々における日射量の変化や、ストリング1、1’を構成している太陽電池モジュールのセル温度の変化等に応じて、電圧供給グループAの電力供給能力が変化する場合、前述した直流電圧値VIも逐一変化させねばならない。
【0069】
よって、本実施形態の系統連系インバータ装置10では、インバータ回路30への入力電圧として一定の直流電圧値VIを設定することはできない。そこで、本実施形態では、所定の直流電圧値VIを設定する代わりにインバータ回路30への入力電圧Vaを時々刻々と検出し、その入力電圧Vaを参照することで電圧調整回路20の昇圧比を演算する構成としている。
【0070】
このような構成とすることにより、電圧調整回路20を介してインバータ回路30に接続される電力供給グループBの出力電力を最大にしつつ、電圧調整回路20の出力電圧と、電圧調整回路20を介さずにインバータ回路30に接続される電力供給グループAの出力電圧とを等しくすることができる。
【0071】
また、本実施形態において最大電力追従回路40は、電力供給グループBの出力電圧値Vb及び出力電流値Ibに基づいて算出した電力供給グループBの出力電圧設定値Vbrefと、インバータ回路30に対して入力される直流電圧値Vaとを基に、電圧調整回路20の昇圧比を制御する第1制御手段41を有している。さらに、最大電力追従回路40は、インバータ回路30の出力電流値Ioに基づいて算出した電力供給グループAの出力電圧設定値Varefを基に、インバータ回路30の出力電力を制御する第2制御手段を有している。
【0072】
このような構成とすれば、第1制御部41によって電圧調整回路20に入力される電力供給グループBの出力電力を最大にしつつ、電圧調整回路20の出力電圧は電力供給グループAの出力電圧Vaに等しくすることができる。また、電力供給グループAの出力電力については第2制御部42によって最大限に引き出すことができる。
【0073】
また、第2制御部42によってインバータ回路30の出力電力を増減すると、インバータ回路30への入力電圧Vaも変化するが、前述した通り第1制御手段41は時々刻々と変化する入力電圧Vaを逐一検出し、その入力電圧Vaを参照することで電圧調整回路20の昇圧比を演算する構成としているので、電力供給グループBの出力電力は最大値に維持される。
【0074】
次に、最大電力追従回路40における最大電力追従動作(以下、MPPT動作と呼ぶ)の詳細な説明を行う。図3は第1制御部41及び第2制御部42におけるMPPT動作を示すタイミングチャートである。図中の横軸は時間tを示している。
【0075】
系統連系インバータ装置10が時刻T0において連系運転を開始すると、まず第2制御部42が初期動作を開始する。なお、第2制御部42の初期動作が継続されている期間中には第1制御部41の動作が停止されており、インバータ回路30へは電力供給グループAの出力電力のみが供給されている。
【0076】
ここで、第2制御部42の初期動作とは、インバータ回路30への入力電圧Va、すなわち電力供給グループAの出力電圧Vaが、予め設定される出力電圧設定値Varefの初期値Varef(T0)に達するまで、インバータ回路30の出力を増加させる動作である。
【0077】
時刻T1においてインバータ回路30への入力電圧Vaが初期値Varef(T0)に達すると、第2制御部42はインバータ回路30への入力電圧Vaが初期値Varef(T0)を維持するようにインバータ回路30を制御する。
【0078】
一方、第1制御部41は時刻T1から初期動作を開始する。第1制御部41の初期動作とは、時刻t(T1<t<T2)におけるインバータ回路30への入力電圧Va(t)、予め設定される電力供給グループBの出力電圧設定値Vbrefの初期値Vbref(T0)、及び時刻T1における電力供給グループBの出力電圧Vb(T1)に基づいて、電圧調整回路20の昇圧比をVbref(T0)/Vb(T1)とし、1−Vbref(T0)/Va(t)で決定されるデューティαとなるまで電圧調整回路20に設けられたスイッチング素子22のゲートオン時間を増加させる動作である。
【0079】
なお、時刻T1〜時刻T2の間は第2制御部42がインバータ回路30への入力電圧Vaを所定値Varef(T0)に維持するように制御を行っているが、実際には電圧調整回路20の出力電力の変化により入力電圧Vaは時々刻々と変動するため、ここでは入力電圧Vaを入力電圧Va(t)と記載している。
【0080】
上記のように、本実施形態における系統連系インバータ装置10の起動時には、第1制御部41より先に第2制御部42が動作を開始し、電圧調整回路20を介さずにインバータ回路30に入力される電力供給グループAの出力電圧Vaが所定値Varef(T0)とされた後に、第1制御部41が制御動作を開始する構成となっている。
【0081】
このような起動シーケンスとすることにより、インバータ回路30の入力電圧Vaを検出する第2電圧検出器26が万一故障していた場合であっても、電圧調整回路20の誤作動による過剰な昇圧動作を防止することができるので、回路部品を保護するために有用である。以下では、その点について詳細な説明を行う。
【0082】
第2電圧検出器26が故障して、実際より高い電圧値を示したまま変化しないとすると、電圧調整回路20はこの誤った検出値に基づいて決定された昇圧比で動作することになる。この時、電圧調整回路20では正常時より大きな昇圧比が設定されるため、電圧調整回路20の出力電圧が部品耐圧を超える高電圧となる恐れがある。
【0083】
しかし、前述の起動シーケンスであれば、第2電圧検出器26で検出される電圧値Vaが変化せずに所定の出力電圧設定値Varef(T0)まで達しないため、第2制御部42の初期動作が完了しない。よって、第1制御部41は初期動作を開始することができず、第1制御部41によって電圧調整回路20の昇圧比が異常設定されることがないため、電圧調整回路20の出力側に接続される回路部品の重大な破損を生じる恐れがない。
【0084】
時刻T2において、スイッチング素子22のデューティαが1−Vbref(T0)/Va(t)に達すると、第2制御部42はMPPT動作を開始する。第2制御部42のMPPT動作とは、インバータ回路30の出力電流Ioが増加する方向に電力供給グループAの出力電圧設定値Varefを更新する動作である。
【0085】
すなわち、時刻T2〜時刻T3において第2制御部42は、電力供給グループAの出力電圧設定値Varefをどちらの方向に更新すればインバータ回路30の出力電流Ioが増加するかを調査し、現在設定されている出力電圧設定値Varef(T0)を新たな出力電圧設定値Varef(T3)に更新する。なお、この更新動作は時刻T3に行われる。
【0086】
ここで、MPPT動作を開始してから実際に出力電圧設定値Varefの更新を行うまでに要する時刻T2〜時刻T3は、出力電圧設定値Varef(T3)の算定期間であり、インバータ回路30の出力が安定となるまでに要する待機時間である。この待機時間は適宜設定すればよいが、例えば80サイクル(商用周波数が50Hzである場合には、20ms×80サイクル=1.6s)といった設定が妥当である。
【0087】
なお、第2制御部42のMPPT動作が継続されている期間中、第1制御部41は電圧調整回路20の昇圧比を変更することなく、電圧調整回路20のスイッチング素子22をデューティα=1−Vbref(T0)/Va(t)でドライブしている。この動作を第1制御部41における入力電圧一定動作と呼ぶ。
【0088】
この動作により、第2制御部42のMPPT動作によってインバータ回路30への入力電圧Va(t)が変動した場合であっても、電圧調整回路20に対して入力される電力供給グループBの出力電圧Vbが一定電圧に保たれるので、電圧調整回路20の出力電力を可能な限り一定に維持することができる。
【0089】
また、第2制御部42のMPPT動作が継続されている期間中には、第1制御部41が電圧調整回路20の昇圧比を変更しないように構成することにより、第2制御部42のMPPT動作の精度を高めることができる。以下では、その点について詳細な説明を行う。
【0090】
第1制御部41によって電圧調整回路20の昇圧比が変更されると、電圧調整回路20の出力電力に変化が生じる。この変化に伴ってインバータ回路30への入力電力にも変化が生じるので、インバータ回路30の出力電力も変化することになる。ここで、インバータ回路30の出力は商用の配電線系統に接続されており、その電圧はほぼ固定されているので、インバータ回路30の出力電力の変化はインバータ回路30の出力電流Ioの変化として検出される。
【0091】
一方、第2制御部42はインバータ回路30の出力電流Ioの増減を検出することにより、電圧調整回路20を介さずにインバータ回路30に接続される電力供給グループAの出力電力の増減を間接的に判断し、それに応じて電力供給グループAの出力電圧設定値Varefの設定を行っている。
【0092】
このことから、第2制御部42によるMPPT動作にとって第1制御部41による電圧調整回路20の昇圧比変更は、インバータ回路30の出力電流Ioに不測の変動を与える外乱要因となることが分かる。
【0093】
そこで、本実施形態における系統連系インバータ装置10においては、第2制御部42のMPPT動作が継続されている期間中、すなわち電圧調整回路20を介さずにインバータ回路30に接続される電力供給グループAの出力電圧設定値Varefを算出している期間中は、第1制御部41が電圧調整回路20の昇圧比を変更を行わないようにしている。このような構成とすることにより、上述の外乱要因を除くことができるので第2制御部42のMPPT動作の精度を高めることができる。
【0094】
一方、時刻T3からは第1制御部41におけるMPPT動作が開始される。第1制御部41のMPPT動作とは、電圧調整回路20への入力電力(Vb×Ib)が増加する方向に電力供給グループBの出力電圧設定値Vbrefを更新する動作である。
【0095】
すなわち、時刻T3〜時刻T4において第1制御部41は、電力供給グループBの出力電圧設定値Vbrefをどちらの方向に更新すれば電圧調整回路20への入力電力が増加するかを調査し、現在設定されている出力電圧設定値Vbref(T0)を新たな出力電圧設定値Vbref(T4)に更新する。なお、この更新動作は時刻T4に行われる。
【0096】
ここで、MPPT動作を開始してから実際に出力電圧設定値Vbrefの更新を行うまでに要する時刻T3〜時刻T4は、出力電圧設定値Vbref(T4)の算定期間であり、インバータ回路30の出力が安定となるまでの待機時間である。この待機時間は適宜設定すればよいが、例えば30サイクル(商用周波数が50Hzである場合には、20ms×30サイクル=0.6s)といった設定が妥当である。
【0097】
なお、第1制御部41のMPPT動作が継続されている期間中、第2制御部42はインバータ回路30への入力電圧Va(t)が出力電圧設定値Varef(T3)を維持するようにインバータ回路30を制御する。この動作を第2制御部42における入力電圧一定動作と呼ぶ。この入力電圧一定動作により、第1制御部41のMPPT動作の精度を高めることができる。以下では、その点について詳細な説明を行う。
【0098】
第1制御手段41では電圧調整回路20の昇圧比を変化させることにより、電力供給グループBの出力電力を変化させ、この出力電力の増減を検出して出力電圧設定値Vbrefの算定を行っている。
【0099】
この出力電圧設定値Vbrefの算定期間中に、電圧調整回路20を介さずにインバータ回路30に接続される電力供給グループAの出力電圧Vaが変化すると、電圧調整回路20に入力される電力供給グループBの出力電圧Vbも変化するため、当然電力供給グループBの出力電力(Vb×Ib)も変化してしまう。
【0100】
このことから、第1制御部41によるMPPT動作にとって第2制御部42による電力供給グループAの出力電圧設定値Varefの変更動作は、電力供給グループBの出力電圧設定値Vbrefを算定する際の外乱要因となることが分かる。
【0101】
ここで、本実施形態の系統連系インバータ装置10においては、前述した通り時刻tにおけるインバータ回路30に入力される直流電圧Va(t)を時々刻々と検出し、その値を参照して電圧調整回路20の昇圧比を決定する構成であるため、仮に第1制御部41によるMPPT動作中に電力供給グループAの出力電圧設定値Varefの変更動作が為されたとしても、上記の外乱要因はいくらか軽減される。
【0102】
しかし、制御上の遅れなどもあって電圧調整回路20に入力される電力供給グループBの出力電力に及ぼされる影響を完全に取り除けるわけではない。そこで、本実施形態における系統連系インバータ装置10においては、第1制御部41のMPPT動作が継続されている期間中、すなわち電圧調整回路20を介してインバータ回路30に接続される電力供給グループBの出力電圧設定値Vbrefを算出している期間中は、第2制御部42が電力供給グループAの出力電圧設定値Varefの変更動作を行わないようにしている。このような構成とすることにより、上述の外乱要因を除くことができるので第1制御部41のMPPT動作の精度を高めることができる。
【0103】
上記した第1制御部41及び第2制御部42におけるMPPT動作を、時刻T4以降も交互に繰り返すことにより、電力供給グループA、Bの出力電力を共に最大限まで引き出すことが可能となる。
【0104】
さらに、第1制御部41ではインバータ回路30への入力電圧Vaが所定の上限電圧設定値Vamax以上になると、Va<Vamaxとなるまで電圧調整回路20の昇圧比を低下させていくようにスイッチング素子22のデューティ制御を行う構成とするとよい。
【0105】
このような構成とすることにより、インバータ回路30への入力電圧Vaが異常に高い場合には電圧調整回路20における昇圧動作を停止し、電圧調整回路20の出力側に接続される回路部品への過電圧印加を防止することができる。よって、回路部品の重大な破損を生じる恐れがない。
【0106】
なお、Va>Vamaxとなっている期間は最大電力追従回路40による最大電力追従制御は行われないが、Va<Vamaxとなった時点で最大電力追従制御を再開するように構成しておくとよい。
【0107】
もしくは、第1制御部41ではインバータ回路30への入力電圧Vaが所定の停止電圧設定値Vastpを上回ると電圧調整回路20における昇圧動作を停止し、入力電圧Vaが所定の再起動電圧設定値Vastrを下回ると電圧調整回路20における昇圧動作を再開する構成としてもよい。
【0108】
このような構成とすることにより、上記構成と同様に電圧調整回路20の出力側に接続される回路部品への過電圧印加を防止することができる。よって、回路部品の重大な破損を生じる恐れがない。特に、停止電圧設定値Vastpと再起動電圧設定値Vastrとの関係がVastp>Vastrとなるように設定しておけば、昇圧動作の起動と停止が頻繁に繰り返されるチャタリングを防止することができる。
【0109】
もしくは、第1制御部41ではインバータ回路30への入力電圧Vaが所定の上限電圧設定値Vamaxを上回った場合には、入力電圧Vaが上限電圧設定値Vamaxを維持するように電圧調整回路20における昇圧動作を行う構成としてもよい。
【0110】
このような構成とすることにより、入力電圧Vaが所定の上限電圧設定値Vamaxを上回った場合であっても、いきなり電圧調整回路20の昇圧動作が停止されることがない。よって、インバータ回路30への入力電圧Vaが急変するのを避けることができ、商用の配電系統に接続されている電気機器の動作を安定に保つことができる。
【0111】
なお、上記の実施形態においては電圧調整回路が1つの場合を例示して説明を行ったが、電力供給グループがさらに増えた場合には、各電力供給グループ毎に電圧調整回路を複数個設けるとよい。その場合においても、各電圧調整回路の出力を並列接続してインバータ回路に入力し、各電圧調整回路について順番にMPPT動作を実施すれば、各電力供給グループの最大電力を引き出すことができる。また、複数個の電圧調整回路に対して同時にMPPT制御を行う構成としてもよい。
【0112】
【発明の効果】
本発明に係る系統連系インバータ装置においては、複数の直流電力供給源のうち出力電圧が近接しているものを並列接続して複数の電力供給グループとし、各電力供給グループの出力電圧を等しくするための電圧調整手段を各電力供給グループ毎に設け、各電圧調整手段の出力を並列接続して前記直交変換手段に入力する構成としている。このような構成とすることにより、従来に比べて電圧調整手段の数を抑制することが可能となるので、コストの低減に貢献できる。
【0113】
もしくは、少なくとも1つの電力供給グループを除いた残りの電力供給グループに電圧調整手段を設け、前記電圧調整手段を介さない電力供給グループの出力と各電圧調整手段の出力とを並列接続して前記直交変換手段に入力する構成とし、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧とを等しくするように前記電圧調整手段を制御する構成としてもよい。
【0114】
このような構成とすることにより、複数の直流電力供給源を有する系統連系インバータ装置であっても、最小限の電圧調整手段を追加するだけで各直流電力供給源の出力電力を最大限に引き出すことが可能となる。よって、電圧調整手段の数を最小限に抑制することが可能となるので、より一層コストの低減に貢献することができる。
【0115】
また、上記構成の系統連系インバータ装置は、前記直交変換手段に対して入力される直流電圧値と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値と、に基づいて前記電圧調整手段の入出力電圧比を制御することで、各電力供給グループの出力電圧をいずれも最大点に追従させる最大電力追従手段を有する構成にするとよい。
【0116】
このような構成とすることにより、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電力を最大にしつつ、前記電圧調整手段の出力電圧と、前器電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧とを等しくすることができる。
【0117】
また、前記最大電力追従手段は、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧値及び出力電流値に基づいて該電力供給グループの出力電圧設定値を求め、その出力電圧設定値と前記直交変換手段に対して入力される直流電圧値とを基に、前記電圧調整手段の入出力電圧比を制御する第1制御手段と、前記直交変換手段の出力電流値に基づいて、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値を求め、その出力電圧設定値を基に前記直交変換手段の出力電力を制御する第2制御手段と、を有する構成にするとよい。
【0118】
このような構成とすることにより、第1制御手段によって前記電圧調整手段に入力される電力供給グループの出力電力を最大にしつつ、前記電圧調整手段の出力電圧については、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧に等しくすることができる。また、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電力については第2制御手段によって最大限に引き出すことができる。
【0119】
さらに、第1制御手段による前記電圧調整回路の入出力電圧比の変更動作は、第2制御手段による前記電力調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧設定値の算定動作期間外に実行する構成にするとよい。
【0120】
このような構成とすることにより、第2制御手段によって前記直交変換手段への入力電圧が変動した場合であっても、前記電圧調整手段に対して入力される電力供給グループの出力電圧が一定電圧に保たれるので、前記電圧調整手段の出力電力を可能な限り一定に維持することができる。また、このような構成とすることにより、第2制御手段による前記電力調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧設定値の算定動作を高精度に行うことが可能となる。
【0121】
加えて、第2制御手段は、第1制御手段による前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧設定値の算定動作期間中、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧が変化しないように、前記直交変換手段の出力電力を制御する構成にするとよい。
【0122】
このような構成とすることにより、第1制御手段による前記電力調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧設定値の算定動作を高精度に行うことが可能となる。
【0123】
また、装置起動時には第1制御手段に先立って第2制御手段が動作を開始し、前記電圧調整手段を介さずに前記直交変換手段に入力される電力供給グループの出力電圧が所定値に達した後に、第1制御手段が制御動作を開始する構成にするとよい。
【0124】
このような構成とすることにより、前記直交変換手段へ入力電圧を検出する電圧検出器が万一故障していた場合であっても、前記電圧調整手段の誤作動による過剰な昇圧動作を防止することができるので、前記電圧調整手段の出力側に接続される回路部品を保護するために有用である。
【0125】
さらに、前記直交変換手段への入力電圧が所定の上限電圧設定値以上になった場合、前記電圧調整手段の昇圧動作が停止される構成にするとよい。このような構成とすることにより、前記直交変換手段への入力電圧が異常に高い場合には前記電圧調整手段における昇圧動作を停止し、前記電圧調整手段の出力側に接続される回路部品への過電圧印加を防止することができる。よって、回路部品の重大な破損を生じる恐れがない。
【0126】
もしくは、前記直交変換手段への入力電圧が所定の停止電圧設定値以上になると前記電圧調整手段の昇圧動作が停止され、その後に所定の再起動電圧設定値以下になると前記電圧調整手段の昇圧動作が再開される構成とし、前記再起動電圧設定値は前記停止電圧設定値より低い値に設定しておくのもよい。
【0127】
このような構成とすることにより、上記構成と同様に前記電圧調整手段の出力側に接続される回路部品への過電圧印加を防止することができる。よって、回路部品の重大な破損を生じる恐れがない。また、前記再起動電圧設定値が前記停止電圧設定値より低いので、昇圧動作の起動と停止が頻繁に繰り返されるチャタリングを防止することができる。
【0128】
もしくは、前記直交変換手段への入力電圧が所定の上限電圧設定値以上になると、前記電圧調整手段は前記直交変換手段への入力電圧を前記上限電圧設定値に維持するように昇圧動作を行う構成にしてもよい。
【0129】
このような構成とすることにより、前記直交変換手段への入力電圧が所定の上限電圧設定値を上回った場合であっても、いきなり前記電圧調整手段の昇圧動作が停止されることがない。よって、前記直交変換手段への入力電圧が急変するのを避けることができ、商用の配電系統に接続されている電気機器の動作を安定に保つことができる。
【図面の簡単な説明】
【図1】 本発明に係る系統連系インバータ装置を適用した太陽電池発電システムの第1実施形態を示すブロック図である。
【図2】 本発明に係る系統連系インバータ装置を適用した太陽電池発電システムの第2実施形態を示す回路図である。
【図3】 第1制御部41及び第2制御部42におけるMPPT動作を示すタイミングチャートである。
【図4】 太陽電池モジュールの直列数が互いに異なる太陽電池ストリングによって得られる出力電圧値−出力電力値の関係を示すグラフである。
【図5】 従来の太陽電池発電システムの一構成例を示すブロック図である。
【図6】 電圧調整回路200の一構成例を示す回路図である。
【符号の説明】
1、1’ 太陽電池ストリング
2、2’ 太陽電池ストリング
10 系統連系インバータ装置
20 電圧調整回路
21 リアクトル
22 スイッチング素子
23 ダイオード
24 コンデンサ
30 インバータ回路
40 最大電力追従回路
41 第1制御部(チョッパ制御部)
42 第2制御部(インバータ制御部)

Claims (9)

  1. 複数の直流電力供給源と、前記直流電力供給源から得られる直流電力を交流電力に変換する直交変換手段とを有し、商用配電線系統との連系運転を行う系統連系インバータ装置において、
    複数の前記直流電力供給源のうち出力電圧が近接しているものを並列接続して複数の電力供給グループとし、少なくとも1つの電力供給グループを除いた残りの電力供給グループに電圧調整手段を設け、前記電圧調整手段を介さない電力供給グループの出力と各電圧調整手段の出力とを並列接続して前記直交変換手段に入力する構成とし、
    前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧と、を等しくするように前記電圧調整手段を制御することを特徴とする系統連系インバータ装置であって、
    前記直交変換手段に対して入力される直流電圧値と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値と、に基づいて前記電圧調整手段の入出力電圧比を制御することで、各電力供給グループの出力電圧をいずれも最大点に追従させる最大電力追従手段を有して成り、
    かつ、前記最大電力追従手段は、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧値及び出力電流値に基づいて該電力供給グループの出力電圧設定値を求め、その出力電圧設定値と前記直交変換手段に対して入力される直流電圧値とを基に、前記電圧調整手段の入出力電圧比を制御する第1制御手段と、
    前記直交変換手段の出力電流値に基づいて、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値を求め、その出力電圧設定値を基に前記直交変換手段の出力電力を制御する第2制御手段と、を有して成り、かつ、
    第1制御手段による前記電圧調整回路の入出力電圧比の変更動作は、第2制御手段による前記電力調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧設定値の算定動作期間外に実行されることを特徴とする系統連系インバータ装置。
  2. 第2制御手段は、第1制御手段による前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧設定値の算定動作期間中、前記電圧調整手段を介さずに前記直交変換手段に入力される電力供給グループの出力電圧が変化しないように、前記直交変換手段の出力電力を制御することを特徴とする請求項1に記載の系統連系インバータ回路。
  3. 装置起動時には第1制御手段に先立って第2制御手段が動作を開始し、前記電圧調整手段を介さずに前記直交変換手段に入力される電力供給グループの出力電圧が所定値に達した後に、第1制御手段が制御動作を開始することを特徴とする請求項1または請求項2に記載の系統連系インバータ装置。
  4. 前記直交変換手段への入力電圧が所定の上限電圧設定値以上になった場合、前記電圧調整手段の昇圧動作が停止されることを特徴とする請求項1〜請求項3のいずれかに記載の系統連系インバータ装置。
  5. 前記直交変換手段への入力電圧が所定の停止電圧設定値以上になると前記電圧調整手段の昇圧動作が停止され、その後に所定の再起動電圧設定値以下になると前記電圧調整手段の昇圧動作が再開される構成であり、前記再起動電圧設定値は前記停止電圧設定値より低い値に設定されることを特徴とする請求項1〜請求項3のいずれかに記載の系統連系インバータ装置。
  6. 前記直交変換手段への入力電圧が所定の上限電圧設定値以上になると、前記電圧調整手段は前記直交変換手段への入力電圧を前記上限電圧設定値に維持するように昇圧動作を行うことを特徴とする請求項1〜請求項3のいずれかに記載の系統連系インバータ装置。
  7. 複数の直流電力供給源と、前記直流電力供給源から得られる直流電力を交流電力に変換する直交変換手段とを有し、商用配電線系統との連系運転を行う系統連系インバータ装置において、
    複数の前記直流電力供給源のうち出力電圧が近接しているものを並列接続して複数の電力供給グループとし、少なくとも1つの電力供給グループを除いた残りの電力供給グループに電圧調整手段を設け、前記電圧調整手段を介さない電力供給グループの出力と各電圧調整手段の出力とを並列接続して前記直交変換手段に入力する構成とし、
    前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧と、を等しくするように前記電圧調整手段を制御することを特徴とする系統連系インバータ装置であって、
    前記直交変換手段に対して入力される直流電圧値と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値と、に基づいて前記電圧調整手段の入出力電圧比を制御することで、各電力供給グループの出力電圧をいずれも最大点に追従させる最大電力追従手段を有して成り、
    かつ、前記最大電力追従手段は、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧値及び出力電流値に基づいて該電力供給グループの出力電圧設定値を求め、その出力電圧設定値と前記直交変換手段に対して入力される直流電圧値とを基に、前記電圧調整手段の入出力電圧比を制御する第1制御手段と、
    前記直交変換手段の出力電流値に基づいて、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値を求め、その出力電圧設定値を基に前記直交変換手段の出力電力を制御する第2制御手段と、を有して成り、かつ、
    第2制御手段は、第1制御手段による前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧設定値の算定動作期間中、前記電圧調整手段を介さずに前記直交変換手段に入力される電力供給グループの出力電圧が変化しないように、前記直交変換手段の出力電力を制御することを特徴とする系統連系インバータ回路。
  8. 複数の直流電力供給源と、前記直流電力供給源から得られる直流電力を交流電力に変換する直交変換手段とを有し、商用配電線系統との連系運転を行う系統連系インバータ装置において、
    複数の前記直流電力供給源のうち出力電圧が近接しているものを並列接続して複数の電力供給グループとし、少なくとも1つの電力供給グループを除いた残りの電力供給グループに電圧調整手段を設け、前記電圧調整手段を介さない電力供給グループの出力と各電圧調整手段の出力とを並列接続して前記直交変換手段に入力する構成とし、
    前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧と、を等しくするように前記電圧調整手段を制御することを特徴とする系統連系インバータ装置であって、
    前記直交変換手段に対して入力される直流電圧値と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値と、に基づいて前記電圧調整手段の入出力電圧比を制御することで、各電力供給グループの出力電圧をいずれも最大点に追従させる最大電力追従手段を有して成り、
    かつ、前記最大電力追従手段は、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧値及び出力電流値に基づいて該電力供給グループの出力電圧設定値を求め、その出力電圧設定値と前記直交変換手段に対して入力される直流電圧値とを基に、前記電圧調整手段の入出力電圧比を制御する第1制御手段と、
    前記直交変換手段の出力電流値に基づいて、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値を求め、その出力電圧設定値を基に前記直交変換手段の出力電力を制御する第2制御手段と、を有して成り、かつ、
    装置起動時には第1制御手段に先立って第2制御手段が動作を開始し、前記電圧調整手段を介さずに前記直交変換手段に入力される電力供給グループの出力電圧が所定値に達した後に、第1制御手段が制御動作を開始することを特徴とする系統連系インバータ回路。
  9. 複数の直流電力供給源と、前記直流電力供給源から得られる直流電力を交流電力に変換する直交変換手段とを有し、商用配電線系統との連系運転を行う系統連系インバータ装置において、
    複数の前記直流電力供給源のうち出力電圧が近接しているものを並列接続して複数の電力供給グループとし、少なくとも1つの電力供給グループを除いた残りの電力供給グループに電圧調整手段を設け、前記電圧調整手段を介さない電力供給グループの出力と各電圧調整手段の出力とを並列接続して前記直交変換手段に入力する構成とし、
    前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電圧と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧と、を等しくするように前記電圧調整手段を制御することを特徴とする系統連系インバータ装置であって、
    前記直交変換手段に対して入力される直流電圧値と、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値と、に基づいて前記電圧調整手段の入出力電圧比を制御することで、各電力供給グループの出力電圧をいずれも最大点に追従させる最大電力追従手段を有して成り、
    かつ、前記最大電力追従手段は、前記電圧調整手段を介して前記直交変換手段に接続される電力供給グループの出力電圧値及び出力電流値に基づいて該電力供給グループの出力電圧設定値を求め、その出力電圧設定値と前記直交変換手段に対して入力される直流電圧値とを基に、前記電圧調整手段の入出力電圧比を制御する第1制御手段と、
    前記直交変換手段の出力電流値に基づいて、前記電圧調整手段を介さずに前記直交変換手段に接続される電力供給グループの出力電力が最大となるように算出された該電力供給グループの出力電圧設定値を求め、その出力電圧設定値を基に前記直交変換手段の出力電力を制御する第2制御手段と、を有して成り、かつ、
    前記直交変換手段への入力電圧が所定の上限電圧設定値以上になると、前記電圧調整手段は前記直交変換手段への入力電圧を前記上限電圧設定値に維持するように昇圧動作を行うことを特徴とする系統連系インバータ装置。
JP2000127002A 2000-04-27 2000-04-27 系統連系インバータ装置 Expired - Fee Related JP3747313B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127002A JP3747313B2 (ja) 2000-04-27 2000-04-27 系統連系インバータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127002A JP3747313B2 (ja) 2000-04-27 2000-04-27 系統連系インバータ装置

Publications (2)

Publication Number Publication Date
JP2001309560A JP2001309560A (ja) 2001-11-02
JP3747313B2 true JP3747313B2 (ja) 2006-02-22

Family

ID=18636675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127002A Expired - Fee Related JP3747313B2 (ja) 2000-04-27 2000-04-27 系統連系インバータ装置

Country Status (1)

Country Link
JP (1) JP3747313B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371963B2 (en) 2002-07-31 2008-05-13 Kyocera Corporation Photovoltaic power generation system
JP2006012920A (ja) * 2004-06-22 2006-01-12 Kyocera Corp 太陽光発電装置
ATE543198T1 (de) * 2004-12-24 2012-02-15 Huettinger Elektronik Gmbh Plasmaanregungssystem
JP4794189B2 (ja) * 2005-03-30 2011-10-19 三洋電機株式会社 太陽光発電装置
JP5302096B2 (ja) * 2009-05-15 2013-10-02 株式会社Nttファシリティーズ 太陽光発電システム及び制御方法
JP5540893B2 (ja) * 2010-05-31 2014-07-02 三洋電機株式会社 太陽光発電装置及び接続装置
WO2012132948A1 (ja) 2011-03-30 2012-10-04 三洋電機株式会社 電力変換システム
US8829715B2 (en) * 2011-04-29 2014-09-09 General Electric Company Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants
JP5829053B2 (ja) * 2011-06-03 2015-12-09 株式会社ダイヘン 系統連系インバータ装置
JP5880778B2 (ja) 2013-03-20 2016-03-09 富士電機株式会社 太陽光発電システム
JP6106568B2 (ja) * 2013-10-02 2017-04-05 山洋電気株式会社 電力変換装置
JP6232912B2 (ja) * 2013-10-11 2017-11-22 オムロン株式会社 太陽光発電用パワーコンディショナ

Also Published As

Publication number Publication date
JP2001309560A (ja) 2001-11-02

Similar Documents

Publication Publication Date Title
US11929620B2 (en) Maximizing power in a photovoltaic distributed power system
JP5641144B2 (ja) 電力変換装置
JP6706349B2 (ja) 無停電電源システムおよび無停電電源装置
JP5880778B2 (ja) 太陽光発電システム
KR102308628B1 (ko) 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법
KR102087063B1 (ko) 전력 변환 동안 개선된 버스트 모드를 위한 방법 및 장치
WO2005112551A2 (en) Method for compensating for partial shade in photovoltaic power system
JP3747313B2 (ja) 系統連系インバータ装置
EP2824533A2 (en) Photovoltaic system
CN110301081B (zh) 分布式/集中式优化器架构
CN114204901B (zh) 光伏系统、逆变器及逆变器的母线电压控制方法
JP2005269843A (ja) 系統連系装置
JP4959613B2 (ja) 電力補償装置
JP4046700B2 (ja) 系統連系インバータ装置
JP2009247185A (ja) 系統連系インバータ装置およびその自立運転方法
CN114402525A (zh) 对来自光伏装置的电力进行供应的光伏优化器电力系统
EP4074865A1 (en) Water electrolysis system and water electrolysis device
KR20220072364A (ko) 태양광 발전 제어 방법 및 태양광 발전 장치
US11588401B2 (en) Method for operating an inverter and inverter for carrying out the method
JP2019012380A (ja) 太陽光発電システム
US20240195178A1 (en) Power conversion device and control method thereof
JP2013206352A (ja) 最大電力点検出方法、および最大電力点検出装置
WO2024063086A1 (ja) 電力変換装置
JP2010183670A (ja) 電力変換装置
JP2010087010A (ja) 太陽光発電装置およびその制御方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051115

R150 Certificate of patent or registration of utility model

Ref document number: 3747313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees